JP2727506B2 - Permanent magnet and manufacturing method thereof - Google Patents

Permanent magnet and manufacturing method thereof

Info

Publication number
JP2727506B2
JP2727506B2 JP62062198A JP6219887A JP2727506B2 JP 2727506 B2 JP2727506 B2 JP 2727506B2 JP 62062198 A JP62062198 A JP 62062198A JP 6219887 A JP6219887 A JP 6219887A JP 2727506 B2 JP2727506 B2 JP 2727506B2
Authority
JP
Japan
Prior art keywords
permanent magnet
magnet
coercive force
magnet according
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62062198A
Other languages
Japanese (ja)
Other versions
JPS647501A (en
Inventor
弘一 矢島
修 河本
哲人 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US07/038,195 priority Critical patent/US4836868A/en
Priority to DE8787303284T priority patent/DE3779481T2/en
Priority to EP87303284A priority patent/EP0242187B1/en
Publication of JPS647501A publication Critical patent/JPS647501A/en
Application granted granted Critical
Publication of JP2727506B2 publication Critical patent/JP2727506B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • H05K3/363Assembling flexible printed circuits with other printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は各種電気機器等に使用される高性能磁石、
特に希土類元素を含む合金系の急冷磁石およびその製法
に関し、Fe−R−B系(RはYを含む希土類元素であ
る、以下同じ)およびFe-Co−R−B系の合金溶湯を急
冷凝固させることによって優れた磁石特性を有する磁石
としさらに急冷凝固後の磁石を特定条件下で焼鈍するこ
とによって、均質で安定な磁石性能を得るものである。 なお、本明細書において、RはYを包含する希土類元
素のうち少なくとも1種、R′は特許請求の範囲の通
り、Ce、Laを除き、RはYを包含する希土類元素のうち
少なくとも1種を示す。 〔従来の技術〕 高性能を有する希土類磁石としては、粉末冶金法によ
るSm-Co系磁石でエネルギー積として、32MGOeのものが
量産されているが、Sm,Coは原料価格が高いという欠点
を有する。希土類の中で原子量の小さい希土類元素、た
とえばセリウムやプラセオジム、ネオジムはサマリウム
よりも豊富にあり、価格が安い。又Feは安価である。 そこで、近年Nd-Fe−B系磁石が開発され、特開昭59-
46008号公報では、焼結磁石が、また特開昭60-9852号公
報では、高速急冷法によるものが述べられている。 焼結法による磁石では、従来のSm-Co系の粉末冶金プ
ロセスを適用出来るものの、酸化しやすいNd-Fe系合金
インゴットを2〜10μm程度に微粉末化する工程を有す
るため、取り扱いが難かしいこと、あるいは粉末冶金プ
ロセスは工程数が多い(溶解→鋳造→インゴット粗粉砕
→微粉砕→プレス→焼結→磁石)ため安価な原料を用い
るという特徴を生かせない面があった。 一方高速急冷法による磁石では工程が簡素化され(溶
解→高速急冷→粗粉砕→冷間プレス(温間プレス)→磁
石)かつ微粉末化工程を必要としないという利点があ
る。しかしながら、高速急冷法による磁石を工業材料と
なすためには一層の高保磁力化、高エネルギー積化、低
コスト化および着磁特性の改良等が望まれていた。 希土類−鉄−ホウ素永久磁石の諸特性の中で保磁力は
温度に鋭敏であり、希土類コバルト永久磁石の保磁力
(iHc)の温度係数が0.15%/℃であるのに対して、希
土類−鉄−ホウ素永久磁石材料の保磁力(iHc)の温度
係数は0.6〜0.7%/℃と4倍以上高いという問題点があ
つた。したがって、希土類−鉄−ホウ素永久磁石材料は
温度上昇に伴って減磁する危険が大きく、磁気回路上で
の限定された設計を余儀なくされていた。さらには、例
えば、熱帯で使用する自動車のエンジンルーム内の部品
用永久磁石としては使用不可能であった。希土類−鉄−
ホウ素永久磁石材料は保磁力の温度係数が大きいところ
に実用上の問題があることは従来より知られており、保
磁力の絶対値が大きい磁石の出現が望まれていた(日経
ニューマテリアル、1986、4−28(No.9)第80頁)。 R−B−Fe合金に液体急冷法により高い保磁力iHcと
エネルギ積を具備させることを提案する特開昭60-9852
号公報の組成は、希土類元素R(Nd,Pr)=10%以上、
B=0.5〜10%、残部Feからなるものが特許請求の範囲
に記載されている。従来R−B−Fe合金の優れた磁石特
性はNd2Fe14B相化合物によるものと説明されており、
そのため磁石特性を改良するための多くの提案(特開昭
59-89401、57-141901号公報)はこの化合物に該当する
組成の近傍、すなわち、R=12〜17%、B=5〜8%の
範囲の合金の実験に基づいている。希土類元素は高価で
あるため、その含有量を低下させることが望まれるが、
希土類元素の含有量が12%未満になると、保磁力iHcが
急激に劣化するという問題があり特開昭60-9852号では
R=10%となるとiHcは6kOe以下になる事が示されてい
る。すなわち、R−B−Fe系合金において希土類元素の
含有量が12%未満になると、保磁力iHcが劣化するとの
事実があったのであるが、かかる組成範囲において保磁
力iHcの劣化を防止するように組成ならびに組織を設計
する方法は従来知られていなかった。 焼結法と高速急冷法においては、基本的にNd2Fe14
化合物を用いているが、応用物理第55巻、第2号(198
6)頁121に示される如く、上記磁石は単なる製法の違い
だけでなく両磁石は合金組織と保磁力発生機構の観点か
ら全く異なったタイプの磁石である。すなわち焼結磁石
は結晶粒径が約10μmであり、従来のSm-Co系磁石で言
えば、逆磁区の核発生が保磁力を決めるSmCo5型磁石の
ようなニュークリエーション型であり、一方高速急冷磁
石は0.01〜1μmの微細粒子をアモルファス相が取り囲
んだ極めて微細な組織により磁壁のピン止めが保磁力を
決定するSm2CO17型磁石のようなピンニング型磁石であ
る。それゆえ、特性向上のための両磁石へのアプローチ
の考え方としては保磁力発生機構が十分異なる事を考慮
して検討する必要があった。 〔問題点を解決するための手段〕 本発明は平衡相とともに、非平衡相を比較的容易に作
製可能である高速急冷法に着目し、Fe(Co)−R−B系
に対して種々の元素を添加することを検討した結果、T
i、V、Crの添加により、R含有量が10原子%未満の組
成領域で、等方性であっても高HcJ、高エネルギー積を
示し、実用に適した高性能磁石を提供しうる事を見出し
たものである。この発明は高速急冷法で得られるもので
あり、焼結法においては実現出来ないものである。 さらに、本発明はTi,V,Cr等の添加元素を用い、高速
急冷することにより着磁特性および耐食性が良好な磁石
合金を提供するものである。またこの発明はその磁石の
性能をさらに安定に得るための方法を提供するものであ
る。 すなわち、本発明は、{R′a(CebLa1-b1-ax (Fe1-zCoz100-x-y-wyw(但し、R′はCe,Laを
除き、Yを包含する希土類元素の少なくとも1種、5.5
≦x<10、2≦y<15、0≦z≦0.7、0<w≦10、0.8
0≦a≦1.00、0≦b≦1、MはTi,V,Crの少なくとも1
種)からなり、微結晶相あるいは微結晶とアモルファス
相との混相からなる永久磁石にある。 本発明の磁石は、前記の組成のFe−R−BおよびFe-C
o−R−Bからなる系の合金溶湯をいわゆる液体急冷法
によって高速で冷却凝固させたものである。この液体急
冷法は、水冷等により冷却された金属製の回転体の表面
に、ノズルから溶湯を射出して高速で急冷凝固させ、リ
ボン状の材料を得る方法であり、ディスク法、単ロール
法(片ロール法)、双ロール法等があるが、この発明の
場合には片ロール法、すなわち1個の回転ロールの周面
上に溶湯を射出する方法が最も適当である。片ロール法
でこの発明の磁石を得る場合、水冷回転ロールの周速度
は、2m/sec〜100m/secの範囲内とすることが望ましい。
その理由は、ロール周速度が2m/sec未満の場合および10
0m/secを越える場合のいずれにおいても保磁力iHcが低
くなるからである。高保磁力、高エネルギー積を得るた
めにはロール周速度を5〜40m/secとする事が望まし
い。このようにロール周速度2〜100m/secにて片ロール
法で前記組成の合金溶湯を急冷凝固させることによっ
て、保磁力iHcが約20000 Oeまで、磁化σが65〜150emu/
grの磁石が得られる。このように溶湯から直接急冷凝固
させれば、非晶質もしくは極めて微細な結晶質の組織が
得られ、その結果上述のように磁石特性が優れた磁石が
得られるのである。 急冷後の組織は急冷条件により異なるが、アモルファ
スあるいは微結晶又はその混合組織からなるが、焼鈍に
より、その微結晶又はアモルファスと微結晶からなる組
織およびサイズをさらにコントロール出来、より高い高
特性が得られる。微結晶相としては、少くとも50%以上
が、0.01〜3μm未満好ましくは、0.01〜1μm未満の
範囲内の大きさである時、高特性が得られる。アモルフ
ァス相を含まない組織からなる時高特性が得られる。 液体急冷法によって急冷凝固された磁石を、不活性雰
囲気もしくは真空中において300〜900℃の温度範囲にて
0.001〜50時間焼鈍する。このような焼鈍熱処理を施す
ことによって、この発明で対象とする成分の急冷磁石で
は、急冷条件によって諸特性が敏感でなくなり、安定し
た特性が容易に得られる。ここで焼鈍温度は、300℃未
満では焼鈍の効果はなく、900℃を越える場合には、保
磁力iHcが急激に低下する。また焼鈍時間が0.001時間未
満では焼鈍の効果がなく、50時間を越えてもそれ以上特
性は向上せず、経済的に不利となるだけである。したが
って焼鈍条件は前述のように規定した。また、上記焼鈍
中に、磁場中処理を行なうことにより磁石特性を向上さ
せることができる。なお、Cr添加系Fe基合金はγ−Feの
存在領域がTi、V添加系より低温に存在し、高特性を得
るための熱処理では、熱処理炉内の精度の良い温度制御
を必要とする。得られたリボン状の磁石を、好ましくは
30〜500μmの粒径に粉砕して、冷間プレス又は温間プ
レスする事により高密度のバルク体磁石となす事が出来
る。 さらに本発明に係る永久磁石は、液体急冷法の他に粉
末結合法、すなわち液体急冷法により得たリボンまたは
粉末を必要ならばさらに焼鈍処理および粉砕した後に、
樹脂等で結合してボンディッド磁石とする事が出来る。 従来の高速急冷法により得られたリボン状の磁石ある
いは、それを粉砕後バルク体となした磁石およびボンデ
ィッド磁石は特開昭59-211549号公報に示される如く知
られている。しかし従来の磁石はJ.A.P60(10),vol 15
(1986)3685頁に示される如く飽和磁化まで着磁させる
ためには、40kOe以上110kOeにもおよぶ着磁磁場が必要
であり、通常の電磁石である15〜20kOeで飽和着磁可能
な磁石が望まれていた。本発明におけるTi,V等を含有さ
せた磁石合金は図1に示す如く15〜20kOeで十分着磁可
能であるという利点を有し、そのため15〜20kOeでの着
磁後の特性は大巾に改良される。 なお、図中、Fe-13.5Nb-5Bは従来の磁石の例、Fe-9.5
Nd-8B-4Tiは本発明の磁石の例、横軸は着磁磁場(kO
e)、縦軸はBr(Hex)−ある着磁磁場における残留磁化
−に対するBr(40k)-40kOeの着磁磁場に対する残留磁
化の比率である。 次にこの発明における成分限定理由について説明する
と、希土類元素の量xの値が、5.5未満では保磁力iHcが
低下する傾向があり、xの値が20を越えれば磁化の値が
小さくなる。又CeとLaの複合添加の合計が20%を越えて
添加されると最大エネルギー積が低下するので、0.80≦
a≦1.00とした。又Smメタルも、異方性化定数を低下さ
せるのでxの20%以下に押えた方が良い。Bの量yの値
は、2未満では保磁力iHcが小さく、15以上ではBrが低
下する。CoでFeを置換することで磁気性能が改善しかつ
キューリー温度も改良されるが、置換量zは0.7を越え
ると保磁力の低下をまねく。 Ti,V,Crの少なくとも1種のM元素の量wが10を越え
ると磁化の急激な減少をまねく。またiHcの増加のため
には0.1以上のwが好ましく、耐食性を上昇させるため
には0.5以上、より好ましくは1以上が良好である。M
元素を2種以上複合添加すると、単独添加の場合よりも
保磁力iHc向上効果が大きい。なお複合添加の場合の添
加量上限は10%である。 Bの50%以下をSi,C,Ga,Al,P,N,Ce,S等で置換しても
B単独と同様な効果を有する。 yは2〜15未満の範囲、zは0〜0.7の範囲、wは0
を含まず〜10の範囲とする必要がある。なお、高保磁力
を得るための好ましい領域としてxは12〜20より好まし
くは12〜15、yは2〜15未満、より好ましくは4〜12さ
らに好ましくは4〜10、zは0〜0.7より好ましくは0
〜0.6、wは0.1〜10より好ましくは2〜10の範囲であ
る。 又等方性で高エネルギー積を得るための好ましい領域
はxは12未満より好ましくは、10未満、yは2〜15未満
より好ましくは4〜12、さらに好ましくは4〜10の範
囲、zは0〜0.7より好ましくは0〜0.6、wは0を含ま
ず〜10より好ましくは2〜10の範囲である。 又等方性で着磁特性が良く高エネルギー積を得るため
の好ましい領域はxは6〜10未満、yは2〜15未満より
好ましくは4〜12さらに好ましくは4〜10の範囲、zは
0〜0.7、より好ましくは0〜0.6、wは0を含まず〜10
より好ましくは、2〜10の範囲である。 又異方性で高エネルギー積を得るため好ましい領域は
xは6〜12より好ましくは6〜10未満、yは2〜15未満
より好ましくは4〜12さらに好ましくは4〜10、zは0
〜0.7より好ましくは0〜0.6、wは0を含まず〜10より
好ましくは2〜10の範囲である。 〔作用〕 第2図にM添加の作用を示す。図には実施例1に示す
ような方法で得られたリボン薄帯の保磁力iHcおよび実
施例2で示すようなホットプレス法で得られた最大エネ
ルギ積(BH)maxを示す。 また、組成としては、A:R−8B−残部鉄(比較例)お
よびB:R−8B−(3〜6)Ti−残部鉄(本発明)、但し
RはNdの例を示す。 この図からわかるように、Mの添加は約10原子%Nd以
上では特に高保磁力化に寄与しまた低コスト化が可能な
約10原子%Nd未満では特に最大エネルギ積(BH)max
向上に寄与する事がわかる。またMは保磁力向上に対す
る寄与も大きい。このような傾向は他の添加元素を用い
た場合もほぼ同様な傾向を示す。 上述のような高保磁力化の原因としては、R含有量が
10原子%未満の場合は従来のR−Fe−B磁石に見られる
ような安定な正方晶R2Fe14B化合物を使用する保磁力
機構ではなく、高速急冷法により過飽和にM元素が固溶
した準安定なR2Fe14B相を主相とした微細組織が原因
となる。 それゆえ、添加元素Mは低R組成でもR2Fe14B相を
安定化するが、この作用は高速急冷法においてのみ得ら
れるものであり、焼結磁石ではこのような効果はない。 Rxwy(Fe,Co)1-x-y-wで表現すれば、2≦w≦
10、5.5≦x<10好ましくは6≦x<10、4≦y≦12好
ましくは4≦y≦10なる時上記作用の影響が大である。
又、添加元素Mはピンニングサイトのための境界相とし
て働く副相を生成し、強化する働きをもつと考えられ
る。さらに、α−Feおよび他の相も一部副相として存在
することができる。 実施例1 Ndx(Fe1zCoz100-x-y-z-wywなる組成を有する
合金をアーク溶解により作製した。得られた合金を溶湯
急冷法を用いた薄帯化した。10〜80m/秒で回転するロー
ル表面に石英ノズルを介して溶湯合金をアルゴンガス圧
で射出冷却して非晶質あるいは微結晶質から成る薄帯を
得た。 この薄帯にアルゴンガス雰囲気中550〜900℃の温度範
囲で時効処理を施した。得られた最高の磁気特性を第1
表に示す。 第1表より、Mの添加により、iHcと(BH)maxの高い
磁石が得られることがわかる。 表1から、Ti,V,Crの一種以上の添加により無添加合
金より高特性が得れらることがわかる。また、本発明の
試料と比較例の試料(No.12〜15)を40℃、90%の湿度
の雰囲気で100時間放置したところ、比較例の試料に
は、0.1〜1mmの錆が発生したが、本発明の試料にはあま
り認められなかった。これより本発明の試料は耐食性も
良好であることがわかる。 実施例2 実施例1と同様な方法で第2表に示す組成の合金を作
製した。 この試料を振動式磁力計を用い、まず18kOeで着磁測
定し、次に40kOeでパルス着磁後測定したものを比較し
た。その値をBr18K/Br40k(%)で示す。 なお、表中の値は40kOeでパルス着磁した試料の値で
ある。 第2表より本系合金は着磁性が容易であることがわか
る。 実施例3 下記の第3表に示される組成を有する薄帯を約100μ
mに粉砕し熱硬化性樹脂と混合プレス成形し、密度約6g
/ccのボンド磁石を得た。40kOeのパルス着磁を施し測定
した結果を第3表に示す。 又本発明のNo.1〜5の磁石は18kOeでの着磁が40kOeで
のパルス着磁と比べ97%以上と良好であった。さらにN
o.1〜5の試料についてiHcおよびBrの温度係数を20℃〜
100℃にわたって測定したところ、 と良好な値を示した。 又比較例のNo.7の試料の18kOeでの着磁は92%であっ
た。さらに比較例のBr,iHcの温度特性(20〜110℃)を
調べたところ であった。 実施例4 第4表に示すような組成を有する合金が得られるよう
に原料を配合し、高周波加熱によってこれらの原料を溶
解し、アルゴン雰囲気中にて周速40m/secで回転してい
る銅ロールに石英ノズルから溶湯を噴出し厚さ約20μ
m、幅5mmのリボンを得た。次いでリボンを50〜200μm
程度の粒径の粒子に粉砕した。得られた粉末を用いて、
アルゴン雰囲気にて約780℃、加圧力1,000Kg/cm2、15分
間の条件で第1次のホットプレスによる加工を行なって
30φ×30mmの成形体とした。次にこの成形体を最終製品
形状外径50mm、内径44mm、アーク角60°になるように78
0℃で押し出し加工した。押し出し比は8で押出圧8ton/
cm2であった。その後得られた押し出し品を長さ10mmに
切断した。得られた押出品は半径方向に異方性を示し
た。磁石特性は第4表のとおりであった。 〔発明の効果〕 以上の説明、特に実施例から明らかなように、本発明
により、M元素を添加することにより、R,Fe,B含有量が
ほぼ同一の系のM元素無添加磁石と比較して、添加量に
もよるが、1.5倍以上の保磁力iHcが達成される。よっ
て、R−B−Fe合金磁石の保磁力iHcの温度特性が優れ
ないという欠点があるにせよ、かかる欠点を補って余り
ある高い保磁力iHc向上が達成され、そして実用性ある
永久磁石が提供された。 また極めて着磁特性に優れた磁石であるという特徴が
ある。 さらに、特筆すべき点として、希土類元素Rの含有量
が10%未満においても、希土類元素Rの含有10%以上の
場合と遜色ない磁石特性が得られる。よって、本発明に
より、低コストでありかつ保磁力およびエネルギー積の
高い磁石が提供されたこととなり、当該分野における本
発明の意義は大きい。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a high-performance magnet used for various electric devices, etc.
Particularly, the present invention relates to an alloy-based quenched magnet containing a rare-earth element and a method for manufacturing the same, wherein a Fe-RB-based (R is a rare-earth element including Y, the same applies hereinafter) and Fe-Co-RB-based alloy melts are rapidly solidified. Thus, a magnet having excellent magnet properties is obtained, and the magnet after rapid solidification is annealed under specific conditions to obtain a uniform and stable magnet performance. In the present specification, R is at least one of rare earth elements including Y, and R 'is at least one of rare earth elements including Y, except for Ce and La, as described in the claims. Is shown. [Prior art] As a rare earth magnet with high performance, 32MGOe is mass-produced as an energy product with a powder metallurgy Sm-Co magnet, but Sm, Co has the disadvantage that the raw material price is high . Among the rare earth elements, rare earth elements having a small atomic weight, such as cerium, praseodymium, and neodymium, are more abundant and cheaper than samarium. Fe is inexpensive. In recent years, Nd-Fe-B magnets have been developed.
Japanese Patent No. 46008 describes a sintered magnet, and Japanese Patent Application Laid-Open No. 60-9852 describes a method using a rapid quenching method. In the magnet by the sintering method, although the conventional Sm-Co powder metallurgy process can be applied, it is difficult to handle because it has a step of pulverizing the easily oxidizable Nd-Fe alloy ingot to about 2 to 10 μm. In addition, the powder metallurgy process has many steps (melting → casting → ingot coarse pulverization → fine pulverization → press → sintering → magnet), so that the characteristic of using inexpensive raw materials cannot be used. On the other hand, the magnet using the rapid quenching method has the advantage that the process is simplified (melting → high speed quenching → coarse pulverization → cold press (warm press) → magnet) and that a fine powdering process is not required. However, in order to make the magnet by the rapid quenching method an industrial material, it has been desired to further increase the coercive force, increase the energy product, reduce the cost, and improve the magnetization characteristics. Among various properties of rare earth-iron-boron permanent magnets, the coercive force is sensitive to temperature, and the temperature coefficient of the coercive force (iHc) of the rare earth cobalt permanent magnet is 0.15% / ° C., whereas the rare earth-iron -There is a problem that the temperature coefficient of the coercive force (iHc) of the boron permanent magnet material is 0.6 to 0.7% / ° C., which is four times higher. Therefore, the rare-earth-iron-boron permanent magnet material has a high risk of demagnetization as the temperature rises, which has necessitated a limited design on a magnetic circuit. Furthermore, for example, it cannot be used as a permanent magnet for parts in an engine room of an automobile used in the tropics. Rare earth-iron-
It has been known that a boron permanent magnet material has a practical problem where the temperature coefficient of coercive force is large, and the appearance of a magnet having a large absolute value of coercive force has been desired (Nikkei New Materials, 1986). , 4-28 (No. 9) p. 80). Japanese Patent Application Laid-Open No. 60-9852 proposes that an RB-Fe alloy be provided with a high coercive force iHc and an energy product by a liquid quenching method.
The composition of the publication is that the rare earth element R (Nd, Pr) = 10% or more,
B = 0.5 to 10%, with the balance being Fe is described in the claims. Conventionally, the excellent magnetic properties of the RB-Fe alloy have been described as being due to the Nd 2 Fe 14 B phase compound,
Therefore, many proposals for improving magnet characteristics (Japanese Patent Application Laid-Open
59-89401, 57-141901) are based on experiments with alloys near the composition corresponding to this compound, that is, alloys in the range of R = 12 to 17% and B = 5 to 8%. Rare earth elements are expensive, so it is desirable to reduce the content,
When the content of the rare earth element is less than 12%, there is a problem that the coercive force iHc is rapidly deteriorated. Japanese Patent Application Laid-Open No. 60-9852 shows that when R = 10%, the iHc becomes 6 kOe or less. . That is, when the content of the rare earth element in the RB-Fe-based alloy is less than 12%, the coercive force iHc is deteriorated. However, in such a composition range, the coercive force iHc is prevented from being deteriorated. The method of designing the composition and the structure of the material has not been known. In the sintering method and the rapid quenching method, basically Nd 2 Fe 14 B
Although a compound is used, Applied Physics Vol. 55, No. 2 (198
6) As shown on page 121, the magnets are completely different types of magnets from the viewpoint of the alloy structure and the coercive force generation mechanism as well as the mere difference in manufacturing method. In other words, the sintered magnet has a crystal grain size of about 10 μm, and speaking of conventional Sm-Co magnets, it is a nucleation type such as the SmCo 5 type magnet, in which nucleation of the reverse domain determines the coercive force. The quenched magnet is a pinning type magnet such as a Sm 2 CO 17 type magnet in which pinning of a domain wall determines a coercive force by an extremely fine structure in which an amorphous phase surrounds fine particles of 0.01 to 1 μm. Therefore, it was necessary to consider the approach to both magnets for improving the characteristics in consideration of the fact that the coercive force generating mechanisms are sufficiently different. [Means for Solving the Problems] The present invention focuses on a rapid quenching method capable of relatively easily producing a non-equilibrium phase as well as an equilibrium phase. As a result of considering adding an element, T
By adding i, V, and Cr, it is possible to provide a high-performance magnet suitable for practical use, showing high HcJ and high energy product even if isotropic in the composition region where the R content is less than 10 atomic%. Is found. The present invention can be obtained by a rapid quenching method and cannot be realized by a sintering method. Further, the present invention provides a magnet alloy having good magnetization characteristics and corrosion resistance by rapid quenching using an additive element such as Ti, V, Cr and the like. The present invention also provides a method for more stably obtaining the performance of the magnet. That is, the present invention, except {R 'a (Ce b La 1-b) 1-a} x (Fe 1-z Co z) 100-xyw B y M w ( where, R' is Ce, the La, At least one rare earth element including Y, 5.5
≦ x <10, 2 ≦ y <15, 0 ≦ z ≦ 0.7, 0 <w ≦ 10, 0.8
0 ≦ a ≦ 1.00, 0 ≦ b ≦ 1, M is at least one of Ti, V and Cr
Seeds) and a permanent magnet comprising a microcrystalline phase or a mixed phase of microcrystalline and amorphous phases. The magnet of the present invention comprises Fe-RB and Fe-C having the above-described composition.
It is obtained by solidifying a molten alloy of o-RB at a high speed by a so-called liquid quenching method. The liquid quenching method is a method of injecting a molten metal from a nozzle onto a surface of a metal rotating body cooled by water cooling or the like, rapidly solidifying the molten metal at a high speed, and obtaining a ribbon-shaped material. (Single roll method), twin roll method, etc., and in the case of the present invention, the single roll method, that is, the method of injecting the molten metal onto the peripheral surface of one rotating roll is most suitable. When the magnet of the present invention is obtained by the one-roll method, the peripheral speed of the water-cooled rotating roll is desirably in the range of 2 m / sec to 100 m / sec.
The reason is that when the roll peripheral speed is less than 2m / sec and 10
This is because the coercive force iHc decreases in any case where the speed exceeds 0 m / sec. In order to obtain a high coercive force and a high energy product, the roll peripheral speed is desirably 5 to 40 m / sec. By rapidly solidifying the molten alloy having the above composition at a roll peripheral speed of 2 to 100 m / sec by the single roll method, the coercive force iHc is increased to about 20,000 Oe and the magnetization σ is 65 to 150 emu / sec.
gr magnet is obtained. Thus, if the molten metal is rapidly quenched and solidified, an amorphous or extremely fine crystalline structure can be obtained, and as a result, a magnet having excellent magnet properties as described above can be obtained. The structure after quenching differs depending on the quenching conditions, but consists of amorphous or microcrystalline or a mixed structure thereof.The structure and size of the microcrystalline or amorphous and microcrystalline can be further controlled by annealing, and higher high characteristics can be obtained. Can be As a microcrystalline phase, when at least 50% or more has a size in the range of 0.01 to less than 3 μm, preferably 0.01 to less than 1 μm, high characteristics can be obtained. High characteristics are obtained when the material is composed of a structure not containing an amorphous phase. A magnet quenched and solidified by the liquid quenching method in an inert atmosphere or vacuum at a temperature range of 300 to 900 ° C.
Anneal for 0.001 to 50 hours. By performing such annealing heat treatment, the quenched magnet of the component targeted in the present invention becomes less sensitive to various characteristics depending on the quenching condition, and easily obtains stable characteristics. Here, if the annealing temperature is lower than 300 ° C., the effect of the annealing is not obtained, and if it exceeds 900 ° C., the coercive force iHc sharply decreases. If the annealing time is less than 0.001 hour, the effect of annealing is not obtained, and if it exceeds 50 hours, the characteristics are not further improved, and it is only economically disadvantageous. Therefore, the annealing conditions are specified as described above. In addition, during the annealing, the magnetic properties can be improved by performing the treatment in a magnetic field. The Cr-added Fe-based alloy has a region where γ-Fe exists at a lower temperature than that of the Ti- and V-added systems, and heat treatment for obtaining high characteristics requires precise temperature control in the heat treatment furnace. The obtained ribbon-shaped magnet is preferably used.
A high-density bulk magnet can be formed by pulverizing to a particle size of 30 to 500 μm and performing cold pressing or warm pressing. Further, the permanent magnet according to the present invention, in addition to the liquid quenching method, powder bonding method, that is, after further annealing and pulverizing the ribbon or powder obtained by the liquid quenching method, if necessary,
Bonded magnets can be formed by bonding with resin or the like. A ribbon-shaped magnet obtained by a conventional high-speed quenching method, or a magnet and a bonded magnet obtained by pulverizing the ribbon-shaped magnet and the bonded magnet are known as disclosed in JP-A-59-211549. However, the conventional magnet is JAP60 (10), vol 15
(1986) As shown on page 3865, a magnetizing magnetic field of 40 kOe or more and 110 kOe is required to magnetize to the saturation magnetization, and a magnet which can be saturated with 15 to 20 kOe, which is an ordinary electromagnet, is desired. Was rare. The magnet alloy containing Ti, V, etc. in the present invention has an advantage that it can be sufficiently magnetized at 15 to 20 kOe as shown in FIG. 1, so that the properties after magnetization at 15 to 20 kOe are very large. Be improved. In the figure, Fe-13.5Nb-5B is an example of the conventional magnet, Fe-9.5
Nd-8B-4Ti is an example of the magnet of the present invention, and the horizontal axis is the magnetizing magnetic field (kO
e), the vertical axis is the ratio of the residual magnetization to the magnetization field of Br (40k) -40 kOe with respect to Br (Hex) -the residual magnetization at a certain magnetization field. Next, the reason for limiting the components in the present invention will be described. When the value x of the rare earth element is less than 5.5, the coercive force iHc tends to decrease, and when the value x exceeds 20, the magnetization value decreases. If the total addition of Ce and La exceeds 20%, the maximum energy product decreases.
a ≦ 1.00. Sm metal also reduces the anisotropy constant, so it is better to keep it at 20% or less of x. When the value y of B is less than 2, the coercive force iHc is small, and when it is 15 or more, Br decreases. The magnetic performance is improved by replacing Fe with Co, and the Curie temperature is also improved. However, when the substitution amount z exceeds 0.7, the coercive force decreases. If the amount w of at least one M element of Ti, V, and Cr exceeds 10, a rapid decrease in magnetization will occur. In order to increase iHc, w is preferably 0.1 or more, and in order to increase corrosion resistance, 0.5 or more, more preferably 1 or more is good. M
When two or more elements are added in combination, the effect of improving the coercive force iHc is greater than in the case of single addition. Note that the upper limit of the amount added in the case of composite addition is 10%. Substituting 50% or less of B with Si, C, Ga, Al, P, N, Ce, S, etc. has the same effect as B alone. y is in the range of less than 2 to 15, z is in the range of 0 to 0.7, w is 0
Must be within the range of ~ 10. In addition, as a preferable region for obtaining a high coercive force, x is preferably 12 to 20, more preferably 12 to 15, y is less than 2 to 15, more preferably 4 to 12, still more preferably 4 to 10, and z is more preferably 0 to 0.7. Is 0
0.6 and w are in the range of 0.1 to 10, more preferably 2 to 10. In addition, a preferable region for obtaining a high energy product in an isotropic manner is that x is less than 12, more preferably less than 10, y is less than 2 to 15, more preferably 4 to 12, and even more preferably 4 to 10, z is 0 to 0.7 is more preferable, 0 to 0.6, and w is in the range of not including 0 to 10 and more preferably 2 to 10. Also, a preferable region for obtaining a high energy product with good isotropic and magnetizing characteristics is that x is less than 6 to 10, y is less than 2 to 15, more preferably 4 to 12, still more preferably 4 to 10, and z is 0 to 0.7, more preferably 0 to 0.6, w does not include 0 to 10
More preferably, it is in the range of 2 to 10. In order to obtain a high energy product under anisotropic conditions, x is preferably 6 to 12, more preferably 6 to less than 10, y is less than 2 to 15, more preferably 4 to 12, still more preferably 4 to 10, and z is 0 to 10.
The value of w is preferably in the range of 0 to 0.6, more preferably 0 to 0.6, and excluding 0, more preferably 2 to 10. [Action] FIG. 2 shows the action of M addition. The figure shows the coercive force iHc of the ribbon ribbon obtained by the method shown in Example 1 and the maximum energy product (BH) max obtained by the hot pressing method shown in Example 2. Further, as the composition, A: R-8B-remainder iron (comparative example) and B: R-8B- (3-6) Ti-remainder iron (the present invention), wherein R is an example of Nd. As can be seen from the figure, the addition of M contributes particularly to a high coercive force at about 10 atomic% Nd or more, and improves the maximum energy product (BH) max especially at about 10 atomic% Nd or less at less than about 10 atomic% Nd where cost reduction is possible. You can see the contribution. M also has a large contribution to improving the coercive force. This tendency is almost the same when other additive elements are used. The cause of the high coercive force as described above is that the R content is
When the content is less than 10 atomic%, the element M is dissolved in supersaturation by a rapid quenching method instead of a coercive force mechanism using a stable tetragonal R 2 Fe 14 B compound as seen in a conventional R-Fe-B magnet. This is caused by the microstructure having the metastable R 2 Fe 14 B phase as the main phase. Therefore, the additive element M stabilizes the R 2 Fe 14 B phase even at a low R composition, but this effect can be obtained only in the rapid quenching method, and there is no such effect in the sintered magnet. If expressed as R x M w B y (Fe, Co) 1- xyw , 2 ≦ w ≦
The effect of the above effect is large when 10, 5.5 ≦ x <10, preferably 6 ≦ x <10, 4 ≦ y ≦ 12, preferably 4 ≦ y ≦ 10.
Further, it is considered that the additive element M has a function of generating and strengthening a sub-phase acting as a boundary phase for the pinning site. In addition, α-Fe and other phases can also be present as some sub-phases. And the Example 1 Nd x (Fe 1 zCo z ) 100-xyzw B y M w becomes alloy having a composition prepared by arc melting. The obtained alloy was thinned using a molten metal quenching method. The molten alloy was injected and cooled at a gas pressure of argon through a quartz nozzle on the surface of a roll rotating at 10 to 80 m / sec to obtain a ribbon made of amorphous or microcrystalline. This ribbon was subjected to aging treatment in an argon gas atmosphere in a temperature range of 550 to 900 ° C. The best magnetic properties obtained are
It is shown in the table. From Table 1, it can be seen that a magnet having high iHc and (BH) max can be obtained by adding M. Table 1 shows that the addition of one or more of Ti, V, and Cr can provide higher properties than the alloy without addition. Further, when the sample of the present invention and the sample of the comparative example (No. 12 to 15) were left in an atmosphere of 40 ° C. and 90% humidity for 100 hours, rust of 0.1 to 1 mm was generated in the sample of the comparative example. However, not much was observed in the sample of the present invention. This indicates that the sample of the present invention has good corrosion resistance. Example 2 An alloy having the composition shown in Table 2 was produced in the same manner as in Example 1. Using a vibrating magnetometer, the sample was first subjected to magnetization measurement at 18 kOe, and then compared with those measured after pulse magnetization at 40 kOe. The value is shown as Br 18K / Br 40k (%). The values in the table are the values of the sample subjected to pulse magnetization at 40 kOe. Table 2 shows that this alloy is easy to magnetize. Example 3 A ribbon having a composition shown in Table 3 below was applied to a thickness of about 100 μm.
m, press-mixing with thermosetting resin, density about 6g
/ cc bond magnet was obtained. Table 3 shows the measurement results obtained by applying a pulse magnetization of 40 kOe. The magnets of Nos. 1 to 5 of the present invention had good magnetization at 97 kOe, which was 97% or more as compared with the pulse magnetization at 40 kOe. Further N
o The temperature coefficients of iHc and Br for the samples of
When measured over 100 ° C, And a good value. The magnetization at 18 kOe of the sample No. 7 of the comparative example was 92%. Further, the temperature characteristics (20 to 110 ° C) of Br and iHc of the comparative example were examined. Met. Example 4 Raw materials were blended so as to obtain an alloy having a composition as shown in Table 4, and these materials were melted by high-frequency heating, and copper rotating at a peripheral speed of 40 m / sec in an argon atmosphere was used. Molten metal is ejected from the quartz nozzle onto the roll, and the thickness is about 20μ.
m, a ribbon having a width of 5 mm was obtained. Then the ribbon is 50 ~ 200μm
It was pulverized to particles having a particle size of the order. Using the obtained powder,
The first hot pressing process was performed at about 780 ° C, 1,000 kg / cm 2 for 15 minutes in an argon atmosphere.
It was formed into a compact of 30φ × 30 mm. Next, the molded product is 78 so that the final product shape has an outer diameter of 50 mm, an inner diameter of 44 mm, and an arc angle of 60 °.
Extruded at 0 ° C. Extrusion ratio is 8 and extrusion pressure is 8ton /
It was cm 2. Thereafter, the obtained extruded product was cut into a length of 10 mm. The extrudate obtained showed anisotropy in the radial direction. The magnet properties were as shown in Table 4. [Effects of the Invention] As is clear from the above description, and particularly from the examples, by adding the M element according to the present invention, the magnet is compared with a magnet without the M element added, which has almost the same R, Fe, and B contents. Thus, a coercive force iHc of 1.5 times or more is achieved, depending on the amount of addition. Therefore, despite the disadvantage that the temperature characteristics of the coercive force iHc of the RB-Fe alloy magnet are not excellent, a sufficiently high improvement of the coercive force iHc is achieved to compensate for such a defect, and a practical permanent magnet is provided. Was done. Further, it is characterized in that the magnet has extremely excellent magnetizing characteristics. Further, it should be noted that even when the content of the rare earth element R is less than 10%, magnet characteristics comparable to the case where the content of the rare earth element R is 10% or more can be obtained. Therefore, according to the present invention, a magnet having a low cost and a high coercive force and high energy product is provided, and the present invention is significant in this field.

【図面の簡単な説明】 第1図は着磁特性のグラフ、 第2図は希土類元素含有量およびTiが磁石特性に及ぼす
影響を説明するグラフである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a graph showing the magnetization characteristics, and FIG. 2 is a graph explaining the effects of the rare earth element content and Ti on the magnet characteristics.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願昭62−23509 (32)優先日 昭62(1987)2月5日 (33)優先権主張国 日本(JP) 審判番号 平7−23656 (72)発明者 米山 哲人 東京都中央区日本橋1丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 昭60−9852(JP,A) 特開 昭61−174364(JP,A) 特開 昭60−254708(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (31) Priority claim number Japanese Patent Application No. 62-23509 (32) Priority date February 5, 1987 (33) Priority claim country Japan (JP)        Referee number Hei 23-23656 (72) Inventor Tetsuto Yoneyama               1-13-1 Nihonbashi, Chuo-ku, Tokyo               IDK Corporation                (56) References JP-A-60-9852 (JP, A)                 JP-A-61-174364 (JP, A)                 JP-A-60-254708 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.{R′a(CebLa1-b1-ax (Fe1-zCoz100-x-y-wyw(但し、R′はCe,Laを除
き、Yを包含する希土類元素の少なくとも1種、5.5≦
x<10、2≦y<15、0≦z≦0.7、0<w≦10、0.80
≦a≦1.00、0≦b≦1、MはTi,V,Crの少なくとも1
種)からなり、微結晶相あるいは微結晶とアモルファス
相との混相からなる永久磁石。 2.リボン形態である特許請求の範囲第1項記載の永久
磁石。 3.高速急冷とその後の焼鈍により製造された特許法第
1項または第2項記載の永久磁石。 4.特許請求の範囲第1項記載の永久磁石において、前
記組成および組織の粉末を圧粉した永久磁石。 5.特許請求の範囲第1項記載の永久磁石において、前
記組成および組織のリボンを粉砕後圧粉した永久磁石。 6.ほぼ20kOeの低磁場で95%以上着磁可能な特許請求
の範囲第1項から第5項までの何れか1項に記載の永久
磁石。 7.xが6≦x<10である特許請求の範囲第1項から第
6項までの何れか1項に記載の永久磁石。 8.yが4≦y≦12であり、またwが2≦w≦10である
特許請求の範囲第1項から第7項までの何れか1項に記
載の永久磁石。 9.保磁力(iHc)が7kOe以上である特許請求の範囲第
1項から第8項までの何れか1項に記載の永久磁石。 10.ボンド磁石以外の磁石であって、最大エネルギ積
(BH)maxが8MGOeを超える特許請求の範囲第7項記載の
永久磁石。 11.{R′a(CebLa1-b1-ax (Fe1-zCoz100-x-y-wyw(但し、R′はCe,Laを除
き、Yを包含する希土類元素の少なくとも1種、5.5≦
x<10、2≦y<15、0≦z≦0.7、0<w≦10、0.80
≦a≦1.00、0≦b≦1、MはTi,V,Crの少なくとも1
種)からなり、微結晶相あるいは微結晶とアモルファス
相との混相からなる粉末をボンド磁石とした永久磁石。 12.{R′a(CebLa1-b1-ax (Fe1-zCoz100-x-y-wyw(但し、R′はCe,Laを除
き、Yを包含する希土類元素の少なくとも1種、5.5≦
x<10、2≦y<15、0≦z≦0.7、0<w≦10、0.80
≦a≦1.00、0≦b≦1、MはTi,V,Crの少なくとも1
種)からなる合金溶湯を高速急冷後に300〜900℃の温度
範囲にて焼鈍する永久磁石の製造方法。
(57) [Claims] {R 'a (Ce b La 1-b) 1-a} x (Fe 1-z Co z) 100-xyw B y M w ( where, R' is Ce, except for La, rare earth elements including Y At least one of 5.5 ≦
x <10, 2 ≦ y <15, 0 ≦ z ≦ 0.7, 0 <w ≦ 10, 0.80
≦ a ≦ 1.00, 0 ≦ b ≦ 1, M is at least 1 of Ti, V, Cr
Seed) and a permanent magnet comprising a microcrystalline phase or a mixed phase of microcrystalline and amorphous phases. 2. 2. The permanent magnet according to claim 1, which is in the form of a ribbon. 3. 3. The permanent magnet according to claim 1 or 2 manufactured by rapid quenching and subsequent annealing. 4. 2. The permanent magnet according to claim 1, wherein the powder having the composition and the structure is compacted. 5. 2. The permanent magnet according to claim 1, wherein the ribbon having the composition and the structure is pulverized after being pulverized. 6. The permanent magnet according to any one of claims 1 to 5, wherein the permanent magnet can be magnetized by 95% or more in a low magnetic field of about 20 kOe. 7. 7. The permanent magnet according to claim 1, wherein x satisfies 6 ≦ x <10. 8. 8. The permanent magnet according to claim 1, wherein y satisfies 4 ≦ y ≦ 12 and w satisfies 2 ≦ w ≦ 10. 9. The permanent magnet according to any one of claims 1 to 8, wherein the coercive force (iHc) is 7 kOe or more. 10. 8. The permanent magnet according to claim 7, which is a magnet other than a bonded magnet, and has a maximum energy product (BH) max of more than 8 MGOe. 11. {R 'a (Ce b La 1-b) 1-a} x (Fe 1-z Co z) 100-xyw B y M w ( where, R' is Ce, except for La, rare earth elements including Y At least one of 5.5 ≦
x <10, 2 ≦ y <15, 0 ≦ z ≦ 0.7, 0 <w ≦ 10, 0.80
≦ a ≦ 1.00, 0 ≦ b ≦ 1, M is at least 1 of Ti, V, Cr
Seed) and a bonded magnet made of a powder comprising a microcrystalline phase or a mixed phase of a microcrystal and an amorphous phase. 12. {R 'a (Ce b La 1-b) 1-a} x (Fe 1-z Co z) 100-xyw B y M w ( where, R' is Ce, except for La, rare earth elements including Y At least one of 5.5 ≦
x <10, 2 ≦ y <15, 0 ≦ z ≦ 0.7, 0 <w ≦ 10, 0.80
≦ a ≦ 1.00, 0 ≦ b ≦ 1, M is at least 1 of Ti, V, Cr
A method for producing a permanent magnet, in which a molten alloy of the above type is rapidly quenched and then annealed in a temperature range of 300 to 900 ° C.
JP62062198A 1986-04-15 1987-03-17 Permanent magnet and manufacturing method thereof Expired - Lifetime JP2727506B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/038,195 US4836868A (en) 1986-04-15 1987-04-14 Permanent magnet and method of producing same
DE8787303284T DE3779481T2 (en) 1986-04-15 1987-04-14 PERMANENT MAGNET AND METHOD FOR THE PRODUCTION THEREOF.
EP87303284A EP0242187B1 (en) 1986-04-15 1987-04-14 Permanent magnet and method of producing same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP8685086 1986-04-15
JP9424786 1986-04-23
JP11108786 1986-05-15
JP61-86850 1987-02-05
JP2350987 1987-02-05
JP61-111087 1987-02-05
JP61-94247 1987-02-05
JP62-23509 1987-02-05

Publications (2)

Publication Number Publication Date
JPS647501A JPS647501A (en) 1989-01-11
JP2727506B2 true JP2727506B2 (en) 1998-03-11

Family

ID=27457977

Family Applications (2)

Application Number Title Priority Date Filing Date
JP62062198A Expired - Lifetime JP2727506B2 (en) 1986-04-15 1987-03-17 Permanent magnet and manufacturing method thereof
JP62090709A Expired - Lifetime JP2727507B2 (en) 1986-04-15 1987-04-15 Permanent magnet and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP62090709A Expired - Lifetime JP2727507B2 (en) 1986-04-15 1987-04-15 Permanent magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP2727506B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4102888A1 (en) * 1990-01-31 1991-08-01 Toshiba Kawasaki Kk METHOD FOR PRODUCING A MINIATURIZED HETEROUISING BIPOLAR TRANSISTOR
JP2580067B2 (en) * 1990-08-17 1997-02-12 富士電気化学株式会社 Manufacturing method of rare earth permanent magnet
JP2753429B2 (en) * 1992-10-28 1998-05-20 ゼネラル・モーターズ・コーポレーション Bonded magnet
JP2753432B2 (en) * 1992-10-28 1998-05-20 ゼネラル・モーターズ・コーポレーション Sintered permanent magnet
JPH0696925A (en) * 1992-10-28 1994-04-08 Mitsubishi Steel Mfg Co Ltd Bond magnet
JPH06124824A (en) * 1992-10-28 1994-05-06 Mitsubishi Steel Mfg Co Ltd Sintered permanent magnet
JP2818718B2 (en) * 1992-10-28 1998-10-30 ゼネラル・モーターズ・コーポレーション Permanent magnet powder
CA2336011A1 (en) * 1998-07-13 2000-01-20 Santoku America, Inc. High performance iron-rare earth-boron-refractory-cobalt nanocomposites
KR100562681B1 (en) 2000-05-24 2006-03-23 가부시키가이샤 네오맥스 Permanent magnet including multiple ferromagnetic phases and method for producing the magnet
US7004228B2 (en) 2000-10-06 2006-02-28 Santoku Corporation Process for producing, through strip casting, raw alloy for nanocomposite type permanent magnet
US6790296B2 (en) 2000-11-13 2004-09-14 Neomax Co., Ltd. Nanocomposite magnet and method for producing same
JP4644986B2 (en) * 2001-07-16 2011-03-09 日立金属株式会社 Anisotropic iron-based permanent magnet and method for producing the same
JP4069727B2 (en) * 2001-11-20 2008-04-02 日立金属株式会社 Rare earth based bonded magnet compound and bonded magnet using the same
US6979409B2 (en) * 2003-02-06 2005-12-27 Magnequench, Inc. Highly quenchable Fe-based rare earth materials for ferrite replacement
JP4743472B2 (en) * 2004-06-30 2011-08-10 日立工機株式会社 Tabletop cutting machine
JP5071409B2 (en) * 2009-02-24 2012-11-14 日立金属株式会社 Iron-based rare earth nanocomposite magnet and manufacturing method thereof
JP5366000B2 (en) * 2009-04-27 2013-12-11 日立金属株式会社 Rare earth permanent magnet and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS609852A (en) * 1983-06-24 1985-01-18 ゼネラル・モ−タ−ズ・コ−ポレ−シヨン High energy stored rare earth-iron magnetic alloy
JP2513994B2 (en) * 1985-09-17 1996-07-10 ティーディーケイ株式会社 permanent magnet

Also Published As

Publication number Publication date
JP2727507B2 (en) 1998-03-11
JPS647502A (en) 1989-01-11
JPS647501A (en) 1989-01-11

Similar Documents

Publication Publication Date Title
US4836868A (en) Permanent magnet and method of producing same
JP2843379B2 (en) Isotropic heat-resistant bonded magnet, method of manufacturing the same, magnetic powder using the same, and PM-type motor using the same
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
JPH01103805A (en) Permanent magnet
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
JP2948223B2 (en) High performance permanent magnet with excellent corrosion resistance and method of manufacturing the same
JP3003979B2 (en) Permanent magnet and method for manufacturing the same
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JPH01100242A (en) Permanent magnetic material
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JPH02201902A (en) Permanent magnet
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2746111B2 (en) Alloy for permanent magnet
JP2925840B2 (en) Fe-BR bonded magnet
JP3032385B2 (en) Fe-BR bonded magnet
JPH01101606A (en) Powder permanent magnet and manufacture thereof
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH05299222A (en) Fe-b-r bonded magnet
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term