JP2886378B2 - Method for producing raw material powder for R-Fe-B-based permanent magnet - Google Patents

Method for producing raw material powder for R-Fe-B-based permanent magnet

Info

Publication number
JP2886378B2
JP2886378B2 JP4038778A JP3877892A JP2886378B2 JP 2886378 B2 JP2886378 B2 JP 2886378B2 JP 4038778 A JP4038778 A JP 4038778A JP 3877892 A JP3877892 A JP 3877892A JP 2886378 B2 JP2886378 B2 JP 2886378B2
Authority
JP
Japan
Prior art keywords
atomic
phase
powder
raw material
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4038778A
Other languages
Japanese (ja)
Other versions
JPH05205924A (en
Inventor
尚幸 石垣
裕治 金子
泰英 笹川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP4038778A priority Critical patent/JP2886378B2/en
Publication of JPH05205924A publication Critical patent/JPH05205924A/en
Application granted granted Critical
Publication of JP2886378B2 publication Critical patent/JP2886378B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、R(RはYを含む希
土類元素のうち少なくとも1種)、Fe、Bを主成分と
するR−Fe−B系永久磁石の製造に用いる原料粉末
製造方法に係り、直接還元拡散法によるほとんどがR2
Fe14B相を主相とする主相系合金粉末と、溶解・粉化
法によるR3Co相を含むCo又はFeとRとの金属間
化合物相(但しCoの1部あるいは大部分をFeにて置
換できる)に一部R2(FeCo)14B相等を含み、主
相系合金粉末より希土類金属含有が多い金属間化合物粉
末を特定の比率にて所要組成の磁石用の合金粉末に配
合することにより、含有酸素量を著しく低減したR−F
e−B系永久磁石用原料粉末の製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a raw material powder used for producing an R--Fe--B permanent magnet containing R (at least one of rare earth elements including Y), Fe and B as main components .
Regarding the production method , most of R 2
A main phase alloy powder having a Fe 14 B phase as a main phase, and an intermetallic compound phase of Co or Fe and R including an R 3 Co phase obtained by a melting and pulverization method (however, one part or most of Co is Fe Intermetallic compound powder containing a part of R 2 (FeCo) 14 B phase, etc., and containing more rare earth metals than the main phase alloy powder.
By end and incorporated into the alloy powder for the magnet of the required composition at a specific ratio, R-F was significantly reduced oxygen content
The present invention relates to a method for producing a raw material powder for an e-B permanent magnet.

【0002】[0002]

【従来の技術】今日、高性能永久磁石として代表的なR
−Fe−B系永久磁石(特開昭59−46008号)
は、三元系正方晶化合物の主相とRリッチ相を有する組
織にて高磁石特性を発現し、iHcが25kOe以上、
(BH)maxが45MGOe以上と、従来の高性能希
土類コバルト磁石と比較しても格段の高性能を発揮す
る。また、用途に応じて選定された種々の磁石特性を発
揮するよう、種々組成のR−Fe−B系永久磁石が提案
されている。
2. Description of the Related Art Today, a typical high performance permanent magnet R
-Fe-B based permanent magnet (JP-A-59-46008)
Exhibits high magnet properties in a structure having a main phase of a ternary tetragonal compound and an R-rich phase, iHc of 25 kOe or more,
(BH) max is 45 MGOe or more, exhibiting remarkably high performance even when compared with a conventional high performance rare earth cobalt magnet. Further, R-Fe-B permanent magnets of various compositions have been proposed so as to exhibit various magnet properties selected according to the application.

【0003】上記種々の組成のR−Fe−B系焼結永久
磁石を製造するには、所要組成の磁石用の合金粉末を製
造する必要があり、電解により還元された希土類原料を
用いて、溶解して鋳型に鋳造し所要磁石組成の合金塊を
作成し、これを粉砕して所要粒度の合金粉末としたり、
合金塊を水素吸蔵させて崩壊させたり、前記溶解金属を
噴霧して粉末化する溶解・粉化法(特開昭60−633
04号、特開昭60−1190701号、特開昭60−
189901号)と、希土類酸化物、Fe粉等を用い直
接磁石組成合金粉を作成する直接還元拡散法(特開昭5
9−219404号、特開昭60−77943号)があ
る。
[0003] In order to produce R-Fe-B sintered permanent magnets having the above-mentioned various compositions, it is necessary to produce alloy powders for magnets having a required composition, using a rare earth raw material reduced by electrolysis. It is melted and cast into a mold to create an alloy ingot of the required magnet composition, which is crushed to an alloy powder of a required particle size,
Dissolving and pulverizing method in which an alloy lump is caused to collapse by absorbing hydrogen, or the molten metal is sprayed and powdered (JP-A-60-633).
No. 04, JP-A-60-1190701, JP-A-60-190701
No. 189901) and a direct reduction-diffusion method for preparing a magnet composition alloy powder directly using a rare earth oxide, Fe powder, etc.
9-219404 and JP-A-60-77943.

【0004】溶解・粉化法は、鋳造時にFe初晶が発生
し易くRリッチ相が大きく偏析するが、鋳塊の粗粉砕工
程で容易に酸化防止が可能な工程で粉砕ができるため、
比較的低含有酸素量の合金粉末が得られる。
In the melting / pulverizing method, an Fe primary crystal is liable to be generated during casting and the R-rich phase is largely segregated. However, since the ingot can be easily oxidized in the coarse crushing step, crushing can be performed.
An alloy powder having a relatively low oxygen content is obtained.

【0005】直接還元拡散法は、上記の溶解・粉化法と
比較して磁石用原料粉末を作成する時に溶解・粗粉砕等
の工程を省略することができることが利点であるが、R
2Fe14B主相の周囲にRリッチ相がとり囲んだ状態で
作成され、また、Rリッチ相の大きさは前者と比較して
小さく良く分散されるため、製造時に酸化され易く含有
酸素量が多く、磁石組成によっては希土類元素が消耗さ
れて磁石特性のバラツキ等の発生原因となる問題があ
る。
[0005] The direct reduction diffusion method has the advantage that the steps of melting and coarse grinding can be omitted when preparing the raw material powder for the magnet as compared with the melting and pulverizing method described above.
Since the R-rich phase is formed around the 2 Fe 14 B main phase, and the size of the R-rich phase is small and well dispersed as compared with the former, it is easily oxidized at the time of production and the oxygen content is high. However, depending on the magnet composition, there is a problem that the rare earth element is consumed and causes a variation in magnet characteristics.

【0006】[0006]

【発明が解決しようとする課題】上述の如く、直接還元
拡散法によるR−Fe−B系永久磁石用原料粉末を使用
した永久磁石の製造において、溶解・粗粉砕等の工程を
省略でき、生産性が向上するが、原料粉末の特徴として
Rリッチ相が小さく良く分散されるので酸化され易く、
溶解・粉化法原料と比較して含有酸素量が多く磁石製造
工程中によるわずな酸化で磁石特性のバラツキを発生す
る。
As described above, in the production of permanent magnets using R-Fe-B-based permanent magnet raw material powders by the direct reduction diffusion method, steps such as dissolution and coarse pulverization can be omitted, and the production can be reduced. Although the R-rich phase is small and well dispersed as a characteristic of the raw material powder, it is easily oxidized,
The content of oxygen is large as compared with the melting and pulverization method raw material, and the characteristics of the magnet vary due to slight oxidation during the magnet manufacturing process.

【0007】そこで、CoやNi等の元素を添加するこ
とで、Rリッチ相を酸化に対して比較的安定な金属間化
合物にすることで酸素量を低減できるが、これらの添加
元素を最も有効に所定の組成にするため最適量に添加し
制御することは不可能である。
Therefore, by adding elements such as Co and Ni to make the R-rich phase an intermetallic compound which is relatively stable against oxidation, the amount of oxygen can be reduced, but these added elements are most effective. It is impossible to add and control an optimum amount to obtain a predetermined composition.

【0008】すなわち、所定の磁石特性を得るためには
添加する1種又は複数の希土類元素量をそれぞれ所要値
に変化させる必要性があり、例えば、Co元素を添加し
て、酸素量の低減を図る際、Rリッチ相にのみCo元素
を拡散させ所要相とすることは不可能で、添加したCo
元素は主相中のFeとも置換されてしまう。また、Co
やNi等の元素は、添加量によっては当該磁石の保磁力
を低下させる問題もあり、容易に酸素量の低減を図るこ
とができない。
That is, in order to obtain predetermined magnet properties, it is necessary to change the amount of one or more rare earth elements to be added to respective required values. For example, by adding a Co element, the amount of oxygen can be reduced. At this time, it is impossible to diffuse the Co element only into the R-rich phase to obtain the required phase.
The element is also replaced with Fe in the main phase. Also, Co
Elements such as Ni and Ni also have a problem of lowering the coercive force of the magnet depending on the added amount, so that the amount of oxygen cannot be easily reduced.

【0009】従来、溶解・粉化法あるいは直接還元拡散
法によるR−Fe−B系永久磁石磁石用原料粉末の製造
に関しては、溶解時あるいは還元拡散時に要求される磁
石特性に応じた目的組成となるよう、予め組成を調整す
る。
Conventionally, the production of raw material powders for R-Fe-B permanent magnet magnets by a dissolution / pulverization method or a direct reduction diffusion method has been carried out with a target composition corresponding to the magnet properties required at the time of melting or reduction diffusion. The composition is adjusted in advance so that

【0010】しかし、溶解・粉化法の場合には、R2
14B相以外に初晶としてα−Feが晶出し、組成の均
一性が損なわれる。一方、直接還元拡散法によるR−F
e−B系永久磁石用原料粉末の場合、R2Fe14B相の
主相の周囲にRリッチ相が存在する組織からなるため、
Rリッチ相が原料粉末の製造に際して優先的に酸化して
含有酸素量が増加することや、磁石特性に応じた特定の
組成に調整するためには特定の元素が主相に入り易い
か、Rリッチ相に入り易いかなど合金組成と組成比を常
に考慮する必要があり、所要磁石特性を目的とする場
合、特定の極狭い範囲の組成を狙って合金粉末を製造し
なければならない。
However, in the case of the dissolution / pulverization method, R 2 F
α-Fe is crystallized as a primary crystal other than the e 14 B phase, and the uniformity of the composition is impaired. On the other hand, RF by direct reduction diffusion method
In the case of the raw material powder for an eB-based permanent magnet, the raw material powder has a structure in which an R-rich phase exists around the main phase of the R 2 Fe 14 B phase.
The R-rich phase is preferentially oxidized during the production of the raw material powder to increase the oxygen content, or if a specific element is likely to enter the main phase in order to adjust to a specific composition according to the magnet properties, It is necessary to always consider the alloy composition and the composition ratio, such as whether the alloy easily enters the rich phase, and in the case of aiming for the required magnet characteristics, it is necessary to manufacture the alloy powder aiming at a composition in a specific extremely narrow range.

【0011】すなわち、溶解・粉化法あるいは直接還元
拡散法のいずれの製法においても、目的とする目標組成
になるようにR2Fe14B相及びRリッチ相などの存在
比率を調整することは困難であり、しかも溶解・粉化法
ではα−Fe相の晶出が避け難く、直接還元拡散法では
含有酸素量の増加等の問題を有している。
That is, in any of the production methods of the dissolution / pulverization method and the direct reduction diffusion method, it is not possible to adjust the abundance ratio of the R 2 Fe 14 B phase and the R-rich phase so as to attain a target composition. However, it is difficult to avoid crystallization of the α-Fe phase by the dissolution / pulverization method, and the direct reduction diffusion method has problems such as an increase in the oxygen content.

【0012】この発明は、R−Fe−B系永久磁石の製
造に使用する原料粉末のかかる現状に鑑み、溶解・粉化
法及び直接還元拡散法における原料粉末製造時の問題解
消並びに該製法による原料粉末を使用した本系永久磁石
の品質の向上を目的とし、また、要求される種々の磁石
特性に応じた合金粉末の製造に際し、各原料の配合比で
対応できるR−Fe−B系永久磁石用原料粉末の製造方
の提供を目的としている。
The present invention has been made in view of the above-mentioned situation of raw material powders used in the production of R-Fe-B permanent magnets, and has solved the problems in the production and production of raw material powders in the melting / pulverization method and the direct reduction diffusion method. The purpose of the present invention is to improve the quality of the present permanent magnet using raw material powders, and to manufacture alloy powders according to various required magnet properties, the R-Fe-B permanent magnets can be used by the mixing ratio of each raw material. How to make raw material powder for magnets
The purpose is to provide the law .

【0013】[0013]

【課題を解決するための手段】この発明は、まず直接還
元拡散法によるR−Fe−B系永久磁石用原料粉末の含
有酸素量の低減を目的に種々検討した結果、主相の周囲
のRリッチ相を少なくし、あるいはR2Fe14B主相だ
けを作成することで含有酸素量を低減できることに着目
し、直接還元拡散法にてRリッチ相の少ないR2Fe14
B相に近い組成で合金粉末を作成し、かつこのRリッチ
相の少ない該合金粉末のみでは種々の磁石特性に応じた
組成を得ることはできず、しかもR−Fe−B系永久磁
石を通常の粉末冶金的手法で製造することは製造工程中
に不可避な原料酸化が生じるため極めて困難なことに鑑
み、溶解・粉化法にてRリッチな合金粉末を、Co元素
の添加によってR3Co相(但しCoの1部あるいは大
部分をFeにて置換できる)を含むCo又はFeとRと
の金属間化合物相(但しCoの1部あるいは大部分をF
eにて置換できる)及びR2(FeCo)14B相等から
なる金属間化合物粉末を作成し、両者を混合することで
含有酸素量の少ない所定の磁石組成の合金粉末を得るこ
とができ、(BH)maxが20〜45MGOeの種々
磁石特性に応じた組成の合金粉末を容易に提供できるこ
とを知見しこの発明を完成した。
SUMMARY OF THE INVENTION The present invention has been studied by various means for the purpose of reducing the oxygen content of the raw material powder for R-Fe-B permanent magnets by the direct reduction diffusion method. Focusing on the fact that the oxygen content can be reduced by reducing the rich phase or forming only the R 2 Fe 14 B main phase, R 2 Fe 14
An alloy powder having a composition close to the B phase and a composition corresponding to various magnet properties cannot be obtained only with the alloy powder having a small R-rich phase, and an R-Fe-B permanent magnet is usually used. In view of the fact that it is extremely difficult to manufacture by the powder metallurgical method of (1) because unavoidable raw material oxidation occurs during the manufacturing process, R-rich alloy powder is melted and pulverized to obtain R 3 Co by adding Co element. Co or Fe and an intermetallic compound phase of R containing a phase (however, part or most of Co can be replaced by Fe) (however, part or most of Co is F
e) and an intermetallic compound powder composed of R 2 (FeCo) 14 B phase and the like, and by mixing both, an alloy powder having a predetermined magnet composition with a low oxygen content can be obtained. The inventors have found that it is possible to easily provide an alloy powder having a composition according to various magnetic properties of BH) max of 20 to 45 MGOe, and completed the present invention.

【0014】すなわち、この発明は、R(但しRはYを
含む希土類元素のうち少なくとも1種)11原子%〜1
3原子%、B4原子%〜12原子%、残部Fe及び不可
避的不純物からなり、あるいはさらにFeの一部をCo
10原子%以下、Ni3原子%以下の1種または2種で
置換し、直接還元拡散法によるR2Fe14B相、あるい
はR2(FeCo)14B相又はR2(FeNi)14B相を
主相とする合金粉末と、R(但しRはYを含む希土類元
素のうち少なくとも1種)13原子%〜45原子%、B
12原子%以下、残部Co(但しCoの1部あるいは大
部分をFeにて置換することができる)及び不可避的不
純物からなり、溶解・粉化法により、R3Co相を含む
Co又はFeとRとの金属間化合物相(但しCoの1部
あるいは大部分をFeにて置換できる)及びR2(Fe
Co)14B相等からなる金属間化合物粉末を60〜9
7:40〜3の比率にてR−Fe−B系永久磁石の所要
組成に配合したことを特徴とするR−Fe−B系永久磁
石用原料粉末の製造方法である。
That is, the present invention relates to a method for producing R (where R is at least one kind of rare earth element containing Y) from 11 atomic% to 1 atomic%.
3 atomic%, B 4 atomic% to 12 atomic%, balance Fe and unavoidable impurities, or furthermore, a part of Fe is Co
R 2 Fe 14 B phase, R 2 (FeCo) 14 B phase or R 2 (FeNi) 14 B phase by direct reduction diffusion method by substituting one or two kinds of 10 atomic% or less and Ni 3 atomic% or less. An alloy powder as a main phase, 13 atomic% to 45 atomic% of R (where R is at least one of rare earth elements including Y), B
12 atomic% or less, the balance consists of Co (however, part or most of Co can be replaced by Fe) and unavoidable impurities, and is dissolved with Co or Fe containing R 3 Co phase by a powdering method. An intermetallic compound phase with R (however, part or most of Co can be replaced by Fe) and R 2 (Fe
An intermetallic compound Powder consisting of Co) 14 B phase etc., 60-9
A method for producing a raw material powder for an R-Fe-B-based permanent magnet, characterized by being blended with a required composition of the R-Fe-B-based permanent magnet in a ratio of 7:40 to 3.

【0015】[0015]

【作用】この発明は、R−Fe−B系永久磁石の製造に
際し、直接還元拡散法にてRリッチ相の少ないR2Fe
14B相に近い組成で合金粉末を作成することにより、含
有酸素量を低減でき、また溶解・粉化法にて作成したR
リッチな金属間化合物粉末を混合することにより、必要
とする磁石特性に応じた組成の合金粉末を容易にかつ著
しく含有酸素量を低減して製造することができる。
According to the present invention, in the production of an R-Fe-B permanent magnet, R 2 Fe having a small R-rich phase is produced by a direct reduction diffusion method.
14 By making the alloy powder with a composition close to the B phase, the oxygen content can be reduced, and the R
By mixing the rich intermetallic compound powder, an alloy powder having a composition according to the required magnet properties can be easily and significantly reduced in oxygen content.

【0016】従って、この発明によるR−Fe−B系永
久磁石用原料粉末は、要求される種々の磁石特性に応じ
た合金粉末の製造に際し、ある程度の汎用が可能で、配
合比で対応できる。すなわち、要求される種々の磁石特
性に応じて希土類元素の種類とその量を変化させ、複数
種の組成からなるR−Fe−B系永久磁石用原料合金粉
末を製造するに際し、(1)直接還元拡散法により、R
(但しRはYを含む希土類元素のうち少なくとも1種)
11原子%〜13原子%、B4原子%〜12原子%、残
部Fe及び不可避的不純物からなり、あるいはさらにF
eの一部を10原子%以下のCo、3原子%以下のNi
の少なくとも1種と置換し、Rリッチ相が4%以下のR
2Fe14B相、あるいはR2(FeCo)14B相又はR2
(FeNi)14B相を主相とする一種類の合金粉末を作
製し、(2)溶解・粉化法によりR(但しRはYを含む
希土類元素のうち少なくとも1種)13原子%〜45原
子%、B12原子%以下、残部Co(但しCoの1部あ
るいは大部分をFeにて置換することができる)及び不
可避的不純物からなり、R3Co相を含むCo又はFe
とRとの金属間化合物相(但しCoの1部あるいは大部
分をFeにて置換できる)及びR2(FeCo)14B相
等からなる金属間化合物粉末を作製する際に、目的組成
の希土類元素の種類とその量に応じて、金属間化合物の
含有希土類元素比率を変化させた複数の金属間化合物粉
末を作製し、(3)前記所要主相からなる合金粉末と金
属間化合物粉末を、60〜97:40〜3の比率で配合
し、磁石特性に応じた複数種組成の合金粉末を得ること
ができる。
Therefore, the raw material powder for R-Fe-B permanent magnets according to the present invention can be used to a certain extent in the production of alloy powders corresponding to various required magnet properties, and can be handled by the mixing ratio. That is, the type and amount of the rare earth element are changed in accordance with various required magnet properties, and when producing a raw material alloy powder for an R—Fe—B based permanent magnet having a plurality of types of compositions, (1) direct By the reduction diffusion method, R
(Where R is at least one of rare earth elements including Y)
11 atomic% to 13 atomic%, B 4 atomic% to 12 atomic%, balance Fe and unavoidable impurities, or
part of e is Co of 10 atomic% or less, Ni of 3 atomic% or less
And the R-rich phase is 4% or less.
2 Fe 14 B phase or R 2 (FeCo) 14 B phase or R 2
One type of alloy powder having (FeNi) 14 B phase as a main phase is prepared, and (2) R (where R is at least one of rare earth elements including Y) 13 atomic% to 45 atomic% by a melting / pulverizing method. Atomic%, B12 atomic% or less, Co or Fe containing the remainder Co (however, part or most of Co can be replaced by Fe) and unavoidable impurities, and containing R 3 Co phase.
When preparing an intermetallic compound powder consisting of an intermetallic compound phase of R and R (however, part or most of Co can be replaced by Fe) and an R 2 (FeCo) 14 B phase, etc., A plurality of intermetallic compound powders in which the ratio of the rare earth element contained in the intermetallic compound is changed in accordance with the type and the amount of the intermetallic compound; By mixing at a ratio of ~ 97: 40 ~ 3, alloy powders having a plurality of compositions according to the magnet properties can be obtained.

【0017】好ましい実施態様 この発明において、直接還元拡散法による所要主相から
なる合金粉末と溶解・粉化法による金属間化合物粉末と
の配合比を、60〜97:40〜3とするのは、所要主
相からなる合金粉末が60wt%以下、金属間化合物粉
末が40wt%以上では磁石を製造する際に各元素の均
一拡散に時間を要し、金属間化合物粉末量が3wt%以
下、所要主相からなる合金粉末が97wt%以上では焼
結時の液相の発現が充分でないためである。
In the present invention, the compounding ratio of the alloy powder comprising the required main phase by the direct reduction diffusion method and the intermetallic compound powder by the melting and pulverizing method is set to 60 to 97:40 to 3 When the alloy powder composed of the required main phase is 60 wt % or less and the intermetallic compound powder is 40 wt % or more, it takes time to uniformly diffuse each element when manufacturing a magnet, and the amount of the intermetallic compound powder is 3 wt %. Below, if the alloy powder composed of the required main phase is 97 wt % or more, the liquid phase is not sufficiently developed during sintering.

【0018】希土類元素R この発明に用いる希土類元素Rは、Yを包含し軽希土類
及び重希土類を包含する希土類元素であり、これらのう
ち少なくとも1種、好ましくはNd、Pr等の軽希土類
を主体として、あるいはNd、Pr等との混合物を用い
る。すなわち、Rとしては、Nd,Pr,La,Ce,
Tb,Dy,Ho,Er,Eu,Sm,Gd,Pm,T
m,Yb,Lu,Yを用いることができる。このRは純
希土類元素でなくてもよく、工業上入手可能な範囲で製
造上不可避な不純物を含有するものでも差支えない。
Rare earth element R The rare earth element R used in the present invention is a rare earth element containing Y and including light rare earths and heavy rare earths, and at least one of them, preferably light rare earths such as Nd and Pr is mainly used. Or a mixture with Nd, Pr, or the like. That is, as R, Nd, Pr, La, Ce,
Tb, Dy, Ho, Er, Eu, Sm, Gd, Pm, T
m, Yb, Lu, and Y can be used. This R may not be a pure rare earth element, and may contain impurities that are unavoidable in production within the industrially available range.

【0019】限定理由 このR2Fe14B主相からなる合金粉末を得るには、R
が11原子%未満では、R、Bの拡散しない残留鉄部の
増加となり、13原子%を超えると、Rリッチ相が増加
して含有酸素量が増えるため、Rは11原子%〜13原
子%とする。また、Bは、4原子%未満では、高い保磁
力(iHc)が得られず、12原子%を超えると、残留
磁束密度(Br)が低下するため、すぐれた永久磁石が
得られないため、Bは4原子%〜12原子%とする。さ
らに、残部はFe及び不可避的不純物からなり、Feは
75原子%〜85原子%の範囲が好ましい、Feは75
原子%未満では相対的に希土類元素がリッチとなり、R
リッチ相が増加し、85原子%を超えると相対的に希土
類元素が少なくなり、残留Fe部が増加し不均一な合金
粉末となる。主相系合金粉末中のCoとNiは、R2
14B主相中のFeと置換されて保磁力を低下させるた
め、Coは10原子%以下、Niは3原子%以下とす
る。ただし、上述のCoまたはNiでFeの一部を置換
した場合、Feは62原子%〜85原子%の範囲であ
る。直接還元拡散法にて作成するRリッチ相の少ないR
2Fe14B主相からなる合金粉末は、含有酸素量の低減
のため、Rリッチ相が全くないことが望ましいが、全体
の4wt%以下であれば、含有酸素量の低減を大きく損
なうことがない。
Reason for limitation In order to obtain the alloy powder composed of the R 2 Fe 14 B main phase, R
Is less than 11 atomic%, the residual iron portion in which R and B do not diffuse increases, and if it exceeds 13 atomic%, the R-rich phase increases and the oxygen content increases, so that R is 11 atomic% to 13 atomic%. And If B is less than 4 atomic%, a high coercive force (iHc) cannot be obtained, and if it exceeds 12 atomic%, the residual magnetic flux density (Br) decreases, so that an excellent permanent magnet cannot be obtained. B is 4 to 12 atomic%. Further, the balance consists of Fe and inevitable impurities, and the content of Fe is preferably in the range of 75 to 85 atomic%.
At less than atomic%, the rare earth element becomes relatively rich, and R
When the rich phase increases and exceeds 85 atomic%, the rare earth element relatively decreases, and the residual Fe portion increases, resulting in a non-uniform alloy powder. Co and Ni in the main phase alloy powder are R 2 F
In order to reduce the coercive force by substituting Fe in the e 14 B main phase, Co is set to 10 atomic% or less and Ni is set to 3 atomic% or less. However, when a part of Fe is substituted with Co or Ni described above, Fe is in the range of 62 atomic% to 85 atomic%. R with little R-rich phase created by direct reduction diffusion method
It is desirable that the alloy powder composed of the 2 Fe 14 B main phase has no R-rich phase in order to reduce the oxygen content. However, if the content is 4 wt% or less, the reduction in the oxygen content may be greatly impaired. Absent.

【0020】溶解・粉化法によりR3Co相を含むCo
又はFeとRとの金属間化合物相(但しCoの1部ある
いは大部分をFeにて置換できる)及びR2(FeC
o)14B相等からなる金属間化合物粉末、すなわちRリ
ッチな合金粉末は、R3Co相あるいはR3Co相のCo
の一部Feで置換された相とからなり、コア部が、RC
5、R2Co7、RCo3、RCo2、R2Co3、R2Fe
17、RFe2、Nd2Co17、Nd5Co19、Dy6Fe2
DyFe等、及び前記金属間化合物相とR2(FeC
o)14B、R1.11(FeCo)44等のいずれかからな
る合金をディスクミルなどの粉砕機により粉砕して得ら
れた粉末である。Rリッチな合金粉末の組成は、前述の
如く、目的組成の希土類元素の種類とその量に応じて、
金属間化合物の含有希土類元素比率を変化させる。しか
し、Rが13原子未満では、主相系原料と配合して磁石
を製造する際に、焼結時の液相の発現が十分でなく、ま
た45原子%を超えると含有酸素量の増加を招き好まし
くない。また、Coは、Rリッチな金属間化合物粉末に
おいて、1原子%以上必要で好ましくは3〜20原子%
であり、残部はFeで置換できる。さらに、Bは12原
子%を超えるとR2(FeCo)14B相以外にB−ri
ch相やFe−B化合物等が余剰に存在することとなる
ので好ましくない。
The Co containing R 3 Co phase is obtained by the dissolving and pulverizing method.
Or an intermetallic compound phase of Fe and R (however, part or most of Co can be replaced by Fe) and R 2 (FeC
o) The intermetallic compound powder composed of the 14 B phase or the like, that is, the R-rich alloy powder is made of R 3 Co phase or R 3 Co phase Co.
And a core part of which is replaced by Fe
o 5 , R 2 Co 7 , RCo 3 , RCo 2 , R 2 Co 3 , R 2 Fe
17 , RFe 2, Nd 2 Co 17 , Nd 5 Co 19 , Dy 6 Fe 2 ,
DyFe or the like, and the intermetallic compound phase and R 2 (FeC
o) Powder obtained by pulverizing an alloy composed of any of 14 B, R 1.11 (FeCo) 4 B 4 and the like with a pulverizer such as a disk mill. As described above, the composition of the R-rich alloy powder depends on the type and amount of the rare earth element of the target composition.
The ratio of the rare earth element contained in the intermetallic compound is changed. However, when R is less than 13 atoms, the liquid phase is not sufficiently developed during sintering when the magnet is manufactured by blending with the main phase material, and when it exceeds 45 atom%, the oxygen content increases. Inviting is not preferred. Further, Co is necessary in the R-rich intermetallic compound powder in an amount of 1 atomic% or more, preferably 3 to 20 atomic%.
And the remainder can be replaced by Fe. Further, if B exceeds 12 atomic%, B-ri besides R 2 (FeCo) 14 B phase
It is not preferable because the ch phase, the Fe-B compound and the like are excessively present.

【0021】合金粉末の製造方法 殆どがR2Fe14B相からなる合金粉末を得るには、フ
ェロボロン粉、鉄粉、希土類酸化物粉等からなる少なく
とも1種の金属粉及び/または酸化物粉からなる原料粉
を所望する原料合金粉末の組成に応じて選定する。例え
ば、上記原料粉に、金属CaあるいはCaH2を上記希
土類酸化物粉の還元に要する化学量論的必要量の1.1
〜4.0倍(重量比)混合し、不活性ガス雰囲気中で9
00℃〜1200℃に加熱し、得られた反応生成物を水
中に投入して反応副生成物を除去することにより、粗粉
砕が不要な10〜200μmの平均粒度を有する粉末が
得られる。Rリッチな合金粉末を得るには、アーク溶
解、高周波溶解等によりCo、Fe、B、Ni、などの
合金を、目的組成の希土類元素種類とその量に応じた含
有希土類元素比率となるように溶解製造したのち、粉砕
することにより2〜200μmの平均粒度の粉末にす
る。なお、粉砕方法には水素含有崩壊方法を用いること
もでき、また直接粉末を得るためにアトマイズ法を用い
ることができる。
Method for Producing Alloy Powder In order to obtain an alloy powder consisting essentially of the R 2 Fe 14 B phase, at least one kind of metal powder and / or oxide powder consisting of ferroboron powder, iron powder, rare earth oxide powder, etc. Is selected according to the desired composition of the raw alloy powder. For example, metal Ca or CaH 2 is added to the raw material powder at a stoichiometric amount of 1.1 required for the reduction of the rare earth oxide powder.
~ 4.0 times (weight ratio) mixed in an inert gas atmosphere.
By heating to 00 ° C to 1200 ° C and pouring the obtained reaction product into water to remove a reaction by-product, a powder having an average particle size of 10 to 200 µm that does not require coarse pulverization is obtained. In order to obtain an R-rich alloy powder, alloys such as Co, Fe, B, Ni, etc. are formed by arc melting, high frequency melting or the like so that the rare earth element content in accordance with the rare earth element type and the amount of the target composition is adjusted. After being produced by dissolution, it is pulverized into a powder having an average particle size of 2 to 200 μm. In addition, a hydrogen-containing disintegration method can be used as a pulverizing method, and an atomizing method can be used to directly obtain a powder.

【0022】合金粉末の配合 直接還元拡散法による所要主相からなる合金粉末と溶解
・粉化法による金属間化合物粉末を、60〜97:40
〜3の比率で配合し、磁石特性に応じた複数種組成の合
金粉末を得ることができる。この発明によるR−Fe−
B系永久磁石用原料粉末は、含有酸素量が2000pp
m以下と極めて良好な特性が得られる。得られる粉末を
そのまま用いる際に、合金粉末の粒度が大きすぎると永
久磁石の磁気特性、とりわけ高い保磁力が得られず、ま
た、平均粒度が1μm未満では、永久磁石の作製工程、
すなわち、プレス成形、焼結、時効処理工程における酸
化が著しく、すぐれた磁気特性が得られないため、1〜
80μmの平均粒度が好ましく、さらに、すぐれた磁気
特性を得るには、平均粒度2〜10μmの合金粉末が望
ましい。
Blending of alloy powder An alloy powder consisting of a required main phase by direct reduction diffusion method and an intermetallic compound powder by melting and pulverizing method are mixed at 60 to 97:40.
By blending at a ratio of 3 to 3, alloy powders having a plurality of compositions according to the magnet characteristics can be obtained. The R-Fe- according to the present invention
The raw material powder for B-based permanent magnet has an oxygen content of 2000 pp
m or less, very good characteristics can be obtained. When the obtained powder is used as it is, if the particle size of the alloy powder is too large, the magnetic properties of the permanent magnet, especially high coercive force cannot be obtained, and if the average particle size is less than 1 μm,
That is, the oxidation in the press molding, sintering, and aging treatment steps is remarkable, and excellent magnetic properties cannot be obtained.
An average particle size of 80 μm is preferable, and an alloy powder having an average particle size of 2 to 10 μm is desirable for obtaining excellent magnetic properties.

【0023】また、得られる合金粉末を用いて、高い残
留磁束密度と高い保磁力を共に有するすぐれたR−Fe
−B系永久磁石を得るためには、配合した原料粉末は、
R12原子%〜25原子%、B4原子%〜10原子%、
Co0.1原子%〜10原子%、Fe68原子%〜80
原子%の組成が好ましい。さらに、配合したR2Fe14
B相を主相とする合金粉末および/またはR3Co相を
含むCo又はFeとRとの金属間化合物相及びR2(F
eCo)14B相等からなる金属間化合物粉末に、Cu
3.5原子%以下、S2.5原子%以下、Ti4.5原
子%以下、Si15原子%以下、V9.5原子%以下、
Nb12.5原子%以下、Ta10.5原子%以下、C
r8.5原子%以下、Mo9.5原子%以下、W9.5
原子%以下、Mn3.5原子%以下、Al9.5原子%
以下、Sb2.5原子%以下、Ge7原子%以下、Sn
3.5原子%以下、Zr5.5原子%以下、Hf5.5
原子%以下、Ca8.5原子%以下、Mg8.5原子%
以下、Sr7.0原子%以下、Ba7.0原子%以下、
Be7.0原子%以下、のうち少なくとも1種を添加含
有させることにより、得られる永久磁石の高保磁力化、
高耐食性化、温度特性の改善が可能になる。
Further, by using the obtained alloy powder, an excellent R-Fe having both a high residual magnetic flux density and a high coercive force is obtained.
-In order to obtain a B-based permanent magnet, the compounded raw material powder is
R12 atomic% to 25 atomic%, B4 atomic% to 10 atomic%,
Co 0.1 atomic% to 10 atomic%, Fe 68 atomic% to 80
Atomic% compositions are preferred. Furthermore, the compounded R 2 Fe 14
An alloy powder having a B phase as a main phase and / or an intermetallic compound phase of Co or Fe and R containing an R 3 Co phase and R 2 (F
eCo) 14B phase intermetallic compound powder, Cu
3.5 atomic% or less, S2.5 atomic% or less, Ti 4.5 atomic% or less, Si 15 atomic% or less, V9.5 atomic% or less,
Nb 12.5 atomic% or less, Ta 10.5 atomic% or less, C
r 8.5 atomic% or less, Mo 9.5 atomic% or less, W9.5
Atomic% or less, Mn 3.5 atomic% or less, Al 9.5 atomic%
Hereinafter, Sb 2.5 atomic% or less, Ge 7 atomic% or less, Sn
3.5 at% or less, Zr 5.5 at% or less, Hf 5.5
Atomic% or less, Ca 8.5 atomic% or less, Mg 8.5 atomic%
Hereinafter, 7.0 atomic% or less of Sr, 7.0 atomic% or less of Ba,
By adding and containing at least one of Be 7.0 atomic% or less, the resulting permanent magnet can have a high coercive force,
Higher corrosion resistance and improved temperature characteristics are possible.

【0024】この発明による合金粉末を用いて製造した
永久磁石の組成が、R11原子%〜25原子%、B4原
子%〜10原子%、Co30原子%以下、Fe66原子
%〜82原子%の場合、得られる磁気異方性永久磁石
は、保磁力iC≧5kOe、(BH)max≧20MG
Oe、の磁気特性を示し、さらに、残留磁束密度の温度
係数が、0.1%/℃以下となり、すぐれた特性が得ら
れる。また、永久磁石組成のRの主成分がその50%以
上を軽希土類金属が占める場合で、R12原子%〜20
原子%、B4原子%〜10原子%、Fe66原子%〜8
2原子%、Co20原子%以下を含有するとき最もすぐ
れた磁気特性を示し、特に軽希土類金属がNd、Pr、
Dyの場合には、(BH)maxはその最大値が40M
GOe以上に達する。
When the composition of the permanent magnet produced by using the alloy powder according to the present invention is R11 atomic% to 25 atomic%, B4 atomic% to 10 atomic%, Co 30 atomic% or less, and Fe 66 atomic% to 82 atomic%, The resulting magnetic anisotropic permanent magnet has a coercive force i H C ≧ 5 kOe, (BH) max ≧ 20 MG
Oe, and the temperature coefficient of residual magnetic flux density is 0.1% / ° C. or less, and excellent characteristics are obtained. In the case where the main component of R in the permanent magnet composition accounts for 50% or more of the light rare earth metal, R12 atomic% to 20%
Atomic%, B4 atomic% to 10 atomic%, Fe 66 atomic% to 8
It shows the best magnetic properties when it contains 2 atomic% and 20 atomic% or less of Co. In particular, light rare earth metals are Nd, Pr,
In the case of Dy, the maximum value of (BH) max is 40M
GOe or more.

【0025】[0025]

【実施例】【Example】

実施例1 主相系の直接還元拡散法での原料は、Nd23(純度9
9%)を361g、B含有量19.1%のFe−B粉を
61.4g、純度99%のFe粉を665gを用いて、
これに純度99%の金属Caを193g、無水CaCl
2を36.1gとを混合し、ステンレス容器内に装入
し、Ar気流中にて1000℃×3時間の条件にてCa
還元、拡散を行った。その後、冷却し生成混合物を水洗
し不要なCa分を除去した。得られた粉末スラリーをア
ルコール等で水置換後、真空中で加熱乾燥して約100
0gの原料粉末を得た。得られた粉末はNd12.0原
子%、Pr0.2原子%、B6.0原子%、残部Feか
らなる平均粒径約18μmのもので、含有酸素量は15
00ppmでEPMA等の観察ではほとんどNd2Fe
14B相であった。
Example 1 The raw material in the direct reduction diffusion method of the main phase was Nd 2 O 3 (purity 9).
9%) by using 361 g, 61.4 g of Fe-B powder having a B content of 19.1%, and 665 g of Fe powder having a purity of 99%.
193 g of 99% pure metal Ca and anhydrous CaCl
2 and 36.1 g were charged into a stainless steel container, and Ca was mixed in an Ar gas stream at 1000 ° C. for 3 hours.
Reduction and diffusion were performed. After cooling, the resulting mixture was washed with water to remove unnecessary Ca. After the obtained powder slurry is replaced with alcohol or the like, it is dried by heating under vacuum to about 100
0 g of the raw material powder was obtained. The obtained powder had an average particle diameter of about 18 μm consisting of 12.0 atomic% of Nd, 0.2 atomic% of Pr, 6.0 atomic% of B, and the balance Fe, and the oxygen content was 15%.
At 00 ppm, almost no Nd 2 Fe
It was 14B phase.

【0026】Rリッチな金属間化合物粉末の原料は、N
dメタル(純度99%)を132.0g、Dyメタル
(純度99.9%)を24.1g、Coメタル(純度9
9.9%)を31.5g、Bメタル(純度99%)を
2.7g、純度99%の電解鉄粉を127.7gを用
い、Ar雰囲気中で高周波溶解にて得られた合金塊を、
ジョークラッシャー・ディスクミルで粉砕し、平均10
μmの粉末300gを得た。得られた粉末はNd21.
0原子%、Pr0.2原子%、Dy3.5原子%、Co
13.0原子%、B5.7原子、%残部Feからなり、
EPMA等の観察結果ではR3Co相(Coの一部がF
eで置換)と希土類元素とFe、Coの金属間化合物及
び一部R2(FeCo)14B相から成るもので含有酸素
量は1000ppmであった。
The raw material of the R-rich intermetallic compound powder is N
132.0 g of d metal (purity 99%), 24.1 g of Dy metal (purity 99.9%), Co metal (purity 9
Using 31.5 g of 9.9%), 2.7 g of B metal (purity 99%), and 127.7 g of electrolytic iron powder having a purity of 99%, an alloy lump obtained by high-frequency melting in an Ar atmosphere was used. ,
Pulverize with a jaw crusher disc mill, average 10
300 g of a μm powder were obtained. The obtained powder was Nd21.
0 atomic%, Pr 0.2 atomic%, Dy 3.5 atomic%, Co
13.0 atom%, B5.7 atom,% balance Fe,
According to the observation results of EPMA and the like, the R 3 Co phase (part of Co is F
e), a rare earth element, an intermetallic compound of Fe and Co, and a part of R 2 (FeCo) 14 B phase, and the oxygen content was 1000 ppm.

【0027】この両者の原料粉末を用いて、主相系合金
粉末80%、Rリッチな金属間化合物粉末20%の割合
で配合混合し、Nd13.5原子%、Pr0.2原子
%、Dy0.6原子%、B6.0原子%、Co2.2原
子%、残部Feからなる配合原料粉末を磁石の出発原料
とした。この原料粉末をジェットミル等の粉砕機で約3
μmまで微粉砕し、得られた微粉末を金型に装入し、約
10kOeの磁界中で配向し、磁界に直角方向に約2t
on/cm2の圧力で成型し、15mm×20mm×8
mmの成型体を作成した。この成型体を1090℃×3
時間のAr雰囲気中条件で焼結し、500℃×2時間の
時効処理を行った。得られた試験片の磁石特性は、Br
=12.9kG、(BH)max=40.0MGOe、
iHc=15.75kOeであり、含有酸素量は475
0ppmであった。
Using these two raw material powders, 80% of the main phase alloy powder and 20% of the R-rich intermetallic compound powder are mixed and mixed, and 13.5 atomic% of Nd, 0.2 atomic% of Pr, and 0.2% of Dy. A raw material powder composed of 6 atomic%, B 6.0 atomic%, Co 2.2 atomic% and the balance Fe was used as a starting material for the magnet. This raw material powder is crushed for about 3
μm, and the resulting fine powder is charged into a mold, oriented in a magnetic field of about 10 kOe, and about 2 t in a direction perpendicular to the magnetic field.
Molded at a pressure of on / cm 2 , 15mm × 20mm × 8
mm was formed. This molded body is 1090 ° C x 3
Sintering was performed in an Ar atmosphere for a period of time, followed by aging at 500 ° C. for 2 hours. The magnet properties of the obtained test piece were Br
= 12.9 kG, (BH) max = 40.0 MGOe,
iHc = 15.75 kOe, and the oxygen content is 475
It was 0 ppm.

【0028】また、上記原料粉末を用いて、主相系合金
粉末84%、Rリッチな金属間化合物粉末16%の割合
で配合混合し、Nd13.0原子%、Pr0.2原子
%、Dy0.5原子%、B6.0原子%、Co1.8原
子%、残部Feからなる配合原料粉末を磁石の出発原料
し、先と同じ工程で磁石を作成した。得られた試験片の
磁石特性は、Br=13.1kG、(BH)max=4
1.2MGOe、iHc=14.50kOeであり、含
有酸素量は4800ppmであった。
The above raw material powders were mixed and mixed at a ratio of 84% of the main phase alloy powder and 16% of the R-rich intermetallic compound powder, and 13.0 atomic% of Nd, 0.2 atomic% of Pr, and 0.2% of Dy. A mixed raw material powder consisting of 5 atomic%, B 6.0 atomic%, Co 1.8 atomic% and the balance Fe was used as a starting material for the magnet, and a magnet was prepared in the same process as above. The magnet properties of the obtained test piece were as follows: Br = 13.1 kG, (BH) max = 4
1.2MGOe, iHc = 14.50 kOe, and the oxygen content was 4800 ppm.

【0029】比較例1 直接還元拡散法で Nd23(純度99%)を383g Dy23(純度99.9%)を18.5g B含有量19.1%のFe−B粉を59.8g Co粉(純度99.9%)を21.4g 純度99%のFe粉を606gを用い、これに純度99
%の金属Caを215.6g、無水CaCl2を40.
7gを混合し、ステンレス容器内に装入し、Ar気流中
にて1000℃×3時間の条件にてCa還元、拡散を行
った。その後、冷却し生成混合物を水洗し不要なCa分
を除去した。得られた粉末スラリーをアルコール等で水
置換後、真空中で加熱乾燥して約1000gの原料粉末
を得た。
Comparative Example 1 Nd 2 O 3 (purity 99%) 383 g Dy 2 O 3 (purity 99.9%) 18.5 g Fe-B powder having a B content of 19.1% was obtained by direct reduction diffusion method. 59.8 g Co powder (purity: 99.9%): 21.4 g Fe powder having a purity of 99% was used by using 606 g.
215.6 g of metallic Ca and 40.40% of anhydrous CaCl 2 .
7 g were mixed, charged in a stainless steel container, and reduced and diffused with Ca under a condition of 1000 ° C. × 3 hours in an Ar gas flow. After cooling, the resulting mixture was washed with water to remove unnecessary Ca. The obtained powder slurry was replaced with alcohol and the like, and then dried by heating in vacuum to obtain about 1000 g of raw material powder.

【0030】得られた粉末は、実施例1の主相系合金粉
末80%、Rリッチな金属間化合物粉末20%の割合で
配合した出発原料粉末と同等のNd13.5原子%、P
r0.2原子%、Dy0.6原子%、B6.0原子%、
Co2.2原子%、残部Feからなる平均粒度約20μ
mのもので、含有酸素量は2500ppmであった。E
PMA等の観察では、主相であるR2Fe14B相に一部
Coが置換されているのが散見され、また、Rリッチ相
ではNd3Co相とNdリッチ相(Nd=約95%)が
観察された。この出発原料粉末を用い、実施例1と同工
程で磁石を作成して得られた試験片の磁石特性は、Br
=12.1kG、(BH)max=33.8MGOe、
iHc=13.8kOeであり、実施例1の磁石に比べ
て磁石特性が劣り、かつ含有酸素量は6200ppmと
高かった。
The obtained powder had a Nd of 13.5 atomic%, which was equivalent to that of the starting material powder blended at a ratio of 80% of the main phase alloy powder of Example 1 and 20% of the R-rich intermetallic compound powder.
r 0.2 at%, Dy 0.6 at%, B 6.0 at%,
Average particle size of 2.2 atomic% Co and balance Fe
m, and the oxygen content was 2500 ppm. E
In observations of PMA and the like, it was found that Co was partially substituted for the R 2 Fe 14 B phase as the main phase, and the Nd 3 Co phase and the Nd rich phase (Nd = about 95% ) Was observed. Using this starting material powder, a magnet was prepared in the same process as in Example 1 to obtain a test piece.
= 12.1 kG, (BH) max = 33.8 MGOe,
iHc = 13.8 kOe, the magnet properties were inferior to those of the magnet of Example 1, and the oxygen content was as high as 6200 ppm.

【0031】比較例2 電解鉄、フェロボロン合金、Co金属、Nd金属とDy
金属を高周波溶解し、Nd13.5原子%、Pr0.3
原子%、Dy0.6原子%、B6.0原子%、Co2.
2原子%、残部Feからなる合金塊を作製した。EPM
A等の観察では、主相であるR2Fe14B相に一部Co
が置換されていること、及び軟磁性相のα−Fe相が晶
出していることが散見され、また、Rリッチ相ではNd
3Co相とNdリッチ相(Nd=約95%)が観察され
た。
Comparative Example 2 Electrolytic iron, ferroboron alloy, Co metal, Nd metal and Dy
High frequency melting of metal, Nd 13.5 atomic%, Pr 0.3
Atomic%, Dy 0.6 atomic%, B 6.0 atomic%, Co2.
An alloy lump consisting of 2 atomic% and the balance Fe was produced. EPM
In the observation of A etc., the main phase R 2 Fe 14 B phase has some Co
Are substituted, and the α-Fe phase of the soft magnetic phase is crystallized.
A 3Co phase and an Nd-rich phase (Nd = about 95%) were observed.

【0032】この合金塊をジョークラッシャー・ディス
クミル等で粉砕し、さらにジェット・ミルなどの粉砕機
で約3μmまで微粉砕し、その後実施例1と同工程で永
久磁石を作成した。得られた試験片の磁石特性は、Br
=12.5kG、(BH)max=37.6MGOe、
iHc=15.5kOeであり、実施例1の磁石に比べ
て磁石特性が劣るが、含有酸素量は4850ppmとほ
ぼ同等であった。
This alloy lump was pulverized with a jaw crusher / disk mill or the like, further pulverized to about 3 μm with a pulverizer such as a jet mill, and then a permanent magnet was prepared in the same process as in Example 1. The magnet properties of the obtained test piece were Br
= 12.5 kG, (BH) max = 37.6 MGOe,
iHc = 15.5 kOe, and the magnet properties were inferior to those of the magnet of Example 1, but the oxygen content was almost equal to 4850 ppm.

【0033】実施例2主相系の直接還元拡散法での原料
はNd23(純度98%)を127.8g、Dy2
3(純度99.9%)を4.3g、B含有量19.1%
のFe−B粉を23.0g、Co(純度99.5%)粉
を3.9g、純度99%のFe粉を258.9gを用い
て、これに純度99%の金属Caを70.7g、無水C
aCl2を13.2gとを混合し、ステンレス容器内に
挿入し、Ar気流中にて1000℃×3時間の条件にて
Ca還元拡散を行った。その後、冷却して生成混合物を
水洗し、不要なCa分を除去した。得られた粉末スラリ
ーをアルコール等で水置換後、真空中で加熱乾燥とし
た。得られた粉末は、Nd11.2原子%、Pr0.3
原子%、Dy0.4原子%、Co1.1原子%、B6.
7原子%、残部Feからなる平均粒径約15μmのもの
で、含有酸素量は1100ppmでEPMA等の観察で
はほとんどR2(FeCo)14B相である。
Example 2 The raw materials in the main phase system direct reduction diffusion method were 127.8 g of Nd 2 O 3 (98% purity) and Dy 2 O
3 (99.9% purity) and 4.3 g, B content 19.1%
Of 23.0 g of Fe-B powder, 3.9 g of Co (purity 99.5%) powder, and 258.9 g of Fe powder of 99% purity, and 70.7 g of metal Ca of 99% purity. , Anhydrous C
13.2 g of aCl 2 was mixed, inserted into a stainless steel container, and subjected to Ca reduction diffusion in an Ar gas flow at 1000 ° C. for 3 hours. After cooling, the resulting mixture was washed with water to remove unnecessary Ca. After the obtained powder slurry was replaced with water with alcohol or the like, it was dried by heating in vacuum. The obtained powder had Nd of 11.2 atomic% and Pr of 0.3.
Atomic%, Dy 0.4 atomic%, Co 1.1 atomic%, B6.
It has an average particle size of about 15 μm consisting of 7 atomic% and the balance of Fe. The oxygen content is 1100 ppm, and it is almost the R 2 (FeCo) 14 B phase when observed by EPMA or the like.

【0034】Rリッチな金属間化合物粉末の原料は、N
dメタル(純度99%)を153.1g、Coメタル
(純度99.9%)を34.1g、Bメタル(純度99
%)を0.9g、純度99%の電解鉄粉を131.9g
を用い、実施例1と同じ工程で粉末を作製した。得られ
た粉末は、Nd25.8原子%、Pr0.2原子%、C
o14.2原子%、B2.0原子%、残部Feからな
り、平均粒度約10μmの粉末となした。EPMA等で
の観察結果ではNd3Co相(Coの一部をFeで置
換)と、Nd2Fe17相(Feの一部がCoで置換)及
びNd2Fe14B相(Feの一部がCoで置換)の3相
から成るもので含有酸素量は1000ppmであった。
The raw material of the R-rich intermetallic compound powder is N
153.1 g of d metal (purity 99%), 34.1 g of Co metal (purity 99.9%), B metal (purity 99%)
%) And 131.9 g of 99% pure electrolytic iron powder.
Was used to produce a powder in the same process as in Example 1. The obtained powder was composed of 25.8 atomic% of Nd, 0.2 atomic% of Pr, C
The powder was composed of 14.2 atomic%, 2.0 atomic% of B and the balance of Fe, and had an average particle size of about 10 μm. Observation results with EPMA and the like show that the Nd 3 Co phase (a part of Co is replaced by Fe), the Nd 2 Fe 17 phase (a part of Fe is replaced by Co), and the Nd 2 Fe 14 B phase (a part of Fe) Was replaced with Co) and the oxygen content was 1000 ppm.

【0035】この両者の原料粉末を用い、主相系合金粉
末80%、Rリッチな金属間化合物粉末20%の割合で
配合混合し、Nd13.7原子%、Pr0.3原子%、
Dy0.3原子%、Co3.4原子%、B5.8原子
%、残部Feからなる配合原料粉末を磁石の出発原料と
した。実施例1と同工程で磁石を作成して得られた試験
片の磁石特性は、Br=13.1kG、(BH)max
=41.5MGOe、iHc=12.85kOeであ
り、含有酸素量は4100ppmであった。
Using these two raw material powders, 80% of the main phase alloy powder and 20% of the R-rich intermetallic compound powder are blended and mixed, and 13.7 atomic% of Nd, 0.3 atomic% of Pr,
A raw material powder composed of 0.3 atomic% of Dy, 3.4 atomic% of Co, 5.8 atomic% of B, and the balance Fe was used as a starting material for the magnet. The magnet properties of a test piece obtained by preparing a magnet in the same process as in Example 1 were as follows: Br = 13.1 kG, (BH) max
= 41.5 MGOe, iHc = 12.85 kOe, and the oxygen content was 4100 ppm.

【0036】実施例3 主相系の直接還元拡散法での原料は、実施例1と同様な
条件で作成し、得られた粉末は、Nd11.8原子%、
Pr0.3原子%、Dy0.4原子%、Co1.1原子
%、B6.8原子%、残部Feからなる平均粒径約15
μmのもので含有酸素量は1100ppmである。
Example 3 A raw material for the main phase direct reduction diffusion method was prepared under the same conditions as in Example 1, and the obtained powder was 11.8 atomic% of Nd.
An average particle size of about 0.3 atomic% of Pr, 0.4 atomic% of Dy, 1.1 atomic% of Co, 6.8 atomic% of B, and the balance of Fe is about 15
The content of oxygen is 1100 ppm at μm.

【0037】Rリッチな金属間化合物粉末の原料はNd
メタル(純度99%)を169.6g、Dyメタル(純
度99.9%)を23.2g、Coメタル(純度99.
9%)を20.3g、Bメタル(純度99%)を3.2
g、Cuメタル(純度99.9%)を2.4g、純度9
9%の電解鉄粉を102.0gを用い、実施例1と同じ
工程で粉末を作成した。得られた粉末は、Nd30.5
原子%、Pr0.2原子%、Dy3.6原子%、Co
9.0原子%、B8.0原子%、Cu0.7原子%、残
部Feからなる平均粒度10μmのもので含有酸素量は
1100ppmであった。
The raw material of the R-rich intermetallic compound powder is Nd
169.6 g of metal (purity 99%), 23.2 g of Dy metal (purity 99.9%), and Co metal (purity 99.9%).
9%) and 3.2 parts of B metal (purity 99%).
g, Cu metal (purity 99.9%), 2.4 g, purity 9
Using 102.0 g of 9% electrolytic iron powder, a powder was prepared in the same process as in Example 1. The resulting powder was Nd30.5
Atomic%, Pr 0.2 atomic%, Dy 3.6 atomic%, Co
The average particle size of 9.0 atomic%, B 8.0 atomic%, Cu 0.7 atomic% and the balance Fe was 10 μm, and the oxygen content was 1100 ppm.

【0038】この両者の原料粉末を用いて、主相系合金
粉末90%、Rリッチな金属間化合物粉末10%の割合
で配合混合し、Nd13.2原子%、Pr0.3原子
%、Dy0.6原子%、Co1.7原子%、Cu0.1
原子%、B7.1原子%、残部Feからなる配合原料粉
末を磁石の出発原料とした。この原料粉末をボールミル
等の粉砕機で約3μmまで微粉砕して得られたスラリー
微粉末を金型に装入し、約10kOeの磁界中で配向し
磁界に直角方向に約1.5ton/cm2の圧力で成形
し15mm×20mm×8mmの成型体を作成した。こ
の成型体を真空中で残存する溶媒を除去し、つづいて1
090℃×3時間のAr雰囲気中条件で焼結し、500
℃×2時間の時効処理を行った。得られた試験片の磁石
特性は、Br=12.5kG、(BH)max=38.
5MGOe、iHc=17.0.5kOeであり、含有
酸素量は3500ppmであった。
Using these two raw material powders, 90% of the main phase alloy powder and 10% of the R-rich intermetallic compound powder are mixed and mixed, and 13.2 atomic% of Nd, 0.3 atomic% of Pr, and 0.3% of Dy. 6 atomic%, Co 1.7 atomic%, Cu 0.1
A blended raw material powder consisting of atomic%, B 7.1 atomic% and the balance Fe was used as a starting material for the magnet. This raw material powder is finely pulverized to about 3 μm with a pulverizer such as a ball mill, and the obtained slurry fine powder is charged into a mold, oriented in a magnetic field of about 10 kOe, and about 1.5 ton / cm in a direction perpendicular to the magnetic field. Molding was performed at a pressure of 2 to prepare a molded body of 15 mm × 20 mm × 8 mm. The residual solvent is removed from the molded body in a vacuum,
Sintering in an Ar atmosphere at 090 ° C. × 3 hours, 500
An aging treatment was performed at 2 ° C. for 2 hours. The magnet properties of the obtained test piece were Br = 12.5 kG, (BH) max = 38.
5MGOe, iHc = 17.0.5 kOe, and the oxygen content was 3500 ppm.

【0039】[0039]

【発明の効果】この発明は、直接還元拡散法にてRリッ
チ相の少ないR2Fe14B相に近い組成で合金粉末を作
成し、また溶解・粉化法により、Rリッチな金属間化合
物粉末をCo元素の添加によって合金粒子がR3Co相
あるいは前記R3Co相のCoの一部をFeで置換され
たR2(FeCo)17相及びR2(FeCo)14B相等や
他の金属間化合物相から成る金属間化合物合金粉末を作
成し、両者を特定比率にて混合することにより、含有酸
素量の少なく高磁石特性が得られる所定の磁石組成合金
粉末を容易に得ることができる。また、この発明は、要
求される数種の磁石特性に応じて希土類元素種とその量
を変化させ、複数種の組成からなるR−Fe−B系永久
磁石用原料合金粉末を製造するに際し、例えば、所要組
成の一種類の主相系合金粉末と、目的組成の希土類元素
種とその量に応じて、金属間化合物の含有希土類元素比
率を変化させて作製した複数種の金属間化合物粉末を配
合することにより、要求される磁石特性に応じた複数種
組成の合金粉末を容易に得ることができる。
According to the present invention, an alloy powder having a composition close to that of an R 2 Fe 14 B phase having a small R-rich phase is produced by a direct reduction diffusion method, and an R-rich intermetallic compound is produced by a dissolution / pulverization method. The alloy particles may be prepared by adding the Co element to the R 3 Co phase or an R 2 (FeCo) 17 phase and an R 2 (FeCo) 14 B phase in which a part of Co of the R 3 Co phase is replaced by Fe. By preparing an intermetallic compound alloy powder composed of an intermetallic compound phase and mixing them at a specific ratio , it is possible to easily obtain a predetermined magnet composition alloy powder having a low oxygen content and high magnetic properties. . Further, the present invention is to change the rare earth element species and their amounts according to the required several kinds of magnet properties, when producing a raw alloy powder for R-Fe-B based permanent magnet consisting of a plurality of compositions, For example, one kind of main phase alloy powder having a required composition, and a plurality of kinds of intermetallic compound powders produced by changing the rare earth element content ratio of the intermetallic compound according to the rare earth element species and the amount of the target composition. By blending, it is possible to easily obtain an alloy powder having a plurality of compositions according to the required magnet properties.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−250607(JP,A) 特開 昭61−238903(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/06 B22F 1/00 C22C 19/07 C22C 38/00 303 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-250607 (JP, A) JP-A-61-238903 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01F 1/06 B22F 1/00 C22C 19/07 C22C 38/00 303

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 R(但しRはYを含む希土類元素のうち
少なくとも1種)11原子%〜13原子%、B4原子%
〜12原子%、残部Fe及び不可避的不純物からなり、
直接還元拡散法によるR2Fe14B相を主相とする合金
粉末と、R(但しRはYを含む希土類元素のうち少なく
とも1種)13原子%〜45原子%、B12原子%以
下、残部Co(但しCoの1部あるいは大部分をFeに
て置換できる)及び不可避的不純物からなり、溶解・粉
化法により、R3Co相を含むCo又はFeとRとの金
属間化合物相(但しCoの1部あるいは大部分をFeに
て置換できる)及びR2(FeCo)14B相等からなる
金属間化合物粉末を60〜97:40〜3の比率にて
R−Fe−B系永久磁石の所要組成に配合したことを特
徴とするR−Fe−B系永久磁石用原料粉末の製造方
1. R (where R is at least one of rare earth elements including Y) 11 to 13 at%, B 4 at%
~ 12 atomic%, balance Fe and unavoidable impurities,
An alloy powder having a main phase of R 2 Fe 14 B phase by direct reduction diffusion method, and 13 atomic% to 45 atomic% of R (R is at least one of rare earth elements including Y), 12 atomic% or less of B, and the balance Co (but part or most of Co can be replaced by Fe) and inevitable impurities, and an intermetallic compound phase of Co or Fe and R (including R 3 Co phase) by a dissolution / pulverization method. 1 part or most of the possible substitutions at Fe) and R 2 (FeCo) 14 intermetallic compounds powder consisting of B equality of Co, 60~97: R-Fe- B based permanent at a ratio of 40-3 Method for producing raw material powder for R-Fe-B-based permanent magnet, characterized in that it is blended with the required composition of magnet
Law .
【請求項2】 R(但しRはYを含む希土類元素のうち
少なくとも1種)11原子%〜13原子%、B4原子%
〜12原子%、Co10原子%以下、Ni3原子%以下
の1種または2種、残部Fe及び不可避的不純物からな
り、直接還元拡散法によるR2(FeCo)14B相又は
2(FeNi)14B相を主相とする合金粉末と、R
(但しRはYを含む希土類元素のうち少なくとも1種)
13原子%〜45原子%、B12原子%以下、残部Co
(但しCoの1部あるいは大部分をFeにて置換でき
る)及び不可避的不純物からなり、溶解・粉化法によ
り、R3Co相を含むCo又はFeとRとの金属間化合
物相(但しCoの1部あるいは大部分をFeにて置換で
きる)及びR2(FeCo)14B相等からなる金属間化
合物粉末を60〜97:40〜3の比率にてR−Fe
−B系永久磁石の所要組成に配合したことを特徴とする
R−Fe−B系永久磁石用原料粉末の製造方法
2. R (where R is at least one of rare earth elements including Y) 11 to 13 at%, B 4 at%
One or two kinds of 1212 atomic%, Co 10 atomic% or less, Ni 3 atomic% or less, the balance being Fe and unavoidable impurities, and R 2 (FeCo) 14 B phase or R 2 (FeNi) 14 by direct reduction diffusion method An alloy powder having a B phase as a main phase;
(Where R is at least one of rare earth elements including Y)
13 atomic% to 45 atomic%, B 12 atomic% or less, balance Co
(However, part or most of Co can be replaced by Fe) and unavoidable impurities, and an intermetallic compound phase of Co or Fe and R containing R 3 Co phase (however, Co 1 part or most of the possible substitutions at Fe) and R 2 (FeCo) intermetallic compound powder consisting of 14 B equality of 60 to 97: at a ratio of 40-3 R-Fe
A method for producing a raw material powder for an R-Fe-B-based permanent magnet, wherein the raw material powder is blended in a required composition of a -B-based permanent magnet.
JP4038778A 1992-01-28 1992-01-28 Method for producing raw material powder for R-Fe-B-based permanent magnet Expired - Lifetime JP2886378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4038778A JP2886378B2 (en) 1992-01-28 1992-01-28 Method for producing raw material powder for R-Fe-B-based permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4038778A JP2886378B2 (en) 1992-01-28 1992-01-28 Method for producing raw material powder for R-Fe-B-based permanent magnet

Publications (2)

Publication Number Publication Date
JPH05205924A JPH05205924A (en) 1993-08-13
JP2886378B2 true JP2886378B2 (en) 1999-04-26

Family

ID=12534753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4038778A Expired - Lifetime JP2886378B2 (en) 1992-01-28 1992-01-28 Method for producing raw material powder for R-Fe-B-based permanent magnet

Country Status (1)

Country Link
JP (1) JP2886378B2 (en)

Also Published As

Publication number Publication date
JPH05205924A (en) 1993-08-13

Similar Documents

Publication Publication Date Title
JP2782024B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
EP0561650B1 (en) Process for making R-Fe-B permanent magnets
JPH0340082B2 (en)
JP2006219723A (en) R-Fe-B-BASED RARE EARTH PERMANENT MAGNET
JPH09232173A (en) Manufacture of rare earth magnet, and rare earth magnet
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP3151087B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3611870B2 (en) Method for producing R-Fe-B permanent magnet material
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP2898463B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP3020717B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0931608A (en) High performance rare earth-iron-boron-carbon magnet material excellent in corrosion resistance
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP2986598B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPS61207545A (en) Manufacture of permanent magnet material
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3299000B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP3151088B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet and alloy powder for adjusting raw material powder
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP3009804B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3157660B2 (en) Method for producing R-Fe-B permanent magnet material
JPH06283318A (en) Manufacture of rare-earth permanent magnet
JPH0526858B2 (en)
JPH0586441B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080212

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090212

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100212

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110212

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120212

Year of fee payment: 13

EXPY Cancellation because of completion of term