JP3032385B2 - Fe-BR bonded magnet - Google Patents

Fe-BR bonded magnet

Info

Publication number
JP3032385B2
JP3032385B2 JP4209773A JP20977392A JP3032385B2 JP 3032385 B2 JP3032385 B2 JP 3032385B2 JP 4209773 A JP4209773 A JP 4209773A JP 20977392 A JP20977392 A JP 20977392A JP 3032385 B2 JP3032385 B2 JP 3032385B2
Authority
JP
Japan
Prior art keywords
phase
magnet
powder
crystal structure
ihc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4209773A
Other languages
Japanese (ja)
Other versions
JPH0636915A (en
Inventor
裕和 金清
哲 広沢
Original Assignee
住友特殊金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友特殊金属株式会社 filed Critical 住友特殊金属株式会社
Priority to JP4209773A priority Critical patent/JP3032385B2/en
Publication of JPH0636915A publication Critical patent/JPH0636915A/en
Application granted granted Critical
Publication of JP3032385B2 publication Critical patent/JP3032385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、モーターやアクチュ
エーターなどに最適なFe-B-R系ボンド磁石に係り、希土
類元素の含有量が少ない特定組成のFe-Co-B-(R,Dy)系合
金溶湯(但しRはPrまたはNdの1種または2種)を超急冷法
にて大部分をアモルファス組織となし、体心正方晶Fe 3 B
結晶構造を有する鉄を主成分とするホウ化物相とNd2Fe
14B型結晶構造の構成相との微細結晶集合体からなる合
金粉末を樹脂にて結合することにより、ハードフェライ
ト磁石では得られなかった5kG以上の残留磁束密度Brを
有するFe-B-R系ボンド磁石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-BR based bonded magnet which is most suitable for motors and actuators, and has a specific composition of Fe-Co-B- (R, Dy) based alloy having a small content of rare earth elements. Most of the molten metal (where R is one or two of Pr or Nd) is made to have an amorphous structure by the rapid quenching method, and body-centered tetragonal Fe 3 B
Iron-based boride phase with crystal structure and Nd 2 Fe
14 Fe-BR bonded magnets with a residual magnetic flux density Br of 5 kG or more, which were not obtained with hard ferrite magnets, by combining an alloy powder consisting of fine crystal aggregates with constituent phases of B-type crystal structure with resin About.

【0002】[0002]

【従来の技術】電装品用モーターやアクチュエーターな
どに使用される永久磁石は主にハードフェライト磁石に
限定されていたが、低温でのiHc低下に伴う低温減
磁、セラミックス材質のために機械的強度が低くて割
れ、欠けが発生し易いこと、複雑な形状が得難いことな
どの問題があった。
2. Description of the Related Art Permanent magnets used in motors and actuators for electrical components are mainly limited to hard ferrite magnets. However, low-temperature demagnetization due to a decrease in iHc at low temperatures and mechanical strength due to ceramic materials. However, there are problems that cracks and chips are apt to occur due to the low shape, and that it is difficult to obtain a complicated shape.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。
[0003] Today, there is a strong demand for automobiles to improve fuel efficiency by reducing the weight of the vehicles in order to save resources, and it is required to further reduce the size and weight of electrical components for automobiles. Also,
Designs to maximize the performance-to-weight ratio are also being considered for applications such as motors for home appliances other than automotive electrical components, and the current motor structure is optimal for magnet materials with a Br material of about 5 to 7 kG. It has been. That is,
When Br of the magnet material to be used is 8 kG or more, the current motor structure needs to increase the cross-sectional area of the iron plate of the rotor or the stator which becomes the magnetic path, which leads to an increase in weight. If so, the performance to weight ratio can be maximized.

【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。
Accordingly, a magnetic material for a small motor is required to have a residual magnetic flux density Br of at least 5 kG in terms of magnetic properties, but cannot be obtained with a conventional hard ferrite magnet. For example, an Nd—Fe—B-based bonded magnet satisfies such magnetic properties, but Nd or the like, which requires a large number of steps and large-scale facilities for metal separation and purification or reduction reaction, is required.
Since it contains 1515 at%, it is significantly more expensive than a hard ferrite magnet, and at present, a magnet material having Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe7719(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.、C
8,1988,669〜670頁)された。この磁石材
料はアモルファスリボンを熱処理することにより、Fe
3BとNd2Fe14Bの結晶集合組織を有する準安定構造
であるが、iHcが2〜3kOe程度と低く、またこの
iHcを得るための熱処理条件が狭く限定され、工業生
産上実用的でない。
On the other hand, Nd-Fe-B
In recent years, a magnet material having a main phase of Fe 3 B type compound in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed as a system magnet (R. Cohoenor et al., J. de Phys., C.
8, 1988, 669-670). This magnet material is obtained by heat-treating an amorphous ribbon to obtain Fe.
Metastable structure having 3 B and Nd 2 Fe 14 B crystalline texture but, iHc is low as 2~3KOe, also the heat treatment conditions for obtaining the iHc is narrowly limited, not industrial production on a practical .

【0006】このFe3B型化合物を主相とする磁石材
料に添加元素を加えて多成分化し、性能向上を図った研
究が発表されている。その1つは希土類元素にNdのほ
かにDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn,Magn,M
at.、83(1990)228〜230頁)。
Researches have been published to improve the performance by adding an additional element to the magnetic material having the Fe 3 B-type compound as a main phase to make it multi-component. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. In addition to the problem of adding an expensive element, the added rare earth element has a magnetic moment of Nd or Fe. There is a problem that magnetization decreases due to coupling in anti-parallel to the moment (R. Coehorn, J. Magn, Magn, M
at. , 83 (1990) 228-230).

【0007】他の研究(Shen Bao−genら、
J.Magn,Magn,Mat.、89(1991)
335〜340頁)として、Feの一部をCoにて置換
してキュリー温度を上昇させ、iHcの温度係数を改善
するものがあるが、Coの添加にともないBrを低下さ
せる問題がある。
[0007] Other studies (Shen Bao-gen et al.,
J. See Magn, Magn, Mat. , 89 (1991)
335-340), a part of Fe is replaced with Co to raise the Curie temperature to improve the temperature coefficient of iHc, but there is a problem that Br is reduced with the addition of Co.

【0008】いずれにしてもFe 3 B系Nd-Fe-B磁石は、超
急冷法によりアモルファス化した後、熱処理してハード
磁石材料化できるが、iHcが低く、かつ前記熱処理条件
が狭く、添加元素にて高iHc化を図ると磁気エネルギー
積が低下するなど、安定した工業生産ができず、ハード
フェライト磁石の代替えとして安価に提供することがで
きない。
In any case, the Fe 3 B-based Nd-Fe-B magnet can be made into a hard magnet material by heat treatment after being made amorphous by a super-quenching method. However, since the iHc is low and the heat treatment conditions are narrow, the addition of If the element is made to have high iHc, stable industrial production cannot be performed, such as a decrease in magnetic energy product, and it cannot be provided at a low cost as a substitute for a hard ferrite magnet.

【0009】また、Nd−Fe−B系合金をアモルファ
ス化するためには、超急冷時のロール周速度を著しく速
くする必要があり、製品の回収率や歩留りが低下する問
題があり、さらにFe基合金であることから、保存時の
腐食が進行し易く、長期間の保存により初期の磁気特性
が維持できずに劣化する問題があった。
Further, in order to make the Nd-Fe-B-based alloy amorphous, it is necessary to remarkably increase the roll peripheral speed at the time of ultra-quenching, and there is a problem that the product recovery rate and the yield are reduced. Since it is a base alloy, there is a problem that corrosion at the time of storage is apt to progress, and the magnetic properties at the initial stage cannot be maintained due to long-term storage, resulting in deterioration.

【0010】この発明は、Fe 3 B系Fe-B-R磁石(Rは希土類
元素)に着目して、iHcと(BH)maxを向上させ、5kG以上の
残留磁束密度Brを有し安定した工業生産が可能なハード
フェライト磁石の代替えとして安価に提供できるFe 3 B系
Fe-B-Rボンド磁石を目的としている。
The present invention focuses on Fe 3 B-based Fe-BR magnets (R is a rare earth element), improves iHc and (BH) max, has a residual magnetic flux density Br of 5 kG or more, and has a stable industrial production. Fe 3 B system that can be provided at low cost as an alternative to hard ferrite magnets
Intended for Fe-BR bonded magnets.

【0011】[0011]

【課題を解決するための手段】この発明は、Fe 3 B系Fe-B
-R磁石のiHcと(BH)maxを向上させ、安定した工業生産が
可能な製造方法を目的に種々検討した結果、以下の知見
を得て完成したものである。希土類元素R(R:Pr、Ndの1
種または2種)の1部をDyにて置換することにより、Nd2Fe
14B相の異方性磁界を向上させ、高保磁力を図ると共
に、少量の添加Coにより、Fe3B相中のFeの一部がCoで置
換されて、その結果、完全にアモルファス相を得なくて
も、Fe3Bと同じ結晶構造、すなわち、体心正方晶Fe 3 B
晶構造を有する鉄を主成分とするホウ化物相が折出し、
さらに急冷後、適当な熱処理によって、前記ホウ化物相
とNd2Fe14B型結晶構造の化合物相が同一粉末粒子中に共
存し、しかもその平均結晶粒径が5nm〜100nmの範囲内の
とき、実用的に必要な2kOe以上の固有保磁力を発揮し、
この合金粉末を樹脂にて所要形状に成型固化することに
より、室温付近で準安定な結晶構造相が分解することな
く、永久磁石として利用可能な形態として提供できる。
SUMMARY OF THE INVENTION The present invention relates to a Fe 3 B-based Fe-B
As a result of various investigations for the purpose of improving the iHc and (BH) max of the -R magnet and achieving stable industrial production, the following findings were obtained and completed. Rare earth element R (R: Pr, Nd 1
Nd 2 Fe by substituting one part of
While improving the anisotropic magnetic field of the 14 B phase to achieve high coercive force, a small amount of Co is added, and a part of Fe in the Fe 3 B phase is replaced by Co, resulting in a completely amorphous phase. Even without it, the same crystal structure as Fe 3 B, that is, a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 B crystal structure,
After addition quenching, by suitable heat treatment, a compound phase of the boride phase and Nd 2 Fe 14 B crystal structure coexist in the same powder particles, yet when the average crystal grain size in the range of 5 nm to 100 nm, Demonstrate a specific coercive force of 2 kOe or more necessary for practical use,
By molding and solidifying the alloy powder into a required shape with a resin, a metastable crystal structure phase can be provided in a form usable as a permanent magnet without being decomposed at around room temperature.

【0012】この発明は、合金粉末の組成式をFe
100-x-y-zCoxBy(R1-aDya)z (但しRはPrまたはNdの1種
または2種)と表し、組成範囲を限定する記号x、y、z、a
が下記値を満足し、体心正方晶Fe 3 B結晶構造を有する鉄
を主成分とするホウ化物相とNd2Fe14B型結晶構造の構成
相とが同一粉末粒子中に共存し、各構成相の平均結晶粒
径が5nm〜100nmの範囲にあり、平均粒径が3μm〜500μm
である粉末を樹脂にて結合したことを特徴とするFe-B-R
系ボンド磁石である。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.7
According to the invention, the composition formula of the alloy powder is Fe
100-xyz Co x B y ( R 1-a Dy a) z ( where R is Pr or one or two of Nd) represents the symbol limiting the composition range x, y, z, a
Satisfies the following values, a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 B crystal structure and a constituent phase of Nd 2 Fe 14 B type crystal structure coexist in the same powder particles, The average crystal grain size of the constituent phases is in the range of 5 nm to 100 nm, and the average grain size is 3 μm to 500 μm
Fe-BR characterized in that the powder is bonded with a resin
It is a bonded magnet. 0.05 ≦ x ≦ 15at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at% 0.02 ≦ a ≦ 0.7

【0013】この発明によるFe−B−R系ボンド磁石
を得るには、以下の製法による。 (1)組成式をFe100-x-y-zCoxy(1-aDyaz
(但しRはPrまたはNdの1種または2種)と表
し、組成範囲を限定する記号x、y、z、aが上述の値
を満足する合金溶湯を超急冷法にて実質的に90%以上
をアモルファス組織となし、(2)さらに熱処理に際し
500℃からの昇温速度を1〜15℃/分で昇温して5
50〜700℃で5分〜6時間保持する熱処理を施し、
(3)Fe3B型化合物を主相とし、Nd2Fe14B型結
晶構造を有する強磁性相を有し、平均結晶粒径が5nm
〜100nmの微細結晶集合体を得たのち、(4)これ
を粉砕して得られた平均粒径が3〜500μmの粉末を
樹脂にて所要形状に成型固化する。
In order to obtain the Fe-BR bond magnet according to the present invention, the following manufacturing method is used. (1) the composition formula Fe 100-xyz Co x B y (R 1-a Dy a) z
(Where R represents one or two of Pr or Nd), and the symbols x, y, z, and a defining the composition range substantially satisfy 90% of the molten alloy by the ultra-quenching method. The above is regarded as an amorphous structure. (2) In the heat treatment, the temperature is raised from 500 ° C. at a rate of 1 to 15 ° C./min to 5
Heat treatment at 50 to 700 ° C. for 5 minutes to 6 hours,
(3) having a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure with an Fe 3 B type compound as a main phase, and having an average crystal grain size of 5 nm
After obtaining a fine crystal aggregate having a size of about 100 nm, (4) a powder having an average particle diameter of 3 to 500 μm obtained by pulverizing the aggregate is molded and solidified into a required shape with a resin.

【0014】粉末の構成相の限定理由この発明によるボ
ンド磁石を構成する合金粉末は、1.6Tという高い飽和磁
化を持つ体心正方晶Fe 3 B結晶構造を有する鉄を主成分と
するホウ化物相を主相とすることを特徴としている。こ
のホウ化物はFe3BまたはそのFeの一部がCoで置換された
化合物であって、このホウ化物相はFe3Bまたはその中の
Feの一部がCoで置換されている。このホウ化物相は特定
の範囲で準安定的に空間群P4/nmnのNd2Fe14B型結晶構造
を有するNd2(Fe,Co)14B強磁性相と共存できる。これら
のホウ化物相と強磁性相が共存することが高い磁束密度
と十分なiHcを得るためには必須であり、同一組成であ
っても、例えば鋳造法などではその製法に起因して、C1
6型結晶構造を有するFe2B相と体心立方晶のα-Fe相とが
主相となると、高い磁化が得られるが、iHcは1kOe以下
に劣化して磁石として使用できなくなるため好ましくな
い。
Reasons for Limiting Constituent Phase of Powder The alloy powder constituting the bonded magnet according to the present invention is a boride phase containing iron as a main component and having a body-centered tetragonal Fe 3 B crystal structure having a high saturation magnetization of 1.6 T. Is the main phase. This boride is Fe 3 B or a compound in which a part of Fe is substituted with Co, and the boride phase is Fe 3 B or
A part of Fe is replaced by Co. This boride phase can metastable in a specific range and coexist with the Nd 2 ( Fe, Co) 14 B ferromagnetic phase having the Nd 2 Fe 14 B type crystal structure of the space group P 4 / nmn. The coexistence of these boride phase and ferromagnetic phase is essential for obtaining a high magnetic flux density and sufficient iHc, and even if they have the same composition, for example, in a casting method or the like, C1
When the Fe 2 B phase having a 6-type crystal structure and the body-centered cubic α-Fe phase become the main phases, high magnetization is obtained, but iHc is deteriorated to 1 kOe or less, which is not preferable because it cannot be used as a magnet. .

【0015】組成の限定理由 希土類元素Rは特定量のPrまたはNdの1種また2種
に加えて、Dyを含有するときのみ、高い磁気特性が得
られ、他の希土類、例えばCe、LaではiHcが2k
Oe以上の特性が得られず、またSm以降の中希土類元
素、重希土類元素は磁気特性の劣化を招来するとともに
磁石を高価格にするため好ましくない。Rは、3at%
未満では2kOe以上のiHcが得られず、また5.5
at%を超えるとFe3B相が生成せず、硬磁性を示さ
ない準安定相のR2Fe233相が折出しiHcは著しく
低下するので好ましくないため、3〜5.5at%の範
囲とする。R中のDy量を0.02〜0.7に限定した
理由は、0.02未満では4kOe以上のiHcが得ら
れず、また、0.7を超えるとBrの低下が著しく好ま
しくないことによる。
Reasons for Limiting Composition The rare earth element R can provide high magnetic properties only when it contains Dy in addition to one or two kinds of specific amounts of Pr or Nd, and rare earth elements R such as Ce and La iHc is 2k
Characteristics higher than Oe cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm are not preferable because they cause deterioration of magnetic characteristics and increase the cost of the magnet. R is 3at%
If it is less than 2, iHc of 2 kOe or more cannot be obtained, and 5.5
If it exceeds at%, the Fe 3 B phase is not formed, and the metastable phase R 2 Fe 23 B 3 phase which does not show hard magnetism is deposited. Range. The reason why the amount of Dy in R is limited to 0.02 to 0.7 is that if less than 0.02, iHc of 4 kOe or more cannot be obtained, and if it exceeds 0.7, the reduction of Br is not preferable. .

【0016】Bは、16at%未満および22at%を
超えると2kOe以上のiHcが得られないため、16
〜22at%の範囲とする。
If B is less than 16 at% or more than 22 at%, iHc of 2 kOe or more cannot be obtained.
2222 at%.

【0017】Coは、iHc及び減磁曲線の角形性の向
上改善に有効であるが、0.05at%未満ではかかる
効果が得られず、15at%を超えるとiHcは著しく
低下し、2kOe以上のiHcが得られないため、0.
05〜15at%の範囲とする。
Co is effective for improving and improving the squareness of the iHc and demagnetization curve. However, if the content is less than 0.05 at%, such an effect cannot be obtained. If the content exceeds 15 at%, iHc is remarkably reduced and 2 kOe or more. Since iHc cannot be obtained, 0.
The range is from 0.5 to 15 at%.

【0018】Feは、上述の元素の含有残余を占める。Fe accounts for the residual content of the above-mentioned elements.

【0019】結晶粒径、粉末粒径の限定理由この発明の
ボンド磁石を構成する合金粉末中に共存する体心正方晶
Fe 3 B結晶構造を有する鉄を主成分とするホウ化物相とNd
2Fe14B型結晶相は、いずれも強磁性相であるが、前者相
は単独では磁気的に軟質であり、後者相が共存すること
がiHcを発現するのに不可欠である。しかし、単に両相
が共存するだけでは不十分であり、両者の平均結晶粒径
が5nm〜100nmの範囲にないと、減磁曲線の第2象限の角
形性が悪化して、永久磁石としては動作点において十分
な磁束を取り出すことができないため、平均結晶粒径は
5nm〜100nmに限定する。複雑形状や薄肉形状の磁石が得
られるボンド磁石としての特徴を生かし、高精度の成形
を行なうには、粉末の粒径は十分小さいことが必要であ
るが、粉末粒径を小さくしすぎると比表面積増大に伴い
多量の樹脂をバインダーとして使用する必要があり、充
填密度が低下して好ましくないため、粉末粒径を3μm〜
500μmに限定する。
Reasons for limiting crystal grain size and powder grain size Body-centered tetragonal coexisting in the alloy powder constituting the bonded magnet of the present invention
Iron-based boride phase with Fe 3 B crystal structure and Nd
The 2 Fe 14 B-type crystal phases are all ferromagnetic phases, but the former phase is magnetically soft by itself, and the coexistence of the latter phase is essential for the expression of iHc. However, simply coexisting both phases is not enough, and if the average crystal grain size of both is not in the range of 5 nm to 100 nm, the squareness of the second quadrant of the demagnetization curve deteriorates, and as a permanent magnet, Since sufficient magnetic flux cannot be extracted at the operating point, the average crystal grain size is
Limited to 5-100 nm. Making use of the characteristics of bonded magnets that can produce magnets with complex shapes and thin shapes, high-precision molding requires that the powder particle size be sufficiently small. It is necessary to use a large amount of resin as a binder as the surface area increases, and the packing density decreases, which is not preferable.
Limited to 500 μm.

【0020】この発明によるボンド磁石は等方性磁石で
あり、以下に示す圧縮成型、射出成型、押し出し成型、
圧延成型、樹脂含浸法など公知のいずれの製造方法であ
ってもよい。圧縮成型の場合は、磁性粉末に熱硬化性樹
脂、カップリング剤、滑剤等を添加混練したのち、圧縮
成型して加熱し樹脂を硬化して得られる。射出成型、押
し出し成型、圧延成型の場合は、磁性粉末に熱可塑性樹
脂、カップリング剤、滑剤等を添加混練したのち、射出
成型、押し出し成型、圧延成型のいずれかの方法にて成
型して得られる。樹脂含浸法においては、磁性粉末を圧
縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を
含浸させ、加熱して樹脂を硬化させて得る。また、磁性
粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑
性樹脂を含浸させて得る。
The bonded magnet according to the present invention is an isotropic magnet, and has the following compression molding, injection molding, extrusion molding,
Any known production method such as rolling molding and resin impregnation may be used. In the case of compression molding, it is obtained by adding and kneading a thermosetting resin, a coupling agent, a lubricant and the like to the magnetic powder, and then compressing and heating to cure the resin. In the case of injection molding, extrusion molding, or rolling molding, a thermoplastic resin, a coupling agent, a lubricant, etc. are added and kneaded to the magnetic powder, and then molded by any of injection molding, extrusion molding, and rolling molding. Can be In the resin impregnation method, after magnetic powder is compression-molded, heat-treated if necessary, then impregnated with a thermosetting resin, and heated to cure the resin. Further, the magnetic powder is obtained by compression molding, heat-treating as necessary, and then impregnating with a thermoplastic resin.

【0021】この発明において、ボンド磁石中の磁性粉
末の充填率は、前記製法により異なるが、70〜99.
5wt%であり、残部0.5〜30wt%が樹脂その他
である。圧縮成型の場合、磁性粉末の充填率は95〜9
9.5wt%、射出成型の場合、磁性粉末の充填率は9
0〜95wt%、樹脂含浸法の場合、磁性粉末の充填率
は96〜99.5wt%が好ましい
In the present invention, the filling rate of the magnetic powder in the bonded magnet varies depending on the above-mentioned manufacturing method.
5 wt%, and the remaining 0.5 to 30 wt% is resin and others. In the case of compression molding, the filling ratio of the magnetic powder is 95 to 9
9.5 wt%, in the case of injection molding, the filling rate of the magnetic powder is 9
In the case of the resin impregnation method, the filling rate of the magnetic powder is preferably 96 to 99.5 wt%.

【0022】バインダーとして用いる合成樹脂は、熱硬
化性、熱可塑性のいずれの性質を有するものも利用でき
るが、熱的に安定な樹脂が好ましく、例えば、ポリアミ
ド、ポリイミド、フェノール樹脂、弗素樹脂、けい素樹
脂、エポキシ樹脂などを適宜選定できる。
As the synthetic resin used as the binder, those having both thermosetting properties and thermoplastic properties can be used, but thermally stable resins are preferable. For example, polyamides, polyimides, phenol resins, fluorine resins, silicon resins, and the like can be used. A basic resin, an epoxy resin, or the like can be appropriately selected.

【0023】[0023]

【作用】この発明は、希土類元素R(RはPr、Ndの1種また
は2種)の1部をDyにて置換することにより、特定組成のF
e-Co-B-R系合金溶湯を超急冷法後、熱処理して空間群I4
の体心正方晶Fe 3 B結晶構造を有する鉄を主成分とするホ
ウ化物相とNd2Fe14B型結晶相の準安定混合組織となす際
に、特定量のCoを含有するため、準安定相である空間群
I4の体心正方晶Fe 3 B結晶構造を有する鉄を主成分とする
ホウ化物相が安定化し、完全にアモルファス組織としな
くても、空間群I4の該ホウ化物相を主相とする平均結晶
粒径が5nm〜100nmの微細結晶集合体となり、主相の体心
正方晶Fe 3 B結晶構造を有する鉄を主成分とするホウ化物
相のほか、Nd2Fe14B型結晶構造を有する強磁性相が共存
するボンド磁石用合金粉末が得られ、樹脂との結合によ
り、iHc≧4kOe、Br≧5kG、(BH)max≧3MGOeの磁気特性を
有するボンド磁石を得ることができる。
According to the present invention, by replacing a part of the rare earth element R (R is one or two of Pr and Nd) with Dy, a specific composition F
Space group I 4
When forming a metastable mixed structure of a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 B crystal structure and a Nd 2 Fe 14 B type crystal phase, since a specific amount of Co is contained, Space group that is stable phase
The boride phase mainly composed of iron having a body-centered tetragonal Fe 3 B crystal structure of I 4 is stabilized, and the boride phase of the space group I 4 is used as the main phase without completely forming an amorphous structure. The average crystal grain size becomes a fine crystal aggregate of 5 nm to 100 nm, and in addition to a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 B crystal structure of the main phase, an Nd 2 Fe 14 B type crystal structure Thus, an alloy powder for a bonded magnet having a ferromagnetic phase is obtained, and a bonded magnet having magnetic characteristics of iHc ≧ 4 kOe, Br ≧ 5 kG, and (BH) max ≧ 3MGOe can be obtained by bonding with a resin.

【0024】[0024]

【実施例】【Example】

実施例 表1のNo.1〜5の組成となるように、純度99.5
%以上のFe、Co、B、Nd、Pr、Dyの金属を用
いて、総量が30grとなるように秤量し、底部に直径
0.8mmのオリフィスを有する石英るつぼ内に投入
し、圧力56cmHgのAr雰囲気中で高周波加熱によ
り溶解し、溶解温度を1400℃にした後、湯面をAr
ガスにより加圧して室温にてロール周速度20m/秒に
て高速回転するCu製ロールの外周面に0.7mmの高
さから溶湯を噴出させて、幅2〜3mm、厚み30〜4
0μmの超急冷薄帯を作製した。得られた超急冷薄帯を
CuKαの特性X線と薄帯の断面のSEM写真により、
大部分(約90vol%以上)がアモルファスであるこ
とを確認した。
Example No. 1 in Table 1 99.5 purity so as to have a composition of 1-5
% Or more of metals of Fe, Co, B, Nd, Pr, and Dy, weighed so that the total amount becomes 30 gr, and put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom. After melting by high frequency heating in an Ar atmosphere and setting the melting temperature to 1400 ° C.,
A molten metal is jetted from a height of 0.7 mm onto the outer peripheral surface of a Cu roll which is pressurized with a gas and rotates at a high speed at a roll peripheral speed of 20 m / sec at room temperature to have a width of 2-3 mm and a thickness of 30-4.
A 0 μm ultra-quenched ribbon was produced. The obtained ultra-quenched ribbon was characterized by the characteristic X-ray of CuKα and the SEM photograph of the cross section of the ribbon.
It was confirmed that most (about 90 vol% or more) were amorphous.

【0025】この超急冷薄帯をArガス中で500℃ま
で急速加熱した後、500℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持し、そ
の後室温まで冷却して薄帯を取り出した。試料の組織
は、正方晶のFe3B相が主相で、Nd2Fe14B相とα
−Fe相が混在する多相組織であり、平均結晶粒径はい
ずれも0.1μm以下であった。なお、Coはこれらの
各相でFeの一部を置換する。
After the ultra-quenched ribbon was rapidly heated to 500 ° C. in Ar gas, the temperature was raised to 500 ° C. or more at the temperature rising rate shown in Table 1, and kept at the heat treatment temperature shown in Table 1 for 10 minutes. After cooling to room temperature, the ribbon was removed. The structure of the sample was such that the tetragonal Fe 3 B phase was the main phase, and the Nd 2 Fe 14 B phase and α
-Fe phase was mixed, and the average crystal grain size was 0.1 µm or less in each case. Note that Co replaces part of Fe in each of these phases.

【0026】この薄帯を粉砕して、粒径が5〜120μ
mにわたって分布する平均粒径60μmの粉末を得たの
ち、粉末98wt%に対してエポキシ樹脂を2wt%の
割合で混合したのち、6ton/cm2の圧力で圧縮成
型し、150℃で硬化処理してボンド磁石を得た。この
ボンド磁石の密度は5.6gr/cm3であり、磁石特
性を表2に示す。
The ribbon is pulverized to a particle size of 5 to 120 μm.
After obtaining a powder having an average particle size of 60 μm distributed over m, an epoxy resin was mixed at a ratio of 2 wt% with respect to 98 wt% of the powder, compression molded at a pressure of 6 ton / cm 2 , and cured at 150 ° C. To obtain a bonded magnet. The density of this bonded magnet was 5.6 gr / cm 3 , and the magnet properties are shown in Table 2.

【0027】比較例 表1のNo6,7の組成となるように純度99.5%以
上のFe、Co、B、Ndを用いて、実施例1と同一条
件で、超急冷薄帯を作製した。得られた超急冷薄帯をA
rガス中で500℃まで急速加熱した後、500℃以上
を表1に示す昇温速度で昇温し、表1に示す熱処理温度
で10分間保持する熱処理を施し、冷却後に実施例1と
同条件で試料化して磁気特性を測定した。測定結果を表
2に示す。
Comparative Example A super-quenched ribbon was prepared under the same conditions as in Example 1 using Fe, Co, B, and Nd having a purity of 99.5% or more so as to have the compositions of Nos. 6 and 7 in Table 1. . A
After rapidly heating to 500 ° C. in r gas, the temperature was raised to 500 ° C. or more at the temperature increasing rate shown in Table 1, and heat treatment was performed at the heat treatment temperature shown in Table 1 for 10 minutes. Samples were taken under the conditions and the magnetic properties were measured. Table 2 shows the measurement results.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】この発明は、希土類元素のR(RはNd、Pr
の1種または2種)の1部をDyにて置換した特定組成のFe-C
o-B-(R,Dy)系合金溶湯を超急冷後、熱処理し、完全にア
モルファス組織としなくても、体心正方晶Fe 3 B結晶構造
を有する鉄を主成分とするホウ化物相を主相とする平均
結晶粒径が5nm〜100nmの微細結晶集合体となり、該ホウ
化物相のほか、Nd2Fe14B型結晶構造を有する強磁性相が
共存するボンド磁石用合金粉末が得られ、樹脂との結合
により、iHc≧4kOe、Br≧5kG、(BH)max≧3MGOeの磁気特
性を有するボンド磁石を得ることができる。
According to the present invention, R (R is Nd, Pr)
Fe-C of a specific composition in which one part of
The super-quenched oB- (R, Dy) alloy melt is heat-treated to form a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 B crystal structure, even if it is not completely amorphous. An average crystal grain size of 5 nm to 100 nm becomes a fine crystal aggregate, in addition to the boride phase, an alloy powder for a bonded magnet in which a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure is obtained, and a resin is obtained. By bonding, a bonded magnet having magnetic characteristics of iHc ≧ 4 kOe, Br ≧ 5 kG, and (BH) max ≧ 3MGOe can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 C22C 38/00 303 H01F 1/053 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) H01F 1/08 C22C 38/00 303 H01F 1/053

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 合金粉末の組成式をFe100-x-y-zCoxBy(R
1-aDya)z (但しRはPrまたはNdの1種または2種)と表
し、組成範囲を限定する記号x、y、z、aが下記値を満足
し、体心正方晶Fe 3 B結晶構造を有する鉄を主成分とする
ホウ化物相とNd2Fe14B型結晶構造の構成相とが同一粉末
粒子中に共存し、各構成相の平均結晶粒径が5nm〜100nm
の範囲にあり、平均粒径が3μm〜500μmである粉末を樹
脂にて結合したことを特徴とするFe-B-R系ボンド磁石。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.7
1. The composition formula of an alloy powder is represented by Fe 100-xyz Co x By ( R
1-a Dy a ) z (where R is one or two of Pr or Nd), and the symbols x, y, z, a that limit the composition range satisfy the following values, and the body-centered tetragonal Fe 3 and construction phases of boride phase and Nd 2 Fe 14 B crystal structure coexist in the same powder particles containing iron as a main component having a B crystal structure, an average grain diameter of each component phase is 5nm~100nm
Wherein the powder having an average particle size of 3 μm to 500 μm is bonded with a resin. 0.05 ≦ x ≦ 15at% 16 ≦ y ≦ 22at% 3 ≦ z ≦ 5.5at% 0.02 ≦ a ≦ 0.7
JP4209773A 1992-07-13 1992-07-13 Fe-BR bonded magnet Expired - Fee Related JP3032385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4209773A JP3032385B2 (en) 1992-07-13 1992-07-13 Fe-BR bonded magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4209773A JP3032385B2 (en) 1992-07-13 1992-07-13 Fe-BR bonded magnet

Publications (2)

Publication Number Publication Date
JPH0636915A JPH0636915A (en) 1994-02-10
JP3032385B2 true JP3032385B2 (en) 2000-04-17

Family

ID=16578373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4209773A Expired - Fee Related JP3032385B2 (en) 1992-07-13 1992-07-13 Fe-BR bonded magnet

Country Status (1)

Country Link
JP (1) JP3032385B2 (en)

Also Published As

Publication number Publication date
JPH0636915A (en) 1994-02-10

Similar Documents

Publication Publication Date Title
US4983232A (en) Anisotropic magnetic powder and magnet thereof and method of producing same
KR0149901B1 (en) Iron-based permanent magnet alloy powders for resin bonded magnets and magnets made therefrom
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JPH0348645B2 (en)
JP2986611B2 (en) Fe-BR bonded magnet
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP3032385B2 (en) Fe-BR bonded magnet
JP2925840B2 (en) Fe-BR bonded magnet
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3131022B2 (en) Fe-BR bonded magnet
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JPH0653882B2 (en) Alloy powder for bonded magnet and manufacturing method thereof
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH0636916A (en) Fe-b-r base bond magnet
JP3131040B2 (en) Method for producing Fe-BR bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP3103219B2 (en) Magnet roll and its manufacturing method
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2746111B2 (en) Alloy for permanent magnet
JP3703903B2 (en) Anisotropic bonded magnet

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees