JPH0613212A - Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet - Google Patents

Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet

Info

Publication number
JPH0613212A
JPH0613212A JP4169317A JP16931792A JPH0613212A JP H0613212 A JPH0613212 A JP H0613212A JP 4169317 A JP4169317 A JP 4169317A JP 16931792 A JP16931792 A JP 16931792A JP H0613212 A JPH0613212 A JP H0613212A
Authority
JP
Japan
Prior art keywords
rare earth
magnetic powder
bond magnet
bonded magnet
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4169317A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ishibashi
利之 石橋
Atsunori Kitazawa
淳憲 北澤
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP4169317A priority Critical patent/JPH0613212A/en
Publication of JPH0613212A publication Critical patent/JPH0613212A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PURPOSE:To obtain the low cost rare earth bond magnet having magnetic characteristics similar to those of conventional one by specifying the crystalline particle diameter for the level not exceeding specific value as well as Sm for specific quantity of R. CONSTITUTION:A ribbonlike alloy is produced using a single roll so that Sm may be composed of 20-80wt% of R (one or more than one kind of rare earth elements including Y). This alloy is crushed to be nitrified later. Later, the crushed alloy is further finely crushed to produce the particles in mean particle diameter not exceeding 20mum. Next, the produced particles are blended and kneaded with an epoxy base resin to be compression-molded into the bond magnet. Through these procedures, this rare earth bond magnet having excellent magnetic characteristics can be easily manufactured at low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類金属と遷移金属
群からなる希土類磁性粉末および希土類ボンド磁石に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth magnetic powder composed of a rare earth metal and a transition metal group and a rare earth bonded magnet.

【0002】[0002]

【従来の技術】従来、R2Fe17x系希土類ボンド磁石
に関しては、例えば特開平2−57663号公報,特開
平2−257603号公報など特許公報およびJ.Ma
gn.Magn.Mater.,87(1990)L2
51をはじめとする論文などに、Sm2Fe17x系とし
て報告されている。
2. Description of the Related Art Conventionally, R 2 Fe 17 N x rare earth bonded magnets have been disclosed in JP-A-2-57663 and JP-A-2-257603 and J. Ma
gn. Magn. Mater. , 87 (1990) L2
In 51 and other papers, Sm 2 Fe 17 N x system is reported.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
技術におけるSm2Fe17x系においては、以下の問題
点を有する。
However, the Sm 2 Fe 17 N x system in the prior art has the following problems.

【0004】(1)希土類元素のなかでも高価なSmを
約25重量%含むことから、磁性粉末の価格も高くな
る。
(1) Among the rare earth elements, about 25% by weight of expensive Sm is contained, so that the price of the magnetic powder also increases.

【0005】(2)Sm2Fe17xのSmを安価な他の
希土類金属で置換すると磁気特性が大幅に低下すること
から、低コスト化が困難である。
(2) When Sm of Sm 2 Fe 17 N x is replaced with another inexpensive rare earth metal, the magnetic properties are significantly deteriorated, and it is difficult to reduce the cost.

【0006】そこで、本発明はこのような問題点を解決
するもので、その目的とするところは、従来と同様の磁
気特性を有し、低コストな希土類磁性粉末および希土類
ボンド磁石を提供することにある。
Therefore, the present invention solves such a problem, and an object of the present invention is to provide a rare earth magnetic powder and a rare earth bonded magnet which have the same magnetic characteristics as conventional ones and are low in cost. It is in.

【0007】[0007]

【課題を解決するための手段】本発明の希土類磁性粉末
は、基本組成が主にR,FeおよびNからなるいわゆる
2Fe17x系磁性材料において、SmがRの20〜8
0重量%であり、結晶粒径が20μm以下であることを
特徴とする。上記Feの一部をCoやNb,Tiなど他
の遷移金属群で置換させたことを特徴とする。上記希土
類磁性粉末が、磁気的にほぼ等方性であることを特徴と
する。
The rare earth magnetic powder of the present invention is a so-called R 2 Fe 17 N x type magnetic material whose basic composition is mainly R, Fe and N, and 20 to 8 in which Sm is R.
It is characterized by being 0% by weight and having a crystal grain size of 20 μm or less. It is characterized in that a part of Fe is replaced with another transition metal group such as Co, Nb, or Ti. The rare earth magnetic powder is magnetically almost isotropic.

【0008】本発明の希土類磁性粉末の製造方法は、メ
ルトスパン法,メカニカルアロイング法,水素処理法,
ガスアトマイズ法を用いることを特徴とする。
The method for producing the rare earth magnetic powder of the present invention comprises a melt span method, a mechanical alloying method, a hydrogen treatment method,
It is characterized by using a gas atomizing method.

【0009】本発明の希土類ボンド磁石は、上記希土類
磁性粉末を用いることを特徴とする。上記希土類磁性粉
末を他の磁性粉末と混合させ用いたことを特徴とする。
上記他の磁性粉末がR2TM17系磁性粉末またはR2Fe
14B系磁性粉末であることを特徴とする。
The rare earth bonded magnet of the present invention is characterized by using the above rare earth magnetic powder. The rare earth magnetic powder is used by being mixed with another magnetic powder.
The other magnetic powder is R 2 TM 17 type magnetic powder or R 2 Fe.
It is characterized by being a 14 B type magnetic powder.

【0010】[0010]

【作用】本発明の上記の構成によれば、Sm2Fe17x
系のSmの一部を他の希土類金属で置換し、組織を微細
化することによって、以下の効果を有する。
According to the above constitution of the present invention, Sm 2 Fe 17 N x
By substituting a part of Sm of the system with another rare earth metal and refining the structure, the following effects are obtained.

【0011】(1)本組成系では、本来異方性磁界の低
下により保磁力が大幅に低下するなど磁気特性の劣化が
みられるが、この系は単磁区粒子タイプであることから
組織を微細にすることにより実用上十分な磁気特性が確
保できる。
(1) In the present composition system, although the magnetic properties are deteriorated such that the coercive force is largely decreased due to the decrease of the anisotropic magnetic field, this system is a single domain particle type, so that the texture is fine. By adopting this, magnetic properties sufficient for practical use can be secured.

【0012】(2)従来の磁性粉末、例えばSm2TM
17系やNd2Fe14B系の粉末は、微粉末化することに
より磁気特性、特に保磁力や角形性の低下が著しいが、
本組成系は単磁区粒子タイプであり、微粉末でも特性の
劣化がみられないことから、これらを混合させて用いる
ことにより、成形後の密度の向上などによる磁気特性の
改善が可能となる。
(2) Conventional magnetic powder such as Sm 2 TM
The 17- type and Nd 2 Fe 14 B-type powders are remarkably deteriorated in magnetic properties, particularly coercive force and squareness, by making them finer,
Since this composition system is a single domain particle type, and the characteristics are not deteriorated even with fine powders, it is possible to improve the magnetic characteristics by, for example, improving the density after molding by using them by mixing them.

【0013】特許請求の範囲の限定理由は以下の通り。The reasons for limiting the scope of the claims are as follows.

【0014】請求項1において、R中のSmが20重量
%未満では低コスト化の効果が小さく従来との差異もわ
ずかである。また、80重量%を越えると異方性磁界が
極めて小さくなったり一軸異方性が失われることから、
上記の範囲が望ましい。
In claim 1, when the Sm in R is less than 20% by weight, the effect of cost reduction is small and the difference from the conventional one is small. If it exceeds 80% by weight, the anisotropic magnetic field becomes extremely small or the uniaxial anisotropy is lost,
The above range is desirable.

【0015】同様に請求項1の結晶粒径の大きさは、2
0μmを越えると微細化の効果が失われることから、上
記の範囲が望ましく、細かい方の制限は実用上ない。
Similarly, the crystal grain size of claim 1 is 2
If it exceeds 0 μm, the effect of miniaturization is lost, so the above range is desirable, and the finer limit is not practical.

【0016】請求項2のFeの一部を置き換える他の遷
移金属の効果としては、Coにはキューリー温度の上昇
などによる熱安定性の向上や耐食性の向上があり、Nb
には初晶Feを抑制するが、Ti,V,Cr,Mn,Z
r,Mo,Hf,Ta,Wなどにおいても組織の微細化
などの効果により磁気特性が改善される。
The effect of the other transition metal substituting a part of Fe in claim 2 is that Co has an improvement in thermal stability and an improvement in corrosion resistance due to an increase in the Curie temperature, and Nb.
Suppresses primary crystal Fe, but Ti, V, Cr, Mn, Z
Also in r, Mo, Hf, Ta, W, etc., the magnetic characteristics are improved by the effect of making the structure finer.

【0017】請求項3の磁気特性的に『ほぼ』等方性の
意味は、特に組織が大きめのときや微粉末化したときに
はわずかな異方性がつくことがあるからで、本発明が完
全な等方性に限定されるものではない。
The term "nearly" isotropic in terms of magnetic properties in claim 3 means that slight anisotropy may occur especially when the structure is large or when it is pulverized. It is not limited to isotropic.

【0018】請求項4に製造方法として挙げたメルトス
パン法,メカニカルアロイング法,水素処理法,ガスア
トマイズ法は微細な組織を得るための手法の一例であ
り、本発明はこれに限定されるものではない。
The melt-span method, the mechanical alloying method, the hydrogen treatment method and the gas atomizing method mentioned as the manufacturing method in claim 4 are examples of a method for obtaining a fine structure, and the present invention is not limited thereto. Absent.

【0019】請求項6記載の他の磁性粉末に関しては、
請求項7および8にSm2TM17系およびNd2Fe14
系を挙げているが、これらも一例であり本発明はこれに
限定されるものではない。
With respect to another magnetic powder according to claim 6,
The Sm 2 TM 17 system and Nd 2 Fe 14 B according to claims 7 and 8.
However, the present invention is not limited to this.

【0020】[0020]

【実施例】以下、本発明について、実施例に基づいて詳
細に説明する。
EXAMPLES The present invention will be described in detail below based on examples.

【0021】(実施例1)Sm=12.3,Ce=12.
2,Fe=75.5重量% の組成となるように、直径2
00mmの銅製の単ロールを用い4m/秒でリボン状の
合金を作成した。平均結晶粒径は19μmだった。この
合金をアルゴンガス雰囲気中で1100℃で6時間の均
質化処理を施した後、<125μmに粉砕し、水素+ア
ンモニア混合ガス中で450℃で1時間、アルゴンガス
中で450℃で2時間の窒化処理を施した。その後、ボ
ールミルで微粉砕し、平均粒径で17μmの粉末を得
た。得られた粉末にエポキシ系樹脂3重量%を混合・混
練し、70kg/mm2 の成形圧で圧縮成形し、150
℃で1時間のキュアーを施しボンド磁石とした。これを
本発明1とする。
(Embodiment 1) Sm = 12.3, Ce = 12.
2, Fe = 75.5% by weight so that the composition is 2
A ribbon-shaped alloy was prepared at 4 m / sec using a single roll made of copper of 00 mm. The average crystal grain size was 19 μm. This alloy was homogenized in an argon gas atmosphere at 1100 ° C. for 6 hours, then pulverized to <125 μm, in a hydrogen + ammonia mixed gas at 450 ° C. for 1 hour, and in argon gas at 450 ° C. for 2 hours. Was subjected to a nitriding treatment. Then, it was finely pulverized with a ball mill to obtain a powder having an average particle size of 17 μm. The obtained powder is mixed and kneaded with 3% by weight of an epoxy resin and compression-molded at a molding pressure of 70 kg / mm 2 to obtain 150
The bonded magnet was cured at 1 ° C. for 1 hour. This is referred to as Invention 1.

【0022】本発明1の磁気特性は以下の通り。The magnetic characteristics of Invention 1 are as follows.

【0023】Br=7.2kG,iHc=9.8kOe,
(BH)max=10.3MGOe (実施例2)Sm=20.1,Pr=5.1,Fe=7
4.1,Nb=0.7重量%の組成となるように、実施例
1と同様に合金を作成した。ただし、ロールの周速度は
25m/秒で、平均結晶粒径は4μmだった。これを本
発明2とする。
Br = 7.2 kG, iHc = 9.8 kOe,
(BH) max = 10.3 MGOe (Example 2) Sm = 20.1, Pr = 5.1, Fe = 7
An alloy was prepared in the same manner as in Example 1 so that the composition was 4.1, Nb = 0.7% by weight. However, the peripheral speed of the roll was 25 m / sec, and the average crystal grain size was 4 μm. This is referred to as Invention 2.

【0024】本発明2の磁気特性は以下の通り。The magnetic characteristics of Invention 2 are as follows.

【0025】Br=7.6kG,iHc=14.1kO
e,(BH)max=11.1MGOe (実施例3)Sm=21.4,Pr=6.2,Fe=6
1.8,Co=10.6重量%の組成となるように、<2
97μmのSm,Nd粉末と<177μmのFe,Co
粉末をプラネタリーミルを用い、いわゆるメカニカルア
ロイングを施した。この粉末をアルゴンガス雰囲気中7
00℃で3時間,窒素ガス雰囲気中450℃で4時間の
熱処理を施した。平均結晶粒径は13μmだった。これ
を本発明3とする。
Br = 7.6 kG, iHc = 14.1 kO
e, (BH) max = 11.1MGOe (Example 3) Sm = 21.4, Pr = 6.2, Fe = 6
1.8, Co = 10.6% by weight so that the composition is <2
97 μm Sm, Nd powder and <177 μm Fe, Co
The powder was subjected to so-called mechanical alloying using a planetary mill. This powder in an argon gas atmosphere 7
Heat treatment was performed at 00 ° C. for 3 hours and at 450 ° C. for 4 hours in a nitrogen gas atmosphere. The average crystal grain size was 13 μm. This is referred to as Present Invention 3.

【0026】本発明3の磁気特性は以下の通り。The magnetic characteristics of Invention 3 are as follows.

【0027】Br=7.2kG,iHc=16.3kO
e,(BH)max=9.9MGOe (実施例4)Sm=5.6,Y=22.1,Fe=69.
6,Zr=2.7重量%の組成となるように、高周波溶
解炉を用いアルゴンガス雰囲気中で溶解・鋳造し、合金
を作成した。この合金を水素中で850℃まで5℃/分
で昇温し30分保持の後、さらに真空に引きながら30
分保持し冷却させた。得られた合金の平均結晶粒径は
0.2μmだった。これを本発明4とする。
Br = 7.2 kG, iHc = 16.3 kO
e, (BH) max = 9.9MGOe (Example 4) Sm = 5.6, Y = 22.1, Fe = 69.
An alloy was prepared by melting and casting in an argon gas atmosphere using a high frequency melting furnace so that the composition was 6, Zr = 2.7% by weight. This alloy was heated to 850 ° C. in hydrogen at a rate of 5 ° C./minute, held for 30 minutes, and then further vacuumed for 30
Hold for minutes and allow to cool. The average grain size of the obtained alloy was 0.2 μm. This is referred to as Present Invention 4.

【0028】本発明4の磁気特性は以下の通り。The magnetic characteristics of Invention 4 are as follows.

【0029】Br=7.1kG,iHc=11.1kO
e,(BH)max=9.7MGOe (実施例5)Sm=12.8,Ce=2.6,Pr=2.
6,Nd=7.6,Fe=73.1,Ti=1.3重量%
の組成となるように、アルゴンガスアトマイズ法を用
い、球状の合金を作成した。得られた合金の平均結晶粒
径は9.5μmだった。これを本発明5とする。
Br = 7.1 kG, iHc = 11.1 kO
e, (BH) max = 9.7MGOe (Example 5) Sm = 12.8, Ce = 2.6, Pr = 2.
6, Nd = 7.6, Fe = 73.1, Ti = 1.3% by weight
A spherical alloy was prepared by using the argon gas atomization method so that the above composition was obtained. The average grain size of the obtained alloy was 9.5 μm. This is referred to as Present Invention 5.

【0030】本発明5の磁気特性は以下の通り。The magnetic characteristics of Invention 5 are as follows.

【0031】Br=6.9kG,iHc=10.1kO
e,(BH)max=9.5MGOe (実施例6)Sm=24.2,Co=45.7,Fe=2
2.9,Cu=5.3,Zr=1.9重量%の組成となる
ように、高周波溶解炉を用いアルゴンガス雰囲気中で溶
解・鋳造しインゴットを作成した。このインゴットにア
ルゴンガス雰囲気中で、1150℃で24時間の溶体化
処理を、800℃で8時間保持した後 0.5℃/分で4
00℃まで連続冷却させる時効処理を施した。その後、
スタンプミルで粗粉砕、ボールミルで微粉砕し、平均粒
径で32μmの粉末を得た。これを粉末1とする。
Br = 6.9 kG, iHc = 10.1 kO
e, (BH) max = 9.5 MGOe (Example 6) Sm = 24.2, Co = 45.7, Fe = 2
An ingot was prepared by melting and casting in an argon gas atmosphere using a high frequency melting furnace so that the composition was 2.9, Cu = 5.3, and Zr = 1.9% by weight. This ingot was subjected to solution treatment at 1150 ° C. for 24 hours in an argon gas atmosphere, held at 800 ° C. for 8 hours, and then at 4 ° C. at 0.5 ° C./minute.
An aging treatment of continuously cooling to 00 ° C. was performed. afterwards,
Coarse pulverization with a stamp mill and fine pulverization with a ball mill gave powder with an average particle size of 32 μm. This is designated as Powder 1.

【0032】粉末1と平均粒径を 3.2μmとした本発
明1とを1:9の割合で混合させ、2.8重量% のエポ
キシ樹脂と混合・混練し、17kOeの磁場中で50k
g/mm2で加圧成形した。これを本発明6とする。
Powder 1 and the present invention 1 having an average particle size of 3.2 μm were mixed at a ratio of 1: 9, mixed and kneaded with 2.8% by weight of epoxy resin, and 50 k in a magnetic field of 17 kOe.
It was pressure molded at g / mm 2 . This is referred to as Present Invention 6.

【0033】また、粉末1のみでボンド磁石としたもの
を比較例1とする。
Further, Comparative Example 1 is one in which a bonded magnet is made of only powder 1.

【0034】本発明6および比較例1の磁気特性は以下
の通り。
The magnetic characteristics of Invention 6 and Comparative Example 1 are as follows.

【0035】 (実施例7)Nd=12.4,Fe=65.9,Co=1
5.9,B=5.8重量%の組成となるように、高周波溶
解炉を用いアルゴンガス雰囲気中で溶解・鋳造し、単ロ
ールで急冷薄帯を作成し、粉砕・熱処理を施した。これ
を粉末2とした。
[0035] (Example 7) Nd = 12.4, Fe = 65.9, Co = 1
It was melted and cast in an argon gas atmosphere using a high-frequency melting furnace so as to have a composition of 5.9, B = 5.8% by weight, a quenched ribbon was prepared with a single roll, and crushed and heat-treated. This was designated as Powder 2.

【0036】粉末2と平均粒径を 4.4μmとした本発
明2とを4:6の割合で混合させ、3.0重量%のエポ
キシ樹脂と混合・混練し、50kg/mm2で加圧成形
した。これを本発明7とする。
Powder 2 and the present invention 2 having an average particle size of 4.4 μm were mixed in a ratio of 4: 6, mixed and kneaded with 3.0% by weight of an epoxy resin, and pressed at 50 kg / mm 2. Molded. This is referred to as Invention 7.

【0037】また、粉末2のみでボンド磁石としたもの
を比較例2とする。
Further, Comparative Example 2 is one in which only powder 2 is used as a bonded magnet.

【0038】本発明7および比較例2の磁気特性は以下
の通り。
The magnetic characteristics of Invention 7 and Comparative Example 2 are as follows.

【0039】 以上の実施例から分かるように、本発明は例えば比較例
2と比較しても十分に高い磁気特性が得られており、他
の磁性粉末との混合の効果も明らかであり、本発明が有
効であることが分かる。
[0039] As can be seen from the above examples, the present invention has obtained sufficiently high magnetic characteristics even when compared with, for example, Comparative Example 2, and the effect of mixing with other magnetic powders is clear, and the present invention is effective. It turns out that

【0040】[0040]

【発明の効果】以上述べたように本発明によれば、Sm
2Fe17x系のSmの一部を他の希土類金属で置換し、
組織を微細化することを特徴とすることにより、磁気特
性の高い希土類ボンド磁石を低コストでかつ簡便に作成
することができることから、応用するモータやデバイス
のさらなる高性能化,小型化を実現できるなど応用面に
も多大の効果を有するものである。
As described above, according to the present invention, Sm
Substituting a part of Sm of 2 Fe 17 N x system with another rare earth metal,
By making the structure finer, it is possible to easily produce a rare earth bonded magnet with high magnetic properties at low cost, so it is possible to realize higher performance and miniaturization of applied motors and devices. It also has a great effect on the application side.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 1/08 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053 1/08 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 基本組成が主に希土類金属(Yを含む希
土類元素のうち1種または2種以上:以下Rと略す),
FeおよびNからなるいわゆるR2Fe17x系磁性材料
において、SmがRの20〜80重量%であり、結晶粒
径が20μm以下であることを特徴とする希土類磁性粉
末。
1. A basic composition is mainly a rare earth metal (one or more kinds of rare earth elements including Y: hereinafter abbreviated as R),
A so-called R 2 Fe 17 N x magnetic material composed of Fe and N, wherein Sm is 20 to 80% by weight of R and the crystal grain size is 20 μm or less.
【請求項2】 上記Feの一部をCoやNb,Tiなど
他の遷移金属群で置換させたことを特徴とする請求項1
記載の希土類磁性粉末。
2. A part of the Fe is replaced with another group of transition metals such as Co, Nb and Ti.
The rare earth magnetic powder described.
【請求項3】 上記希土類磁性粉末が、磁気的にほぼ等
方性であることを特徴とする請求項1および2記載の希
土類磁性粉末。
3. The rare earth magnetic powder according to claim 1 or 2, wherein the rare earth magnetic powder is magnetically isotropic.
【請求項4】 基本組成が主にR,FeおよびNからな
るいわゆるR2Fe17x系でSmがRの20〜80%で
あり、メルトスパン法,メカニカルアロイング法,水素
処理法,ガスアトマイズ法を用いることを特徴とする希
土類磁性粉末の製造方法。
4. A so-called R 2 Fe 17 N x system having a basic composition mainly composed of R, Fe and N, and having Sm of 20 to 80% of R, a melt-span method, a mechanical alloying method, a hydrogen treatment method, and gas atomization. A method for producing a rare earth magnetic powder, characterized by using a method.
【請求項5】 上記希土類磁性粉末を用いることを特徴
とする希土類ボンド磁石。
5. A rare earth bonded magnet comprising the rare earth magnetic powder.
【請求項6】 上記希土類磁性粉末を他の磁性粉末と混
合させ用いたことを特徴とする希土類ボンド磁石。
6. A rare earth bonded magnet, characterized in that the rare earth magnetic powder is used by being mixed with another magnetic powder.
【請求項7】 上記他の磁性粉末がRおよびCoからな
り必要に応じてFe,Cu,Zrなどを含むいわゆるR
2TM17系(TM:遷移金属群)磁性粉末であることを
特徴とする請求項6記載の希土類ボンド磁石。
7. The so-called R, wherein the other magnetic powder is composed of R and Co and optionally contains Fe, Cu, Zr and the like.
The rare earth bonded magnet according to claim 6, which is a 2 TM 17 series (TM: transition metal group) magnetic powder.
【請求項8】 上記他の磁性粉末がR,FeおよびBか
らなるいわゆるR2Fe14B系磁性粉末である特徴とす
る請求項6記載の希土類ボンド磁石。
8. The rare earth bonded magnet according to claim 6, wherein the other magnetic powder is a so-called R 2 Fe 14 B based magnetic powder containing R, Fe and B.
JP4169317A 1992-06-26 1992-06-26 Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet Pending JPH0613212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4169317A JPH0613212A (en) 1992-06-26 1992-06-26 Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4169317A JPH0613212A (en) 1992-06-26 1992-06-26 Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet

Publications (1)

Publication Number Publication Date
JPH0613212A true JPH0613212A (en) 1994-01-21

Family

ID=15884303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4169317A Pending JPH0613212A (en) 1992-06-26 1992-06-26 Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet

Country Status (1)

Country Link
JP (1) JPH0613212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078610A (en) * 2006-09-19 2008-04-03 Peking Univ Anisotropic rare earth permanent magnet material, magnetic powder and magnet including same, and their manufacturing methods
US11335484B2 (en) * 2018-01-30 2022-05-17 Tdk Corporation Permanent magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078610A (en) * 2006-09-19 2008-04-03 Peking Univ Anisotropic rare earth permanent magnet material, magnetic powder and magnet including same, and their manufacturing methods
US11335484B2 (en) * 2018-01-30 2022-05-17 Tdk Corporation Permanent magnet

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JP2001189206A (en) Permanent magnet
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JP2002038245A (en) Rare earth alloy powder for rermanent magnet and method for manufacturing rare earth permanent magnet
JPH0696928A (en) Rare-earth sintered magnet and its manufacture
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JPS6017905A (en) Permanent magnet alloy powder
US5230749A (en) Permanent magnets
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JP3003979B2 (en) Permanent magnet and method for manufacturing the same
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPH052735B2 (en)
JP2753430B2 (en) Bonded magnet
JPH0696926A (en) Resin-bonded rare-earth-cobalt magnet
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPH0474425B2 (en)
JPH06112019A (en) Nitride magnetic material
JP3255593B2 (en) Manufacturing method of sintered permanent magnet with good thermal stability
JPH0945522A (en) Anisotropic rare-earth magnet and its manufacture
JP4585691B2 (en) Fe-BR type permanent magnet material containing Ce and Nd and / or Pr and method for producing the same
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH09115711A (en) Anisotropic bond magnet