JPH06283318A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH06283318A
JPH06283318A JP5067803A JP6780393A JPH06283318A JP H06283318 A JPH06283318 A JP H06283318A JP 5067803 A JP5067803 A JP 5067803A JP 6780393 A JP6780393 A JP 6780393A JP H06283318 A JPH06283318 A JP H06283318A
Authority
JP
Japan
Prior art keywords
alloy powder
powder
phase
alloy
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5067803A
Other languages
Japanese (ja)
Inventor
Masako Noguchi
雅子 野口
Masahiro Takahashi
昌弘 高橋
Fumitake Taniguchi
文丈 谷口
Katsuhiko Kojo
勝彦 古城
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP5067803A priority Critical patent/JPH06283318A/en
Publication of JPH06283318A publication Critical patent/JPH06283318A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce the impurity phase of a main phase forming alloy so as to obtain high magnetic characteristics by mixing the powder of an R-T-B alloy composed mainly of R2T14B of an R-T-B permanent magnet with the powder of an R-T alloy containing a large amount of R and having a low melting point. CONSTITUTION:In the manufacturing method of an R-T-B rare-earth permanent magnet constituted mainly of a main phase composed mainly of an R2T14B intermetallic compound (R represents one or two or more kinds of rare-earth elements including Y and T represents one or two or more kinds of transition metals), the magnet is manufactured by mixing the powder of an R-T alloy containing >=45wt.% R in the powder of an R-T-B alloy containing 1.0-1.20wt.% B and 25-30wt.% R by 8-15wt.% and molding the mixture. Then the molded body is sintered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類元素R、遷移金属
T、ホウ素Bを主成分とするR−T−B系希土類永久磁
石の製造方法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing an RTB-based rare earth permanent magnet containing a rare earth element R, a transition metal T and boron B as main components.

【0002】[0002]

【従来の技術】R−T−B系希土類永久磁石を粉末冶金
的方法で製造する場合は一般に原料秤量、溶解によるイ
ンゴット作製、粉砕、成形、焼結、熱処理等の工程で製
造される。溶解はAr中または真空中で行われる。粉砕
は工程的に粗粉砕と微粉砕に分かれる。粗粉砕はスタン
プミル、ジョークラッシャ、ブラウンミル、ディスクミ
ルで、微粉砕はジェットミル、振動ミル、ボールミル等
で行われる。いずれも酸化を防ぐために有機溶媒や不活
性ガスを用いて非酸化性雰囲気中で行う。成形は配向度
向上、異方性化の為に縦磁場成形(加圧方向と磁場印加
方向が平行)または横磁場成形(加圧方向と磁場印加方
向が垂直)が用いられる。焼結はAr,He等の不活性
ガス中または真空中で行われる。熱処理は用いる元素の
種類や組成によって異なるが400〜800℃の範囲で
行われる。
2. Description of the Related Art When an RTB rare earth permanent magnet is manufactured by a powder metallurgical method, it is generally manufactured by steps such as weighing of raw materials, making an ingot by melting, crushing, molding, sintering and heat treatment. The dissolution is performed in Ar or in vacuum. The pulverization is divided into coarse pulverization and fine pulverization depending on the process. Coarse crushing is performed with a stamp mill, jaw crusher, brown mill, disk mill, and fine crushing is performed with a jet mill, vibration mill, ball mill, or the like. Both are performed in a non-oxidizing atmosphere using an organic solvent or an inert gas to prevent oxidation. For forming, vertical magnetic field forming (pressurizing direction and magnetic field applying direction are parallel) or horizontal magnetic field forming (pressurizing direction and magnetic field applying direction are vertical) are used for improving orientation degree and anisotropy. Sintering is performed in an inert gas such as Ar or He or in a vacuum. The heat treatment is performed in the range of 400 to 800 ° C., though it depends on the type and composition of the element used.

【0003】以上のような粉末冶金的手法で製造された
磁石の組織は主に、主相であるR214B相、Rリッチ
相と呼ばれる非磁性相、Bリッチ相と呼ばれるRT44
相とR酸化物相から構成される。磁気特性は、磁性を担
う主相のR214B相の周囲を非磁性のRリッチ相が取
り囲み、磁気的な結合を切り離す事によって、高い残留
磁束密度Brと保磁力iHcが実現される。Bリッチ
相、R酸化物相は粒成長を抑制し、保磁力を高める役割
を果たす。
The structure of the magnet manufactured by the powder metallurgical method as described above is mainly composed of the main phase R 2 T 14 B phase, a non-magnetic phase called R rich phase, and RT 4 B called B rich phase. Four
Phase and R oxide phase. As for the magnetic characteristics, a high residual magnetic flux density Br and a high coercive force iHc are realized by surrounding the R 2 T 14 B phase, which is the main phase responsible for magnetism, with a non-magnetic R rich phase and separating the magnetic coupling. . The B-rich phase and the R oxide phase play a role of suppressing grain growth and increasing coercive force.

【0004】[0004]

【発明が解決しようとする課題】高い磁気特性を得る為
の理想的な組織は、上記の様な組織を更に Rリッチ相がR214B相を均一に薄く囲んでいる 組織が微細で結晶粒径にばらつきがなく平均的であ
る 磁性相であるR214B相の体積占有率が高い などの条件を満たす組織に近づけることが必要である。
しかし、焼結は融点の低いRリッチ相が液相となって焼
結を促進する液相焼結であり、従来の方法では焼結性を
向上させる為には比較的高い温度が必要であった。しか
し焼結温度を高くすると結晶粒が成長し、残留磁束密度
Brが向上するが、組織が不均一化し保磁力iHc及び
角型性が低下する。逆に焼結温度を低下させると焼結性
が低下し、保磁力iHc及び角型性は向上するがBrが
低下してしまう。何れにしても最大エネルギー積(B
H)maxの改善にはならない。
An ideal structure for obtaining high magnetic properties is a structure in which the R-rich phase evenly surrounds the R 2 T 14 B phase in a thin and fine structure. It is necessary to approach a structure that satisfies the conditions such that the crystal grain size is uniform and the R 2 T 14 B phase, which is a magnetic phase, has a high volume occupancy.
However, the sintering is liquid phase sintering in which the R-rich phase having a low melting point becomes a liquid phase to accelerate the sintering, and in the conventional method, a relatively high temperature is required to improve the sinterability. It was However, when the sintering temperature is raised, crystal grains grow and the residual magnetic flux density Br improves, but the structure becomes non-uniform and the coercive force iHc and squareness deteriorate. Conversely, if the sintering temperature is lowered, the sinterability is lowered, and the coercive force iHc and the squareness are improved, but Br is lowered. In any case, the maximum energy product (B
H) Does not improve max .

【0005】この改善策として、特公平1−19461
号に、R214Bを主相としたR含有率の低いR−T−
B系合金粉末(主相形成合金粉末)に、この合金粉末よ
りもRの含有率が高く融点の低いR−T−B系合金粉末
(Rリッチ相形成合金粉末)を別個に作製し、混合した
合金粉末を使用する製造方法の提案がある。これは低融
点のR−T−B系合金粉末を使用することによって、焼
結性を阻害すること無く焼結温度を低下させ、Brの犠
牲なしにiHcを向上させ、最大エネルギ−積(BH)
maxを改善するものである。しかしこの様な低R、高R
の二種の合金粉末を作製、混合する製造方法において
は、低Rである主相形成合金の凝固過程での包晶反応が
不完全なためにα−Fe、Rリッチ相といった軟磁性相
が晶出し、磁気特性を低下させてしまう。
As a countermeasure for this, Japanese Patent Publication No. 1-19461
No. 2 has a low R content with R 2 T 14 B as the main phase.
An R-T-B alloy powder (R-rich phase forming alloy powder) having a higher R content and a lower melting point than the alloy powder is separately prepared and mixed with the B alloy powder (main phase forming alloy powder). There is a proposal of a manufacturing method using the alloy powder. This is because by using the RTB-based alloy powder having a low melting point, the sintering temperature is lowered without impairing the sinterability, iHc is improved without sacrificing Br, and the maximum energy product (BH )
It improves max . However, such low R and high R
In the production method of producing and mixing the two types of alloy powders, the soft magnetic phase such as α-Fe or R rich phase is generated because the peritectic reaction in the solidification process of the main phase forming alloy having low R is incomplete. Crystallization occurs and magnetic properties are deteriorated.

【0006】すなわち、磁気特性の向上には、主相形成
合金粉末とRリッチ相形成合金粉末の混合粉末を使用す
る製造方法は有効であるが、同時に主相形成合金中に晶
出するα−FeやRリッチ相(R−T)、Bリッチ相
(RT44)など主相となるR214B相以外の不純物
相を低減することが重要である。この不純物相を低減さ
せるために、主相形成合金に固相拡散のための熱処理
(以下均質化処理という)を施すことが考えられるが、
これらの不純物相の消失の効果は組成によって大きく異
なる。つまり、主相形成合金の組成は、不純物の熱処理
による拡散効果の大きい範囲に設定しなければならな
い。本発明は、以上の課題に鑑み、主相形成合金の不純
物相を低減し、高い磁気特性を得ることを課題とする。
That is, a manufacturing method using a mixed powder of the main phase forming alloy powder and the R-rich phase forming alloy powder is effective for improving the magnetic properties, but at the same time, α- which crystallizes in the main phase forming alloy. It is important to reduce impurity phases other than R 2 T 14 B phase, which is the main phase, such as Fe, R-rich phase (RT), B-rich phase (RT 4 B 4 ). In order to reduce this impurity phase, it is considered that the main phase forming alloy is subjected to heat treatment for solid phase diffusion (hereinafter referred to as homogenization treatment).
The effect of disappearance of these impurity phases greatly differs depending on the composition. That is, the composition of the main phase forming alloy must be set within a range in which the diffusion effect by the heat treatment of impurities is large. In view of the above problems, it is an object of the present invention to reduce the impurity phase of the main phase forming alloy and obtain high magnetic properties.

【0007】[0007]

【課題を解決するための手段】本発明者等は、主相形成
合金中に晶出したα−Fe等の不純物相は、合金中のB
量およびR量を、 1.0wt%≦B≦1.2wt%、25wt%≦R≦3
0wt% に設定すれば、均質化処理によって固相拡散することに
より、そのほとんどを消減することが可能であることを
知見した。また、主相形成合金の組成を上記範囲に設定
するには、非磁性であるBリッチ相の過剰な生成を抑制
するため、Rリッチ相形成合金はBを無添加とすること
が必要であることを知見した。そして更に、Rリッチ相
形成合金としてR−T系合金粉末を用いることにより、
従来よりも低い温度で焼結することができるため、理想
的な組織に近づけるための制御が可能となることを知見
した。すなわち本発明は、R214B系金属間化合物
(RはYを含む希土類元素の1種または2種以上、Tは
遷移金属の1種または2種以上)を主体とする主相とR
リッチ相を主構成相とするR−T−B系希土類永久磁石
の製造方法において、1.0wt%≦B≦1.20wt
%、25wt%≦R≦30wt%であるR−T−B系合
金粉末に45wt%≦RであるR−T系合金粉末8〜1
5wt%の範囲で添加・混合後、成形、焼結する希土類
永久磁石の製造方法である。
The inventors of the present invention have found that the impurity phase such as α-Fe crystallized in the main phase forming alloy is B in the alloy.
Amount and R amount are 1.0 wt% ≦ B ≦ 1.2 wt%, 25 wt% ≦ R ≦ 3
It was found that if it is set to 0 wt%, most of it can be eliminated by solid phase diffusion by homogenization treatment. Further, in order to set the composition of the main phase forming alloy within the above range, it is necessary to add no B to the R rich phase forming alloy in order to suppress the excessive generation of the non-magnetic B rich phase. I found out that. Further, by using the RT alloy powder as the R-rich phase forming alloy,
It has been found that the sintering can be performed at a temperature lower than that of the conventional one, so that it is possible to control to bring the structure closer to an ideal structure. That is, the present invention relates to a main phase mainly composed of an R 2 T 14 B-based intermetallic compound (R is one or more kinds of rare earth elements including Y, T is one or more kinds of transition metals) and R
In the method for manufacturing an RTB rare earth permanent magnet having a rich phase as a main constituent phase, 1.0 wt% ≦ B ≦ 1.20 wt
%, 25 wt% ≤ R ≤ 30 wt% R-T-B alloy powder to 45 wt% ≤ R RT alloy powder 8 to 1
This is a method for producing a rare earth permanent magnet, which is formed and sintered after being added and mixed in the range of 5 wt%.

【0008】本発明において、R−T系合金粉末のTは
Feであるのが望ましい。R−T−B系合金粉末とR−
T系合金粉末の混合方法については、粗粉砕されたR−
T−B系合金粉末とR−T系合金粉末を混合後微粉砕
し、その後成形するか、粗粉砕されたR−T−B系合金
粉末とR−T系合金粉末を各々微粉砕し、その後混合成
形するか、いずれかが望ましい。
In the present invention, T of the RT alloy powder is preferably Fe. R-T-B type alloy powder and R-
Regarding the mixing method of the T-based alloy powder, coarsely crushed R-
The T-B alloy powder and the R-T alloy powder are mixed and then finely pulverized, followed by molding, or the coarsely crushed R-T-B alloy powder and R-T alloy powder are finely pulverized, After that, it is preferable to mix and mold either.

【0009】[0009]

【作用】本発明において、主相形成合金であるR−T−
B系合金粉末の組成を限定することによりα−Fe相等
の不純物相を低減することが可能となり、主相形成合金
の組成はほぼR214Bとなる。主相形成合金の組成を
本発明の範囲に限定するたにはRリッチ相形成合金にB
を添加しないR−T系合金粉末を用いることが必要であ
る。R−T系合金粉末にBを添加すると、R−T−B系
合金粉末とR−T系合金粉末との混合後の組成全体とし
てBが過剰となるためBリッチ相(RT44相)が生成
し、粗大化する。そのBリッチ相生成にRが消費される
ためにRが不足気味になり、液相として実効的な働きを
するNdリッチ相が減少するので、磁気特性は改善され
ない。また、低融点のR含有率の高いR−T系合金粉末
を別に作製して使用することにより、液相焼結に必要な
R−T相を有効に活用でき、焼結温度の低下が可能とな
り、また、焼結後の結晶粒径など組織の制御、均一化が
容易になり、残留磁束密度Brをそれ程低下させること
無く保磁力を向上させることができる。
In the present invention, the main phase forming alloy RT-
By limiting the composition of the B-based alloy powder, it is possible to reduce the impurity phases such as the α-Fe phase, and the composition of the main phase forming alloy becomes approximately R 2 T 14 B. To limit the composition of the main phase forming alloy to the range of the present invention, R-rich phase forming alloy is
It is necessary to use an RT alloy powder that does not include If B is added to the RT alloy powder, B becomes excessive as a whole composition after mixing the RTB alloy powder and the RT alloy powder, so that B rich phase (RT 4 B 4 phase ) Is generated and coarsens. Since R is consumed to generate the B-rich phase, R becomes deficient, and the Nd-rich phase that effectively functions as a liquid phase decreases, so the magnetic characteristics are not improved. Also, by separately preparing and using an RT-T alloy powder having a low melting point and a high R content, the RT phase necessary for liquid phase sintering can be effectively utilized and the sintering temperature can be lowered. Further, it becomes easy to control and homogenize the structure such as the crystal grain size after sintering, and the coercive force can be improved without reducing the residual magnetic flux density Br so much.

【0010】また主相形成合金中のB量およびR量を 1.0wt%≦B≦1.2wt%、25wt%≦R≦3
0wt% に設定する。B量が上記範囲未満であると均質化処理に
長時間かけないとα−Feの拡散が行われず、また軟磁
性相のR217相等の不純物相も析出し、磁気特性を低
下させる要因となる。B量が上記範囲を越えるとBリッ
チ相(RT44相)を生成し、この生成にRが消費され
る為にRが不足気味になり、α−Feを生成し易くな
る。つまりB量が上記範囲を越えるとRを低下した場合
と同様にα−Fe相等の不純物相が晶出しやすくなり、
熱処理による均質化処理を行っても拡散しきれず、磁気
特性が低下する要因となる。したがって、1.0wt%
≦B≦1.2wt%に設定する。つぎに、R量が上記範
囲未満ではα−Feの晶出量が増加し、R量が上記範囲
を越えると微細なRリッチ相の残留が多く、その後の粉
砕過程などで酸化が激しくなり、いずれも磁気特性を劣
化させる要因となる。したがって、25wt%≦R≦3
0wt%とする。
The B content and R content in the main phase forming alloy are 1.0 wt% ≦ B ≦ 1.2 wt% and 25 wt% ≦ R ≦ 3.
Set to 0 wt%. When the amount of B is less than the above range, α-Fe is not diffused unless the homogenization treatment is performed for a long time, and an impurity phase such as the R 2 T 17 phase of the soft magnetic phase is precipitated, which is a factor that deteriorates the magnetic properties. Becomes When the amount of B exceeds the above range, a B-rich phase (RT 4 B 4 phase) is generated, and R is consumed for this generation, so that R becomes deficient and α-Fe is easily generated. That is, when the amount of B exceeds the above range, the impurity phase such as α-Fe phase is likely to crystallize as in the case of decreasing R,
Even if a homogenizing treatment by heat treatment is performed, it cannot be completely diffused, which causes a decrease in magnetic characteristics. Therefore, 1.0 wt%
≦ B ≦ 1.2 wt% is set. Next, when the amount of R is less than the above range, the amount of α-Fe crystallized increases, and when the amount of R exceeds the above range, a large amount of fine R-rich phase remains, and the oxidation becomes severe in the subsequent pulverization process. Any of these causes deterioration of magnetic characteristics. Therefore, 25 wt% ≦ R ≦ 3
It is set to 0 wt%.

【0011】Rリッチ相形成合金のR量は、45wt%
以上とする。Rが45wt%未満では焼結に必要な液相
の生成が不十分となり緻密な焼結体が得られないからで
ある。 Rリッチ相形成合金の成分の遷移金属Tとして
は従来から用いられているFe、Co、Ni等を用いる
ことができるが、Niは焼結性を悪化し、磁気特性が低
下させる傾向にあるのでFe、Coとするのが望まし
い。以上のようにR量、B量を設定した主相形成合金で
あるR−T−B系合金粉末に対する、Rリッチ相形成合
金の粉末R−T系合金粉末の混合量は8〜15wt%と
する。R−T系合金粉末の混合量を、混合後の総R量を
一定になるように混合量を低下させていくと、焼結性、
保磁力iHcが低下していき、8wt%未満では低下が
著しい。よって混合量は8wt%以上とする。また、R
リッチ相を増やすため混合量を増加させていくと、iH
cは向上していくが、15wt%を越えるとiHcの改
善効果が低下し、Brが著しく低下する。よってRリッ
チ相の混合量は8〜15wt%の範囲とする。
The R content of the R-rich phase forming alloy is 45% by weight.
That is all. This is because if R is less than 45 wt%, the liquid phase required for sintering is insufficiently formed and a dense sintered body cannot be obtained. As the transition metal T which is a component of the R-rich phase forming alloy, conventionally used Fe, Co, Ni and the like can be used, but Ni tends to deteriorate the sinterability and reduce the magnetic properties. Fe and Co are desirable. As described above, the mixing amount of the powder of the R-rich phase forming alloy with the RT alloy powder is 8 to 15 wt% with respect to the RTB alloy powder which is the main phase forming alloy in which the R amount and the B amount are set. To do. When the mixing amount of the RT alloy powder is reduced so that the total R amount after mixing becomes constant, the sinterability,
The coercive force iHc decreases, and when it is less than 8 wt%, the decrease is remarkable. Therefore, the mixing amount is 8 wt% or more. Also, R
When the mixing amount is increased to increase the rich phase, iH
Although c increases, if it exceeds 15 wt%, the effect of improving iHc decreases and Br decreases remarkably. Therefore, the mixing amount of the R-rich phase is set in the range of 8 to 15 wt%.

【0012】R−T−B系合金粉末とR−T系合金粉末
の混合法については、各合金を粗粉砕後、所定比に混合
し、更に微粉砕する方法と、各合金を各々微粉砕後に所
定比に混合する方法のいづれかが望ましい。双方の混合
法にそれぞれ利点があり、前者は密度が上がり易く、残
留磁束密度Brが高くなり、又、後者では、密度は上が
りにくいが、保磁力iHcが高くなる。
Regarding the mixing method of the R-T-B type alloy powder and the R-T type alloy powder, each alloy is roughly pulverized, then mixed at a predetermined ratio, and further finely pulverized, and each alloy is finely pulverized. It is desirable to use one of the methods of later mixing to a predetermined ratio. Both mixing methods have their respective advantages. The former tends to increase the density and the residual magnetic flux density Br is high, and the latter is difficult to increase the density, but the coercive force iHc is high.

【0013】[0013]

【実施例】(実施例1)純度95%以上のNd、B、電
解鉄を使用し高周波溶解によって表1に示すB量の異な
る主相形成合金(表中では主相と表示)と、Rリッチ相
形成合金(表中ではR相と表示)を作製した。
EXAMPLES Example 1 Main phase forming alloys having different B contents shown in Table 1 (indicated as main phase in the table) by Nd, B having a purity of 95% or more and electrolytic iron and by high frequency melting, and R A rich phase forming alloy (indicated as R phase in the table) was prepared.

【0014】[0014]

【表1】 [Table 1]

【0015】かかるインゴットの内、主相形成合金につ
いて各々ぞれ1100℃×20Hの均質化処理をした後
粗粉砕し、平均粒径15〜25μmR−T−B系合金粉
末とした。Rリッチ相形成合金については溶解冷却後、
これを粗粉砕し平均粒径15〜25μmR−T系合金粉
末とした。R−T−B系合金粉末に、R−T系合金粉末
を配合比10wt%で混合し、これをN2を粉砕媒体と
しジェットミルによって平均粒径2〜5μmになるよう
に微粉砕した。得られた微粉砕粉を10KOeの磁場中
で成形圧力2ton/cm2で横磁場成形した。成形体
は真空中で1080℃×2Hで焼結を行った。焼結体は
Ar雰囲気中で900℃×2Hの1次熱処理をした後6
00℃×1Hの2次熱処理を行った。以上の手順で得ら
れた得られた、B量の異なる主相形成合金を用いた永久
磁石の磁気特性の測定結果を表2に示す。本発明の製造
方法により作製した永久磁石はいづれも高い磁気特性が
得られ、特に主相形成合金中のB量が1.0〜1.2w
t%の範囲で著しく高い磁気特性を得ている。
Of the ingots, each of the main phase forming alloys was homogenized at 1100 ° C. × 20 H and coarsely pulverized to obtain an R-T-B type alloy powder having an average particle size of 15 to 25 μm. After melting and cooling the R-rich phase forming alloy,
This was coarsely pulverized to obtain an RT-T alloy powder having an average particle size of 15 to 25 μm. The RT alloy powder was mixed with the RT alloy powder at a compounding ratio of 10 wt%, and this was finely pulverized by a jet mill using N 2 as a pulverizing medium so that the average particle diameter was 2 to 5 μm. The obtained finely pulverized powder was subjected to transverse magnetic field molding in a magnetic field of 10 KOe at a molding pressure of 2 ton / cm 2 . The compact was sintered in vacuum at 1080 ° C. × 2H. The sintered body was subjected to a primary heat treatment of 900 ° C x 2H in an Ar atmosphere and then 6
A second heat treatment of 00 ° C. × 1H was performed. Table 2 shows the measurement results of the magnetic properties of the permanent magnets obtained by the above procedure and using the main phase forming alloys having different B contents. The permanent magnets produced by the production method of the present invention all have high magnetic characteristics, and in particular, the amount of B in the main phase forming alloy is 1.0 to 1.2 w.
Remarkably high magnetic properties are obtained in the range of t%.

【0016】[0016]

【表2】 [Table 2]

【0017】(実施例2)純度95%以上のNd、D
y、B、電解鉄を使用し高周波溶解によって表3に示す
主相形成合金と、R量の異なるRリッチ相形成合金を作
製した。
(Example 2) Nd and D having a purity of 95% or more
The main phase forming alloys shown in Table 3 and the R rich phase forming alloys having different R contents were produced by high frequency melting using y, B and electrolytic iron.

【0018】[0018]

【表3】 [Table 3]

【0019】かかるインゴットを使用し実施例1と同様
にR−T−B系合金粉末を作製し、R−T合金粉末を配
合比10wt%で混合した。これをN2を粉砕媒体とし
ジェットミルによって平均粒径2〜5μmになるように
微粉砕した。得られた微粉砕粉を10KOeの磁場中で
成形圧力2ton/cm2で横磁場成形した。成形体は
真空中で1080℃×2Hで焼結を行った。焼結体はA
r雰囲気中で900℃×2Hの1次熱処理をした後60
0℃×1Hの2次熱処理を行った。以上の手順で得られ
た得られた、Rリッチ相形成合金中のR量の異なる永久
磁石の磁気特性と焼結体密度の測定結果を表4に示す。
表4に示すようにR量が45wt%以上であれば永久磁
石として用いることが可能であるが、45wt%未満で
は収縮せず、永久磁石として用いることができない。
Using such an ingot, an RTB alloy powder was prepared in the same manner as in Example 1, and the RT alloy powder was mixed at a compounding ratio of 10 wt%. This was finely pulverized by a jet mill using N 2 as a pulverizing medium so that the average particle size was 2 to 5 μm. The obtained finely pulverized powder was subjected to transverse magnetic field molding in a magnetic field of 10 KOe at a molding pressure of 2 ton / cm 2 . The compact was sintered in vacuum at 1080 ° C. × 2H. Sintered body is A
60 after performing a primary heat treatment of 900 ° C x 2H in an r atmosphere
A secondary heat treatment of 0 ° C. × 1H was performed. Table 4 shows the measurement results of the magnetic properties and sintered body densities of the permanent magnets having different R contents in the R-rich phase forming alloy obtained by the above procedure.
As shown in Table 4, if the R amount is 45 wt% or more, it can be used as a permanent magnet, but if it is less than 45 wt%, it does not shrink and cannot be used as a permanent magnet.

【0020】[0020]

【表4】 [Table 4]

【0021】(実施例3)純度95%以上のNd、D
y、B、電解鉄を使用し高周波溶解によって表5に示す
主相形成合金と、Rリッチ相形成合金を作製した。
(Example 3) Nd and D having a purity of 95% or more
Main phase forming alloys shown in Table 5 and R rich phase forming alloys were produced by high frequency melting using y, B and electrolytic iron.

【0022】[0022]

【表5】 [Table 5]

【0023】R−T−B系合金粉末は実施例1と同様に
作製し、R−T系合金粉末を、配合比10wt%で混合
した。これをN2を粉砕媒体としジェットミルによって
平均粒径2〜5μmになるように微粉砕した。得られた
微粉砕粉を10KOeの磁場中で成形圧力2ton/c
2で横磁場成形した。成形体は真空中で1100℃×
2Hで焼結を行った。焼結体はAr雰囲気中で900℃
×2Hの1次熱処理をした後600℃×1Hの2次熱処
理を行った。表6に配合比と得られた永久磁石の磁気特
性の測定結果を示す。表6よりR−T形合金粉中にNi
を添加することにより保磁力が低下することがわかる。
The RTB alloy powder was prepared in the same manner as in Example 1, and the RT alloy powder was mixed at a compounding ratio of 10 wt%. This was finely pulverized by a jet mill using N 2 as a pulverizing medium so that the average particle size was 2 to 5 μm. The finely pulverized powder obtained is molded under a magnetic field of 10 KOe at a molding pressure of 2 ton / c.
Transverse magnetic field molding was performed at m 2 . Molded body is 1100 ° C in vacuum
Sintering was performed at 2H. 900 ° C in Ar atmosphere
After the primary heat treatment of × 2H, the secondary heat treatment of 600 ° C. × 1H was performed. Table 6 shows the mixing ratios and the measurement results of the magnetic properties of the obtained permanent magnets. From Table 6, Ni in the RT type alloy powder
It can be seen that the coercive force is reduced by adding.

【0024】[0024]

【表6】 [Table 6]

【0025】(実施例4)純度95%以上のNd、D
y、B、電解鉄を使用し高周波溶解によって表7に示す
主相形成合金と、Rリッチ相形成合金を作製した。
(Example 4) Nd and D having a purity of 95% or more
Main phase forming alloys shown in Table 7 and R rich phase forming alloys were produced by high frequency melting using y, B and electrolytic iron.

【0026】R−T−B系合金粉末は実施例1と同様に
作製し、R−T系合金粉末を、混合後の総R量が29.
1wt%一定になるように混合した。これをN2を粉砕
媒体としジェットミルによって平均粒径2〜5μmにな
るように微粉砕した。得られた微粉砕粉を10KOeの
磁場中で成形圧力2ton/cm2で横磁場成形した。
成形体は真空中で1100℃×2Hで焼結を行った。焼
結体はAr雰囲気中で900℃×2Hの1次熱処理をし
た後600℃×1Hの2次熱処理を行った。表8に配合
比と得られた永久磁石の磁気特性の測定結果を示す。混
合比が8wt%以上で特に高い磁気特性が得られてい
る。
The RTB-based alloy powder was prepared in the same manner as in Example 1, and the RTB alloy powder had a total R content of 29.
Mixing was performed so that 1 wt% was constant. This was finely pulverized by a jet mill using N 2 as a pulverizing medium so that the average particle size was 2 to 5 μm. The obtained finely pulverized powder was subjected to transverse magnetic field molding in a magnetic field of 10 KOe at a molding pressure of 2 ton / cm 2 .
The molded body was sintered at 1100 ° C. × 2H in vacuum. The sintered body was subjected to a first heat treatment at 900 ° C. × 2H in an Ar atmosphere and then a second heat treatment at 600 ° C. × 1H. Table 8 shows the compounding ratio and the measurement result of the magnetic characteristics of the obtained permanent magnet. Particularly high magnetic properties are obtained when the mixing ratio is 8 wt% or more.

【0027】[0027]

【表7】 [Table 7]

【0028】[0028]

【表8】 [Table 8]

【0029】(実施例5)純度95%以上のNd、D
y、B、電解鉄を使用し高周波溶解によって表9に示す
主相形成合金と、Rリッチ相形成合金を作製した。
(Example 5) Nd and D having a purity of 95% or more
Main phase forming alloys shown in Table 9 and R rich phase forming alloys were produced by high frequency melting using y, B and electrolytic iron.

【0030】[0030]

【表9】 [Table 9]

【0031】R−T−B系合金粉末(インゴットNo.
22)は実施例1と同様に作製し、R−T系合金粉末
(インゴットNo.23)を、配合比10,12.5,
15.0,17.5wt%で混合した。これをN2を粉
砕媒体としジェットミルによって平均粒径2〜5μmに
なるように微粉砕した。得られた微粉砕粉を10KOe
の磁場中で成形圧力2ton/cm2で横磁場成形し
た。成形体は真空中で1100℃×2Hで焼結を行っ
た。焼結体はAr雰囲気中で900℃×2Hの1次熱処
理をした後600℃×1Hの2次熱処理を行った。表1
0に配合比と得られた永久磁石の磁気特性の測定結果を
示す。表10よりいづれも高い磁気特性を示してるのが
わかる。
R-T-B type alloy powder (Ingot No.
22) was prepared in the same manner as in Example 1, and the RT alloy powder (Ingot No. 23) was mixed in a compounding ratio of 10, 12.5,
They were mixed at 15.0 and 17.5 wt%. This was finely pulverized by a jet mill using N 2 as a pulverizing medium so that the average particle size was 2 to 5 μm. 10 KOe of the finely pulverized powder obtained
In a magnetic field of 2 ton / cm 2 at a forming pressure. The molded body was sintered at 1100 ° C. × 2H in vacuum. The sintered body was subjected to a first heat treatment at 900 ° C. × 2H in an Ar atmosphere and then a second heat treatment at 600 ° C. × 1H. Table 1
The results of measurement of the compounding ratio and the magnetic characteristics of the obtained permanent magnet are shown in 0. It can be seen from Table 10 that the magnetic properties are all high.

【0032】[0032]

【表10】 [Table 10]

【0033】(実施例6)純度95%以上のNd、D
y、B、電解鉄を使用し高周波溶解によって表11に示
す主相形成合金と、Rリッチ相形成合金を作製した。
(Example 6) Nd and D having a purity of 95% or more
The main phase forming alloys shown in Table 11 and the R rich phase forming alloys were produced by high frequency melting using y, B and electrolytic iron.

【0034】[0034]

【表11】 [Table 11]

【0035】かかるインゴットを使用し、主相形成合金
は1100℃×20Hの均質化処理を施した後、粗粉砕
しR−T−B系合金粉末とした。Rリッチ相形成合金
は、溶解冷却後粗粉砕しR−T合金粉末とした。この粗
粉を配合比10wt%で混合し、これをN2を粉砕媒体
としジェットミルによって平均粒径2〜5μmになるよ
うに微粉砕した。得られた微粉砕粉を10KOeの磁場
中で成形圧力2ton/cm2で横磁場成形した。成形
体は真空中で1080℃×2Hで焼結を行った。焼結体
はAr雰囲気中で900℃×2Hの1次熱処理をした後
600℃×1Hの2次熱処理を行った。以上の手順で得
られた焼結体の磁気特性を粗粉混合とし表12に示す。
主相形成合金の粗粉末と、Rリッチ相形成合金の粗粉
末を、各々N2を粉砕媒体としジェットミルによって平
均粒径2〜5μmになるように微粉砕した微粉末を配合
比10wt%で混合し、成形以降の手順は粗粉混合と同
様に作製した永久磁石の磁気特性を微粉混合とし表12
に示す。粗粉混合の場合、密度が高く、Br、(BH)
maxが高くなり、微粉混合の場合、iHcが高くなっ
ている。
Using this ingot, the main phase forming alloy was homogenized at 1100 ° C. × 20 H, and then coarsely pulverized to obtain an RTB-based alloy powder. The R-rich phase forming alloy was melt-cooled and then coarsely pulverized to obtain an R-T alloy powder. This coarse powder was mixed at a compounding ratio of 10 wt%, and this was pulverized by a jet mill using N 2 as a pulverizing medium so as to have an average particle size of 2 to 5 μm. The obtained finely pulverized powder was subjected to transverse magnetic field molding in a magnetic field of 10 KOe at a molding pressure of 2 ton / cm 2 . The compact was sintered in vacuum at 1080 ° C. × 2H. The sintered body was subjected to a first heat treatment at 900 ° C. × 2H in an Ar atmosphere and then a second heat treatment at 600 ° C. × 1H. The magnetic properties of the sintered body obtained by the above procedure are shown in Table 12 as coarse powder mixture.
A coarse powder of the main phase forming alloy and a coarse powder of the R rich phase forming alloy were finely pulverized by a jet mill using N 2 as a pulverizing medium so as to have an average particle size of 2 to 5 μm at a compounding ratio of 10 wt%. In the procedure after mixing and molding, the magnetic characteristics of the permanent magnet produced in the same manner as the coarse powder mixing were changed to fine powder mixing.
Shown in. When coarse powder is mixed, the density is high and Br, (BH)
max is high, and iHc is high in the case of fine powder mixing.

【0036】[0036]

【表12】 [Table 12]

【0037】[0037]

【発明の効果】本発明によると、R214Bを主体とす
るR−T−B系合金粉末と、R含有率が高く低融点であ
るR−T系合金粉末を混合することにより、不純物相を
低減し、優れた磁気的性質を持つ希土類永久磁石を得る
ことができる。
According to the present invention, by mixing the R-T-B alloy powder mainly composed of R 2 T 14 B and the R-T alloy powder having a high R content and a low melting point, It is possible to obtain a rare earth permanent magnet having a reduced impurity phase and excellent magnetic properties.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古城 勝彦 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 (72)発明者 谷川 茂穂 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社熊谷工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuhiko Furushiro 5200 Sankejiri, Kumagaya-shi, Saitama, Hitachi Metals Co., Ltd. Magnetic Materials Research Center (72) Inventor Shigeho Tanigawa 5200 Sankejiri, Kumagaya, Saitama Hitachi Metals Co., Ltd., Kumagaya Plant

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 R214B系金属間化合物(RはYを含
む希土類元素の1種または2種以上、Tは遷移金属の1
種または2種以上)を主体とする主相とRリッチ相を主
構成相とするR−T−B系希土類永久磁石の製造方法に
おいて、 1.0wt%≦B≦1.20wt%、25wt%≦R≦
30wt%であるR−T−B系合金粉末に45wt%≦
RであるR−T系合金粉末を8〜15wt%の範囲で添
加・混合後、成形、焼結することを特徴とする希土類永
久磁石の製造方法。
1. An R 2 T 14 B-based intermetallic compound (R is one or more rare earth elements including Y, and T is one of transition metals.
One or more) and a main phase mainly composed of R-rich phase and a main constituent phase of the R-T-B rare earth permanent magnet, 1.0 wt% ≤ B ≤ 1.20 wt%, 25 wt% ≤R≤
45 wt% ≦ 30 wt% of R-T-B based alloy powder
A method for producing a rare earth permanent magnet, which comprises adding and mixing R-T based alloy powder which is R in a range of 8 to 15 wt%, followed by molding and sintering.
【請求項2】 R−T系合金粉末のTがFeである請求
項1に記載の希土類永久磁石の製造方法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein T of the RT alloy powder is Fe.
【請求項3】 粗粉砕されたR−T−B系合金粉末とR
−T系合金粉末を混合後微粉砕し、その後成形する請求
項1または2に記載の希土類永久磁石の製造方法。
3. A coarsely crushed RTB-based alloy powder and R
The method for producing a rare earth permanent magnet according to claim 1 or 2, wherein the -T alloy powder is mixed, finely pulverized, and then molded.
【請求項4】 粗粉砕されたR−T−B系合金粉末とR
−T系合金粉末を各々微粉砕し、その後混合成形する請
求項1または2に記載の希土類永久磁石の製造方法。
4. A coarsely crushed RTB-based alloy powder and R
The method for producing a rare earth permanent magnet according to claim 1, wherein each of the -T alloy powders is pulverized and then mixed and molded.
JP5067803A 1993-03-26 1993-03-26 Manufacture of rare-earth permanent magnet Pending JPH06283318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5067803A JPH06283318A (en) 1993-03-26 1993-03-26 Manufacture of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5067803A JPH06283318A (en) 1993-03-26 1993-03-26 Manufacture of rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH06283318A true JPH06283318A (en) 1994-10-07

Family

ID=13355479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5067803A Pending JPH06283318A (en) 1993-03-26 1993-03-26 Manufacture of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH06283318A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833036B2 (en) 2001-06-29 2004-12-21 Tdk Corporation Rare earth permanent magnet
CN111180190A (en) * 2020-01-14 2020-05-19 江西理工大学 Method for improving magnetic property of sintered neodymium-iron-boron magnet
CN112735718A (en) * 2020-12-28 2021-04-30 安徽大地熊新材料股份有限公司 Preparation method of high-corrosion-resistance high-coercivity sintered neodymium-iron-boron magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833036B2 (en) 2001-06-29 2004-12-21 Tdk Corporation Rare earth permanent magnet
CN111180190A (en) * 2020-01-14 2020-05-19 江西理工大学 Method for improving magnetic property of sintered neodymium-iron-boron magnet
CN112735718A (en) * 2020-12-28 2021-04-30 安徽大地熊新材料股份有限公司 Preparation method of high-corrosion-resistance high-coercivity sintered neodymium-iron-boron magnet

Similar Documents

Publication Publication Date Title
US6506265B2 (en) R-Fe-B base permanent magnet materials
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JPH06340902A (en) Production of sintered rare earth base permanent magnet
JP3715573B2 (en) Magnet material and manufacturing method thereof
JP4900085B2 (en) Rare earth magnet manufacturing method
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JPS6181606A (en) Preparation of rare earth magnet
JPH10106875A (en) Manufacturing method of rare-earth magnet
JP2010219499A (en) R-t-b based rare earth sintered magnet and method for manufacturing the same
JPH10289813A (en) Rare-earth magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JP2001217112A (en) R-t-b sintered magnet
JPH06283318A (en) Manufacture of rare-earth permanent magnet
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JP2789269B2 (en) Raw material powder for R-Fe-B permanent magnet
JP2827643B2 (en) Method for producing rare earth-Fe-B based magnet alloy powder
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JPH06112027A (en) Manufacture of high-quality magnet material
JPH0757913A (en) Production of rare earth permanent magnet
JP2005286174A (en) R-t-b-based sintered magnet
JP2005286173A (en) R-t-b based sintered magnet
JPH0745413A (en) Manufacture of raw material powder for r-fe-b permanent magnet and alloy powder for adjusting raw material powder
JP3053344B2 (en) Rare earth magnet manufacturing method