JPH06192795A - Permanent magnet alloy - Google Patents

Permanent magnet alloy

Info

Publication number
JPH06192795A
JPH06192795A JP4345785A JP34578592A JPH06192795A JP H06192795 A JPH06192795 A JP H06192795A JP 4345785 A JP4345785 A JP 4345785A JP 34578592 A JP34578592 A JP 34578592A JP H06192795 A JPH06192795 A JP H06192795A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
saturation magnetization
magnetic field
magnet alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4345785A
Other languages
Japanese (ja)
Inventor
Keisuke Nakamura
啓介 中村
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP4345785A priority Critical patent/JPH06192795A/en
Publication of JPH06192795A publication Critical patent/JPH06192795A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic properties, such as saturation magnetization, anisotropic magnetic field, and Curie temp., by adding specific elements to a (rare earth)-Fe-Co-Si type permanent magnet alloy. CONSTITUTION:The high performance rare earth permanent magnet alloy has a composition represented by RaTbSicMd. In the formula, R is at least one kind among rare earth elements including Y, T is Fe and/or Co, M is at least one element among B, C, N, Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Mo, Re, Rh, Pd, Ag, In, Sn, Sb, Hf, Ta, W, Pt, Au, and Bi, and further, 1<=a<=15% by atom, 0.1<=b<=100-a-c-d%, 5<=c<=30%, and 0.1<=d<=20%. In this alloy, main phase has body-centered tetragonal BaCd11 type crystal structure. The additive element M is an element effective in improving saturation magnetization, anisotropic magnetic field, and Curie temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、VCM(ボイスコイル
モータ),回転機器等に使用される高性能希土類永久磁
石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance rare earth permanent magnet used for VCM (voice coil motor), rotating equipment and the like.

【0002】[0002]

【従来の技術】従来から知られ、量産されている高性能
希土類永久磁石にSm−Co系やNd−Fe−B系磁石
などがある。これらの磁石に含まれる希土類元素Sm,
Ndなどは、大きな結晶磁気異方性発現において重要な
役割を果たし、高い保磁力を得るため必要不可欠であ
る。
2. Description of the Related Art Sm-Co and Nd-Fe-B based magnets are known as high performance rare earth permanent magnets that have been known and mass-produced. Rare earth elements Sm contained in these magnets,
Nd and the like play an important role in exerting a large magnetocrystalline anisotropy and are indispensable for obtaining a high coercive force.

【0003】しかし、希土類元素は一般に高価なため、
これらを多く含有することは製造コスト的に不利であ
る。このため、高性能希土類磁石のコスト低減には希土
類含有量の低減が必要である。
However, since rare earth elements are generally expensive,
Containing a large amount of these is disadvantageous in terms of manufacturing cost. For this reason, it is necessary to reduce the rare earth content in order to reduce the cost of the high performance rare earth magnet.

【0004】この含有希土類量の低減化を図った磁石材
料としてThMn12型結晶構造を有する金属間化合物S
m−Fe−Ti系が見いだされている(特公平4−50
722号)。しかし実際には、この組成系で焼結磁石が
作製された例はなく、超急冷,メカニカルアロイング法
による磁気特性が報告されている。
An intermetallic compound S having a ThMn 12 type crystal structure is used as a magnet material for reducing the content of rare earth elements.
The m-Fe-Ti system has been found (Japanese Patent Publication No. 4-50).
722). However, in reality, no sintered magnet has been produced with this composition system, and magnetic properties by ultra-quenching and mechanical alloying methods have been reported.

【0005】また同様に、Sm−Co系やNd−Fe−
B系よりも含有希土類量を低減した磁石材料として体心
正方晶のBaCd11型結晶構造を有する金属間化合物N
d−Fe−Co−Si系も報告されている(J.Chem.Res
earch(S),1987,138)。
Similarly, Sm-Co and Nd-Fe-
An intermetallic compound N having a body-centered tetragonal BaCd 11 type crystal structure as a magnet material containing less rare earth than that of B system
The d-Fe-Co-Si system has also been reported (J. Chem. Res.
earch (S), 1987, 138).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の金属間
化合物は飽和磁化,異方性磁界,キュリー温度が低く、
実用高性能希土類磁石には使用できなかった。本発明は
上記問題点を改善するためになされ、飽和磁化,異方性
磁界,キュリー温度の改善を図った高性能希土類永久磁
石を提供することを目的とする。
However, the above intermetallic compounds have low saturation magnetization, anisotropic magnetic field, and Curie temperature,
It could not be used for practical high-performance rare earth magnets. The present invention has been made to solve the above problems, and an object of the present invention is to provide a high-performance rare earth permanent magnet with improved saturation magnetization, anisotropic magnetic field, and Curie temperature.

【0007】[0007]

【課題を解決するための手段】本発明者らは、高価な希
土類元素量を低減し、BaCd11型結晶構造を有する金
属間化合物の磁気特性を向上させるために研究を重ねた
結果、R−Fe−Co−Si系に更に添加元素を添加す
ることにより、本金属間化合物を主相とする永久磁石を
形成したとき、飽和磁化,異方性磁界,キュリー温度を
大幅に高めることが可能となることを見いだし、本発明
を完成させた。
Means for Solving the Problems The present inventors have conducted research to reduce the amount of expensive rare earth elements and improve the magnetic properties of an intermetallic compound having a BaCd 11 type crystal structure. By adding an additional element to the Fe-Co-Si system, it is possible to significantly increase the saturation magnetization, anisotropic magnetic field, and Curie temperature when a permanent magnet having the present intermetallic compound as a main phase is formed. The present invention has been completed and the present invention has been completed.

【0008】すなわち、本発明にかかわる永久磁石合金
は、組成式:RabSiCd(式中RはYを含む全ての
希土類元素のうち少なくとも1種、TはFeまたはCo
の1種または2種、MはB,C,N,Al,Ti,V,
Cr,Mn,Ni,Cu,Zn,Ga,Ge,Zr,N
b,Mo,Re,Rh,Pd,Ag,In,Sn,S
b,Hf,Ta,W,Pt,Au,Biのうちの少なく
とも1種で、1≦ a ≦15 at%,0.1≦ b ≦100-a-
c-d at%,5≦ c ≦30 at%,0.1≦ d≦20 a
t%)からなり、主相が体心正方晶BaCd11型結晶構
造を有することを特徴とする。
Namely, the permanent magnet alloy according to the present invention, the composition formula: R a T b Si C M d ( at least one of all the rare earth elements in the formula R is including Y, T is Fe or Co
1 or 2 of, M is B, C, N, Al, Ti, V,
Cr, Mn, Ni, Cu, Zn, Ga, Ge, Zr, N
b, Mo, Re, Rh, Pd, Ag, In, Sn, S
at least one of b, Hf, Ta, W, Pt, Au and Bi, and 1 ≦ a ≦ 15 at%, 0.1 ≦ b ≦ 100-a-
c-d at%, 5 ≤ c ≤ 30 at%, 0.1 ≤ d ≤ 20 a
t%), and the main phase has a body-centered tetragonal BaCd 11 type crystal structure.

【0009】本発明にかかわる永久磁石合金において、
組成を上記のように限定した理由を下記に説明する。
In the permanent magnet alloy according to the present invention,
The reason for limiting the composition as described above will be described below.

【0010】Rとしては、La,Ce,Pr,Nd,P
m,Sm,Eu,Gd,Tb,Dy,Ho,Er,T
m,Yb,Luの希土類元素およびYで、これらの少な
くとも1種または2種以上の混合物が使用される。Rは
いずれも材料に磁気異方性をもたらし、高い保磁力を与
えるため1at%以上、15at%以下がよい。Rが1
at%未満ではα-Feが生成して保磁力を下げ、15
at%を越えると飽和磁化が大幅に低下する。また高価
な希土類元素を大量に使うことになり、製造コストが上
がるため不利である。
R is La, Ce, Pr, Nd, P
m, Sm, Eu, Gd, Tb, Dy, Ho, Er, T
As the rare earth element of m, Yb and Lu and Y, at least one kind or a mixture of two or more kinds thereof is used. Since R causes magnetic anisotropy in the material and gives a high coercive force, R is preferably 1 at% or more and 15 at% or less. R is 1
If it is less than at%, α-Fe is generated to lower the coercive force,
When it exceeds at%, the saturation magnetization is significantly reduced. In addition, a large amount of expensive rare earth element is used, which is disadvantageous because the manufacturing cost is increased.

【0011】Feは磁気モーメントを増大するので0.
1at%以上添加することが好ましい。
Since Fe increases the magnetic moment, it is less than 0.
It is preferable to add 1 at% or more.

【0012】CoはFeと全量置換可能であり、飽和磁
化はFe:Co=1:1付近で最大になる。さらにCo
は耐食性の向上に効果があるが、高価なため製造コスト
との兼ね合いで任意の量の比で選択可能である。
All of Co can be replaced with Fe, and the saturation magnetization becomes maximum around Fe: Co = 1: 1. Further Co
Has the effect of improving the corrosion resistance, but is expensive, so that it can be selected in an arbitrary amount ratio in consideration of the manufacturing cost.

【0013】SiはBaCd11型構造を安定化するため
に不可欠で、5at%以上、30at%以下がよい。S
iが5at%未満ではBaCd11型構造が生成せず、3
0at%を越えると飽和磁化が大幅に低下する。
Si is indispensable for stabilizing the BaCd 11 type structure and is preferably 5 at% or more and 30 at% or less. S
When i is less than 5 at%, a BaCd11 type structure is not formed and 3
If it exceeds 0 at%, the saturation magnetization is significantly reduced.

【0014】M元素としては、B,C,N,Al,T
i,V,Cr,Mn,Ni,Cu,Zn,Ga,Ge,
Zr,Nb,Mo,Re,Rh,Pd,Ag,In,S
n,Sb,Hf,Ta,W,Pt,Au,Biのうちの
少なくとも1種または2種以上の混合物が使用される。
本来M元素を添加しなくともBaCd11型結晶構造はR
−Fe−Co−Si系により形成するが、M元素を20
at%以下の範囲で添加することにより、飽和磁化,異
方性磁界,キュリー温度の向上に有効な元素である。
As the M element, B, C, N, Al, T
i, V, Cr, Mn, Ni, Cu, Zn, Ga, Ge,
Zr, Nb, Mo, Re, Rh, Pd, Ag, In, S
At least one of n, Sb, Hf, Ta, W, Pt, Au and Bi or a mixture of two or more thereof is used.
Originally, the BaCd 11 type crystal structure is R even if M element is not added.
-Fe-Co-Si system, but with M element of 20
When added in the range of at% or less, it is an element effective in improving the saturation magnetization, anisotropic magnetic field, and Curie temperature.

【0015】すなわち、R−Fe−Co−Si系による
BaCd11型結晶構造を有する化合物は、Rの強い異方
性と、FeまたはCoの3d−3d交換相互作用による
高いキュリー温度と、FeまたはCoの3dバンドギャ
ップの大きな磁気モーメントによる高い飽和磁化が期待
される。
That is, the compound having the BaCd 11 type crystal structure of the R—Fe—Co—Si system has a strong anisotropy of R, a high Curie temperature due to the 3d-3d exchange interaction of Fe or Co, and Fe or Co. High saturation magnetization due to the large magnetic moment of the 3d band gap of Co is expected.

【0016】しかし実際は、R−R距離が遠いため異方
性磁界が弱く、弱い3d−3d交換相互作用のためキュ
リー温度も低く、3dバンドへSi原子からの電子移入
によりギャップが埋められて飽和磁化も低い。
However, in reality, since the RR distance is long, the anisotropic magnetic field is weak, and the Curie temperature is also low due to the weak 3d-3d exchange interaction, so that the gap is filled by the electron transfer from the Si atom to the 3d band and saturated. The magnetization is also low.

【0017】本発明は、M元素をこのR−Fe−Co−
Si系に添加することにより、R−R距離を近づけて異
方性磁界を向上させ、3d−3d交換相互作用を強化し
てキュリー温度を改善し、3dバンドへSi原子からの
電子移入を抑えて飽和磁化を向上するのに効果がある。
In the present invention, the M element is replaced by this R-Fe-Co-
By adding to the Si system, the RR distance is reduced to improve the anisotropic magnetic field, enhance the 3d-3d exchange interaction to improve the Curie temperature, and suppress the electron transfer from Si atoms to the 3d band. And is effective in improving the saturation magnetization.

【0018】上記効果を現すためにMは0.1at%以
上の添加が好ましいが、20at%を越えて添加すると
飽和磁化が大幅に低下する。
In order to exhibit the above effect, it is preferable to add M in an amount of 0.1 at% or more.

【0019】次に本発明にかかわる永久磁石の製造方法
について説明する。本発明にかかわる永久磁石は公知の
製造方法、例えば、溶解、鋳造、熱処理、または溶解、
鋳造、粉砕、成形、焼結、熱処理、または溶解、鋳造、
超急冷、熱処理することにより得られる。さらに、原料
または溶解合金の粉末を相互に固相反応させて合金化す
るメカニカルアロイング法や、CまたはNを添加する際
にガス−固体反応法を用いても得られる。また、上記の
ような合金材を一体化するための熱処理の代わりにホッ
トプレス処理を行ってもよい。なお、上記の合金材を熱
処理後、エポキシ樹脂,ナイロン系などの樹脂と混合し
成形してボンド磁石を製造することができる。
Next, a method of manufacturing a permanent magnet according to the present invention will be described. The permanent magnet according to the present invention can be manufactured by a known manufacturing method, for example, melting, casting, heat treatment, or melting,
Casting, crushing, molding, sintering, heat treatment or melting, casting,
Obtained by ultra-quenching and heat treatment. Further, it can also be obtained by using a mechanical alloying method in which raw materials or powders of a molten alloy are solid-phase reacted with each other to form an alloy, or a gas-solid reaction method when C or N is added. Further, hot pressing may be performed instead of the heat treatment for integrating the alloy materials as described above. After the above alloy material is heat-treated, it can be mixed with an epoxy resin, a nylon-based resin or the like and molded to manufacture a bonded magnet.

【0020】本発明にかかわる永久磁石は、体心正方晶
の安定なBaCd11型結晶構造を有する化合物相を主体
とし、添加元素Mにより飽和磁化、異方性磁界、キュリ
ー温度が高く、従来の2元系または3元系の化合物と比
べて極めて優れた磁気特性を発揮する。
The permanent magnet according to the present invention is mainly composed of a compound phase having a body-centered tetragonal stable BaCd 11 type crystal structure, and has high saturation magnetization, an anisotropic magnetic field, and Curie temperature due to the added element M, and is It exhibits extremely excellent magnetic properties as compared with binary or ternary compounds.

【0021】[0021]

【実施例】【Example】

(実施例1)表1に示すR,Fe,Co,Si,Al,V,Ga,Mo,Hf,Zr,
Pd,Ti,Mn,Cの元素からなる組成の合金をアーク溶解によ
り作製した。得られたインゴットを粉砕し、さらに一部
をガス−固体反応法により窒化および炭化を500℃で4時
間おこなった。これら粉末の飽和磁化(σs),異方性
磁界(HA),キュリー温度(Tc)を測定したところ、
表2に示す結果が得られた。
(Example 1) R, Fe, Co, Si, Al, V, Ga, Mo, Hf, Zr, shown in Table 1
An alloy with a composition consisting of Pd, Ti, Mn and C elements was prepared by arc melting. The obtained ingot was crushed, and a part of it was nitrided and carbonized at 500 ° C. for 4 hours by the gas-solid reaction method. When the saturation magnetization (σs), anisotropic magnetic field (HA) and Curie temperature (Tc) of these powders were measured,
The results shown in Table 2 were obtained.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】以上のように、R−Fe−Co−Si−M
系材料は高い磁気特性が得られる。
As described above, R-Fe-Co-Si-M
High magnetic properties can be obtained with the system material.

【0025】(実施例2)表3に示すR,Fe,Co,Si,Al,Z
r,B,Cr,Mo,In,Ta,W,Nb,Cu,Ge,Snの元素からなる組成の
合金をアーク溶解により作製した。得られたインゴット
をディスクミルで平均5〜10μmの大きさに粗粉砕し、ジ
ェットミルで平均2〜3μmの大きさに微粉砕し、横磁場
成形した。1000〜1200℃で2時間焼結し、550〜950℃で2
時間熱処理した後急冷した。熱処理後の異方性焼結体の
残留磁束密度(Br),保磁力(iHc),最大エネルギ
ー積((BH)max)を測定したところ、表4に示す結
果が得られた。
(Example 2) R, Fe, Co, Si, Al, Z shown in Table 3
Alloys with compositions consisting of r, B, Cr, Mo, In, Ta, W, Nb, Cu, Ge and Sn were prepared by arc melting. The obtained ingot was coarsely crushed with a disc mill to an average size of 5 to 10 μm, finely pulverized with a jet mill to an average size of 2 to 3 μm, and subjected to transverse magnetic field molding. Sinter at 1000-1200 ℃ for 2 hours, then at 550-950 ℃ for 2 hours
After heat treatment for an hour, it was rapidly cooled. The residual magnetic flux density (Br), coercive force (iHc), and maximum energy product ((BH) max) of the anisotropic sintered body after heat treatment were measured, and the results shown in Table 4 were obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】以上のように、R−Fe−Co−Si−M
系焼結磁石は高い磁気特性が得られる。
As described above, R-Fe-Co-Si-M
Sintered magnets have high magnetic properties.

【0029】[0029]

【発明の効果】以上のように、本発明によればR−Fe
−Co−Si系にM元素を添加することにより、安定し
た体心正方晶BaCd11型構造を有する金属間化合物の
飽和磁化,異方性磁界,キュリー温度を改善し、さらに
本金属間化合物を主相とする磁気特性の高い永久磁石を
提供することができる。
As described above, according to the present invention, R-Fe
By adding the M element to the —Co—Si system, the saturation magnetization, anisotropic magnetic field, and Curie temperature of the intermetallic compound having a stable body-centered tetragonal BaCd 11 type structure are improved, and further the present intermetallic compound is added. It is possible to provide a permanent magnet having a main phase and high magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】 BaCd11型結晶構造の粉末X線回折図を示
す。
FIG. 1 shows a powder X-ray diffraction pattern of a BaCd 11 type crystal structure.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 組成式:RabSiCd(式中RはYを
含む全ての希土類元素のうち少なくとも1種、TはFe
またはCoの1種または2種、MはB,C,N,Al,
Ti,V,Cr,Mn,Ni,Cu,Zn,Ga,G
e,Zr,Nb,Mo,Re,Rh,Pd,Ag,I
n,Sn,Sb,Hf,Ta,W,Pt,Au,Biの
うちの少なくとも1種で、1≦ a ≦15 at%,0.1≦
b ≦100-a-c-d at%,5≦ c ≦30 at%,0.1
≦ d ≦20 at%)からなり、主相が体心正方晶Ba
Cd11型結晶構造を有することを特徴とする永久磁石合
金。
1. A composition formula: R a T b Si C M d ( at least one of all the rare earth elements in the formula R is including Y, T is Fe
Alternatively, one or two types of Co, M is B, C, N, Al,
Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, G
e, Zr, Nb, Mo, Re, Rh, Pd, Ag, I
At least one of n, Sn, Sb, Hf, Ta, W, Pt, Au, and Bi, and 1 ≦ a ≦ 15 at%, 0.1 ≦
b ≤ 100-a-c-d at%, 5 ≤ c ≤ 30 at%, 0.1
≤ d ≤ 20 at%) and the main phase is body-centered tetragonal Ba
A permanent magnet alloy having a Cd 11 type crystal structure.
JP4345785A 1992-12-25 1992-12-25 Permanent magnet alloy Pending JPH06192795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4345785A JPH06192795A (en) 1992-12-25 1992-12-25 Permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4345785A JPH06192795A (en) 1992-12-25 1992-12-25 Permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPH06192795A true JPH06192795A (en) 1994-07-12

Family

ID=18378964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4345785A Pending JPH06192795A (en) 1992-12-25 1992-12-25 Permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPH06192795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528717A (en) * 2013-06-13 2016-09-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, use of magnetic material, and method of manufacturing magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016528717A (en) * 2013-06-13 2016-09-15 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, use of magnetic material, and method of manufacturing magnetic material

Similar Documents

Publication Publication Date Title
EP0134304B1 (en) Permanent magnets
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
JPH0510806B2 (en)
JP2001189206A (en) Permanent magnet
JP3121824B2 (en) Sintered permanent magnet
JP2513994B2 (en) permanent magnet
JPH0316761B2 (en)
JP3222482B2 (en) Manufacturing method of permanent magnet
JPS61195954A (en) Permanent magnet alloy
US5230749A (en) Permanent magnets
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH066775B2 (en) Rare earth permanent magnet
JPS609104A (en) Permanent magnet
JPH068488B2 (en) Permanent magnet alloy
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0536495B2 (en)
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JPH06192795A (en) Permanent magnet alloy
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPH0547533A (en) Sintered permanent magnet and manufacture thereof
JP2002124407A (en) Anisotropic sintered rare-earth manget and its manufacturing method
JPH0467324B2 (en)
JP3652752B2 (en) Anisotropic bonded magnet
JPH0513207A (en) Manufacture of r-t-b-based permanent magnet
JP2753430B2 (en) Bonded magnet