JPH0653882B2 - Alloy powder for bonded magnet and manufacturing method thereof - Google Patents

Alloy powder for bonded magnet and manufacturing method thereof

Info

Publication number
JPH0653882B2
JPH0653882B2 JP60020747A JP2074785A JPH0653882B2 JP H0653882 B2 JPH0653882 B2 JP H0653882B2 JP 60020747 A JP60020747 A JP 60020747A JP 2074785 A JP2074785 A JP 2074785A JP H0653882 B2 JPH0653882 B2 JP H0653882B2
Authority
JP
Japan
Prior art keywords
atom
powder
less
alloy powder
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60020747A
Other languages
Japanese (ja)
Other versions
JPS61179801A (en
Inventor
節夫 藤村
真人 佐川
日登志 山本
裕 松浦
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP60020747A priority Critical patent/JPH0653882B2/en
Publication of JPS61179801A publication Critical patent/JPS61179801A/en
Publication of JPH0653882B2 publication Critical patent/JPH0653882B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種),B,Feを主成分とする永久磁石用合金粉
末と、樹脂または非磁性合金からなるボンド磁石用合金
粉末とその製造方法に関する。
TECHNICAL FIELD The present invention relates to an alloy powder for permanent magnets containing R (R is at least one of rare earth elements including Y), B and Fe as main components, and a resin or a non-magnetic alloy. And a method for producing the same.

背景技術 現在の代表的な永久磁石材料は、アルニコ,ハードフェ
ライトおよび希土類コバルト磁石である。
BACKGROUND ART Currently, typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets.

近年のコバルトの原料事情の不安定化に伴ない、コバル
トを20〜30wt%含むアルニコ磁石の需要は減り、鉄の酸
化物を主成分とする安価なハードフェライトが磁石材料
の主流を占めるようになった。
With the destabilization of the raw material situation of cobalt in recent years, the demand for alnico magnets containing 20 to 30 wt% of cobalt has decreased, and inexpensive hard ferrites containing iron oxide as the main component have become the mainstream of magnet materials. became.

一方、希土類コバルト磁石はコバルトを50〜60wt%も含
むうえ、希土類鉱石中にあまり含まれていないSmを使用
するため大変高価であるが、他の磁石に比べて、磁気特
性が格段に高いため、主として小型で付加価値の高い磁
気回路に多用されるようになった。
On the other hand, rare earth cobalt magnets are very expensive because they contain 50-60 wt% of cobalt and use Sm that is rarely contained in rare earth ores, but they have much higher magnetic properties than other magnets. , Mainly used for small size and high value added magnetic circuits.

希土類コバルト磁石は、通常の焼結法により製造される
が、製品化には研削加工が必要てあるため、製品歩留が
悪い問題があり、一層価値を高騰させていた。これを解
決するために、磁石用粉末を樹脂あるいは金属バインダ
ーと結合固化させるボンド法が提案されている。
Rare earth cobalt magnets are manufactured by an ordinary sintering method, but since they require grinding for commercialization, they have a problem of poor product yield, and their value has further increased. In order to solve this, a bonding method has been proposed in which magnet powder is bonded and solidified with a resin or a metal binder.

また、希土類コバルト磁石が、RCo5 系からRCo17
系に高性能,省資源化されたが、ボンド法を用いても、
高価なSm,Coが主成分であり、根本的な解決にはならな
い。
In addition, rare earth cobalt magnets can be used from R 1 Co 5 system to R 2 Co 17 system.
The system has high performance and resource saving, but even if the bond method is used,
Since expensive Sm and Co are the main components, this is not a fundamental solution.

上記の問題を解決するため、本出願人は先に、高価なSm
やCoを含有しない新しい高性能永久磁石としてFe−B−
R系(RはYは含む希土類元素のうち少なくとも 1種)
永久磁石を提案(特願昭57−145072号)し、さらに、ボ
ンド磁石用に最適なFe−B−R系合金粉末(特開昭59−
219904号)を提案した。
In order to solve the above problem, the applicant has previously proposed that expensive Sm
Fe-B-as a new high-performance permanent magnet containing no Co or Co
R type (R is at least one of rare earth elements including Y)
Proposed a permanent magnet (Japanese Patent Application No. 57-145072), and further, Fe-BR alloy powder most suitable for a bonded magnet (Japanese Patent Laid-Open No. 59-
219904) was proposed.

上記のFe−B−R系ボンド磁石用合金粉末は、該成分の
鋳塊を機械的に粗粉砕,微粉砕して得られた 3μm以下
の微細粉であるが、合金粉末の保磁力(iHc)は 3 kOe程
度であるため、さらにすぐれた磁気特性のボンド磁石を
得るには、高保持力合金粉末が望まれていた。
The above Fe-BR system alloy powder for bonded magnets is a fine powder of 3 µm or less obtained by mechanically crushing and finely crushing the ingot of the component, but the coercive force (iHc ) Is about 3 kOe, so a high-coercivity alloy powder has been desired to obtain a bonded magnet with more excellent magnetic properties.

発明の目的 この発明は、希土類・ボロン・鉄を主成分とする新規な
ボンド永久磁石の磁気特性の改善を目的とし、保磁力な
どの磁気特性がすぐれたボンド磁石用の合金粉末並びに
その製造方法を目的としている。
The object of the present invention is to improve the magnetic properties of a new bonded permanent magnet containing rare earths, boron and iron as main components, and to provide an alloy powder for bonded magnets having excellent magnetic properties such as coercive force and a method for producing the same. It is an object.

発明の構成と効果 この発明は、R(RはYを含む希土類元素のうち少なく
とも1種)12原子%〜20原子%、B 4原子%〜20原子
%、Fe 60原子%〜84原子%を主成分とし主相が正方晶
相からなる粒度15μm以下の微粉末より構成され、保持
力(iHc) 5 kOe〜15 kOeを有した集合粒度 100μm〜10
00μmの集合粉末からなることを特徴とするボンド磁石
用合金粉末であり、さらに、R(RはYを含む希土類元
素のうち少なくとも1種)12原子%〜20原子%、B 4原
子%〜20原子%、Fe 60原子%〜84原子%を主成分とし
主相が正方晶の結晶構造を有する相からなる粒度15μm
以下の微粉末を、加圧成形したのち解砕し、さらに 800
℃〜1100℃で加熱したのち解砕し、粒度15μm以下の微
粉末より構成され、保磁力(iHc) 5 kOe〜15 kOeを有し
た集合粒度 100μm〜1000μmの集合粉末を得ることを
特徴とする耐食性のすぐれたボンド磁石用合金粉末の製
造方法である。
Structure and Effect of the Invention The present invention comprises R (R is at least one of rare earth elements including Y) 12 atom% to 20 atom%, B 4 atom% to 20 atom%, and Fe 60 atom% to 84 atom%. Aggregate particle size 100μm ~ 10 composed of fine powders with main particle size of tetragonal phase and particle size of 15μm or less and coercive force (iHc) 5kOe ~ 15kOe
It is an alloy powder for a bonded magnet, characterized by comprising an aggregated powder of 00 μm, and further R (R is at least one of rare earth elements including Y) 12 atom% to 20 atom%, B 4 atom% to 20 Particle size 15 μm consisting of a phase having a tetragonal crystal structure with the main component being atomic% and Fe 60 atomic% to 84 atomic%
The following fine powder was pressed and crushed, and then 800
It is characterized in that it is heated at ℃ to 1100 ℃ and crushed to obtain aggregate powder composed of fine powder with particle size of 15 μm or less and having coercive force (iHc) of 5 kOe to 15 kOe and particle size of 100 to 1000 μm. It is a method for producing an alloy powder for a bonded magnet having excellent corrosion resistance.

この発明による合金粉末を用いてボンド磁石を製造する
方法としては、合金粉末と混合,成形,固化などに用い
るバインダーの種類あるいは製品の種類などにより適宜
選択してボンド磁石を製作することがてき、バインダー
量は永久磁石材料の磁石特性の発現のため、体積構成比
において50%以下である。
As a method for producing a bonded magnet using the alloy powder according to the present invention, a bonded magnet can be produced by appropriately selecting it according to the type of binder or the type of product used for mixing, molding, solidification with the alloy powder, The amount of the binder is 50% or less in terms of volume composition ratio due to the manifestation of the magnetic properties of the permanent magnet material.

合金粉末を焼結せずに成形し、樹脂バインダーを含浸固
化させてボンド磁石としたり、あるいは合金粉末に合金
粉末バインダーを混合して成形し、これを焼結後に熱処
理などでボンド磁石を得ることができる。また、成形方
法としては、通常のプレス成形のほかに射出成形や押出
し成形、静水圧成形を採用することもできる。
Forming alloy powder without sintering and impregnating and solidifying a resin binder to form a bond magnet, or mixing alloy powder with an alloy powder binder and forming it, then obtaining a bond magnet by heat treatment after sintering. You can As the molding method, in addition to ordinary press molding, injection molding, extrusion molding, or hydrostatic molding can be adopted.

バインダーとして用いる合成樹脂は、熱硬化性、熱可塑
性のいずれの性質を有するものも利用できるが、熱的に
安定な樹脂が好ましく、例えば、ポリアミド、ポリイミ
ド、フェノール樹脂、弗素樹脂、けい素樹脂、エポキシ
樹脂などを適宜選定できる。また、該合金粉末を均一に
分散混合させて磁石特性を発現させるために、バインダ
ーとして合金粉末を併用することもできる。
The synthetic resin used as the binder, thermosetting, it is possible to use those having any of the properties of thermoplasticity, a thermally stable resin is preferred, for example, polyamide, polyimide, phenolic resin, fluororesin, silicon resin, Epoxy resin or the like can be appropriately selected. Further, in order to uniformly disperse and mix the alloy powder and develop the magnet characteristics, the alloy powder can be used together as a binder.

また、バインダーとして、合成樹脂以外のものを用いる
場合は、Cu、Alを始め、TiH2、Sn、Pbなどのはんだ合金
があり、合金の場合は粉末で用いられる。
When a binder other than synthetic resin is used as the binder, there are solder alloys such as TiH 2 , Sn, and Pb in addition to Cu and Al. When the alloy is used, it is used as a powder.

この発明による合金粉末を用いたボンド磁石は、最大エ
ネルギー積(BH)max が10 MGOe以上を示し、最も好まし
い組成範囲では、(BH)max ≧15MGOeを示す。
The bonded magnet using the alloy powder according to the present invention has a maximum energy product (BH) max of 10 MGOe or more, and (BH) max ≧ 15 MGOe in the most preferable composition range.

合金粉末及び製造方法の限定理由 この発明において、本系ボンド磁石用合金粉末である集
合粉末は、粒度15μm以下の微粉末より構成される必要
があり、15μmを超えると、個々の微粉末のの結晶粒内
に磁区が発生し易くなり、磁化反転が容易に起るため高
保磁力が得られない。また、0.5μm未満の粒度である
と、表面積比率が増加して酸化し易く取扱いが困難とな
るため、0.5μm〜15μmが望ましい。
Reasons for Limitation of Alloy Powder and Manufacturing Method In the present invention, the aggregate powder that is the alloy powder for the present bonded magnet needs to be composed of fine powder having a particle size of 15 μm or less. High magnetic coercive force cannot be obtained because magnetic domains are easily generated in the crystal grains and magnetization reversal easily occurs. Further, if the particle size is less than 0.5 μm, the surface area ratio increases, and it is easy to oxidize and the handling becomes difficult. Therefore, 0.5 μm to 15 μm is desirable.

焼結体の永久磁石として良好な磁気特性を得るには、R
Fe14Bの組成式が示される組成よりも、Rの多いとこ
ろが望ましく、上記正方晶化合物からなる個々の結晶粒
の回りにNdに富んだ相が覆っていることが必要であると
考えられる。(Sagawa et.al; J.Appl.Phys.55
(6),15 March 1984)それ故、本系磁石合金の磁気的
性質を支配するのは、上記の組成式に示される正方晶構
造を有する化合物とNdに富んだ相であると考えられる。
To obtain good magnetic characteristics as a permanent magnet of a sintered body, R
It is preferable that the amount of R is larger than that of the composition represented by the composition formula of 2 Fe 14 B, and it is considered that the Nd-rich phase needs to be covered around each crystal grain composed of the tetragonal compound. . (Sagawa et.al; J. Appl. Phys. 55
(6), 15 March 1984) Therefore, it is considered that the magnetic properties of the present magnet alloy are governed by the compound having the tetragonal structure represented by the above composition formula and the phase rich in Nd.

種々の粉砕工程を経た後の微粉末では、上記の粒度範囲
内であっても、精々 2.0 kOe程度の保磁力しか示さない
理由は、微粉砕された粉末の個々の結晶粒がRに富む相
に覆われていないためと考えられる。
The reason why the fine powder after various pulverization steps shows a coercive force of at most about 2.0 kOe even within the above grain size range is that the individual crystal grains of the finely pulverized powder have a phase rich in R. It is thought that it is not covered by.

この発明では、後述する如く、粒度15μm以下の微粉末
を加圧成形したのち解砕し、さらに 800℃〜1100℃で加
熱したのち解砕することにより、個々の経晶粒の回りに
Ndに富んだ相が覆った集合粉末が得られる。
In this invention, as will be described later, fine powder having a particle size of 15 μm or less is pressure-molded, then crushed, and further heated at 800 ° C. to 1100 ° C. and then crushed, so that the particles around the individual crystallites are
An aggregated powder with a Nd-rich phase is obtained.

また、上記粒度の合金粉末を加圧したのち解砕するの
は、保磁力が高くボンド磁石用原料粉末に適した粉末を
得るためであり、加圧後解砕した粉は、15μm以下の微
細粒から構成される100 μmから1000μmの粗粉(集合
粉末)である。前記したRに富む相と基本相RFe14
との共晶を得るための後述する熱処理によって、微細粉
同志では凝縮して焼結してしまい、これを粉砕すると、
堅くて脆い正方晶化合物が破断されて、粉末の保磁力が
低下するが、この集合粉末では焼結して結合することが
なく、たとえ結合しても容易にほぐす(解砕)すること
ができる。
Moreover, the reason why the alloy powder having the above particle size is crushed after being pressed is to obtain a powder having a high coercive force and suitable for a raw material powder for a bonded magnet, and the powder crushed after being pressed has a fineness of 15 μm or less. It is a coarse powder (aggregated powder) of 100 μm to 1000 μm composed of grains. The above-mentioned R-rich phase and basic phase R 2 Fe 14 B
By the heat treatment described later to obtain a eutectic with, the fine powders will condense and sinter, and if pulverized,
Although the hard and brittle tetragonal compound is broken and the coercive force of the powder is reduced, this aggregate powder does not sinter and bond, and even if bonded, it can be easily loosened (crushed). .

なお、加圧時に、一定方向に磁界を加えておくことによ
り、磁気的異方性磁石用合金粉末が得られ、また、無磁
界中でプレス成型することにより、磁気的等方性磁石用
合金粉末を得ることができる。
An alloy powder for magnetically anisotropic magnets can be obtained by applying a magnetic field in a certain direction at the time of pressurization, and an alloy for magnetically isotropic magnets can be obtained by press molding in a non-magnetic field. A powder can be obtained.

熱処理として 800℃〜1100℃で加熱したのち解砕するの
は、保磁力が高くボンド磁石用原料粉末に適した粉末を
得るためであり、Rを80原子%以上含有するRに富む相
と、正方晶構造を有する金属間化合物、RFe14Bとの
共晶を得るものである。上記の共晶反応は680 ℃付近で
起るが、 7 kOe以上の保磁力(iHc)を得るには、800 ℃
以上の加熱が必要となる。しかし、1100℃を超えると、
100 μmから1000μmの粗粉(集合粉末)であっても焼
結が進行し、その後の解砕が困難となり、粒成長が起き
て保磁力が低下する。従って熱処理温度は 800℃〜1100
℃とする。また、熱処理時間は、組成や粒度等に応じて
適宜選定される。
The reason for crushing after heating at 800 ° C to 1100 ° C as a heat treatment is to obtain a powder having a high coercive force and suitable for a raw material powder for a bonded magnet, and a phase rich in R containing 80 atomic% or more of R, A eutectic with an intermetallic compound having a tetragonal structure, R 2 Fe 14 B, is obtained. The above eutectic reaction occurs at around 680 ° C, but 800 ° C for obtaining a coercive force (iHc) of 7 kOe or more.
The above heating is required. However, above 1100 ° C,
Even with coarse powder (aggregate powder) of 100 μm to 1000 μm, sintering proceeds, and subsequent crushing becomes difficult, grain growth occurs, and coercive force decreases. Therefore, the heat treatment temperature is 800 ℃ ~ 1100
℃. Further, the heat treatment time is appropriately selected according to the composition, particle size and the like.

また、上記の熱処理後に、 500℃〜 700℃、 0.5〜20時
間の時効処理を施すと、保磁力が更に向上する。
When the aging treatment is performed at 500 ° C. to 700 ° C. for 0.5 to 20 hours after the above heat treatment, the coercive force is further improved.

解砕後に集合粉末の粒度を限定したのは、温度上昇や熱
処理により、焼結が進行して大きな塊となることを避け
るためであり、化学的には活性な本系合金微粉末の酸化
進行を避け、取扱いを容易にするため、少なくとも 100
μm以上の粒度が必要である。しかし、粒度が1000μm
を超えると、ボンド磁石用合金粉末として、成形性が悪
くなり、高い充填率が得られなくなる。従って、集合粉
末の粒度は100 μmから1000μmとする。
The reason for limiting the particle size of the aggregated powder after crushing is to prevent the sintering from becoming large lumps due to temperature rise and heat treatment. At least 100 to avoid
A particle size of μm or more is required. However, the particle size is 1000 μm
If it exceeds, the moldability of the alloy powder for bonded magnets deteriorates and a high filling rate cannot be obtained. Therefore, the particle size of the aggregate powder is 100 μm to 1000 μm.

合金粉末組成の限定理由 この発明のボンド磁石用合金粉末の希土類元素Rは、12
原子%〜20原子%の Nd,Pr,Ho,Tbのうち少なくとも
1種、あるいはさらに、La,Ce,Gd,Er,Yのうち少な
くとも1種を含むものが好ましい。
Reasons for limiting alloy powder composition The rare earth element R of the alloy powder for bonded magnets of the present invention is 12
At least one of Nd, Pr, Ho, and Tb of atomic% to 20 atomic%, or at least one of La, Ce, Gd, Er, and Y is preferable.

又、通例Rのうち 1種をもって足りるが、実用上 2種以
上の混合物(ミッシュメタル,ジジム等)を入手上の便
宜等の理由により用いることができる。
Usually, only one of R is sufficient, but for practical purposes, a mixture of two or more kinds (Misch metal, didymium, etc.) can be used for reasons of availability.

なお、このRは純希土類元素でなくてもよく、工業上入
手可能な範囲で製造上不可避な不純物を含有するもので
も差支えない。
It should be noted that this R does not have to be a pure rare earth element, and may contain an impurity that is unavoidable in manufacturing within the industrially available range.

R(Yを含む希土類元素のうち少なくとも 1種)は、新
規な上気系ボンド磁石用合金粉末における、必須元素で
あって、12原子%未満では、結晶構造がα−鉄と同一構
造の立方晶組織となるため、高磁気特性、特に高保磁力
が得られず、20原子%を越えると、Rリッチな非磁性相
が多くなり、残留磁束密度(Br)が低下して、すぐれ
た特性のボンド磁石が得られない。よって、希土類元素
は、12原子%〜20原子%の範囲とする。
R (at least one kind of rare earth element including Y) is an essential element in the new alloy powder for upper bond type magnets, and if less than 12 atomic%, the cubic crystal structure is the same as α-iron. Since it has a crystal structure, high magnetic characteristics, especially high coercive force cannot be obtained. When it exceeds 20 atomic%, the R-rich non-magnetic phase increases, the residual magnetic flux density (Br) decreases, and excellent characteristics are obtained. I can't get a bond magnet. Therefore, the rare earth element content is in the range of 12 atom% to 20 atom%.

Bは、新規な上記系ボンド磁石用合金粉末における、必
須元素であって、 4原子%未満では、菱面体組織とな
り、高い保磁力(iHc)は得られず、20原子%を越える
と、Bリッチな非磁性相が多くなり、残留磁束密度(B
r)が低下するため、すぐれた永久磁石が得られない。
よって、Bは、 4原子%〜20原子%の範囲とする。
B is an essential element in the new alloy powder for bonded magnets described above. If it is less than 4 atomic%, a rhombohedral structure is formed, and a high coercive force (iHc) cannot be obtained. The rich non-magnetic phase increases and the residual magnetic flux density (B
Since r) is lowered, excellent permanent magnets cannot be obtained.
Therefore, B is in the range of 4 atom% to 20 atom%.

Feは、新規な上記系ボンド磁石用合金粉末において、
必須元素であり、60原子%未満では残留磁束密度(B
r)が低下し、84原子%を越えると、高い保磁力が得ら
れないので、Feは60原子%〜84原子%の含有とする。
Fe is a new alloy powder for the above-mentioned bonded magnet,
It is an essential element, and the residual magnetic flux density (B
If r) decreases and exceeds 84 atom%, a high coercive force cannot be obtained, so Fe is contained in the range of 60 atom% to 84 atom%.

また、この発明によるボンド磁石用合金粉末において、
Feの一部をCoで置換することは、得られる磁石の磁気特
性を損うことなく、温度特性を改善することができる、
また粉末の酸化に対する安定性を向上させる効果がある
が、Co置換量Feの50%を越えると、逆に磁気特性が劣化
するため、好ましくない。
Further, in the alloy powder for a bonded magnet according to the present invention,
By substituting a part of Fe with Co, the temperature characteristics can be improved without impairing the magnetic characteristics of the obtained magnet,
Further, although it has an effect of improving the stability of the powder against oxidation, if the Co substitution amount of Fe exceeds 50%, the magnetic characteristics are deteriorated, which is not preferable.

この発明の合金粉末において、高い残留磁束密度と高保
磁力を得るためには、R12.5原子%〜15原子%、B 6原
子%〜14原子%、Fe 71原子%〜82原子%が好ましい。
In order to obtain a high residual magnetic flux density and a high coercive force in the alloy powder of the present invention, R12.5 atomic% to 15 atomic%, B6 atomic% to 14 atomic% and Fe 71 atomic% to 82 atomic% are preferable.

また、この発明によるボンド磁石用合金粉末は、R,
B,Feの他、工業的生産上不可避的不純物の存在を許容
できるが、Bの一部を 4.0原子%以下の C、 3.5原子%
以下の P、 2.5原子%以下の S、 3.5%以下のCuのうち
少なくとも 1種、合計量で 4.0原子%以下で置換するこ
とにより、ボンド磁石の製造性改善、低価格化が可能で
ある。
The alloy powder for bonded magnets according to the present invention is
In addition to B and Fe, the presence of impurities that are unavoidable in industrial production is acceptable, but part of B is 4.0 at% or less C, 3.5 at%
By substituting at least one of the following P, 2.5 atomic% or less S, and 3.5% or less Cu with a total amount of 4.0 atomic% or less, it is possible to improve the manufacturability and reduce the cost of the bonded magnet.

また、下記添加元素のうち少なくとも 1種は、R−B−
Fe系ボンド磁石に対してその保磁力等を改善あるいは製
造性の改善、低価格化に効果があるため添加する。しか
し、保磁力改善のための添加に伴ない残留磁束密度(B
r)の低下を招来するので従来のハードフェラチイト磁
石の残留磁束密度と同等以上となる範囲での添加が望ま
しい。
In addition, at least one of the following additional elements is RB-
It is added to the Fe-based bonded magnet because it is effective in improving the coercive force and the like, improving the manufacturability, and lowering the price. However, the residual magnetic flux density (B
Since r) is reduced, it is desirable to add in a range that is equal to or higher than the residual magnetic flux density of the conventional hard-ferratite magnet.

5.0原子%以下のAl、 3.0原子%以下のTi、 5.0原子%以下のV 、 4.5原子%以下のCr、 5.0原子%以下のMn、 5.0原子%以下のBi、 9.0原子%以下のNb、 7.0原子%以下のTa、 5.2原子%以下のMo、 5.0原子%以下のW 、 1.0原子%以下のSb、 3.5原子%以下のGe、 1.5原子%以下のSn、 3.3原子%以下のZr、 6.0原子%以下のNi、 5.0原子%以下のSi、 3.3原子%以下のHfのうち少なくとも 1種を添加含有、
但し、2種以上含有する場合は、その最大含有量は当該
添加元素のうち最大値を有するものの原子%以下の含有
させることにより、ボンド磁石の高保磁力化が可能にな
る。
5.0 atomic% or less Al, 3.0 atomic% or less Ti, 5.0 atomic% or less V, 4.5 atomic% or less Cr, 5.0 atomic% or less Mn, 5.0 atomic% or less Bi, 9.0 atomic% or less Nb, 7.0 Atom% or less Ta, 5.2 atom% or less Mo, 5.0 atom% or less W, 1.0 atom% or less Sb, 3.5 atom% or less Ge, 1.5 atom% or less Sn, 3.3 atom% or less Zr, 6.0 atom % Ni or less, 5.0 atomic% or less Si, 3.3 atomic% or less Hf at least one is added,
However, in the case of containing two or more kinds, the maximum content can be increased by increasing the coercive force of the bond magnet by containing the additive element having the maximum value of atomic% or less.

また、この発明のボンド磁石用合金粉末は、結晶相が主
相が少なくとも50 vol%以上の正方晶、少なくとも1vo
l%以上の非磁性金属間化合物であることが、すぐれた
磁気特性を有するボンド磁石を作製するのに不加欠であ
る。
In addition, the alloy powder for bonded magnets of the present invention has a tetragonal crystal structure having a main phase of at least 50 vol% or more and at least 1 vol.
A nonmagnetic intermetallic compound content of 1% or more is essential for producing a bonded magnet having excellent magnetic properties.

実施例 実施例1 出発原料として、純度99.9%の電解鉄、B19.4%を含有
し残部はFe及びAl,Si,C 等の不純物からなるフェロボ
ロン合金、純度99.7%以上のNd及びDyを使用し、これら
をAr雰囲気で高周波溶解し、その後水冷銅鋳型に鋳造
し、13Nd−2 Dy− 8B−77Feなる組成で正方晶を主相と
するデンドライド組織の鋳塊を得た。
Examples Example 1 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy containing B19.4% and the balance being Fe and impurities such as Al, Si, C, Nd and Dy having a purity of 99.7% or more are used. Then, these were subjected to high-frequency melting in an Ar atmosphere and then cast in a water-cooled copper mold to obtain an ingot having a dendrite structure mainly composed of tetragonal crystals with a composition of 13Nd-2 Dy-8B-77Fe.

その後インゴットを、クラッシャーにより35メッシュ以
下に粗粉砕し、次にボールミルにより微粉砕し、平均粒
度 3μmの微粉末を得た。
Thereafter, the ingot was roughly crushed to 35 mesh or less by a crusher and then finely crushed by a ball mill to obtain fine powder having an average particle size of 3 μm.

この微粉末を金型に装入し、磁界中で配向しながら、
1.5 t/cm2の圧力で加圧し、その後スタンプミルで解砕
し、粒度 200μm〜 500μmにした。
This fine powder is charged into a mold and oriented in a magnetic field,
It was pressed at a pressure of 1.5 t / cm 2 and then crushed with a stamp mill to give a particle size of 200 μm to 500 μm.

得られた粉末を、1000℃, 2時間,Ar中、の条件で加熱
し、その後Ar中で 600℃, 2時間の時効処理を施し、解
砕した。熱処理後の粉末は、平均粒度 3μmの微粉末が
凝集した粒度 200μmから 500μmの集合粉末であり、
保磁力(iHc)が10.6 kOeであった。
The obtained powder was heated at 1000 ° C. for 2 hours in Ar, and then aging treatment was performed at 600 ° C. for 2 hours in Ar to disintegrate. The powder after heat treatment is an aggregate powder with a particle size of 200 μm to 500 μm in which fine powder with an average particle size of 3 μm is aggregated,
The coercive force (iHc) was 10.6 kOe.

上記性状の集合粉末を金型に装入し、10 kOeの磁界中で
配向し、 2.0 t/cm2の圧力で成形し、その後静水圧プレ
スにて、長さ14mm×幅10mm×厚み11mm寸法の成型体を作
製した。その後、該成型体を、ジメタアグリエートエス
テルを主成分とする合成樹脂を含浸させ、100 ℃, 1時
間の加熱硬化して、ボンド磁石を得た。このボンド磁石
の磁気特性と、前記の集合粉末の磁気特性を測定し、第
1表に示す。
The aggregate powder with the above properties is loaded into a mold, oriented in a magnetic field of 10 kOe, molded at a pressure of 2.0 t / cm 2 , and then hydrostatically pressed to measure length 14 mm × width 10 mm × thickness 11 mm. A molded body of was produced. Then, the molded body was impregnated with a synthetic resin containing dimethaaglyate ester as a main component, and heat-cured at 100 ° C. for 1 hour to obtain a bonded magnet. The magnetic properties of this bonded magnet and the magnetic properties of the above-mentioned aggregated powder were measured and shown in Table 1.

また、比較のため、上記の13Nb−2 Dy− 8B−77Feなる
組成の鋳塊を、粗粉砕後、微粉砕して平均粒度 3μmの
微粉末となし、金型に装入し、10 kOeの磁界中で配向
し、 2.0t/cm2の圧力で成形し、その後静水圧プレスに
て、長さ14mm×幅10mm×厚さ11mm寸法の成型体を作製
し、該成型体を、ジメタアグリエートエステルを主成分
とする合成樹脂を含浸させ、100 ℃, 1時間の加熱硬化
して、ボンド磁石を得た。この比較例ボンド磁石の磁気
特性と、比較例合金粉末の磁気特性を測定し、第1表に
示す。
For comparison, the ingot having the composition of 13Nb-2 Dy-8B-77Fe was coarsely crushed and then finely crushed into fine powder having an average particle size of 3 μm, which was charged into a mold and was filled with 10 kOe. Oriented in a magnetic field, molded at a pressure of 2.0 t / cm 2 , and then hydrostatically pressed to prepare a molded body with a length of 14 mm × width of 10 mm × thickness of 11 mm. A synthetic resin containing ate ester as a main component was impregnated and heat-cured at 100 ° C. for 1 hour to obtain a bonded magnet. The magnetic properties of the bonded magnet of this comparative example and the magnetic properties of the alloy powder of the comparative example were measured and shown in Table 1.

第1表より明らかなように、この発明によるボンド磁石
用合金粉末及びボンド磁石の各磁気特性が著しく向上し
たことが分る。
As is clear from Table 1, the magnetic properties of the alloy powder for a bonded magnet and the bonded magnet according to the present invention are remarkably improved.

実施例2 出発原料として、純度99.9%の電解鉄、B19.4%を含有
し残部はFe及びAl,Si,C 等の不純物からなるフェロボ
ロン合金、純度99.7%以上のNd及びDyを使用し、これら
をAr雰囲気で高周波溶解し、その後水冷銅鋳型に鋳造
し、14Nd−1.5Dy− 7.5B−77Feなる組成で正方晶を主
相とするデンドライド組織の鋳塊を得た。
Example 2 As starting materials, electrolytic iron having a purity of 99.9%, ferroboron alloy containing B19.4% with the balance being Fe and impurities such as Al, Si, C, Nd and Dy having a purity of 99.7% or more are used. These were subjected to high-frequency melting in an Ar atmosphere and then cast in a water-cooled copper mold to obtain an ingot having a dendrite structure mainly composed of tetragonal crystals with a composition of 14Nd-1.5Dy-7.5B-77Fe.

その後インゴットを、クラッシャーにより35メッシュ以
下に粗粉砕し、次にボールミルにより微粉砕し、平均粒
度 2.7μmの微粉末を得た。
After that, the ingot was roughly crushed to 35 mesh or less by a crusher and then finely crushed by a ball mill to obtain a fine powder having an average particle size of 2.7 μm.

この微粉末を金型に装入し、10 kOeの磁界中で配向しな
がら、 1.5t/cm2の圧力で加圧し、その後スタンプミル
で解砕し、粒度 100μm〜 500μmにした。
This fine powder was charged into a mold, pressed under a pressure of 1.5 t / cm 2 while orienting in a magnetic field of 10 kOe, and then crushed by a stamp mill to obtain a particle size of 100 μm to 500 μm.

得られた粉末を、10Torr,Ar気流中、800 ℃〜1060℃,
1時間の第2表の各種温度条件で加熱し、その後Ar中で
600℃, 1時間の時効処理を施し、再度、粒度 100μm
〜 500μmの集合粉末に解砕した。
The obtained powder is heated at 10 Torr in Ar flow at 800 ℃ ~ 1060 ℃,
Heat for 1 hour at various temperature conditions in Table 2 and then in Ar
After aging treatment at 600 ℃ for 1 hour, the particle size is 100μm again.
It was crushed into aggregate powders of ˜500 μm.

上記の集合粉末を金型に装入し、10 kOeの磁界中で配向
し、パラフィンで固定し、粉末時の磁気特性を振動試料
型磁束計で測定した。測定結果は第2表に示すとおりで
ある。
The above-mentioned aggregated powder was charged into a mold, oriented in a magnetic field of 10 kOe, fixed with paraffin, and the magnetic properties of the powder were measured with a vibrating sample magnetometer. The measurement results are as shown in Table 2.

また、比較として、上記の14Nd− 1.5Dy− 7.5B−77Fe
なる組成の鋳塊を、粗粉砕後、微粉砕して平均粒度 3μ
mの微粉末となし、金型に装入し、10 kOeの磁界中で配
向および加圧成形して 100μm〜 500μmに分級し、10
Torr,Ar気流中、800 ℃〜1060℃, 1時間の第2表の各
種温度条件で加熱し、その後Ar中で 600℃, 1時間の時
効処理を施し、解砕後再び10 kOeの磁界中で配向し、パ
ラフィンで固定し、さらに40 kOeのパルス磁場中で着磁
し、粉末時の磁気特性を振動試料型磁束計で測定した。
測定結果は第2表に示すとおりである。
As a comparison, the above 14Nd-1.5Dy-7.5B-77Fe
After roughly crushing the ingot of the composition
m into a fine powder, charged into a mold, oriented and pressure-molded in a magnetic field of 10 kOe, classified to 100 μm to 500 μm, and
Heated under various temperature conditions shown in Table 2 for 1 hour at 800 ℃ to 1060 ℃ in Torr and Ar air flow, and then aging treatment at 600 ℃ for 1 hour in Ar, and after crushing, in the magnetic field of 10 kOe again. Oriented with, fixed with paraffin, magnetized in a pulsed magnetic field of 40 kOe, and measured the magnetic properties of the powder with a vibrating sample magnetometer.
The measurement results are as shown in Table 2.

第2表より明らかなように、熱処理のみでは不十分で、
前工程として微粉末を加圧後解砕する工程が不可欠であ
り、この工程の相乗効果により本発明によるボンド磁石
用合金粉末は、特に保磁力が著しく向上したことが分
る。
As is clear from Table 2, heat treatment alone is not enough,
As a pre-step, a step of crushing the fine powder after pressurization is indispensable, and it can be seen that the coercive force of the alloy powder for bonded magnets according to the present invention is remarkably improved due to the synergistic effect of this step.

実施例3 出発原料として、純度99.9%の電解鉄、B19.4%を含有
し残部はFe及びAl,Si,C 等の不純物からなるフェロボ
ロン合金、純度99.7%以上のNd及びDy,Coを使用し、こ
れらをAr雰囲気で高周波溶解し、その後水冷銅鋳型に鋳
造し、14Nd− 2Dy− 8Dc− 7B−69Feなる組成で正方晶
を主相とするデンドライド組織の鋳塊を得た。
Example 3 As a starting material, electrolytic iron having a purity of 99.9%, a ferroboron alloy containing B19.4% with the balance being Fe and impurities such as Al, Si, and C, and Nd, Dy, and Co having a purity of 99.7% or more are used. Then, these were subjected to high-frequency melting in an Ar atmosphere and then cast in a water-cooled copper mold to obtain an ingot having a composition of 14Nd-2Dy-8Dc-7B-69Fe and a dendrite structure having a tetragonal main phase as a main phase.

その後インゴットを、クラッシャーにより35メッシュ以
下に粗粉砕し、次にアトライターを用いて粉砕時間を種
々変化させて微粉砕し、平均粒度が10μm, 5μm, 3
μmの微粉末を得た。
After that, the ingot was roughly crushed to 35 mesh or less with a crusher, and then finely crushed with an attritor with various crushing times, and the average particle size was 10 μm, 5 μm, 3
A fine powder of μm was obtained.

この微粉末を金型に装入し、10 kOeの磁界中で配向しな
がら、 1 t/cm2の圧力で加圧成形し、その後メッシュ上
で解砕し、粒度 100μm〜 500μmの集合粉末にした。
This fine powder was charged into a mold, and while being oriented in a magnetic field of 10 kOe, pressure-molded at a pressure of 1 t / cm 2 , and then crushed on a mesh to obtain an aggregate powder with a particle size of 100 μm to 500 μm. did.

得られた集合粉末を、10-3Torr、真空中、800 ℃〜1060
℃, 1時間の各種温度条件で加熱し、その後Ar中で 600
℃, 1時間の時効処理を施し、再度、粒度 100μm〜 5
00μmの集合粉末に解砕した。
The obtained aggregate powder is heated at 10 -3 Torr in vacuum at 800 ℃ ~ 1060
Heated at various temperature conditions of ℃, 1 hour, then 600 ℃ in Ar
After aging treatment at ℃ for 1 hour, the particle size is 100μm ~ 5 again.
It was crushed into a powder having a size of 00 μm.

上記の集合粉末を金型に装入し、10 kOeの磁界中で配向
し、パラフィンで固定し、粉末時の保磁力を振動試料型
磁束計で測定した。測定結果は第1図に示すとおりであ
る。
The above-mentioned aggregated powder was charged into a mold, oriented in a magnetic field of 10 kOe, fixed with paraffin, and the coercive force during powdering was measured with a vibrating sample magnetometer. The measurement results are as shown in FIG.

また、比較として、上記の14Nd− 2Dy− 8Co− 7B−69
Fe組成の鋳塊を、粗粉砕後、微粉砕して平均粒度10μ
m, 5μ, 3μmの微粉末となし、この微粉末を金型に
装入し、10 kOeの磁界中で配向しながら、 1 t/cm2の圧
力で加圧成形し、その後メッシュ上で解砕し、粒度 100
μm〜 500μmの集合粉末にし、熱処理を施すことな
く、金型に装入し、10 kOeの磁界で配向してパラフィン
で固定し、粉末時の保磁力を振動試料型磁束計で測定し
た。測定結果は第1図に示すとおりである。
As a comparison, the above 14Nd-2Dy-8Co-7B-69
An ingot of Fe composition is roughly crushed and then finely crushed to obtain an average particle size of 10μ.
m, 5μ, 3μm fine powder, charged into a mold, oriented in a magnetic field of 10 kOe, pressure-molded at a pressure of 1 t / cm 2 , and then solved on a mesh. Crushed, grain size 100
Aggregate powder having a size of μm to 500 μm was charged into a mold without heat treatment, oriented with a magnetic field of 10 kOe and fixed with paraffin, and the coercive force during the powder was measured with a vibrating sample type magnetometer. The measurement results are as shown in FIG.

第1図より明らかなように、微粉末を加圧後解砕する工
程のみでは不十分であり、熱処理が不可欠であり、熱処
理を施したこの発明によるボンド磁石用合金粉末は、特
に保磁力が著しく向上したことが分る。
As is clear from FIG. 1, the step of crushing the fine powder after pressurization is not sufficient, and the heat treatment is indispensable. The heat-treated bonded alloy powder for bonded magnets according to the present invention has a particularly high coercive force. You can see that it has improved significantly.

【図面の簡単な説明】[Brief description of drawings]

第1図は実施例3における熱処理温度と保磁力との関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between the heat treatment temperature and the coercive force in Example 3.

フロントページの続き (72)発明者 松浦 裕 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内 (72)発明者 広沢 哲 大阪府三島郡島本町江川2丁目15―17 住 友特殊金属株式会社山崎製作所内Front page continuation (72) Inventor Yutaka Matsuura 2-15-17 Egawa, Shimamoto-cho, Mishima-gun, Osaka Prefecture Sumitomo Special Metals Co., Ltd. Yamazaki Works (72) Inventor Satoshi Hirosawa 2-chome Egawa, Shimamoto-cho, Mishima-gun Osaka 15- 17 Sumitomo Special Metals Co., Ltd. Yamazaki Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】R(RはYを含む希土類元素のうち少なく
とも1種)12原子%〜20原子%、B 4原子%〜20原子
%、Fe 60原子%〜84原子%を主成分とし主相が正方晶
相からなる粒度15μm以下の微粉末より構成され、保磁
力(iHc)5 kOe〜15 kOeを有した集合粒度 100μm〜100
0μmの集合粉末からなることを特徴とするボンド磁石
用合金粉末。
1. R (R is at least one of rare earth elements including Y) 12 atom% to 20 atom%, B 4 atom% to 20 atom%, Fe 60 atom% to 84 atom% as a main component Aggregate having a coercive force (iHc) of 5 kOe to 15 kOe and composed of fine powders with a grain size of 15 μm or less
An alloy powder for bonded magnets, which comprises an aggregated powder of 0 μm.
【請求項2】R(RはYを含む希土類元素のうち少なく
とも1種)12原子%〜20原子%、B 4原子%〜20原子
%、Fe 60原子%〜84原子%を主成分とし主相が正方晶
相からなる粒度15μm以下の微粉末を、加圧成形したの
ち解砕し、さらに 800℃〜1100℃で加熱したのち解砕
し、粒度15μm以下の微粉末より構成され、保持力(iH
c) 5 kOe〜15 kOeを有した集合粒度 100μm〜1000μm
の集合粉末を得ることを特徴とするボンド磁石用合金粉
末の製造方法。
2. R (R is at least one of rare earth elements including Y) 12 atom% to 20 atom%, B 4 atom% to 20 atom%, Fe 60 atom% to 84 atom% as a main component Fine powder with a particle size of 15 μm or less consisting of a tetragonal phase is pressed and crushed, then heated at 800 ℃ to 1100 ℃ and crushed to be composed of fine powder with a particle size of 15 μm or less. (iH
c) Aggregate particle size 100 μm to 1000 μm with 5 kOe to 15 kOe
A method for producing an alloy powder for a bonded magnet, which comprises:
JP60020747A 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof Expired - Lifetime JPH0653882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020747A JPH0653882B2 (en) 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020747A JPH0653882B2 (en) 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS61179801A JPS61179801A (en) 1986-08-12
JPH0653882B2 true JPH0653882B2 (en) 1994-07-20

Family

ID=12035781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020747A Expired - Lifetime JPH0653882B2 (en) 1985-02-05 1985-02-05 Alloy powder for bonded magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0653882B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214505A (en) * 1985-03-20 1986-09-24 Namiki Precision Jewel Co Ltd Manufacture of resin bonded permanent magnet
EP0304054B1 (en) * 1987-08-19 1994-06-08 Mitsubishi Materials Corporation Rare earth-iron-boron magnet powder and process of producing same
JPH0730425B2 (en) * 1988-04-20 1995-04-05 株式会社トーキン Method for producing polymer composite rare earth magnet material
JPH07230907A (en) * 1988-04-20 1995-08-29 Tokin Corp Manufacture of polymer compound type rare earth magnet material
DE10297484B4 (en) * 2001-11-28 2006-10-19 Neomax Co., Ltd. A method and apparatus for producing a granulated rare earth metal alloy powder and a method of producing a rare earth alloy sintered body

Also Published As

Publication number Publication date
JPS61179801A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
US4975130A (en) Permanent magnet materials
US4684406A (en) Permanent magnet materials
JP3741597B2 (en) Multi-element rare earth-iron lattice intrusion-type permanent magnet material, permanent magnet comprising the same, and method for producing them
JP2751109B2 (en) Sintered permanent magnet with good thermal stability
EP0242187A1 (en) Permanent magnet and method of producing same
JPH07105289B2 (en) Rare earth permanent magnet manufacturing method
JPH0316761B2 (en)
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH0348645B2 (en)
JP2853838B2 (en) Manufacturing method of rare earth permanent magnet
JP2853839B2 (en) Manufacturing method of rare earth permanent magnet
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JPH068488B2 (en) Permanent magnet alloy
JP2739860B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
JPH066777B2 (en) High-performance permanent magnet material
JP2986611B2 (en) Fe-BR bonded magnet
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP2514155B2 (en) Method for manufacturing permanent magnet alloy
JP2925840B2 (en) Fe-BR bonded magnet
JP3652752B2 (en) Anisotropic bonded magnet
JP3032385B2 (en) Fe-BR bonded magnet
JPH044384B2 (en)
JP3131022B2 (en) Fe-BR bonded magnet
JPH0633444B2 (en) Permanent magnet alloy
JPH0467325B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term