JPH09232173A - Manufacture of rare earth magnet, and rare earth magnet - Google Patents

Manufacture of rare earth magnet, and rare earth magnet

Info

Publication number
JPH09232173A
JPH09232173A JP8040099A JP4009996A JPH09232173A JP H09232173 A JPH09232173 A JP H09232173A JP 8040099 A JP8040099 A JP 8040099A JP 4009996 A JP4009996 A JP 4009996A JP H09232173 A JPH09232173 A JP H09232173A
Authority
JP
Japan
Prior art keywords
alloy
rare earth
raw material
coarse powder
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8040099A
Other languages
Japanese (ja)
Inventor
Fumitake Taniguchi
文丈 谷口
Kimio Uchida
公穂 内田
Minoru Endo
実 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8040099A priority Critical patent/JPH09232173A/en
Publication of JPH09232173A publication Critical patent/JPH09232173A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet with excellent magnetic characteristics by restricting the oxidation of a rare earth element. SOLUTION: This rare earth magnet contains 26.7 to 32wt.% of R (R is 1 kind or 2 kinds or more among rare earth elements containing Y), 0.9 to 2.0wt.% of B, and 0.1 to 3.0wt.% of M (M is at least 1 kind or more of Ga, Al and Cu), the remainder comprises an alloy A with R2 Fe14 B containing Fe as main body and an alloy B comprising 35 to 70wt.% of R, 5 to 50wt.% of Co, 0.1 to 3.0wt.% of M with the remainder consisting of Fe, with which the coarse powder of 1 to 30wt.% of B alloy is mixed for the coarse powder of 70 to 99wt.% of alloy A as mixed coarse powder raw material. This pulverized in a inert gas practically having 0% of oxygen, fine powder is directly recovered in a solvent containing mineral oil, synthesized oil, vegetable oil of their mixture in the atmosphere of inert gas and is turned into slurry, the raw material of the slurry is wet formed in a magnetic field, a molded body is desolvent-treated in vacuum and then sintering is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、CD用光ピックア
ップ、VCM、各種モーター(サーボモーター、EV
等)に使用されるR−Fe−B系(RはYを含む希土類
元素の内の1種類または2種類以上)希土類永久磁石の
製造方法に関するものである。
TECHNICAL FIELD The present invention relates to an optical pickup for CD, VCM, various motors (servo motor, EV).
Etc.) for R-Fe-B system (R is one or more kinds of rare earth elements including Y) rare earth permanent magnets.

【0002】[0002]

【従来の技術】資源的に比較的豊富で安価なNdおよび
Feを主成分とするNd−Fe−B系希土類永久磁石
は、非常に優れた磁気特性を有することから年々需要が
増し、近年では希土類磁石市場の大半を占めるようにな
った。これに伴いその研究開発も盛んであり、とくに組
成の異なる2つの金属粉末を混合して用いる方法(以
下、ブレンド法と記す)は、その2つの金属粉末中の相
を制御することにより高い磁気特性が得られることから
多くの方法が提案されている。組成の異なる2つの合金
を混合する場合、主相であるR214B相と近い組成を
有する主相形成用合金と、Rリッチな第2相形成用合金
とを混合する方法がよく用いられており、例えば特開昭
63−93841号では、R214B相 (RはYを含む
希土類元素の少なくとも一種以上、TはFeまたはFe
Coの混合物)とそれよりもRリッチなR-X合金(X
はFeまたはFeとB、Al、Ti、V、Co、Zr、
Nb、Moの内のすくなくとも1種以上の混合物)から
なる溶湯物の急冷によって得られる合金を混合して、磁
石合金を製造する方法が提案されている。また、例えば
特開平5−175026号、特開平5−175027号
などでは、R214B相を主体とする合金粉末と、Mg
Cu2型、PuNi3型、CaZn5型などの結晶型を有
する金属間化合物粉末を混合し成形、焼結することによ
って磁石合金を得ている。これらの方法では、組成の異
なる2つの金属を用いることによって、粉砕性、焼結性
さらには磁石合金中の組織を改善し、単一合金を出発原
料とする場合(以下、シングル法と記す)に比べ大きく
磁気特性を向上させることが出来る。
2. Description of the Related Art Nd-Fe-B rare-earth permanent magnets, which are relatively abundant and inexpensive in resources and contain Nd and Fe as main components, have increased year by year because of their extremely excellent magnetic properties. It now accounts for the majority of the rare earth magnet market. Along with this, research and development are also active, and in particular, a method of mixing two metal powders having different compositions (hereinafter referred to as a blending method) has a high magnetic property by controlling a phase in the two metal powders. Many methods have been proposed because the characteristics can be obtained. When mixing two alloys having different compositions, a method of mixing a main phase forming alloy having a composition close to that of the main phase R 2 T 14 B phase and an R-rich second phase forming alloy is often used. For example, in JP-A-63-93841, the R 2 T 14 B phase (R is at least one rare earth element including Y, T is Fe or Fe)
(Mixture of Co) and R-X alloy (X
Is Fe or Fe and B, Al, Ti, V, Co, Zr,
There has been proposed a method for producing a magnet alloy by mixing an alloy obtained by quenching a molten metal composed of at least one kind of mixture of Nb and Mo). Further, for example, in JP-A-5-175026 and JP-A-5-175027, alloy powder mainly composed of R 2 T 14 B phase and Mg
A magnet alloy is obtained by mixing, molding, and sintering intermetallic compound powders having a crystal type such as Cu 2 type, PuNi 3 type, and CaZn 5 type. In these methods, by using two metals having different compositions, the pulverizability, the sinterability and the structure in the magnet alloy are improved, and a single alloy is used as a starting material (hereinafter referred to as a single method). The magnetic characteristics can be greatly improved in comparison with.

【0003】[0003]

【発明が解決しようとする課題】上記ブレンド法は、第
2相形成用合金を液体急冷法で作製し、希土類の金属間
化合物を含んだ合金とすることによって酸素量の増加を
小さくしているのが特徴である。しかしながら、第2相
形成用合金は化学的に活性な希土類元素を多量に含んで
おり、また磁石合金として実用上有効な保磁力を得るた
めには主相形成用合金、第2相形成用合金を2〜10μ
m程度の微粉に粉砕する必要があるため、通常の方法で
は激しい酸化を生じ、発火の危険性すらある。酸化され
た希土類元素は焼結時に液相としての役割を果たさず、
磁石合金の密度の向上に寄与しない。そのため酸化され
る希土類量を予想し、原料合金にあらかじめ必要量より
多い希土類を含ませる必要があった。また、酸化された
希土類元素は、焼結後の磁石合金中に残存し、有効な磁
化を発現する主相たるR214B相の体積率を下げるた
め、磁石合金のもつポテンシャルに比べて小さな残留磁
束密度しか得られなかった。本発明は、希土類元素の酸
化を抑制し、磁気特性に優れる永久磁石を提供すること
を目的とするものである。
In the above-mentioned blending method, the second phase forming alloy is produced by a liquid quenching method and is made into an alloy containing an intermetallic compound of a rare earth, thereby reducing an increase in the amount of oxygen. Is characteristic. However, the second phase forming alloy contains a large amount of chemically active rare earth elements, and in order to obtain a practically effective coercive force as a magnet alloy, the main phase forming alloy and the second phase forming alloy 2 to 10μ
Since it needs to be pulverized to a fine powder of about m, the usual method causes severe oxidation and may even cause a fire. The oxidized rare earth element does not serve as a liquid phase during sintering,
Does not contribute to improving the density of the magnet alloy. Therefore, it was necessary to predict the amount of rare earth to be oxidized and to preliminarily contain the raw alloy with a larger amount of rare earth than required. In addition, the oxidized rare earth element remains in the magnet alloy after sintering, and lowers the volume ratio of the main phase R 2 T 14 B phase that expresses effective magnetization. Only a small residual magnetic flux density was obtained. It is an object of the present invention to provide a permanent magnet that suppresses the oxidation of rare earth elements and has excellent magnetic properties.

【0004】[0004]

【課題を解決するための手段】本発明者らは、この微粉
砕時の酸化を極力小さくする方法を研究し、含有酸素量
が実質的に0%の不活性ガス中で微粉砕し、不活性ガス
雰囲気中で溶媒中に微粉を直接回収する方法を見出し
た。さらにこの方法を用い、ブレンド法の真のポテンシ
ャルを発現する組成をも見出すことが出来た。本発明
は、A合金をRを26.7〜32wt%(RはYを含む
希土類元素のうち1種または2種以上)、Bを0.9〜
2.0wt%、M(MはGa、Al、Cuのうち少なく
とも1種以上)を 0.1〜3.0wt%を含み残部を
FeからなるR2Fe14Bを主体とした合金とし、B合
金をRを 35〜70wt%、Coを5〜50wt%、
Mを0.1〜3.0wt%含み残部をFeからなる合金
としA合金の粗粉70〜99wt%に対してB合金の粗
粉を1〜30wt%混合し、原料粗粉とした後、これを
含有酸素量が実質的に0%の不活性ガス中で微粉砕し、
不活性ガス雰囲気中で鉱物油、合成油、植物油あるいは
これらの混合物からなる溶媒中に微粉を直接回収してス
ラリ−化し、このスラリ−状の原料を磁場中で湿式成形
し、成形体を真空中で脱溶媒処理後焼結して、R:27
〜31wt%、B:0.5〜2.0wt%、Co:0.
5〜5wt%、M:0.01〜1.0wt%、O:0.
25wt%以下、N:0.02〜0.15wt%、C:
0.15wt%以下、残部Feからなる組成を有する希
土類磁石を製造する方法である。
Means for Solving the Problems The present inventors have studied a method for minimizing the oxidation during the fine pulverization and carried out fine pulverization in an inert gas having an oxygen content of substantially 0% to We have found a method to recover fine powder directly in a solvent in an active gas atmosphere. Furthermore, by using this method, we were able to find a composition that expresses the true potential of the blending method. In the present invention, the A alloy has an R content of 26.7 to 32 wt% (R is one or more kinds of rare earth elements including Y) and a B content of 0.9 to.
An alloy mainly composed of R 2 Fe 14 B containing 2.0 wt% and M (M is at least one of Ga, Al, and Cu) of 0.1 to 3.0 wt% and the balance Fe. Alloy 35 to 70 wt% R, Co 5 to 50 wt%,
After making 0.1 to 3.0 wt% of M and an alloy consisting of Fe as the balance, 70 to 99 wt% of coarse powder of A alloy and 1 to 30 wt% of coarse powder of B alloy to form raw material coarse powder, Finely pulverize this in an inert gas containing substantially 0% oxygen,
Fine powder is directly recovered in a solvent consisting of mineral oil, synthetic oil, vegetable oil or a mixture thereof in an inert gas atmosphere to form a slurry, and the slurry-like raw material is wet-molded in a magnetic field, and the molded body is vacuumed. Desolvation treatment in followed by sintering, R: 27
.About.31 wt%, B: 0.5 to 2.0 wt%, Co: 0.
5-5 wt%, M: 0.01-1.0 wt%, O: 0.
25 wt% or less, N: 0.02 to 0.15 wt%, C:
This is a method for producing a rare earth magnet having a composition of 0.15 wt% or less and the balance being Fe.

【0005】本発明では、組成の異なるA合金およびB
合金を用いる。A合金およびB合金はア−ク溶解、高周
波溶解などで鋳造しても良いし、溶湯を急冷して得られ
る0.1〜0.4mmの薄帯状合金を用いても良い。A
合金は主としてR2Fe14B相(RはYを含む希土類元
素の1種以上)からなる。A合金中のRの量は26.7
〜32wt%とする。Rの量が26.7wt%以下であ
るとR2Fe14B相の生成が十分ではなく軟磁性を持つ
α−Feなどが析出し、32wt%以上であるとRを多
量に含むRリッチ相が増加し、酸素量が増える。また、
A合金中のB量は0.9〜2.0wt%が望ましい、B
量が0.9wt%以下であるとR2Fe14B相の生成が
十分ではなく、軟磁性体であるR2Fe17相が析出し、
磁気特性を低下させる要因となる。さらにM(MはG
a、Al、Cuのうち少なくとも1種以上)の量は、
0.1〜3.0wt%である。これらの元素は保磁力の
向上に寄与するが、0.1wt%以下では十分な保磁力
が得られず、3.0wt%以上の添加では残留磁束密度
が低下する。このようにして作製した合金Aは600〜
1500℃の温度範囲で1〜50時間熱処理し、α−F
eやR2Fe17相などを低減するのが好ましい。
In the present invention, alloys A and B having different compositions are used.
Use an alloy. The alloys A and B may be cast by arc melting, high frequency melting, or the like, or a thin ribbon alloy of 0.1 to 0.4 mm obtained by rapidly cooling the molten metal may be used. A
The alloy is mainly composed of the R 2 Fe 14 B phase (R is one or more rare earth elements including Y). The amount of R in the A alloy is 26.7.
˜32 wt%. If the amount of R is 26.7 wt% or less, the R 2 Fe 14 B phase is not sufficiently formed and α-Fe having soft magnetic properties is precipitated, and if it is 32 wt% or more, the R-rich phase containing a large amount of R is present. Increase, the amount of oxygen increases. Also,
The amount of B in the A alloy is preferably 0.9 to 2.0 wt%, B
If the amount is 0.9 wt% or less, the R 2 Fe 14 B phase is not sufficiently generated, and the R 2 Fe 17 phase, which is a soft magnetic material, is precipitated,
It becomes a factor that deteriorates the magnetic characteristics. Furthermore, M (M is G
The amount of at least one of a, Al and Cu) is
It is 0.1 to 3.0 wt%. Although these elements contribute to the improvement of the coercive force, a sufficient coercive force cannot be obtained at 0.1 wt% or less, and the residual magnetic flux density is reduced at 3.0 wt% or more. The alloy A produced in this way is 600-
Heat treatment in the temperature range of 1500 ° C for 1 to 50 hours, α-F
It is preferable to reduce e and R 2 Fe 17 phase.

【0006】B合金は、A合金よりもR量が多く、主に
はR12相(TはFe、Coのうち一種あるいは2
種)、R13相、R217などにより構成される。B合
金のR量は35〜70wt%とする。R量が35wt%
以下ではα−Feなどの軟磁性を持つ相が生じる。また
R量が70wt%以上では合金中にRを多量に含むRリ
ッチ相を生成し、粉砕時に酸化されやすく、さらに焼結
時には低温で溶解するため異常粒成長の原因ともなる。
また、B合金中のCo添加量は5〜50wt%とする。
CoはB合金に添加することで酸化されやすいB合金の
耐酸化性を向上させるため、B合金に添加することが望
ましい。さらに、Coは焼結磁石中の粒界に含有され耐
食性の向上に寄与する他、主相中に拡散しキュリ−点を
上げ、磁石合金の耐熱性を向上させるが、B合金への添
加量が5wt%未満ではこれらの効果が不十分であり、
また50wt%より多い場合では飽和磁束密度が低下す
る。B合金のM量は0.1〜3.0wt%である。0.
1wt%未満では十分な保磁力が得られず、3.0wt
%より多くの添加では残留磁束密度が低下する。
The alloy B has a larger amount of R than the alloy A and is mainly composed of the R 1 T 2 phase (T is one of Fe and Co or 2
Seed), R 1 T 3 phase, R 2 T 17, and the like. The R content of the B alloy is 35 to 70 wt%. R amount is 35 wt%
In the following, a soft magnetic phase such as α-Fe occurs. On the other hand, if the R content is 70 wt% or more, an R-rich phase containing a large amount of R in the alloy is generated and is easily oxidized during pulverization, and further melts at a low temperature during sintering, which causes abnormal grain growth.
Further, the amount of Co added to the B alloy is 5 to 50 wt%.
When Co is added to the B alloy, it improves the oxidation resistance of the B alloy, which is easily oxidized. Therefore, it is desirable to add Co to the B alloy. Further, Co is contained in the grain boundaries in the sintered magnet and contributes to the improvement of corrosion resistance, and also diffuses into the main phase to raise the Curie point and improve the heat resistance of the magnet alloy, but the amount added to the B alloy. Is less than 5 wt%, these effects are insufficient,
If it is more than 50 wt%, the saturation magnetic flux density will decrease. The M content of the B alloy is 0.1 to 3.0 wt%. 0.
If it is less than 1 wt%, a sufficient coercive force cannot be obtained.
%, The residual magnetic flux density decreases.

【0007】A合金及びB合金は水素処理、バンタムミ
ルなどにより粗粉砕を行い、粗粉とする。次いで、A合
金粗粉99〜70wt%に対してB合金粗粉1〜30w
t%となるように配合し、V型混合機、ボールミルなど
により均一混合する。このときB合金粗粉が1wt%未
満ではでは焼結性が悪くなり、焼結体密度が上がらない
ため十分な磁石特性が得られない。また、30wt%よ
り多い場合にはRが過多となるため、小さな残留磁束密
度しか得られない。混合後の粗粉は、Rを27〜31w
t%、Bを0.5〜2.0wt%、Coを0.5〜5w
t%、Mを0.01〜1.0wt%含むようにする。
The alloys A and B are roughly pulverized by hydrogen treatment and bantam milling to obtain coarse powder. Next, the A alloy coarse powder is 99 to 70 wt% and the B alloy coarse powder is 1 to 30 w
It is blended so as to be t% and uniformly mixed by a V-type mixer, a ball mill or the like. At this time, if the B alloy coarse powder is less than 1 wt%, the sinterability will be poor and the sintered body density will not increase, so sufficient magnet characteristics cannot be obtained. On the other hand, if the content is more than 30 wt%, R becomes excessive, so that only a small residual magnetic flux density can be obtained. The coarse powder after mixing has R of 27 to 31w.
t%, B 0.5 to 2.0 wt%, Co 0.5 to 5 w
t% and M are contained in an amount of 0.01 to 1.0 wt%.

【0008】このようにして得られたA合金粗粉とB合
金粗粉との混合原料粗粉はジェットミルなどの粉砕器に
よって含有酸素量が実質的に0wt%の不活性ガス雰囲
気中にて微粉砕を行い、平均粒径2〜10μm程度の微
粉とする。微粉の回収にあたっては、ジェットミルなど
の微粉回収口に鉱物油、植物油、合成油等の溶媒を満た
した容器を設置し、不活性ガス雰囲気中で直接微粉を回
収する。こうして得たスラリ−状の原料を磁界中で湿式
成形し、成形体とする。成形体を5×10-2torr程
度の真空中で100〜300℃程度の温度に加熱し、成
形体内の含有溶媒を除去する。次いで引き続き、真空炉
の温度を1000〜1200℃程度まで引き上げ、10
-3〜10-5torrの真空度下で焼結を行う。
The mixed raw material powder of the A alloy coarse powder and the B alloy coarse powder thus obtained is crushed by a pulverizer such as a jet mill in an inert gas atmosphere having an oxygen content of substantially 0 wt%. Finely pulverize to obtain fine powder having an average particle size of 2 to 10 μm. When recovering fine powder, a container filled with a solvent such as mineral oil, vegetable oil, or synthetic oil is installed at the fine powder recovery port of a jet mill or the like, and the fine powder is directly recovered in an inert gas atmosphere. The slurry-like raw material thus obtained is wet-molded in a magnetic field to obtain a molded body. The molded body is heated to a temperature of about 100 to 300 ° C. in a vacuum of about 5 × 10 -2 torr to remove the solvent contained in the molded body. Then, subsequently, the temperature of the vacuum furnace is raised to about 1000 to 1200 ° C., and 10
Sintering is performed under a vacuum degree of -3 to 10 -5 torr.

【0009】このような工程を経て得られた焼結体は、
R:27〜31wt%、B:0.5〜2.0wt%、C
o:0.5〜5wt%、M:0.01〜1.0wt%、
O:0.25wt%以下、N:0.02〜0.15wt
%、C:0.15wt%以下の組成を有する。R、B、
Co、Feの量は粗粉原料時の組成調整によるものであ
る。O、N、Cは原料合金中に不純物として含有されて
いたり、粗粉砕時や加熱時に大気や溶媒等から混入する
ものであるが、これらの元素は磁石合金中でNd23
Nd23、NdN等の化合物を作り主相体積率を下げ、
焼結時に液相として働くRの量を減少させ、焼結を阻害
するため、Oは0.25wt%以下、Nは0.02〜
0.15wt%、C:0.15wt%以下としなければ
ならない。このようにして得られた焼結体を焼結温度以
下の温度で2段階あるいは3段階の熱処理をすることに
よって、磁気特性に優れる目的の磁石を得ることができ
る。本発明希土類磁石において、Rは27〜31wt%
とする。Rが27wt%未満では焼結に必要な液相が得
られず、低い焼結体密度となるため、磁気特性が低下す
る。Rが31wt%を超えるとRが過多となるため、小
さな残留磁束密度しか得られない。Bは0.5wt%未
満ではR214B相が十分形成されないため小さな残留
磁束密度しか得れず、2.0wt%より多い場合には非
磁性のBリッチ相を生じ残留磁束密度が低下するため、
B0.5〜2.0wt%とする。Coは磁石合金の耐食
性、耐熱性の向上のために添加するが、0.5wt%未
満では耐食性、耐熱性が十分ではなく、5wt%より多
い場合では残留磁束密度を大きく下げる。Mは、Al,
Cu,Gaから選ばれた1種または2種以上の元素であ
り、保磁力の向上のために添加するが、0.01wt%
未満では十分な保磁力が得られず、1.0wt%より多
い場合にはR214B相の体積率が下がるため残留磁束
密度が低下する。
The sintered body obtained through these steps is
R: 27-31 wt%, B: 0.5-2.0 wt%, C
o: 0.5-5 wt%, M: 0.01-1.0 wt%,
O: 0.25 wt% or less, N: 0.02-0.15 wt
%, C: 0.15 wt% or less. R, B,
The amounts of Co and Fe are based on the composition adjustment at the time of raw material of coarse powder. O, N, and C are contained as impurities in the raw material alloy, or are mixed from the atmosphere or solvent during coarse pulverization or heating. However, these elements are contained in the magnet alloy in the form of Nd 2 O 3 ,
By making compounds such as Nd 2 C 3 and NdN to lower the volume ratio of the main phase,
In order to reduce the amount of R acting as a liquid phase during sintering and inhibit sintering, O is 0.25 wt% or less and N is 0.02 to 0.02 wt%.
0.15 wt% and C: 0.15 wt% or less. By subjecting the thus obtained sintered body to a two-step or three-step heat treatment at a temperature equal to or lower than the sintering temperature, a target magnet having excellent magnetic properties can be obtained. In the rare earth magnet of the present invention, R is 27 to 31 wt%
And If R is less than 27 wt%, the liquid phase required for sintering cannot be obtained and the density of the sintered body becomes low, so that the magnetic properties deteriorate. When R exceeds 31 wt%, R becomes excessive and only a small residual magnetic flux density can be obtained. When B is less than 0.5 wt%, the R 2 T 14 B phase is not sufficiently formed, so that only a small residual magnetic flux density is obtained, and when it is more than 2.0 wt%, a non-magnetic B rich phase is generated and the residual magnetic flux density is lowered. For,
B 0.5 to 2.0 wt%. Co is added to improve the corrosion resistance and heat resistance of the magnet alloy, but if it is less than 0.5 wt%, the corrosion resistance and heat resistance are not sufficient, and if it exceeds 5 wt%, the residual magnetic flux density is greatly reduced. M is Al,
One or more elements selected from Cu and Ga are added to improve coercive force, but 0.01 wt%
If it is less than 1.0 wt%, a sufficient coercive force cannot be obtained, and if it is more than 1.0 wt%, the volume fraction of the R 2 T 14 B phase is lowered and the residual magnetic flux density is lowered.

【0010】本発明によって高い磁気特性が得られる理
由を説明する。本発明においては湿式回収、湿式成形を
行うことにより微粉砕以降の酸化を防ぐことができるの
で、原料組成中の希土類量の低減が可能となり、高い残
留磁束密度を得ることができる。さらにはA合金、B合
金の組成及び組織をこの本発明にかかる製造方法に対し
最適なものとして設定したため、焼結性等を改善でき、
Nbなどの粒成長を防ぐ元素を用いなくても磁石合金中
の組織を最良のものとすることができる。さらにCo、
Dyなどの添加元素をB合金に添加し、元素分布までを
制御することができる。すなわち、本発明にかかる製造
方法により、ブレンド法の持つポテンシャルを十分引き
出すことによって、低酸素量で磁気特性に優れた磁石合
金を得ることが可能となった。なお、以上で述べた酸素
濃度が実質的に0wt%である不活性ガスとは、例えば
R-Fe-B系原料粗粉を10kg/Hr程度微粉砕でき
る能力を有する生産型のジェットミル粉砕機の場合で
は、不活性ガス中の酸素濃度が百分比率で0.01wt
%以下、より好ましくは0.005wt%以下、さらに
好ましくは0.002wt%以下である不活性ガス雰囲
気を言う。
The reason why high magnetic characteristics can be obtained by the present invention will be described. In the present invention, since wet recovery and wet molding can prevent oxidation after fine pulverization, the amount of rare earth in the raw material composition can be reduced and a high residual magnetic flux density can be obtained. Furthermore, since the compositions and structures of the alloys A and B are set as optimum for the manufacturing method according to the present invention, sinterability and the like can be improved,
Even if an element such as Nb which prevents grain growth is not used, the structure in the magnet alloy can be optimized. Furthermore, Co,
By adding an additive element such as Dy to the B alloy, the element distribution can be controlled. That is, by the production method according to the present invention, it is possible to obtain a magnet alloy having a low oxygen content and excellent magnetic properties by sufficiently drawing out the potential of the blending method. The above-mentioned inert gas having an oxygen concentration of substantially 0 wt% is, for example, a production type jet mill crusher having an ability to finely pulverize R-Fe-B based raw material coarse powder by about 10 kg / Hr. In the case of, the oxygen concentration in the inert gas is 0.01 wt% in percentage.
% Or less, more preferably 0.005 wt% or less, and further preferably 0.002 wt% or less, an inert gas atmosphere.

【0011】[0011]

【発明の実施の態様】以下、本発明を実施例をもって具
体的に説明するが、本発明の内容はこれによって限定さ
れるものではない。 (実施例1)純度95%以上のNd、Pr、B、Ga、
Cu、Feを所定量秤量し、Arガス雰囲気中で高周波
溶解で溶解し、この合金溶湯を同じくArガス雰囲気中
で銅製単ロールに 注湯し、いわゆるストリップキャス
ト法にて、表1に示す組成の合金1(A合金)を作製し
た。得られた合金1は、薄板状であり、板厚は0.1〜
0.3mmであった。さらに合金1を真空炉の中に装入
し、5×10-2Torrの条件下で1000℃×4時間
熱処理をした。純度95%以上のNd、Pr、Dy、C
oをArガス雰囲気中で高周波溶解で溶解し、鋳造し
て、表1に示す組成の合金2(B合金)を作製したた。
このようにして得られた合金1および合金2は、それぞ
れ、空気を排除した炉内で水素を吸蔵させた後、真空排
気を行いながら500℃まで加熱したのち、冷却し、そ
の後粗粉砕器にかけ、32メッシュ以下の粗粉とした。
得られた合金1の粗粉90wt%に対して合金2の粗粉
10wt%をV型混合機にて均一混合し、混合原料粗粉
とした。この混合原料粗粉をジェットミル内に装入した
後、ジェットミル内をN2ガスにて置換し、酸素濃度を
0.001wt%とした。ジェットミルの微粉回収口に
は鉱物油(出光興産製、商品名出光スーパーゾルPA−
30)を満たした容器を設置し、N2ガス雰囲気中にて
直接回収した。微粉の平均粒径は4.5μmであった。
この原料スラリ−を金型キャビティ−内で12kOe
の磁場を印加しながら0.8ton/cm2の 成形圧で
湿式成形した。配向磁界の印加方法は、成形方向と垂直
である。また、金型の上パンチに 溶媒排出孔を設け、
成形時には1mmの厚さの布製のフィルタを上パンチ面
に当て使用した。成形体は5×10-2torrの真空中
で200×1時間加熱して含有鉱物油を除去し、次いで
5×10-5torrの条件下で15℃/分の昇温速度で
1070℃まで昇温し、その温度で2時間保持して焼結
した。さらにこの焼結体をAr雰囲気中にて900℃×
2時間と500℃×1時間の熱処理を各1回行い、表2
に試料No.1として示す組成の希土類磁石を得た。得
られた希土類磁石の酸素量は、0.096wt%であっ
た。この試料No.1の磁気特性を測定し表3に示す。
Br=14.1kG、iHc=16.3kOe、(B
H)max=47.5MGOeという良好な磁気特性を
得ることができた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described specifically with reference to examples, but the contents of the present invention are not limited thereto. (Example 1) Nd, Pr, B, Ga having a purity of 95% or more,
Predetermined amounts of Cu and Fe were melted by high frequency melting in an Ar gas atmosphere, the alloy melt was poured into a copper single roll in the same Ar gas atmosphere, and the composition shown in Table 1 was obtained by a so-called strip casting method. Alloy 1 (A alloy) was manufactured. The obtained alloy 1 is in the form of a thin plate and has a plate thickness of 0.1 to 10.
0.3 mm. Further, alloy 1 was placed in a vacuum furnace and heat-treated at 1000 ° C. for 4 hours under the conditions of 5 × 10 -2 Torr. Nd, Pr, Dy, C with a purity of 95% or more
O was melted by high frequency melting in an Ar gas atmosphere and cast to prepare an alloy 2 (B alloy) having the composition shown in Table 1.
The alloys 1 and 2 thus obtained were each occluded with hydrogen in a furnace with air removed, and then heated to 500 ° C. while being evacuated, cooled, and then subjected to a coarse pulverizer. , A coarse powder of 32 mesh or less.
90 wt% of the obtained coarse powder of alloy 1 was uniformly mixed with 10 wt% of the coarse powder of alloy 2 by a V-type mixer to obtain a mixed raw material powder. After charging this mixed raw material powder into a jet mill, the inside of the jet mill was replaced with N 2 gas to an oxygen concentration of 0.001 wt%. Mineral oil (made by Idemitsu Kosan, product name Idemitsu Super Sol PA-
A container filled with 30) was installed and directly recovered in an N 2 gas atmosphere. The average particle size of the fine powder was 4.5 μm.
This raw material slurry was placed in a mold cavity at 12 kOe.
Wet molding was performed at a molding pressure of 0.8 ton / cm 2 while applying the magnetic field of. The method of applying the orientation magnetic field is perpendicular to the molding direction. In addition, a solvent discharge hole is provided on the upper punch of the mold,
At the time of molding, a cloth filter having a thickness of 1 mm was applied to the upper punch surface and used. The molded body is heated in a vacuum of 5 × 10 −2 torr for 200 × 1 hour to remove the contained mineral oil, and then heated to 1070 ° C. at a heating rate of 15 ° C./min under the condition of 5 × 10 −5 torr. The temperature was raised and the temperature was maintained for 2 hours for sintering. Further, this sintered body was heated at 900 ° C. in an Ar atmosphere.
Heat treatment of 2 hours and 500 ° C x 1 hour each was performed once, and Table 2
Sample No. A rare earth magnet having the composition shown as 1 was obtained. The oxygen content of the obtained rare earth magnet was 0.096 wt%. This sample No. The magnetic properties of No. 1 were measured and shown in Table 3.
Br = 14.1 kG, iHc = 16.3 kOe, (B
H) max = 47.5 MGOe, which is a good magnetic characteristic.

【0012】(比較例1)実施例1と同様に合金1およ
び合金2を粗粉砕し、90:10の混合比で混合し原料
粗粉を作った。さらに実施例1と同様にジェットミルに
てN2気流中で微粉砕を行ったが、回収口には空の容器
を用意し、N2雰囲気中で回収を行った(乾式法)。こ
のような方法で回収を行う場合、ジェットミル中 の酸
素濃度が低すぎると微粉を大気中に解放したときに発火
するため、N2気流中の酸素濃度が0.1wt%になる
ように酸素を粉砕室に導入しながら粉砕を行った。微粉
の平均粒径は4.5μmであった。このようにして得ら
れた乾微粉を金型キャビティ−内で12kOeの磁場を
印加しながら0.8ton/cm2の成形圧で成形し
た。配向磁界の印加方法は成形方向と垂直である。この
成形体を 5×10-5torrの真空中で1070℃を
2時間保持することにより焼結した。このようにして得
られた焼結体を実施例1と同じ条件で2段階の熱処理を
施し、表2のNo.2として示す組成の希土類永久磁石
を得た。試料No.2の組成は、O0.612%、C
0.045%である以外は No.1とほぼ同じであ
る。この試料の磁気特性を測定したが表3に示すよう
に、Br=13.5kOe、iHc=14.3kOe、
(BH)max=43.3MGOeであり、実施例1よ
りも磁気特性が大きくて低下した。これは乾式法で微粉
を回収したため微粉が酸化され、それにより焼結時に有
効に働く液相が.減ったため焼結がスムーズに行われ
ず、焼結体密度が低下したためと考えられる。このよう
にブレンド法を用いた乾式法はそのポテンシャルが十分
発揮されず、低酸素で湿式回収する本発明製造方法を用
いることにより十分な磁気特性が得られることがわか
る。
(Comparative Example 1) Alloy 1 and alloy 2 were roughly crushed in the same manner as in Example 1 and mixed at a mixing ratio of 90:10 to prepare raw material coarse powder. Further, fine pulverization was performed in a jet mill in a N 2 stream in the same manner as in Example 1, but an empty container was prepared at the recovery port, and recovery was performed in a N 2 atmosphere (dry method). When recovering by such a method, if the oxygen concentration in the jet mill is too low, ignition will occur when the fine powder is released into the atmosphere, so that the oxygen concentration in the N 2 stream will be 0.1 wt%. Was introduced into the crushing chamber. The average particle size of the fine powder was 4.5 μm. The dry fine powder thus obtained was molded in a mold cavity at a molding pressure of 0.8 ton / cm 2 while applying a magnetic field of 12 kOe. The method of applying the orientation magnetic field is perpendicular to the molding direction. The compact was sintered by holding it at 1070 ° C. for 2 hours in a vacuum of 5 × 10 -5 torr. The sintered body thus obtained was subjected to a two-step heat treatment under the same conditions as in Example 1 and No. 2 in Table 2 was used. A rare earth permanent magnet having the composition shown as 2 was obtained. Sample No. The composition of 2 is O0.612%, C
No. except that it is 0.045%. It is almost the same as 1. The magnetic characteristics of this sample were measured. As shown in Table 3, Br = 13.5 kOe, iHc = 14.3 kOe,
(BH) max = 43.3MGOe, and the magnetic characteristics were larger than those in Example 1 and deteriorated. This is because the fine powder was recovered by the dry method, so that the fine powder was oxidized, and the liquid phase that worked effectively during sintering was. It is considered that sintering was not performed smoothly due to the decrease, and the density of the sintered body decreased. Thus, it can be seen that the dry method using the blending method does not exhibit its potential sufficiently, and that sufficient magnetic characteristics can be obtained by using the production method of the present invention in which wet recovery is performed with low oxygen.

【0013】(比較例2)実施例1と同様の組成を有す
る希土類磁石をシングル法にて作製した。純度95%以
上のNd、Pr、Dy、B、Co、Ga、Cu、Feを
所定量秤量し、実施例1と同様の条件のストリップキャ
スト法にて、重量%で、Nd27.9%、Pr0.46
%、Dy1.5%、B1.05%、Co2.0%、Ga
0.08%、Cu0.10%、残部Feの組成からなる
原料合金を作製した。さらに、これを実施例1と同じ条
件で粗粉砕し、酸素濃度0.001wt%の N2雰囲
気中で粉砕し、湿式回収、湿式成形、脱溶媒、焼結、熱
処理を行い、これを試料No.3とした。その組成は表
1に示すようにO0.170wt%である以外は、比較
例1とほぼ同じであった。この試料の磁気特性は、表3
に示すようにBr=13.9kGOe、iHc=15.
0kOe、(BH)max=46.0MGOeであり、
実施例1に比べて低い結果となった。このことよりシン
グル法よりもブレンド法が磁気特性向上に有利であるこ
とがわかる。
Comparative Example 2 A rare earth magnet having the same composition as in Example 1 was produced by the single method. A predetermined amount of Nd, Pr, Dy, B, Co, Ga, Cu, and Fe having a purity of 95% or more was weighed, and by a strip casting method under the same conditions as in Example 1, Nd was 27.9% by weight and Pr0. .46
%, Dy1.5%, B1.05%, Co2.0%, Ga
A raw material alloy having a composition of 0.08%, Cu 0.10% and balance Fe was prepared. Further, this was roughly crushed under the same conditions as in Example 1 and crushed in an N 2 atmosphere with an oxygen concentration of 0.001 wt%, and subjected to wet recovery, wet molding, desolvation, sintering, and heat treatment. . It was set to 3. The composition was almost the same as that of Comparative Example 1 except that O was 0.170 wt% as shown in Table 1. The magnetic properties of this sample are shown in Table 3.
, Br = 13.9 kGOe, iHc = 15.
0 kOe, (BH) max = 46.0 MGOe,
The result was lower than that of Example 1. This shows that the blend method is more advantageous than the single method for improving the magnetic properties.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】[0016]

【表3】 [Table 3]

【0017】(実施例2)純度95%以上のNd、P
r、B、Ga、Cu、Feを所定量秤量し、Arガス雰
囲気中で高周波溶解で溶解し、この合金溶湯を同じくA
rガス雰囲気中で銅製単ロールに注湯し、いわゆるスト
リップキャスト法にて、表4に示す組成の合金3(A合
金)を作製した。得られた合金3は、薄板状であり、板
厚は0.1〜0.3mmであった。さらに合金3を真空
炉の中に装入して、5×10-2Torrの条件下で10
00℃×4時間熱処理をした。また純度95%以上のN
d、Pr、Dy、CoをArガス雰囲気中で高周波溶解
で溶解し、鋳造して、表4に示す組成の合金4(B合
金)を作製した。このようにして得られた合金3および
合金4は、それぞれ、空気を排除した炉内で水素を吸蔵
させた後、真空排気を行いながら500℃まで加熱した
のち、冷却し、その後粗粉砕器にかけ、32メッシュ以
下の粗粉とした。合金3の粗粉85wt% に対して合
金4の粗粉15wt%をV型混合機にて均一混合し、混
合原料粗粉とした。この混合原料粗粉をジェットミル内
に装入した後、ジェットミル内をN2ガスにて置換し、
酸素濃度を0.001wt%とした。ジェットミルの微
粉回収口には鉱物油(出光興産製、商品名出光スーパー
ゾルPA−30)を満たした容器を設置し、N2ガス雰
囲気中にて直接回収した。微粉の平均粒径は4.1μm
であった。この原料スラリ−を金型キャビティ−内で1
2kOeの磁場を印加しながら0.8ton/cm2
成形圧で湿式成形した。配向磁界の印加方法は、成形方
向と垂直である。また、金型の上パンチには溶媒排出孔
を設け、成形時には1mmの厚さの布製のフィルタを上
パンチ面に当て使用した。成形体は5×10-2torr
の真空中で200×1時間加熱して含有鉱物油を除去
し、次いで5×10-5torrの条件下で15℃/分の
昇温速度で1080℃まで昇温し、その温度で2時間保
持して焼結した。さらにこの焼結体をAr雰囲気中にて
900℃×2時間と4800℃×1時間の熱処理を各1
回行い希土類磁石を得た。これを試料No.4とし、そ
の組成を表5に記載した。焼結体中の酸素量は0.09
4wt%であった。また、この試料の磁気特性を測定
し、表6に示すりBr=12.6kOe、iHc=26
・2kOe、(BH)max=37.7MGOeという
良好な磁気特性を得ることができた。
(Example 2) Nd and P having a purity of 95% or more
A predetermined amount of r, B, Ga, Cu, Fe was weighed and melted by high frequency melting in an Ar gas atmosphere.
An alloy 3 (A alloy) having the composition shown in Table 4 was prepared by pouring the copper single roll in an r gas atmosphere and using a so-called strip casting method. The alloy 3 obtained was in the form of a thin plate and had a plate thickness of 0.1 to 0.3 mm. Further, alloy 3 was charged into a vacuum furnace, and it was heated to 10 under the condition of 5 × 10 -2 Torr.
Heat treatment was performed at 00 ° C. for 4 hours. N with a purity of 95% or more
Alloy 4 (B alloy) having the composition shown in Table 4 was produced by melting d, Pr, Dy, and Co by high frequency melting in an Ar gas atmosphere and casting. The alloy 3 and the alloy 4 thus obtained were respectively occluded with hydrogen in a furnace with air removed, and then heated to 500 ° C. while being evacuated, cooled, and then subjected to a coarse pulverizer. , A coarse powder of 32 mesh or less. 15 wt% of the coarse powder of Alloy 4 was mixed uniformly with 85 wt% of the coarse powder of Alloy 3 by a V-type mixer to obtain a mixed raw material powder. After charging the mixed raw material powder into the jet mill, the inside of the jet mill was replaced with N 2 gas,
The oxygen concentration was 0.001 wt%. A container filled with mineral oil (made by Idemitsu Kosan Co., Ltd., product name Idemitsu Supersol PA-30) was installed at the fine powder recovery port of the jet mill, and the powder was directly recovered in an N 2 gas atmosphere. The average particle size of the fine powder is 4.1 μm
Met. This raw material slurry is placed in the mold cavity 1
Wet molding was performed at a molding pressure of 0.8 ton / cm 2 while applying a magnetic field of 2 kOe. The method of applying the orientation magnetic field is perpendicular to the molding direction. A solvent discharge hole was provided in the upper punch of the die, and a 1 mm-thick cloth filter was applied to the upper punch surface during molding. Molded body is 5 × 10 -2 torr
To remove the contained mineral oil by heating in a vacuum of 200 × 1 hour, and then heat up to 1080 ° C. at a heating rate of 15 ° C./min under the condition of 5 × 10 −5 torr, and at that temperature for 2 hours Hold and sinter. Furthermore, this sintered body is heat-treated at 900 ° C. for 2 hours and 4800 ° C. for 1 hour in Ar atmosphere for 1 time each.
The operation was repeated to obtain a rare earth magnet. This was designated as Sample No. 4, and the composition thereof is shown in Table 5. The amount of oxygen in the sintered body is 0.09
It was 4 wt%. Further, the magnetic characteristics of this sample were measured, and shown in Table 6, Br = 12.6 kOe, iHc = 26.
Good magnetic characteristics of 2 kOe and (BH) max = 37.7 MGOe could be obtained.

【0018】(比較例3)実施例2と同様に合金3およ
び合金4を粗粉砕し、85:15の混合比で混合し原料
粗粉を作った。さらに実施例2と同様にジェットミルに
てN気流中で微粉砕を行ったが、回収口には空の容器
を用意し、N2雰囲気中で回収を行った(乾式法)。こ
のような方法で回収を行う場合、ジェットミル中の酸素
濃度が低すぎると微粉を大気中に解放したときに発火す
るため、N2気流中の酸素濃度が0.1wt%になるよ
うに酸素を粉砕室に導入しながら粉砕を行った。微粉の
平均粒径は4.1μmであ った。このようにして得ら
れた乾微粉を金型キャビティ−内で12kOeの磁場を
印加しながら0.8ton/cm2の成形圧で成形し
た。配向磁界の印加方法は成形方向と垂直である。この
成形体を5×10-5torrの真空中で1080℃を2
時間保持することにより焼結した。このようにして得ら
れた焼結体を実施例1と同じ条件で2段階の熱処理を施
し、この試料をNo.5とした。その組成を表5に示す
がO、Cの量以外は No.4とほぼ同じである。この
試料の酸素量は0.612wt%であった。この試料の
磁気特性を測定したが表6に示すように、Br=12.
1kOe、iHc= 24.1kOe、(BH)max
=34.9MGOeであり、実施例2よりも磁気特性が
大きく低下した。これは乾式法で微粉を回収したため微
粉が酸化され、それにより焼結時に有効に働く液相が減
ったため焼結がスムーズに行われず、焼結体密度が低下
したためと考えられる。このようにブレンド法を用いた
従来法はそのポテンシャルが十分発揮されず、低酸素で
湿式回収する本発明を用いることにより十分な磁気特性
が得られることがわかる。
Comparative Example 3 Alloys 3 and 4 were roughly crushed in the same manner as in Example 2 and mixed at a mixing ratio of 85:15 to prepare raw material coarse powder. Further, fine pulverization was performed in a jet mill in an N 2 stream in the same manner as in Example 2, but an empty container was prepared at the recovery port, and recovery was performed in an N 2 atmosphere (dry method). When recovering by such a method, if the oxygen concentration in the jet mill is too low, ignition occurs when the fine powder is released into the atmosphere, so that the oxygen concentration in the N 2 stream should be 0.1 wt%. Was introduced into the crushing chamber. The average particle size of the fine powder was 4.1 μm. The dry fine powder thus obtained was molded in a mold cavity at a molding pressure of 0.8 ton / cm 2 while applying a magnetic field of 12 kOe. The method of applying the orientation magnetic field is perpendicular to the molding direction. This molded body is heated at 1080 ° C. for 2 times in a vacuum of 5 × 10 −5 torr.
Sintered by holding for a time. The thus obtained sintered body was subjected to a two-step heat treatment under the same conditions as in Example 1, and this sample was It was set to 5. The composition is shown in Table 5, except for the amounts of O and C. It is almost the same as 4. The oxygen content of this sample was 0.612 wt%. The magnetic characteristics of this sample were measured. As shown in Table 6, Br = 12.
1 kOe, iHc = 24.1 kOe, (BH) max
= 34.9 MGOe, and the magnetic characteristics were significantly lower than in Example 2. It is considered that this is because the fine powder was oxidized by the dry method, the fine powder was oxidized, and the liquid phase that worked effectively at the time of sintering was reduced, so that the sintering was not performed smoothly and the density of the sintered body was lowered. As described above, it is understood that the conventional method using the blending method does not sufficiently exhibit its potential, and that sufficient magnetic characteristics can be obtained by using the present invention in which the wet recovery is performed with low oxygen.

【0019】(比較例4) 最終組成が比較例3と同じ
になるように希土類磁石をシングル法にて作製した。純
度95%以上のNd、Pr、Dy、B、Co、Ga、C
u、Feを所定量秤量し、実施例2と同様の条件のスト
リップキャスト法にて、重量%で、Nd23.8%、P
r0.42%、Dy6.0%、B1.00%、Co3.
0%、Ga0.09%、Cu0.09%、残部Feの組
成からなる原料合金を原料合金を作製した。さらに、こ
れを実施例2と同じ条件で粗粉砕し、酸素濃度0.00
1wt%のN2雰囲気中で粉砕し、湿式回収、湿式成
形、脱溶媒、焼結、熱処理を行い、これを試料No.6
と した。その組成は表5に示すように、酸素量が0.
182wt%である以外は比較例3とほぼ同じであっ
た。この試料の磁気特性は、表6に示すようにBr=1
2.4kGOe、iHc=25.0kOe、(BH)m
ax=36.5MGOeであり、実施例2に比べて低い
結果となった。このことよりシングル法よりもブレンド
法が磁気特性向上に有利であることがわかる。
Comparative Example 4 A rare earth magnet was produced by the single method so that the final composition was the same as that of Comparative Example 3. Nd, Pr, Dy, B, Co, Ga, C with a purity of 95% or more
Predetermined amounts of u and Fe were measured by a strip casting method under the same conditions as in Example 2, and in% by weight, Nd 23.8%, P
r0.42%, Dy6.0%, B1.00%, Co3.
A raw material alloy having a composition of 0%, Ga 0.09%, Cu 0.09% and the balance Fe was prepared. Further, this was coarsely pulverized under the same conditions as in Example 2, and the oxygen concentration was 0.00
Sample No. 1 was crushed in a 1 wt% N 2 atmosphere, wet recovery, wet molding, solvent removal, sintering, and heat treatment were performed. 6
I decided. As shown in Table 5, the composition has an oxygen content of 0.
It was almost the same as Comparative Example 3 except that it was 182 wt%. As shown in Table 6, the magnetic characteristics of this sample are Br = 1.
2.4 kGOe, iHc = 25.0 kOe, (BH) m
ax = 36.5 MGOe, which was lower than that of Example 2. This shows that the blend method is more advantageous than the single method for improving the magnetic properties.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 [Table 5]

【0022】[0022]

【表6】 [Table 6]

【発明の効果】本発明によれば、酸素量が少なく、磁気
特性に優れる永久磁石を得ることができる。
According to the present invention, a permanent magnet having a small amount of oxygen and excellent magnetic properties can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Rを26.7〜32wt%(RはYを含
む希土類元素のうち1種または2種以上)、Bを0.9
〜2.0wt%、M(MはGa、Al、Cuのうち少な
くとも1種以上)を0.1〜3.0wt%を含み残部を
FeからなるR2Fe14Bを主体としたA合金と、Rを
35〜70wt%、Coを5〜50wt%、Mを0.1
〜3.0wt%含み残部をFeからなるB合金とを、A
合金の粗粉70〜99wt%に対してB合金の粗粉1〜
30wt%を混合し、混合原料粗粉とした後、これを含
有酸素量が実質的に0%の不活性ガス中で微粉砕し、不
活性ガス雰囲気中で鉱物油、合成油、植物油あるいはこ
れらの混合物からなる溶媒中に微粉を直接回収してスラ
リ−化し、このスラリ−状の原料を磁場中で湿式成形
し、成形体を真空中で脱溶媒処理した後、焼結して、
R:27〜31wt%、B:0.5〜2.0wt%、C
o:0.5〜5wt%、M:0.01〜1.0wt%、
O:0.25wt%以下、N:0.02〜0.15wt
%、C:0.15wt%以下、残部Feからなる組成を
有する希土類磁石を得ることを特徴とする希土類磁石合
金の製造方法。
1. R is 26.7 to 32 wt% (R is one or more rare earth elements including Y) and B is 0.9.
-2.0 wt%, M (M is at least one or more of Ga, Al, Cu) 0.1-3.0 wt% and the balance is A 2 alloy mainly composed of R 2 Fe 14 B , R 35 to 70 wt%, Co 5 to 50 wt%, M 0.1
A B alloy containing 3.0 wt% to the rest of Fe,
Coarse powder of alloy 70 to 99 wt% to coarse powder of B alloy 1 to
After mixing 30 wt% into a mixed raw material powder, it is finely pulverized in an inert gas with an oxygen content of substantially 0%, and mineral oil, synthetic oil, vegetable oil or these is pulverized in an inert gas atmosphere. Fine powder is directly recovered in a solvent consisting of a mixture of the above to form a slurry, the slurry-like raw material is wet-molded in a magnetic field, the molded body is subjected to desolvation treatment in a vacuum, and then sintered,
R: 27-31 wt%, B: 0.5-2.0 wt%, C
o: 0.5-5 wt%, M: 0.01-1.0 wt%,
O: 0.25 wt% or less, N: 0.02-0.15 wt
%, C: 0.15 wt% or less, and a method for producing a rare earth magnet alloy, characterized in that a rare earth magnet having a composition of balance Fe is obtained.
【請求項2】 R:27〜31wt%、B:0.5〜
2.0wt%、Co:0.5〜5wt%、M:0.01
〜1.0wt%、O:0.25wt%以下、N:0.0
2〜0.15wt%、C:0.15wt%以下、残部F
eからなる組成を有し、保磁力が13kOe以上である
請求項1に記載の製造方法で得たことを特徴とする希土
類磁石。
2. R: 27-31 wt%, B: 0.5-
2.0 wt%, Co: 0.5-5 wt%, M: 0.01
~ 1.0 wt%, O: 0.25 wt% or less, N: 0.0
2 to 0.15 wt%, C: 0.15 wt% or less, balance F
A rare earth magnet obtained by the manufacturing method according to claim 1, which has a composition of e and has a coercive force of 13 kOe or more.
JP8040099A 1996-02-27 1996-02-27 Manufacture of rare earth magnet, and rare earth magnet Pending JPH09232173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8040099A JPH09232173A (en) 1996-02-27 1996-02-27 Manufacture of rare earth magnet, and rare earth magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8040099A JPH09232173A (en) 1996-02-27 1996-02-27 Manufacture of rare earth magnet, and rare earth magnet

Publications (1)

Publication Number Publication Date
JPH09232173A true JPH09232173A (en) 1997-09-05

Family

ID=12571426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8040099A Pending JPH09232173A (en) 1996-02-27 1996-02-27 Manufacture of rare earth magnet, and rare earth magnet

Country Status (1)

Country Link
JP (1) JPH09232173A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331810A (en) * 1999-05-21 2000-11-30 Shin Etsu Chem Co Ltd R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
WO2005001856A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
JP2005159053A (en) * 2003-11-26 2005-06-16 Tdk Corp Method for manufacturing r-t-b-based permanent magnet
JP2006228992A (en) * 2005-02-17 2006-08-31 Tdk Corp Rare earth permanent magnet
US8123832B2 (en) 2005-03-14 2012-02-28 Tdk Corporation R-T-B system sintered magnet
WO2013080605A1 (en) * 2011-11-29 2013-06-06 Tdk株式会社 Rare-earth sintered magnet
US20130169394A1 (en) * 2008-01-11 2013-07-04 Intermetallics Co., Ltd. NdFeB Sintered Magnet and Method for Producing the Same
CN113957405A (en) * 2021-11-25 2022-01-21 中国科学院宁波材料技术与工程研究所 Rare earth alloy target material for magnetron sputtering grain boundary diffusion and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331810A (en) * 1999-05-21 2000-11-30 Shin Etsu Chem Co Ltd R-Fe-B RARE EARTH PERMANENT MAGNET MATERIAL
WO2005001856A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation R-t-b based rare earth permanent magnet and method for production thereof
US7618497B2 (en) 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
JP2005159053A (en) * 2003-11-26 2005-06-16 Tdk Corp Method for manufacturing r-t-b-based permanent magnet
JP2006228992A (en) * 2005-02-17 2006-08-31 Tdk Corp Rare earth permanent magnet
JP4706900B2 (en) * 2005-02-17 2011-06-22 Tdk株式会社 Rare earth permanent magnet manufacturing method
US8123832B2 (en) 2005-03-14 2012-02-28 Tdk Corporation R-T-B system sintered magnet
US20130169394A1 (en) * 2008-01-11 2013-07-04 Intermetallics Co., Ltd. NdFeB Sintered Magnet and Method for Producing the Same
US10854380B2 (en) * 2008-01-11 2020-12-01 Daido Steel Co., Ltd. NdFeB sintered magnet and method for producing the same
WO2013080605A1 (en) * 2011-11-29 2013-06-06 Tdk株式会社 Rare-earth sintered magnet
JP2013138170A (en) * 2011-11-29 2013-07-11 Tdk Corp Rare-earth sintered magnet
US8961712B2 (en) 2011-11-29 2015-02-24 Tdk Corporation Rare earth based sintered magnet
CN113957405A (en) * 2021-11-25 2022-01-21 中国科学院宁波材料技术与工程研究所 Rare earth alloy target material for magnetron sputtering grain boundary diffusion and preparation method thereof

Similar Documents

Publication Publication Date Title
US5997804A (en) Rare earth permanent magnet and method for producing the same
EP0886284B1 (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
US7056393B2 (en) Method of making sintered compact for rare earth magnet
US6527874B2 (en) Rare earth magnet and method for making same
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
US5387291A (en) Process for producing alloy powder material for R-Fe-B permanent magnets and alloy powder for adjusting the composition therefor
US20060016515A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
US8157927B2 (en) Raw material alloy for R-T-B system sintered magnet, R-T-B system sintered magnet and production method thereof
JPH09232173A (en) Manufacture of rare earth magnet, and rare earth magnet
JPH10289813A (en) Rare-earth magnet
JPH0685369B2 (en) Permanent magnet manufacturing method
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP3157661B2 (en) Method for producing R-Fe-B permanent magnet material
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP6773150B2 (en) RTB-based rare earth sintered magnet alloy, RTB-based rare earth sintered magnet
JP2886384B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JPH0745412A (en) R-fe-b permanent magnet material
JPH0778710A (en) Manufacture of r-fe-b permanent magnet material
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder
JP2886378B2 (en) Method for producing raw material powder for R-Fe-B-based permanent magnet
JP3053344B2 (en) Rare earth magnet manufacturing method
JPH06322465A (en) Permanent magnet material
JPH0477066B2 (en)
JPH06283318A (en) Manufacture of rare-earth permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061011

A131 Notification of reasons for refusal

Effective date: 20061025

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070418