JP2898463B2 - Method for producing raw material powder for R-Fe-B-based permanent magnet - Google Patents

Method for producing raw material powder for R-Fe-B-based permanent magnet

Info

Publication number
JP2898463B2
JP2898463B2 JP4093779A JP9377992A JP2898463B2 JP 2898463 B2 JP2898463 B2 JP 2898463B2 JP 4093779 A JP4093779 A JP 4093779A JP 9377992 A JP9377992 A JP 9377992A JP 2898463 B2 JP2898463 B2 JP 2898463B2
Authority
JP
Japan
Prior art keywords
atomic
phase
alloy powder
less
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4093779A
Other languages
Japanese (ja)
Other versions
JPH05267027A (en
Inventor
裕治 金子
宏樹 徳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4093779A priority Critical patent/JP2898463B2/en
Priority to US08/032,101 priority patent/US5387291A/en
Priority to CN93104569.XA priority patent/CN1070634C/en
Priority to AT93302124T priority patent/ATE169423T1/en
Priority to EP93302124A priority patent/EP0561650B1/en
Priority to DE69320084T priority patent/DE69320084T2/en
Publication of JPH05267027A publication Critical patent/JPH05267027A/en
Application granted granted Critical
Publication of JP2898463B2 publication Critical patent/JP2898463B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、R(RはYを含む希
土類元素のうち少なくとも1種)、Fe、Bを主成分と
するR−Fe−B系永久磁石の製造に用いる原料粉末の
製造方法に係り、R2Fe14B相を主相とする主相系合
金粉末にR2Fe17相を含む調整用合金粉末を添加配合
して、磁石特性を劣化させるBリッチ相やNdリッチ相
の量を低減したR−Fe−B系永久磁石用原料粉末の製
造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a raw material powder used for producing an R--Fe--B permanent magnet containing R (at least one of rare earth elements including Y), Fe and B as main components. According to the production method, a B-rich phase or an Nd-rich phase, which deteriorates magnet properties, is obtained by adding and blending an adjustment alloy powder containing an R 2 Fe 17 phase to a main phase alloy powder having an R 2 Fe 14 B phase as a main phase. relates to the production how raw material powder for R-Fe-B permanent magnet having a reduced amount of phase.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
−Fe−B系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高磁石特性を発現し、iHcが25kOe以上、
(BH)maxが45MGOe以上と、従来の高性能希
土類コバルト磁石と比較しても、格段の高性能を発揮す
る。また、用途に応じ、選定された種々の磁石特性を発
揮するよう、種々組成のR−Fe−B系永久磁石が提案
されている。
2. Description of the Related Art Today, a typical high performance permanent magnet R
-Fe-B based permanent magnet (JP-A-59-46008)
Exhibits high magnet properties in a structure having a main phase of a ternary tetragonal compound and an R-rich phase, iHc of 25 kOe or more,
(BH) max is 45 MGOe or more, which shows remarkably high performance even when compared with conventional high performance rare earth cobalt magnets. Further, R-Fe-B permanent magnets having various compositions have been proposed so as to exhibit various magnet properties selected according to the application.

【0003】上記種々の組成のR−Fe−B系焼結永久
磁石を製造するには、所要組成の磁石用の合金粉末を製
造する必要があり、電解により還元された希土類原料を
用いて、溶解して鋳型に鋳造し所要磁石組成の合金塊を
作成し、これを粉砕して所要粒度の合金粉末とする溶解
・粉砕法(特開昭60−63304号、特開昭60−1
19701号)と、希土類酸化物、Fe粉等を用い直接
磁石組成合金粉を作成する直接還元拡散法(特開昭59
−219404号、特開昭60−77943号)があ
る。
[0003] In order to produce R-Fe-B sintered permanent magnets having the above-mentioned various compositions, it is necessary to produce alloy powders for magnets having a required composition, using a rare earth raw material reduced by electrolysis. It is melted and cast into a mold to form an alloy lump having a required magnet composition, and then pulverized to obtain an alloy powder having a required particle size (Japanese Patent Application Laid-Open Nos. 60-63304 and 60-1).
No. 19701) and a direct reduction-diffusion method for preparing a magnet composition alloy powder directly using a rare earth oxide, Fe powder, etc.
-219404 and JP-A-60-77943.

【0004】溶解・粉砕法は、鋳造時にFe初晶が発生
し易くRリッチ相が大きく偏析するが、鋳塊の粗粉砕工
程で容易に酸化防止が可能な工程で粉砕ができるため、
比較的低含有酸素量の合金粉末が得られる。
In the melting and pulverizing method, an Fe primary crystal is liable to be generated during casting, and the R-rich phase is largely segregated.
An alloy powder having a relatively low oxygen content is obtained.

【0005】直接還元拡散法は、上記の溶解・粉砕法と
比較して磁石用原料粉末を作成する時に溶解・粗粉砕等
の工程を省略することができることが利点であるが、R
2Fe14B主相の周囲にRリッチ相がとり囲んだ状態で
作成され、また、Rリッチ相の大きさは前者と比較して
小さく良く分散されるため、製造時に酸化され易く含有
酸素量が多く、磁石組成によっては希土類元素が消耗さ
れて磁石特性のバラツキ等の発生原因となる問題があ
る。
[0005] The direct reduction diffusion method has the advantage that the steps of melting and coarse grinding can be omitted when preparing the raw material powder for the magnet as compared with the above melting and grinding method.
Since the R-rich phase is formed around the 2 Fe 14 B main phase, and the size of the R-rich phase is small and well dispersed as compared with the former, it is easily oxidized at the time of production and the oxygen content is high. However, depending on the magnet composition, there is a problem that the rare earth element is consumed and causes a variation in magnet characteristics.

【0006】[0006]

【発明が解決しようとする課題】発明者は先に、R−F
e−B系永久磁石の磁石特性を劣化させる合金粉末中の
含有酸素量の低減を目的に、直接還元拡散法にてRリッ
チ相の少ないR2Fe14B相に近い組成で合金粉末を作
成し、またRリッチな合金粉末を、Co元素の添加によ
ってR3Co相(但しCoの1部あるいは大部分をFe
にて置換できる)を含むR2(Fe,Co)17相等から
なる金属間化合物粉末を作成し、両者を混合したR−F
e−B系永久磁石用原料粉末を提案(特願平2−229
685号)した。
SUMMARY OF THE INVENTION The inventor has previously proposed RF
In order to reduce the oxygen content in the alloy powder that degrades the magnetic properties of the e-B permanent magnet, an alloy powder with a composition close to the R 2 Fe 14 B phase with a small R-rich phase is produced by the direct reduction diffusion method. In addition, the R-rich alloy powder is converted into an R 3 Co phase (a part or most of Co is Fe) by adding a Co element.
To prepare an intermetallic compound powder comprising an R 2 (Fe, Co) 17 phase or the like containing
Proposal of raw material powder for eB-based permanent magnet (Japanese Patent Application No. 2-229)
No. 685).

【0007】先に提案したR−Fe−B系永久磁石用原
料粉末は、合金粉末中及び得られた磁石の含有酸素量の
低減には極めて有効であるが、磁石内には主相のR2
14B相のほかにBリッチ相及び粒界相としてRリッチ
相が存在し、これら各相の存在量を精密に制御すること
は極めて困難であり、磁石特性がばらつく原因となって
いた。
[0007] The raw material powder for R-Fe-B permanent magnet proposed above is extremely effective in reducing the oxygen content in the alloy powder and the obtained magnet, but the main phase R 2 F
In addition to the e 14 B phase, there are a B-rich phase and an R-rich phase as a grain boundary phase, and it is extremely difficult to precisely control the abundance of each of these phases, causing a variation in magnet properties.

【0008】この発明は、R−Fe−B系永久磁石特性
の高性能化を阻害する磁石構成相のBリッチ相及びRリ
ッチ相をできるだけ低減でき、かつ主相のR2Fe14
相を増加させ、さらに合金粉末中の含有酸素量を低減で
き、種々の磁石特性に応じた組成の合金粉末を容易に提
供できるR−Fe−B系永久磁石用原料粉末の製造方法
の提供を目的としている。
According to the present invention, the B-rich phase and the R-rich phase of the magnet constituting phase, which hinder the improvement of the performance of the R-Fe-B-based permanent magnet, can be reduced as much as possible, and the main phase of R 2 Fe 14 B
A method for producing a raw material powder for an R-Fe-B-based permanent magnet, which can increase the phase, further reduce the oxygen content in the alloy powder, and can easily provide an alloy powder having a composition corresponding to various magnet properties. The purpose is.

【0009】[0009]

【課題を解決するための手段】一般に、R−Fe合金、
例えばNd−Fe合金中、Nd2Fe17相はキュリー点
が室温付近で、C面内に容易磁化方向を有する金属間化
合物であり、従来、R−Fe−B系焼結永久磁石におい
て、B量が6原子%より少ない場合は、磁石内に例えば
Nd2Fe17相が生成して保磁力が低下するとされてき
た。しかし、発明者は種々検討の結果、R2Fe14B相
を主相とするR−Fe−B系合金粉末にR2Fe17相、
例えばNd2Fe17相を含むR−Fe系合金粉末を特定
量添加配合した原料粉末は、粒界相のNdリッチ相中の
NdとR−Fe系合金粉末中のNd2Fe17との共晶温
度690℃付近において、例えば、Nd+Nd2Fe17
相←→液相 の反応が起こることにより、この低融点の
液相がR−Fe−B系合金粉末の焼結を促進することを
知見した。
In general, an R-Fe alloy,
For example, in an Nd—Fe alloy, the Nd 2 Fe 17 phase is an intermetallic compound having a Curie point near room temperature and having an easy magnetization direction in the C plane. If the amount is less than 6 atomic%, it has been reported that, for example, an Nd 2 Fe 17 phase is formed in the magnet and the coercive force is reduced. However, as a result of various studies, the inventor found that an R 2 Fe 17 phase was added to an R—Fe—B-based alloy powder having an R 2 Fe 14 B phase as a main phase.
For example, a raw material powder in which a specific amount of an R-Fe alloy powder containing a Nd 2 Fe 17 phase is added and blended is a mixture of Nd in the Nd-rich phase of the grain boundary phase and Nd 2 Fe 17 in the R-Fe alloy powder. When the crystallization temperature is around 690 ° C., for example, Nd + Nd 2 Fe 17
It has been found that the low-melting liquid phase promotes the sintering of the R-Fe-B-based alloy powder due to the reaction of the phase ← → liquid phase.

【0010】Nd2Fe17相を含む調整用合金粉末とR2
Fe14B相を主相とするR−Fe−B系合金粉末は、焼
結中に下記反応を起こし、主相であるR2Fe14B相を
増加させる作用がある。 13/17Nd2Fe17+1/4Nd1.1Fe44+13
3/6800Nd→Nd2Fe14B すなわち、発明者は上記の反応式において、調整用合金
粉末中のNd2Fe17相と主相系R−Fe−B系合金粉
末中のBリッチ相及びNdリッチ相との反応により、新
たにNd2Fe14B相が生成されることになるので、従
来法のR2Fe14B相を主相とする合金粉末のみで得ら
れた永久磁石では磁石特性を劣化させる要因の一つであ
るBリッチ相及びNdリッチ相の量を低減できることを
知見し、この発明を完成した。
An adjusting alloy powder containing a Nd 2 Fe 17 phase and R 2
The R-Fe-B-based alloy powder having the Fe 14 B phase as a main phase has the following reaction during sintering, and has an effect of increasing the R 2 Fe 14 B phase as a main phase. 13 / 17Nd 2 Fe 17 + / Nd 1.1 Fe 4 B 4 +13
3/6800 Nd → Nd 2 Fe 14 B In other words, in the above reaction formula, the present inventors have found that the Nd 2 Fe 17 phase in the alloy powder for adjustment and the B-rich phase and Nd in the main phase R—Fe—B alloy powder Since the Nd 2 Fe 14 B phase is newly generated by the reaction with the rich phase, the permanent magnet obtained only with the alloy powder having the main phase of the R 2 Fe 14 B phase according to the conventional method has magnet properties. The present inventors have found that the amounts of the B-rich phase and the Nd-rich phase, which are one of the factors that cause the deterioration of, can be reduced, and completed the present invention.

【0011】すなわち、この発明は、R(但しRはYを
含む希土類元素のうち少なくとも1種)10原子%〜3
0原子%、B4原子%〜40原子%、残部Fe(但しF
eの1部をCoにて置換できる)及び不可避的不純物か
らなり、R2Fe14B相を主相とする合金粉末に、R
(但しRはYを含む希土類元素のうち少なくとも1種)
50原子%以下、残部Fe(但しFeの1部をCo、N
iの1種または2種にて置換できる)及び不可避的不純
物からなり、R2Fe17相を含む調整用合金粉末を混合
粉末の60wt%以下添加配合したことを特徴とするR
−Fe−B系永久磁石用原料粉末の製造方法である。
That is, the present invention relates to a method for preparing an R (where R is at least one of rare earth elements including Y) from 10 atomic% to 3 atomic%.
0 atomic%, B4 atomic% to 40 atomic%, balance Fe (however, F
A portion of e consists hands substitutions can) and unavoidable impurities Co, the R 2 Fe 14 B phase alloy powder with the main phase, R
(Where R is at least one of rare earth elements including Y)
50 atom% or less, the balance Fe (however, one part of Fe is Co, N
i) which can be replaced by one or two of i) and unavoidable impurities, mixed with an adjustment alloy powder containing an R 2 Fe 17 phase
R characterized by being added and blended in an amount of not more than 60 wt % of the powder.
This is a method for producing a raw material powder for an Fe-B-based permanent magnet.

【0012】この発明において、特定量のR、Fe、B
を有するR2Fe14B相を主相とする合金粉末に添加配
合するRが50原子%以下のR2Fe17相を含むR−F
e系調整用合金粉末の添加量を混合粉末の60wt%以
下としたのは、60wt%を超えると異方性磁石を作製
するために磁界中で成形した際に、一軸異方性であるR
2Fe14B相の量が少なくなり、配向度が低下するため
好ましくなく、Brの低下を招来するためである。より
好ましい添加配合量は0.1〜40wt%である。
In the present invention, a specific amount of R, Fe, B
R-F containing R 2 Fe 17 phase of 50 atomic% or less added and blended into an alloy powder having an R 2 Fe 14 B phase as a main phase having
The reason why the addition amount of the alloy powder for adjusting the e-system is set to 60 wt % or less of the mixed powder is that if it exceeds 60 wt %, it is uniaxially anisotropic when molded in a magnetic field to produce an anisotropic magnet. Some R
This is because the amount of the 2 Fe 14 B phase is reduced and the degree of orientation is lowered, which is not preferable, and causes a reduction in Br. More preferable addition amount is 0.1 to 40 wt%.

【0013】この発明に用いる希土類元素Rは、Yを包
含し軽希土類及び重希土類を包含する希土類元素であ
り、これらのうち少なくとも1種、好ましくはNd、P
r等の軽希土類を主体として、あるいはNd、Pr等と
の混合物を用いる。すなわち、Rとしては、Nd,P
r,La,Ce,Tb,Dy,Ho,Er,Eu,S
m,Gd,Pm,Tm,Yb,Lu,Yを用いることが
できる。このRは純希土類元素でなくてもよく、工業上
入手可能な範囲で製造上不可避な不純物を含有するもの
でも差支えない。
The rare earth element R used in the present invention is a rare earth element containing Y and including light rare earths and heavy rare earths, and at least one of them, preferably Nd, P
A light rare earth element such as r is mainly used, or a mixture with Nd, Pr or the like is used. That is, as R, Nd, P
r, La, Ce, Tb, Dy, Ho, Er, Eu, S
m, Gd, Pm, Tm, Yb, Lu, and Y can be used. This R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0014】このR2Fe14B主相からなる合金粉末を
得るには、Rが10原子%未満では、R、Bの拡散しな
い残留鉄部の増加となり、30原子%を超えるとRリッ
チ相が増加して含有酸素量が増えるため、Rは10原子
%〜30原子%とする。より好ましいR量は12原子%
〜20原子%である。
In order to obtain an alloy powder composed of the main phase of R 2 Fe 14 B, when R is less than 10 atomic%, the residual iron portion where R and B do not diffuse increases, and when R exceeds 30 atomic%, the R-rich phase is increased. Is increased to increase the oxygen content, so that R is set to 10 at% to 30 at%. A more preferred R content is 12 atomic%.
2020 at%.

【0015】また、Bは、4原子%未満では高い保磁力
(iHc)が得られず、40原子%を超えると残留磁束
密度(Br)が低下するため、すぐれた永久磁石が得ら
れないため、Bは4原子%〜40原子%とする。より好
ましいB量は6原子%〜20原子%である。
If B is less than 4 at%, a high coercive force (iHc) cannot be obtained, and if it exceeds 40 at%, the residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. , B is 4 to 40 atomic%. A more preferable B amount is from 6 at% to 20 at%.

【0016】さらに、残部はFe及び不可避的不純物か
らなり、Feは30原子%〜86原子%の範囲が好まし
い。Feは30原子%未満では相対的に希土類元素及び
BがリッチとなりRリッチ相、Bリッチ相が増加し、8
6原子%を超えると相対的に希土類元素及びBが少なく
なり、残留Fe部が増加し不均一な合金粉末となるため
好ましくない。より好ましいFe量は60原子%〜82
原子%である。主相系合金粉末中のCoとNiの1種ま
たは2種は、R2Fe14B主相中のFeと置換されて保
磁力を低下させるため、Coは10原子%以下、Niは
3原子%以下とする。ただし、上述のCoまたはNiで
Feの一部を置換した場合、Feは17原子%〜84原
子%の範囲である。
Further, the balance consists of Fe and unavoidable impurities, and the content of Fe is preferably in the range of 30 at% to 86 at%. If Fe is less than 30 atomic%, the rare earth element and B become relatively rich, and the R-rich phase and the B-rich phase increase, and
If the content exceeds 6 atomic%, the rare earth elements and B become relatively small, and the residual Fe portion increases, resulting in non-uniform alloy powder. More preferably, the Fe content is 60 atomic% to 82 atomic%.
Atomic%. One or two types of Co and Ni in the main phase alloy powder are replaced by Fe in the R 2 Fe 14 B main phase to lower the coercive force, so that Co is 10 atomic% or less and Ni is 3 atomic%. % Or less. However, when a part of Fe is substituted with Co or Ni described above, the content of Fe is in the range of 17 atomic% to 84 atomic%.

【0017】R2Fe17相を含む調整用合金粉末を得る
には、Rが50原子%を超えると合金粉末の作製時に酸
化等の問題があり好ましくなく、Rの好ましい量は5〜
35原子%である。さらに、残部はFe及び不可避的不
純物からなり、Feは65原子%〜95原子%の範囲が
好ましい。
In order to obtain an adjusting alloy powder containing the R 2 Fe 17 phase, if R exceeds 50 atomic%, there is a problem such as oxidation at the time of preparing the alloy powder, which is not preferable.
35 atomic%. Further, the balance consists of Fe and inevitable impurities, and the content of Fe is preferably in the range of 65 to 95 atomic%.

【0018】この発明において、R2Fe14B相を主相
とする合金粉末及びR2Fe17相を含む調整用合金粉末
は、それぞれ直接還元拡散法あるいは溶解・粉化方法な
どの公知の合金粉末作製方法により製造することができ
る。
In the present invention, the alloy powder containing the R 2 Fe 14 B phase as the main phase and the adjusting alloy powder containing the R 2 Fe 17 phase are each a known alloy such as a direct reduction diffusion method or a melting / pulverizing method. It can be manufactured by a powder manufacturing method.

【0019】得られる粉末をそのまま用いる際に、合金
粉末の粒度が大きすぎると永久磁石の磁気特性、とりわ
け高い保磁力が得られず、また、平均粒度が1μm未満
では、永久磁石の作製工程、すなわち、プレス成形、焼
結、時効処理工程における酸化が著しく、すぐれた磁気
特性が得られず、また80μmを超えると保磁力の低下
の原因となるので、1〜80μmの平均粒度が好まし
く、さらに、すぐれた磁気特性を得るには、平均粒度2
〜10μmの合金粉末が望ましい。また、得られる合金
粉末を用いて、高い残留磁束密度と高い保磁力を共に有
するすぐれたR−Fe−B系永久磁石を得るためには、
配合した原料粉末は、R12原子%〜25原子%、B4
原子%〜10原子%、Co0.1原子%〜10原子%、
Fe55原子%〜83.9原子%の組成が好ましい。
When the obtained powder is used as it is, if the particle size of the alloy powder is too large, the magnetic properties of the permanent magnet, especially a high coercive force, cannot be obtained. That is, press molding, sintering, oxidation in the aging process is remarkable, excellent magnetic properties cannot be obtained, and if it exceeds 80 μm, it causes a decrease in coercive force, so that an average particle size of 1 to 80 μm is preferable. In order to obtain excellent magnetic properties, an average particle size of 2
An alloy powder of 10 to 10 μm is desirable. Further, in order to obtain an excellent R-Fe-B-based permanent magnet having both a high residual magnetic flux density and a high coercive force using the obtained alloy powder,
The blended raw material powders were R12 atomic% to 25 atomic%, B4
Atomic% to 10 atomic%, Co 0.1 atomic% to 10 atomic%,
A composition of 55 atomic% to 83.9 atomic% of Fe is preferable.

【0020】さらに、配合したR2Fe14B相を主相と
する合金粉末および/またはR2Fe17相を含む調整用
合金粉末に、 Cu3.5原子%以下、S2.5原子%以下、 Ti4.5原子%以下、Si15原子%以下、 V9.5原子%以下、Nb12.5原子%以下、 Ta10.5原子%以下、Cr8.5原子%以下、 Mo9.5原子%以下、W9.5原子%以下、 Mn3.5原子%以下、Al9.5原子%以下、 Sb2.5原子%以下、Ge7原子%以下、 Sn3.5原子%以下、Zr5.5原子%以下、 Hf5.5原子%以下、Ca8.5原子%以下、 Mg8.5原子%以下、Sr7.0原子%以下、 Ba7.0原子%以下、Be7.0原子%以下、 のうち少なくとも1種を添加含有させることにより、得
られる永久磁石の高保磁力化、高耐食性化、温度特性の
改善が可能になる。
Further, the compounded alloy powder containing the R 2 Fe 14 B phase as a main phase and / or the adjusting alloy powder containing the R 2 Fe 17 phase are added with Cu 3.5 atomic% or less, S 2.5 atomic% or less, Ti 4.5 atomic% or less, Si 15 atomic% or less, V9.5 atomic% or less, Nb 12.5 atomic% or less, Ta 10.5 atomic% or less, Cr 8.5 atomic% or less, Mo 9.5 atomic% or less, W9.5 Atomic% or less, Mn 3.5 at% or less, Al 9.5 at% or less, Sb 2.5 at% or less, Ge 7 at% or less, Sn 3.5 at% or less, Zr 5.5 at% or less, Hf 5.5 at% or less. , 8.5 atomic% or less of Ca, 8.5 atomic% or less of Mg, 7.0 atomic% or less of Sr, 7.0 atomic% or less of Ba, and 7.0 atomic% or less of Be. High permanent magnet It becomes possible to increase magnetic force, increase corrosion resistance, and improve temperature characteristics.

【0021】この発明による合金粉末を用いて製造した
永久磁石の組成が、R12原子%〜25原子%、B4原
子%〜10原子%、Co30原子%以下、Fe35原子
%〜84原子%の場合、得られる磁気異方性永久磁石
は、保磁力iC≧5kOe、(BH)max≧20MG
Oeの磁気特性を示し、さらに、残留磁束密度の温度係
数が、0.1%/℃以下となり、すぐれた特性が得られ
る。また、永久磁石組成のRの主成分がその50%以上
を軽希土類金属が占める場合で、R12原子%〜20原
子%、B4原子%〜10原子%、Fe50原子%〜84
原子%、Co20原子%以下を含有するとき最もすぐれ
た磁気特性を示し、特に希土類金属がNd、Pr、Dy
の場合には、(BH)maxはその最大値が40MGO
e以上に達する。
When the composition of the permanent magnet manufactured by using the alloy powder according to the present invention is R12 atomic% to 25 atomic%, B4 atomic% to 10 atomic%, Co 30 atomic% or less, and Fe 35 atomic% to 84 atomic%, The resulting magnetic anisotropic permanent magnet has a coercive force i H C ≧ 5 kOe, (BH) max ≧ 20 MG
It shows the magnetic properties of Oe, and the temperature coefficient of the residual magnetic flux density is 0.1% / ° C. or less, and excellent properties are obtained. Further, in the case where the main component of R in the permanent magnet composition occupies 50% or more of the light rare earth metal, R12 atom% to 20 atom%, B4 atom% to 10 atom%, Fe50 atom% to 84 atom%.
When the alloy contains less than 20 atomic% of Co and less than 20 atomic% of Co, it shows the best magnetic properties. In particular, rare earth metals are Nd, Pr, Dy.
In the case of (BH) max, the maximum value is 40 MGO
e or more.

【0022】[0022]

【作用】この発明は、R2Fe14B相を主相とするR−
Fe−B系合金粉末に全量の60%以下のNd2Fe17
相を含む調整用合金粉末を添加配合することにより、調
整用合金粉末中のNd2Fe17相と主相系R−Fe−B
系合金粉末中のBリッチ相及びNdリッチ相との反応に
より、新たにNd2Fe14B相が生成されるため、永久
磁石の磁石特性を劣化させるBリッチ相及びNdリッチ
相の量を調整低減でき、得られる磁石の高性能化を図る
ことができ、さらに合金粉末中の含有酸素量を低減で
き、種々の磁石特性に応じた組成の合金粉末を容易に提
供できる。
[Action] This invention is directed to main phase R 2 Fe 14 B phase R-
60% or less of the total amount of Nd 2 Fe 17 in the Fe-B-based alloy powder
By adding and blending the adjustment alloy powder containing the phase, the Nd 2 Fe 17 phase in the adjustment alloy powder and the main phase system R—Fe—B
A new Nd 2 Fe 14 B phase is generated by the reaction with the B-rich phase and the Nd-rich phase in the base alloy powder, so that the amounts of the B-rich phase and the Nd-rich phase that degrade the magnet properties of the permanent magnet are adjusted. The magnet powder can be reduced, the resulting magnet can be improved in performance, the oxygen content in the alloy powder can be reduced, and an alloy powder having a composition corresponding to various magnet properties can be easily provided.

【0023】[0023]

【実施例】【Example】

実施例1 主相系の直接還元拡散法での原料は、 Nd23(純度98%)を 407g、 Dy23(純度99%)を 15g、 B含有量19.1%のFe−B粉を 62g、 純度99%のFe−B粉を 604g、 を用いて、これに純度99%の金属Caを264g、無
水CaCl2を49.3gとを混合し、ステンレス容器
内に装入し、Ar気流中にて1030℃×3時間の条件
にてCa還元、拡散を行なった。その後、冷却して生成
混合物を水洗し、不要なCa分を除去した。得られた粉
末スラリーをアルコール等で水置換後、真空中で加熱乾
燥して、約1000gの原料粉末を得た。得られた粉末
は、Nd14.0原子%、Pr0.8原子%、Dy0.
5%、B7.2原子%、残部Feからなる平均粒径約2
0μmのもので、含有酸素量は2000ppmであっ
た。
Example 1 Raw materials in the direct reduction diffusion method of the main phase were 407 g of Nd 2 O 3 (purity 98%), 15 g of Dy 2 O 3 (purity 99%), and Fe-containing 19.1% B content. Using 62 g of B powder and 604 g of 99% pure Fe-B powder, 264 g of 99% pure metal Ca and 49.3 g of anhydrous CaCl 2 were mixed, and charged into a stainless steel container. And Ca reduction and diffusion were performed in an Ar gas flow at 1030 ° C. for 3 hours. After cooling, the resulting mixture was washed with water to remove unnecessary Ca. The obtained powder slurry was replaced with alcohol or the like, and then dried by heating under vacuum to obtain about 1000 g of raw material powder. The obtained powder had Nd of 14.0 atomic%, Pr of 0.8 atomic%, and Dy of 0.
5%, B7.2 atomic%, balance Fe: average particle size of about 2
The thickness was 0 μm, and the oxygen content was 2000 ppm.

【0024】また、R2Fe17相を含む調整用合金粉末
の原料は、 Ndメタル(純度98%) 124gr、 純度99%の電解鉄 379gr を用い、Ar雰囲気中で得られた合金塊をジョークラッ
シャー・ディスクミルで粉砕し、平均10μmの粉末4
50gを得た。得られた粉末は、Nd11原子%、Pr
0.2原子%、残部Feからなり、EMPA、X線回析
により、Nd2Fe17相が大部分であることを確認し
た。また、含有酸素量は600ppmであった。
The raw material of the adjusting alloy powder containing the R 2 Fe 17 phase is 124 gr of Nd metal (98% purity) and 379 gr of electrolytic iron of 99% purity. Crushed with a crusher disc mill, powder 4 of average 10 μm
50 g were obtained. The obtained powder was composed of 11 atomic% of Nd, Pr
It consisted of 0.2 atomic% and the balance of Fe, and it was confirmed by EMPA and X-ray diffraction that the Nd 2 Fe 17 phase was the majority. The oxygen content was 600 ppm.

【0025】この両者の原料粉末を用いて表1に表した
如く、主相系合金粉末に所定量の調整用合金粉末を配合
混合した。この原料粉末をジェットミル等の粉砕機で装
入し、約10kOeの磁界中で配向し、磁界に直角方向
に約2Ton/cm2の圧力で成型し、15mm×20
mm×8mmの成型体を作成した。この成型体を107
0℃×3時間のAr雰囲気中条件で焼結し、500℃×
2時間の時効処理を行なった。
As shown in Table 1, a predetermined amount of the alloy powder for adjustment was mixed with the main phase alloy powder by using these two raw material powders. This raw material powder is charged by a pulverizer such as a jet mill, orientated in a magnetic field of about 10 kOe, and molded at a pressure of about 2 Ton / cm 2 in a direction perpendicular to the magnetic field to form a 15 mm × 20
A molded body of mm × 8 mm was prepared. 107
Sintered at 0 ° C for 3 hours in Ar atmosphere, and 500 ° C for 3 hours
The aging treatment was performed for 2 hours.

【0026】表1に調整用合金粉末添加量と得られた磁
石特性の関係を示す。なお、磁石組成から、R2Fe14
B相、Bリッチ相、Rリッチ相(酸化物含む)を算定す
ると、 比較例では、88:3:9、 本発明1では、91:1.3:7.7、 本発明2では、93:0.1:6.9となり、この発明
による調整用合金粉末を用いることにより、磁石を構成
する各相の存在量を調整できることがわかる。
Table 1 shows the relationship between the amount of the alloy powder for adjustment and the magnet properties obtained. Note that, from the magnet composition, R 2 Fe 14
When the B phase, B-rich phase, and R-rich phase (including oxides) are calculated, 88: 3: 9 in the comparative example, 91: 1.3: 7.7 in the first invention, and 93 in the second invention. : 0.1: 6.9, which indicates that the use of the alloy powder for adjustment according to the present invention can adjust the abundance of each phase constituting the magnet.

【0027】[0027]

【表1】 [Table 1]

【0028】 実施例2 主相系の原料合金は、 Ndメタル 147g Coメタル 23g Fe−B合金 27.5g 電解鉄 307g を用いて、実施例1の調整用原料粉末と同様に溶解・粉
砕法にて、Nd12.5原子%、Pr0.2原子%、C
o5原子%、B6.5原子%、Fe75.8原子%の組
成を有する合金粉末を得た。
Example 2 The main phase-based raw material alloy was prepared by melting and pulverizing using 147 g of Nd metal, 23 g of Co metal, 27.5 g of Fe-B alloy, and 307 g of electrolytic iron in the same manner as the raw material powder for adjustment in Example 1. Nd 12.5 atomic%, Pr 0.2 atomic%, C
An alloy powder having a composition of o 5 at%, B 6.5 at%, and Fe 75.8 at% was obtained.

【0029】また、R2Fe17相を含む調整用合金粉末
の原料は、直接還元拡散法により Nd23 260g Dy23 80.5g Co粉 43g Fe粉 665g を用いて、Ca190g、Cacl223gとを混合
し、実施例1の主相系原料粉末と同様に直接還元拡散法
にてNd10.4at%、Pr0.1原子%、Dy30
原子%、Co5原子%、残部Feの調整用合金粉末を得
た後、主相系合金粉末95%に調整用合金粉末を5%配
合混合し、実施例1と同様方法にて焼結磁石を作製し
た。
The raw material of the adjusting alloy powder containing the R 2 Fe 17 phase was obtained by direct reduction diffusion method using Nd 2 O 3 260 g Dy 2 O 3 80.5 g Co powder 43 g Fe powder 665 g, and Ca 190 g, Cacl And 23 g of Nd and mixed with Nd at 10.4 at%, Pr at 0.1 atomic%, and Dy30 by the direct reduction diffusion method in the same manner as in the main phase raw material powder of Example 1.
After obtaining the adjusting alloy powder of atomic%, 5 atomic% of Co and the balance Fe, 5% of the adjusting alloy powder was mixed and mixed with 95% of the main phase alloy powder, and the sintered magnet was manufactured in the same manner as in Example 1. Produced.

【0030】磁石組成は、Nd12.4原子%b、Pr
0.2原子%、Dy0.15原子%、Co5原子%、B
6.2原子%、残部Feからなり、Br=13.6、i
Hc=11kOe、(BH)max=45.5MGOe
の磁石特性を得た。なお、主相系合金粉末のみを使って
磁石化を試みたが、焼結できなかった。
The magnet composition was 12.4 atomic% b of Nd, Pr
0.2 atomic%, Dy 0.15 atomic%, Co 5 atomic%, B
6.2 atomic%, balance Fe, Br = 13.6, i
Hc = 11 kOe, (BH) max = 45.5 MGOe
The magnet characteristics were obtained. Although magnetization was attempted using only the main phase alloy powder, sintering was not possible.

【0031】 実施例3 実施例1、2に示した溶解・粉化法により、主相系合金
粉末を作成した組成は、Nd18原子%、Pr0.8原
子%、Dy2.0原子%、Mo2.0原子%、B10原
子%、残部Feであった。また、R2Fe17相を含む調
整用合金粉末も同様に、溶解・粉化法により作製し、組
成は、Nd9原子%、Pr0.2原子%、Dy1.0原
子%、残部Feであった。
Example 3 The main phase-based alloy powder prepared by the melting and pulverization method shown in Examples 1 and 2 has a composition of 18 atomic% of Nd, 0.8 atomic% of Pr, 2.0 atomic% of Dy, 2.0 atomic% of Mo2. 0 atomic%, B 10 atomic%, and the balance Fe. Similarly, an adjustment alloy powder containing the R 2 Fe 17 phase was similarly prepared by a melting and pulverizing method, and the composition was 9 at% Nd, 0.2 at% Pr, 1.0 at% Dy, and the balance Fe. .

【0032】主相系合金粉末に、表2に表す如く所定量
の調整用合金粉末を配合混合し、実施例1と同様方法に
て焼結磁石を作製した。得られた磁石特性は、表2のと
おりである。
As shown in Table 2, a predetermined amount of the adjusting alloy powder was mixed and mixed with the main phase alloy powder, and a sintered magnet was produced in the same manner as in Example 1. Table 2 shows the obtained magnet characteristics.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】この発明は、R−Fe−B系永久磁石用
原料粉末を得るのに、R2Fe14B相を主相とするR−
Fe−B系合金粉末に全量の60%以下のNd2Fe17
相を含む調整用合金粉末を添加配合することにより、永
久磁石の磁石特性を劣化させるBリッチ相及びNdリッ
チ相の量を低減でき、実施例に明らかなように得られる
磁石の高性能化を図ることができ、さらに合金粉末中の
含有酸素量を低減でき、種々の磁石特性に応じた組成の
合金粉末を容易に提供できる。
Effects of the Invention The present invention, to obtain a raw material powder for R-Fe-B permanent magnets, a main phase an R 2 Fe 14 B phase R-
60% or less of the total amount of Nd 2 Fe 17 in the Fe-B-based alloy powder
By adding and blending the adjustment alloy powder containing the phase, the amounts of the B-rich phase and the Nd-rich phase which degrade the magnet properties of the permanent magnet can be reduced, and as is apparent from the examples, the performance of the magnet obtained can be improved. In addition, the content of oxygen in the alloy powder can be reduced, and an alloy powder having a composition corresponding to various magnet characteristics can be easily provided.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち
少なくとも1種)10原子%〜30原子%、B4原子%
〜40原子%、残部Fe(但しFeの1部をCo、Ni
の1種または2種にて置換できる)及び不可避的不純物
からなり、R2Fe14B相を主相とする合金粉末に、R
(但しRはYを含む希土類元素のうち少なくとも1種)
50原子%以下、残部Fe(但しFeの1部をCoに
置換できる)及び不可避的不純物からなり、R2Fe17
相を含む調整用合金粉末を混合粉末の60wt%以下添
加配合したことを特徴とするR−Fe−B系永久磁石用
原料粉末の製造方法。
1. R (where R is at least one of rare earth elements including Y) 10 to 30 atomic%, B 4 at%
-40 atomic%, balance Fe (however, one part of Fe is Co, Ni
It consists of one or may be replaced by two) and incidental impurities, the alloy powder with the main phase of R 2 Fe 14 B phase, R
(Where R is at least one of rare earth elements including Y)
50 atomic% or less, and the balance Fe (where a portion of Fe can be hand substituted Co) and unavoidable impurities, R 2 Fe 17
A method for producing a raw material powder for an R-Fe-B-based permanent magnet, wherein an adjustment alloy powder containing a phase is added and blended in an amount of 60 wt % or less of the mixed powder .
JP4093779A 1992-03-19 1992-03-19 Method for producing raw material powder for R-Fe-B-based permanent magnet Expired - Fee Related JP2898463B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4093779A JP2898463B2 (en) 1992-03-19 1992-03-19 Method for producing raw material powder for R-Fe-B-based permanent magnet
US08/032,101 US5387291A (en) 1992-03-19 1993-03-17 Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
CN93104569.XA CN1070634C (en) 1992-03-19 1993-03-18 Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefore
AT93302124T ATE169423T1 (en) 1992-03-19 1993-03-19 METHOD FOR PRODUCING R-FE-B PERMANENT MAGNETS
EP93302124A EP0561650B1 (en) 1992-03-19 1993-03-19 Process for making R-Fe-B permanent magnets
DE69320084T DE69320084T2 (en) 1992-03-19 1993-03-19 Process for the production of R-Fe-B permanent magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4093779A JP2898463B2 (en) 1992-03-19 1992-03-19 Method for producing raw material powder for R-Fe-B-based permanent magnet

Publications (2)

Publication Number Publication Date
JPH05267027A JPH05267027A (en) 1993-10-15
JP2898463B2 true JP2898463B2 (en) 1999-06-02

Family

ID=14091910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4093779A Expired - Fee Related JP2898463B2 (en) 1992-03-19 1992-03-19 Method for producing raw material powder for R-Fe-B-based permanent magnet

Country Status (1)

Country Link
JP (1) JP2898463B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3997413B2 (en) * 2002-11-14 2007-10-24 信越化学工業株式会社 R-Fe-B sintered magnet and method for producing the same
JP4470884B2 (en) * 2003-03-12 2010-06-02 日立金属株式会社 R-T-B system sintered magnet and manufacturing method thereof
JP5915637B2 (en) 2013-12-19 2016-05-11 トヨタ自動車株式会社 Rare earth magnet manufacturing method
JP5924335B2 (en) 2013-12-26 2016-05-25 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH05267027A (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US5281250A (en) Powder material for rare earth-iron-boron based permanent magnets
US5387291A (en) Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
JPH0340082B2 (en)
JP2513994B2 (en) permanent magnet
JP2537189B2 (en) permanent magnet
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JPH0461042B2 (en)
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP3009804B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JPH0467324B2 (en)
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0526858B2 (en)
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH06922B2 (en) Method for producing alloy powder for rare earth magnet
JPH0586441B2 (en)
JPH0477066B2 (en)
JPH0735521B2 (en) Raw material powder for R-Fe-B permanent magnets

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees