JP3547016B2 - Rare earth bonded magnet and method of manufacturing the same - Google Patents

Rare earth bonded magnet and method of manufacturing the same Download PDF

Info

Publication number
JP3547016B2
JP3547016B2 JP29477093A JP29477093A JP3547016B2 JP 3547016 B2 JP3547016 B2 JP 3547016B2 JP 29477093 A JP29477093 A JP 29477093A JP 29477093 A JP29477093 A JP 29477093A JP 3547016 B2 JP3547016 B2 JP 3547016B2
Authority
JP
Japan
Prior art keywords
phase
crystal structure
rare earth
type crystal
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29477093A
Other languages
Japanese (ja)
Other versions
JPH07130514A (en
Inventor
裕和 金清
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Neomax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Co Ltd filed Critical Neomax Co Ltd
Priority to JP29477093A priority Critical patent/JP3547016B2/en
Publication of JPH07130514A publication Critical patent/JPH07130514A/en
Application granted granted Critical
Publication of JP3547016B2 publication Critical patent/JP3547016B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、マグネットロール、スピーカー、磁気センサー用磁気回路、各種メーターおよびフォーカス用マグネットならびにモーターやアクチュエーターなどに最適な希土類ボンド磁石とその製造方法に係り、希土類元素の含有量が少ない特定組成 Fe-Cr-B-R-M(M=Al,Si,Pb)合金溶湯を回転ロールを用いた超急冷法、スプラット急冷法、ガスアトマイズ法あるいはこれらの併用法にてアモルファス組織とし、特定の熱処理にて体心正方晶Fe3P型結晶構造を有する鉄を主成分とするホウ化物相とNd2Fe14B型結晶構造の構成相との微細結晶集合体からなる合金粉末を得、これを樹脂にて結合することにより、ハードフェライト磁石では得られなかった5kG以上の残留磁束密度Brを有するFe-B-R系ボンド磁石を得る希土類ボンド磁石とその製造方法に関する。
【0002】
【従来の技術】
家電用ステッピングモーター、電装品用モーター、アクチュエーターなどに使用される永久磁石は主にハードフェライト磁石に限定されていたが、低温でのiHc低下に伴う低温減磁特性が有ること、セラミックス材質のために機械的強度が低くて割れ、欠けが発生し易いこと、複雑な形状が得難いことなどの問題があった。
【0003】
今日、自動車は省資源のため車両の軽量化による燃費の向上が強く要求されており、自動車用電装品はより一層の小型、軽量化が求められている。
また、自動車用電装品以外の家電用モーターなどの用途においても、性能対重量比を最大にするための設計が検討されており、現在のモーター構造では磁石材料としてBrが5〜7kG程度のものが最適とされている。
すなわち、使用する磁石材料のBrが8kG以上の場合、現在のモーター構造では磁路となる回転子やステーターの鉄板の断面積を増大させる必要があり、重量の増大を招来するが、Brが5〜7kGであれば性能対重量比を最大にすることができる。
【0004】
従って、小型モーター用の磁石材料は磁気特性的には特に5kG以上の残留磁束密度Brが要求されているが、従来のハードフェライト磁石では得ることができない。
例えばNd−Fe−B系ボンド磁石ではかかる磁気特性を満足するが、金属の分離精製や還元反応に多大の工程並びに大規模な設備を要するNd等を10〜15at%含有しているため、ハードフェライト磁石に比較して著しく高価であり、現在のところ大量生産が可能で安価に提供できるBrが5〜7kG程度の磁石材料は、見出されていない。
【0005】
【発明が解決しようとする課題】
一方、Nd−Fe−B系磁石において、最近、Nd4Fe7719(at%)近傍でFe3B型化合物を主相とする磁石材料が提案(R.Coehoorn等、J.de Phys.,C8,1988,669〜670頁)された。この磁石材料はアモルファスリボンを熱処理することにより、準安定なFe3Bと準安定相のNd2Fe14Bの結晶集合組織を有する磁石材料が得られるが、iHcが2〜3kOe程度と低く、またこのiHcを得るための熱処理条件が狭く限定され、工業生産上実用的でない。
【0006】
このFe3B型化合物を主相とする磁石材料に添加元素を加えて多成分化し、性能向上を図った研究が発表されている。その1つは希土類元素にNdのほかにDyとTbを用いてiHcの向上を図るものであるが、高価な元素を添加する問題のほか、添加希土類元素はその磁気モーメントがNdやFeの磁気モーメントと反平行して結合するため磁化が減少する問題がある(R.Coehoorn、J.Magn,Magn,Mat.、83(1990)228〜230頁)。
【0007】
他の研究(Shen Bao−genら,J.Magn, Magn,Mat.、89(1991)335〜340頁)として、 Feの一部をCoにて置換してキュリー温度を上昇させ、iHcの温度係数を改善するものであるが、Coの添加にともないBrを低下させる問題がある。
【0008】
いずれにしてもFe3B型Nd−Fe−B系磁石は、超急冷法によりアモルファス化した後、熱処理してハード磁石材料化できるが、iHcが低く、かつ前記熱処理条件が狭く、安定した工業生産ができず、ハードフェライト磁石の代替えとして安価に提供することができない。
【0009】
この発明は、Fe3B型Fe−B−R系磁石(Rは希土類元素)に着目して、iHcを向上させ、安定した工業生産が可能な製造方法の確立と、6kG以上の残留磁束密度Brを有しハードフェライト磁石に匹敵するコストパフォーマンスを有し、安価に提供できるFe3B型Nd−Fe−B系ボンド磁石とその製造方法の提供を目的としている。
【0010】
【課題を解決するための手段】
この発明は、Fe3B型系Fe−B−R磁石のiHcを向上させ、安定した工業生産が可能な製造方法を目的に種々検討した結果、希土類元素の含有量が少なく、CrあるいはさらにAl、Si、Pbの少なくとも1種を少量添加した鉄基の特定組成の合金溶湯を超急冷法等にてアモルファス組織となし、特定の昇温速度による熱処理にて微細結晶集合体を得ることにより、ハードフェライト磁石では得られなかった5kG以上の残留磁束密度Brを有するボンド磁石が得られることを知見し、この発明を完成した。
【0011】
この発明は、
組成式 Fe 100-x-y-z-w CrxByRzMw (但しRはPrまたはNdの1種または2種、MはAl、SiまたはPbの1種または2種以上)と表し、組成範囲を限定する記号x、y、z、wが下記値を満足し、体心正方晶Fe3P型結晶構造を有する鉄を主成分とするホウ化物相とNd2Fe14B型結晶構造を有する構成相とが同一粉末粒子中に共存し、各構成相の平均結晶粒径が5nm〜100nmの範囲内のとき、実用的に必要な4kOe以上の固有保持力を発現し、平均粒径が3μm〜500μmである粉末を樹脂にて結合して所要形状に成型固化することにより、室温付近で準安定な結晶構造相が分解することなく、ボンド磁石として利用可能な形態として提供できる。
0.01≦x≦5at%
16≦y≦22at%
3≦z≦5.5at%
0.1≦w≦3at%
【0012】
また、この発明は、
(1)組成式 Fe 100-x-y-z-w CrxByRzMw (但しRはPrまたはNdの1種または2種、MはAl、SiまたPbの1種または2種以上)と表し、組成範囲を限定する記号x、y、z、wが上述の値を満足する合金溶湯を回転ロールを用いた超急冷法、スプラット急冷法、ガスアトマイズ法あるいはこれらを組み合せて急冷し 90%以上をアモルファス組織となし、
(2)さらに熱処理の際に、Fe3P型結晶構造を有する鉄を主成分とするホウ化物相が析出する温度からの昇温速度を1℃/分〜15℃/分で昇温して600℃〜750℃で10秒間〜6時間保持する熱処理を施し、
(3)Fe3P型結晶構造を有する鉄を主成分とするホウ化物相と、Nd2Fe14B型結晶構造を有す構成相とが同一粉末粒子中に共存し、各構成相の平均結晶粒径が5nm〜100nmの範囲にある微結晶集合体を得たのち、
(4)平均粒径3μm〜500μmに粉砕して得られた磁石合金粉末を樹脂にて結合したことを特徴とする希土類ボンド磁石の製造方法である。
【0013】
組成の限定理由
希土類元素RはPrまたはNdの1種また2種以上を特定量含有のときのみ、高い磁気特性が得られ、他の希土類、例えばCe、LaではiHcが2kOe以上の特性が得られず、またSm以降の中希土類元素、重希土類元素は磁気特性の劣化を招来するとともに磁石を高価格にするため好ましくない。
Rは、3at%未満では4kOe以上のiHcが得られず、また5.5at%を超えるとFe3B相が生成せず、硬磁性を示さない準安定相のR2Fe233相が折出しiHcは著しく低下するので好ましくないため、3〜5.5at%の範囲とする。
【0014】
Bは、16at%未満および22at%を超えると4kOe以上のiHcが得られないため、16〜22at%の範囲とする。
【0015】
Crは、iHcの向上に有効であるが、0.01at%未満ではかかる効果が得られず、5at%を超えるとBrが低下し、6kG以上のBrが得られないため、0.01〜5at%の範囲とする。
【0016】
Al、Si、Pbは減磁曲線の角型性を改善し、磁気特性のBr、(BH)maxを増大させる効果を有し、かかる効果を得るには少なくとも0.1at%以上の添加が必要であるが、3at%を超えるとかえって角型性を劣化させ、(BH)maxも低下するため、0.1〜3at%の範囲とする。
【0017】
Feは、上述の元素の含有残余を占める。
【0018】
粉末の構成相の限定理由
この発明によるボンド磁石構成する合金粉末は、1.6Tという高い飽和磁化を持つ体心正方晶Fe3P型結晶構造を有する鉄を主成分とするホウ化物相を主相とすることを特徴としている。このホウ化物相は特定の範囲で準安定的に空間群P4/nmnのNd2Fe14B型結晶構造を有する強磁性相と共存できる。
これらのホウ化物相と強磁性相が共存することが高い磁束密度と十分なiHcを得るためには必須であり、同一組成であっても、例えば鋳造法などではその製法に起因して、C16型結晶構造を有するFe2B相と体心正方晶のα−Fe相とが主相となると、高い磁化が得られるが、各相の結晶粒径が数μmから数十μmと大きいため、iHcは1kOe以下に劣化して磁石として使用できなくなり、好ましくない。
【0019】
結晶粒径、粉末粒径の限定理由
この発明のボンド磁石を構成する合金粉末中に共存する体心正方晶Fe3P型結晶構造を有する鉄を主成分とするホウ化物相とNd2Fe14B型結晶構造は、いずれも強磁性相であるが、前者相は単独では磁気的に軟質であり、後者相が共存することがiHcを発現するのに不可欠である。
しかし、単に両相が共存するだけでは不十分であり、両者の平均結晶粒径が5nm〜100nmの範囲にないと、減磁曲線の第2象限の角形性が悪化して、永久磁石としては動作点において十分な磁束を取り出すことができないため、平均結晶粒径は5nm〜100nmに限定する。
複雑形状や薄肉形状の磁石が得られるボンド磁石としての特徴を生かし、高精度の成型を行うには、粉末の粒径は十分小さいことが必要であるが、アトマイズで得られる粒径が100μmを越える合金粉末は急冷時に十分粉末内部まで冷却されず大部分がα−Fe相となるため、熱処理を施してもFe3B並びにNd2Fe14B相が析出せずに、硬磁性材料となり得ない。
また、3μm未満の粒径では、比表面積増大に伴い多量の樹脂を使用する必要があり、充填密度が低下して好ましくないため、粉末粒径を3μm〜500μmに限定する。
【0020】
この発明によるボンド磁石は等方性磁石であり、以下に示す圧縮成型、射出成型、押し出し成型、圧延成型、樹脂含浸法など公知のいずれの製造方法であってもよい。
圧縮成型の場合は、磁性粉末に熱硬化性樹脂、カップリング剤、滑剤等を添加混練したのち、圧縮成型して加熱樹脂を硬化して得られる。
射出成型、押し出し成型、圧延成型の場合は、磁性粉末に熱可塑性樹脂、カップリング剤、滑剤等を添加混練したのち、射出成型、押し出し成型、圧延成型のいずれかの方法にて成型して得られる。
樹脂含浸法においては、磁性粉末を圧縮成型後、必要に応じて熱処理した後、熱硬化性樹脂を含浸させ、加熱して樹脂を硬化させて得る。また、磁性粉末を圧縮成型後、必要に応じて熱処理した後、熱可塑性樹脂を含浸させて得る。
【0021】
この発明において、ボンド磁石中の磁性粉末の重量比は、前記製法により異なるが、70〜99.5wt%であり、残部0.5〜30wt%が樹脂その他である。圧縮成型の場合、磁性粉末の重量比は95〜99.5wt%、射出成型の場合、磁性粉末の充填率は90〜95wt%、樹脂含浸法の場合、磁性粉末の重量比は96〜99.5wt%が好ましい。
この発明における合成樹脂は、熱硬化性、熱可塑性のいずれの性質を有するものも利用できるが、熱的に安定な樹脂が好ましく、例えば、ポリアミド、ポリイミド、フェノール樹脂、弗素樹脂、けい素樹脂、エポキシ樹脂などを適宜選定できる。
【0022】
製造条件の限定理由
この発明において、上述の特定組成の合金溶湯を超急冷法にてアモルファスとなし、Fe3P型結晶構造を有する鉄を主成分とするホウ化物相が析出する温度付近からの昇温速度を1℃/分〜15℃/分で昇温して600℃〜750℃で10秒間〜6時間保持する熱処理を施すことにより、熱力学的には準安定相であるFe3P型結晶構造を持つFe3B相と、Nd2Fe14B型結晶構造を有する強磁性相が共存し、各構成相の平均結晶粒径が5nm〜100nmの範囲にある 微結晶集合体を得ることが最も重要であり、合金溶湯の超急冷処理には公知の回転ロールを用いた超急冷法を採用できるが、実質的に90%以上のアモルファスが得られれば、回転ロールを用いた超急冷法の他にもスプラット急冷法、ガスアトマイズ法あるいはこれらを組み合わせた急冷方法を採用してもよい。
例えば、Cu製ロールを用いる場合は、そのロール表面周速度が10〜50m/秒の範囲が好適な組織が得られるため好ましい。すなわち周速度が10m/秒未満ではアモルファスとならずα−Fe相の析出量が増大して好ましくなく、ロール表面周速度が50m/秒を超えると、急冷された合金が連続的なリボンとして生成せず、合金片が飛散し、装置から合金を回収する際の回収率や回収能率が低下して好ましくない。ただし、少量のα−Fe相が急冷薄帯中に存在しても特性を著しく低下させるものでなく許容される。
【0023】
この発明において、上述の特定組成の合金溶湯を超急冷法にて実質的に90%以上をアモルファスとなした後、磁気特性が最高となる熱処理は組成に依存するが、熱処理温度が600℃未満ではNd2Fe14B相が析出せず、4kOe以上のiHcが得られず、また750℃を超えると熱平衡相であるα−Fe相とFe2BまたはNd1.1Fe44相が生成してiHcが発現しないため、熱処理温度は600〜750℃以下に限定する。
熱処理雰囲気はArガスなどの不活性ガス雰囲気もしくは10-3Torr以上の真空中が好ましい。
熱処理時間は短くてもよいが、10秒未満では十分なミクロ組織の生成が行われず、iHc及び減磁曲線の角型性が劣化し、また6時間を超えると4kOe以上のiHcが得られないので、熱処理保持時間を10秒〜6時間に限定する。
【0024】
この発明において重要な特徴として、熱処理に際してFe3P型結晶構造を有する鉄を主成分とするホウ化物相が析出する温度からの昇温速度であり、1℃/分未満の昇温速度では、昇温中にNd2Fe14B相とFe3B相の結晶粒径が大きく成長しすぎてiHcが劣化し、4kOe以上のiHcが得られない。
また、15℃/分を超える昇温速度では、600℃を通過してから生成するNd2Fe14B相の析出が十分に行われず、α−Fe相の析出量が増大して、磁化曲線の第2象限にBr点近傍に磁化の低下のある減磁曲線となり、(BH)maxが劣化するため好ましくない。ただし、少量のα−Fe相の存在は許容できる。
なお、熱処理に際してFe3P型結晶構造を有する鉄を主成分とするホウ化物相が析出する温度未満まではその昇温速度は任意であり、急速加熱などを適用して処理能率を高めることができる。
【0025】
結晶構造
この発明による希土類磁石並びに希土類磁石合金粉末の結晶相は、Fe3P型結晶構造を有する鉄を主成分とするホウ化物を主相とし、Nd2Fe14B型結晶構造を有する強磁性相を有し、平均結晶粒径が5nm〜100nmの微細結晶集合体からなることを特徴としている。
この発明において、磁石合金の平均結晶粒径が100nmを超えると、減磁曲線の角型性が著しく劣化し、Br≧6kG、(BH)max≧7MGOeの磁気特性を得ることができない。また、平均結晶粒径は細かいほど好ましいが、5nm未満の平均結晶粒径を得ることは工業生産上困難であるため、下限を5nmとする。
【0026】
【作用】
この発明は、希土類元素の含有量が少ない特定組成 Fe-Cr-B-R-M合金溶湯(R Nd Pr 1 種もしくは 2 種、MはAl、Si、Pbの1種もしくは2種以上)を前述の超急冷法に 90%以上をアモルファス組織となし、得られたリボン、フレーク、球状粉末をFe3B析出温度以上から1〜15℃/分の昇温速度で昇温した後、600〜750℃で10秒〜6時間保持する熱処理を施すことにより、熱力学的には、準安定相であるFe3P型結晶構造をもつFe3B相とNd2Fe14B型結晶構造を有する強磁性相が共存し、各構造相の平均結晶粒径が5nm〜100nmの範囲にある微結晶集合体を得る。この際、Crを加えることでCrの一部が硬磁性相であるNd2Fe14B相のFe原子と置換することでNd2Fe14B相の異方性定数が向上すること、残部のCrがiHcを低減する軟磁性相であるα-Feとの間に非磁性の金属間化合物を作ることにより、Crを含有しない組成より高いiHcが発現する。
さらにCrと同時にAl、Si、Pbを1種あるいは2種以上含有することにより、Cr含有時のBr、減磁曲線の角形の劣化を改善することができ、iHc≧4kG、Br≧6kG、(BH)max≧6MGOeの磁気特性を有するボンド磁石を得ることができる。
【0027】
【実施例】
実施例1
表1のNo.1〜5の組成となるように、純度99.5%以上のFe、Cr、B、Nd、Pr、Al、Siの金属を用いて、総量が30grとなるように秤量し、底部に直径0.8mmのオリフィスを有する石英るつぼ内に投入し、圧力56cmHgのAr雰囲気中で高周波加熱により溶解し、溶解温度を1400℃にした後、湯面をArガスにより加圧して室温にてロール周速度20m/秒にて高速回転するCu製ロールの外周面に0.7mmの高さから溶湯を噴出させて、幅2〜3mm、厚み30〜40μmの超急冷薄帯を作製した。
得られた超急冷薄帯をCuKαの特性X線によりアモルファスであることを確認した。
【0028】
この超急冷薄帯をArガス中で590℃まで急速加熱した後、590℃以上を表1に示す昇温速度で昇温し、表1に示す熱処理温度で7分間保持し、その後室温まで冷却して薄帯を取り出し、幅2〜3mm、厚み30〜40μm、長さ3〜5mmの試料を作製し、VSMを用いて磁気特性を測定した。測定結果を表2に示す。
なお、試料の測定結果は、正方晶と斜方晶が混在するFe3B相が主相で、Nd2Fe14B相とα−Fe相が混在する多相組織であり、平均結晶粒径はいずれも100nm以下であった。なお、Crはこれらの各相でFeの一部を置換するが、Al、Si、Pbについては添加量が少ない上、超微細結晶であるため分析不能であった。
この薄帯を粉砕して、粒径が5〜120μmにわたって分布する平均粒径60μmの粉末を得たのち、粉末98wt%に対してエポキシ樹脂を2wt%の割合で混合したのち、6ton/cm2の圧力で圧縮成型し、150℃で硬化処理してボンド磁石を得た。
このボンド磁石の密度は6.0gr/cm3であり、磁石特性を表2に示す。
【0029】
比較例
表1のNo.6の組成となるように純度99.5%以上のFe、B、Ndを用いて実施例1と同条件で超急冷薄帯を作製した。
得られた薄帯を実施例1と同一条件の熱処理を施し、冷却後に実施例1と同条件で粉砕して、平均粒径60μmの粉末を得たのち、実施例1と同一条件にてボンド磁石を作成した。
得られたボンド磁石の磁石特性を表2に示す
【0030】
【表1】

Figure 0003547016
【0031】
【表2】
Figure 0003547016
【0032】
【発明の効果】
この発明は、希土類元素の含有量が少ない特定組成 Fe-Cr-B-R-M合金溶湯(R Nd Pr 1 種もしくは 2 種、MはAl、Si、Pbの1種もしくは2種以上)を前述の超急冷法に 90%以上をアモルファス組織となし、得られたリボン、フレーク、球状粉末を得、これに特定条件の熱処理を施すことにより、熱力学的には準安定相であるFe3P型結晶構造をもつFe3B相とNd2Fe14B型結晶構造を有する強磁性相が共存し、各構成相の平均結晶粒径が5nm〜100nmの範囲にある微結晶集合体を得る。この際、Crを加えることでCrの一部が硬磁性相であるNd2Fe14B相のFe原子と置換することでNd2Fe14B相の異方性定数が向上すること、残部のCrがiHcを低減する軟磁性相であるα-Feとの間に非磁性の金属間化合物を作ることにより、Crを含有しない組成より高いiHcが発現する。
さらにCrと同時にAl、Si、Pbを1種あるいは2種以上含有することにより、Cr含有時のBr、減磁曲線の角形の劣化が改善されることにより、iHc≧4kG、Br≧6kG、(BH)max≧6MGOeの磁気特性を有するボンド磁石を得ることができる。
また、この発明は、希土類元素の含有量が少なく、製造方法が簡単で大量生産に適しているため、5kG以上の残留磁束密度Brを有し、ハードフェライト磁石を超える磁気的性能を有するボンド磁石を提供できる。[0001]
[Industrial applications]
The present invention, a magnet roll, a speaker, a magnetic circuit for magnetic sensors, relates to various meters and focusing magnet and motors and the like optimal rare earth bonded magnet and a method of manufacturing the actuator, Fe having a specific composition containing a small amount of rare earth elements -Cr-BRM (M = Al, Si, Pb) alloy melt is made to have an amorphous structure by a super-quenching method using a rotating roll, a splat quenching method, a gas atomizing method, or a combination of these methods. Alloy powder consisting of a fine crystal aggregate of a boride phase mainly composed of iron having a crystalline Fe 3 P type crystal structure and a constituent phase of a Nd 2 Fe 14 B type crystal structure, which is bonded with a resin The present invention relates to a rare earth bonded magnet for obtaining an Fe-BR based bonded magnet having a residual magnetic flux density Br of 5 kG or more, which cannot be obtained with a hard ferrite magnet, and a method for manufacturing the same.
[0002]
[Prior art]
Permanent magnets used in stepping motors for home appliances, motors for electrical components, actuators, etc. were mainly limited to hard ferrite magnets, but due to their low-temperature demagnetization properties associated with low iHc at low temperatures, and ceramic materials In addition, there are problems that the mechanical strength is low, cracks and chips are easily generated, and it is difficult to obtain a complicated shape.
[0003]
2. Description of the Related Art Today, automobiles are strongly required to improve fuel efficiency by reducing the weight of vehicles in order to save resources, and electric components for automobiles are required to be further reduced in size and weight.
In addition, designs for maximizing the performance-to-weight ratio are also being studied for applications such as electric motors for home appliances other than automotive electrical components, and the current motor structure has a magnet material of about 5-7 kG Br. Is optimal.
That is, when Br of the magnet material to be used is 8 kG or more, it is necessary to increase the cross-sectional area of the iron plate of the rotor or the stator which becomes the magnetic path in the current motor structure, which leads to an increase in weight. At ~ 7 kG, the performance to weight ratio can be maximized.
[0004]
Accordingly, a magnetic material for a small motor is required to have a residual magnetic flux density Br of at least 5 kG in terms of magnetic properties, but cannot be obtained with a conventional hard ferrite magnet.
For example, an Nd—Fe—B-based bonded magnet satisfies such magnetic properties, but contains 10 to 15 at% of Nd or the like that requires a large number of steps and large-scale facilities for metal separation and purification or reduction reaction. Magnet materials with a Br of about 5 to 7 kG, which are significantly more expensive than ferrite magnets, can be mass-produced, and can be provided at low cost, have not been found.
[0005]
[Problems to be solved by the invention]
On the other hand, among Nd-Fe-B-based magnets, recently, a magnet material having a Fe 3 B-type compound as a main phase in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed (R. Coehorn et al., J. de Phys. , C8, 1988, pp. 669-670). This magnet material can be obtained by heat-treating an amorphous ribbon to obtain a magnet material having a crystal texture of metastable Fe 3 B and a metastable phase of Nd 2 Fe 14 B. However, iHc is as low as about 2 to 3 kOe. Also, the heat treatment conditions for obtaining this iHc are narrow and limited, and are not practical for industrial production.
[0006]
A study has been published in which a magnetic material having the Fe 3 B-type compound as a main phase is added with an additive element to form a multi-component to improve performance. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. However, in addition to the problem of adding an expensive element, the rare earth element has a magnetic moment of Nd or Fe. There is a problem that magnetization is reduced due to coupling in antiparallel with the moment (R. Coehorn, J. Magn, Magn, Mat., 83 (1990) pp. 228-230).
[0007]
In another study (Shen Bao-gen et al., J. Magn, Magn, Mat., 89 (1991) pp. 335-340), the Curie temperature was increased by substituting a part of Fe with Co to increase the temperature of iHc. Although the coefficient is improved, there is a problem that Br is reduced with the addition of Co.
[0008]
Fe 3 B type Nd-Fe-B based magnet Anyway, after amorphous by rapid quenching, can be hard magnet material by being heat-treated, iHc is low and narrow the heat treatment conditions, stable industrial It cannot be produced and cannot be provided at low cost as a substitute for hard ferrite magnets.
[0009]
The present invention focuses on a Fe 3 B type Fe—BR based magnet (R is a rare earth element), establishes a manufacturing method capable of improving iHc and achieving stable industrial production, and a residual magnetic flux density of 6 kG or more. has a cost performance comparable to hard ferrite magnets have a br, are intended to provide a Fe 3 B type Nd-Fe-B based bonded magnet and a manufacturing method thereof can be provided at low cost.
[0010]
[Means for Solving the Problems]
As a result of various studies for the purpose of improving the iHc of the Fe 3 B type Fe—BR magnet and achieving a stable industrial production, the present invention has found that the content of rare earth elements is small and that Cr or Al , A small amount of at least one of Si and Pb is added to a molten iron having a specific composition of an iron base to form an amorphous structure by a rapid quenching method or the like, and to obtain a fine crystal aggregate by heat treatment at a specific temperature increasing rate. The inventors have found that a bonded magnet having a residual magnetic flux density Br of 5 kG or more, which cannot be obtained with a hard ferrite magnet, can be obtained, and completed the present invention.
[0011]
The present invention
The composition formula is expressed as Fe 100-xyzw Cr x B y R z M w (where R is one or two of Pr or Nd , M is one or two or more of Al, Si or Pb), and the composition range is A configuration in which the limiting symbols x, y, z, and w satisfy the following values, and have a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P-type crystal structure and an Nd 2 Fe 14 B-type crystal structure Phase and coexist in the same powder particles, and when the average crystal grain size of each constituent phase is in the range of 5 nm to 100 nm, a practically necessary intrinsic coercive force of 4 kOe or more is exhibited, and the average grain size is 3 μm or more. By bonding the powder of 500 μm with a resin and molding and solidifying it into a required shape, a metastable crystal structure phase can be provided in a form usable as a bonded magnet without decomposition at around room temperature.
0.01 ≦ x ≦ 5at%
16 ≦ y ≦ 22at%
3 ≦ z ≦ 5.5at%
0.1 ≦ w ≦ 3at%
[0012]
In addition, the present invention
(1) The composition formula is represented as Fe 100-xyzw Cr x B y R z M w (where R is one or two of Pr or Nd , M is one or more of Al, Si or Pb), symbol x limiting the composition range, y, z, w super quenching method using a rotating roll molten alloy satisfying the above-mentioned values, splat quenching method, and quenched in conjunction gas atomizing method or these, more than 90% With and without amorphous structure
(2) Further during heat treatment, Fe 3 P type crystalline structure raised at 1 ° C. / minute to 15 ° C. / min heating rate of temperature or et al boride phase composed mainly of iron is precipitated with And heat-treated at 600 ° C to 750 ° C for 10 seconds to 6 hours.
(3) A boride phase mainly composed of iron having a Fe 3 P type crystal structure and a component phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average of each component phase After obtaining a microcrystalline aggregate having a crystal grain size in the range of 5 nm to 100 nm,
(4) A method for producing a rare earth bonded magnet, characterized in that a magnet alloy powder obtained by pulverization to an average particle size of 3 μm to 500 μm is bonded with a resin.
[0013]
Reasons for limitation of composition High magnetic properties can be obtained only when the rare earth element R contains one or more of Pr or Nd in a specific amount, and other rare earth elements such as Ce and La have iHc of 2 kOe or more. However, medium rare earth elements and heavy rare earth elements after Sm are not preferable because they cause deterioration of magnetic properties and increase the cost of magnets.
If R is less than 3 at%, iHc of 4 kOe or more cannot be obtained, and if it exceeds 5.5 at%, no Fe 3 B phase is formed and a metastable phase R 2 Fe 23 B 3 that does not show hard magnetism is formed. The unfolded iHc is unpreferably because it significantly decreases, so the range is 3 to 5.5 at%.
[0014]
B is in the range of 16 to 22 at% because iHc of 4 kOe or more cannot be obtained if B is less than 16 at% or exceeds 22 at%.
[0015]
Although Cr is effective in improving iHc, such an effect cannot be obtained at less than 0.01 at%, and Br decreases at more than 5 at%, and Br of 6 kG or more cannot be obtained. % Range.
[0016]
Al, Si, and Pb have the effect of improving the squareness of the demagnetization curve and increasing the Br and (BH) max of the magnetic properties. To obtain such an effect, addition of at least 0.1 at% or more is necessary. However, if it exceeds 3 at%, the squareness is rather deteriorated, and (BH) max also decreases. Therefore, the range is 0.1 to 3 at%.
[0017]
Fe accounts for the residual content of the above-mentioned elements.
[0018]
Reasons for Limiting Constituent Phase of Powder The alloy powder constituting the bonded magnet according to the present invention mainly comprises a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure having a high saturation magnetization of 1.6 T. It is characterized by a phase. This boride phase can be metastable in a specific range and coexist with a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure of a space group P 4 / nmn.
The coexistence of the boride phase and the ferromagnetic phase is essential for obtaining a high magnetic flux density and sufficient iHc. Even if the composition is the same, for example, in a casting method or the like, C16 When the Fe 2 B phase having the type crystal structure and the body-centered tetragonal α-Fe phase are the main phases, high magnetization is obtained, but since the crystal grain size of each phase is as large as several μm to several tens μm, iHc deteriorates to 1 kOe or less and cannot be used as a magnet, which is not preferable.
[0019]
Reasons for limiting crystal grain size and powder grain size A boride phase containing iron as a main component having a body-centered tetragonal Fe 3 P type crystal structure and Nd 2 Fe 14 coexisting in the alloy powder constituting the bonded magnet of the present invention Each of the B-type crystal structures is a ferromagnetic phase, but the former phase is magnetically soft by itself, and the coexistence of the latter phase is essential for expressing iHc.
However, simply coexisting both phases is not sufficient, and if the average crystal grain size of both is not in the range of 5 nm to 100 nm, the squareness of the second quadrant of the demagnetization curve deteriorates, and as a permanent magnet, Since sufficient magnetic flux cannot be extracted at the operating point, the average crystal grain size is limited to 5 nm to 100 nm.
In order to make the most of the characteristics of bonded magnets, which can produce magnets with complex shapes and thin shapes, and to perform high-precision molding, the particle size of the powder needs to be sufficiently small, but the particle size obtained by atomization must be 100 μm. Since the alloy powder exceeding the temperature is not sufficiently cooled to the inside of the powder during quenching and is mostly in the α-Fe phase, the Fe 3 B and Nd 2 Fe 14 B phases do not precipitate even after heat treatment, and the alloy powder can be a hard magnetic material. Absent.
If the particle diameter is less than 3 μm, a large amount of resin must be used as the specific surface area increases, and the packing density decreases, which is not preferable. Therefore, the powder particle diameter is limited to 3 μm to 500 μm.
[0020]
The bonded magnet according to the present invention is an isotropic magnet, and may be any known manufacturing method such as compression molding, injection molding, extrusion molding, rolling molding, and resin impregnation described below.
In the case of compression molding, a thermosetting resin, a coupling agent, a lubricant, and the like are added to the magnetic powder, kneaded, and then compression-molded to cure the heated resin.
In the case of injection molding, extrusion molding, and rolling molding, a thermoplastic resin, a coupling agent, a lubricant, etc. are added and kneaded to the magnetic powder, and then molded by any of injection molding, extrusion molding, and rolling molding. Can be
In the resin impregnation method, a magnetic powder is obtained by compression molding, heat-treating as necessary, then impregnating with a thermosetting resin, and heating to cure the resin. Further, the magnetic powder is obtained by compression molding, heat-treating as necessary, and then impregnating with a thermoplastic resin.
[0021]
In the present invention, the weight ratio of the magnetic powder in the bonded magnet varies depending on the manufacturing method, but is 70 to 99.5 wt%, and the remaining 0.5 to 30 wt% is resin or the like. In the case of compression molding, the weight ratio of the magnetic powder is 95 to 99.5 wt%. In the case of injection molding, the filling ratio of the magnetic powder is 90 to 95 wt%. In the case of the resin impregnation method, the weight ratio of the magnetic powder is 96 to 99. 5 wt% is preferred.
As the synthetic resin in the present invention, any of thermosetting and thermoplastic properties can be used, but a thermally stable resin is preferable.For example, polyamide, polyimide, phenol resin, fluorine resin, silicon resin, An epoxy resin or the like can be appropriately selected.
[0022]
Reasons for Limiting Manufacturing Conditions In the present invention, the molten alloy having the above-mentioned specific composition is made amorphous by a super-quenching method, and a temperature around a temperature at which a boride phase mainly composed of iron having a Fe 3 P type crystal structure is precipitated. By performing a heat treatment at a heating rate of 1 ° C./min to 15 ° C./min and holding at 600 ° C. to 750 ° C. for 10 seconds to 6 hours, Fe 3 P which is a metastable phase thermodynamically An Fe 3 B phase having a type crystal structure and a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure coexist, and a microcrystal aggregate having an average crystal grain size of each constituent phase in the range of 5 nm to 100 nm is obtained. The most important thing is that the super-quenching process using a known rotating roll can be adopted for the ultra-quenching treatment of the molten alloy. However, if 90% or more of the amorphous material can be obtained, the ultra-quenching using the rotating roll is effective. Splat quenching method, gas at It is method or may be employed quenching method combining these.
For example, when a Cu roll is used, it is preferable that the roll surface peripheral speed is in the range of 10 to 50 m / sec because a suitable structure is obtained. That is, when the peripheral speed is less than 10 m / sec, the amorphous material is not formed and the amount of precipitation of the α-Fe phase is increased, and when the roll surface peripheral speed exceeds 50 m / sec, a quenched alloy is formed as a continuous ribbon. Without this, the alloy pieces are scattered, and the recovery rate and recovery efficiency when recovering the alloy from the apparatus are undesirably reduced. However, even if a small amount of the α-Fe phase is present in the quenched ribbon, the characteristics are not remarkably deteriorated but are acceptable.
[0023]
In the present invention, the heat treatment at which the magnetic properties are maximized after the melt of the alloy having the specific composition described above is made substantially 90% or more amorphous by the ultra-quenching method depends on the composition, but the heat treatment temperature is lower than 600 ° C. In this case, the Nd 2 Fe 14 B phase does not precipitate, iHc of 4 kOe or more cannot be obtained, and when the temperature exceeds 750 ° C., the α-Fe phase which is a thermal equilibrium phase and the Fe 2 B or Nd 1.1 Fe 4 B 4 phase are formed. Therefore, the heat treatment temperature is limited to 600 to 750 ° C. or less because iHc does not appear.
The heat treatment atmosphere is preferably an inert gas atmosphere such as an Ar gas or a vacuum of 10 -3 Torr or more.
Although the heat treatment time may be short, if it is less than 10 seconds, a sufficient microstructure is not formed, iHc and the squareness of the demagnetization curve are deteriorated, and if more than 6 hours, iHc of 4 kOe or more cannot be obtained. Therefore, the heat treatment holding time is limited to 10 seconds to 6 hours.
[0024]
An important feature of the present invention is that the rate of temperature rise from the temperature at which a boride phase mainly composed of iron having an Fe 3 P type crystal structure precipitates during heat treatment, and at a rate of less than 1 ° C./minute, During the temperature increase, the crystal grain size of the Nd 2 Fe 14 B phase and the Fe 3 B phase grows too large to deteriorate iHc, and iHc of 4 kOe or more cannot be obtained.
At a heating rate exceeding 15 ° C./min, the Nd 2 Fe 14 B phase generated after passing 600 ° C. is not sufficiently precipitated, and the amount of α-Fe phase increases, resulting in a magnetization curve. In the second quadrant, a demagnetization curve having a decrease in magnetization near the Br point is obtained, which is not preferable because (BH) max deteriorates. However, the presence of a small amount of the α-Fe phase is acceptable.
The rate of temperature rise is arbitrary up to a temperature at which a boride phase mainly composed of iron having an Fe 3 P-type crystal structure is precipitated during heat treatment, and the treatment efficiency can be increased by applying rapid heating or the like. it can.
[0025]
Crystal structure The crystal phase of the rare earth magnet and the rare earth magnet alloy powder according to the present invention is mainly composed of a boride mainly composed of iron having an Fe 3 P type crystal structure and a ferromagnetic having an Nd 2 Fe 14 B type crystal structure. It is characterized by having a phase and comprising a fine crystal aggregate having an average crystal grain size of 5 nm to 100 nm.
In the present invention, if the average crystal grain size of the magnet alloy exceeds 100 nm, the squareness of the demagnetization curve is remarkably deteriorated, and the magnetic properties of Br ≧ 6 kG and (BH) max ≧ 7MGOe cannot be obtained. Although the average crystal grain size is preferably as small as possible, it is difficult to obtain an average crystal grain size of less than 5 nm in industrial production, so the lower limit is set to 5 nm.
[0026]
[Action]
The present invention (the R Nd, 1 kind or two kinds of Pr, M is Al, Si, 1 kind or 2 or more kinds of Pb) Fe -Cr-BRM alloy melt having a specific composition containing a small amount of rare earth elements to above without the hand 90% amorphous tissue in rapid quenching, resulting ribbons, flakes, after the spherical powder was heated at a heating rate of 1 to 15 ° C. / min from Fe 3 B precipitation temperature above 600 By performing a heat treatment at 750 ° C. for 10 seconds to 6 hours, thermodynamically, a Fe 3 B phase having a Fe 3 P type crystal structure and a Nd 2 Fe 14 B type crystal structure, which are metastable phases, are obtained. The ferromagnetic phase has a coexistence, and a microcrystalline aggregate having an average crystal grain size of each structural phase in the range of 5 nm to 100 nm is obtained. At this time, by adding Cr, a part of Cr is replaced with Fe atoms of Nd 2 Fe 14 B phase which is a hard magnetic phase, thereby improving the anisotropy constant of Nd 2 Fe 14 B phase, By forming a nonmagnetic intermetallic compound between Cr and α-Fe, which is a soft magnetic phase that reduces iHc, iHc that is higher than the Cr-free composition is developed.
Further, by containing one or more of Al, Si, and Pb simultaneously with Cr, Br when Cr is contained, the deterioration of the square shape of the demagnetization curve can be improved, iHc ≧ 4 kG, Br ≧ 6 kG, ( BH) A bonded magnet having magnetic properties of max ≧ 6MGOe can be obtained.
[0027]
【Example】
Example 1
No. 1 in Table 1. Using Fe, Cr, B, Nd, Pr, Al, and Si metals having a purity of 99.5% or more so as to have a composition of 1 to 5, the weight is weighed so that the total amount is 30 gr. It was put into a quartz crucible having a 0.8 mm orifice, melted by high frequency heating in an Ar atmosphere at a pressure of 56 cmHg, and the melting temperature was set to 1400 ° C. A super-quenched ribbon having a width of 2 to 3 mm and a thickness of 30 to 40 μm was produced by ejecting a molten metal from a height of 0.7 mm onto the outer peripheral surface of a Cu roll rotating at a high speed of 20 m / sec.
The obtained ultra-quenched ribbon was confirmed to be amorphous by characteristic X-ray of CuKα.
[0028]
After rapidly heating the ultra-quenched ribbon to 590 ° C. in Ar gas, the temperature is raised to 590 ° C. or more at a temperature rising rate shown in Table 1, held at the heat treatment temperature shown in Table 1 for 7 minutes, and then cooled to room temperature. Then, the ribbon was taken out, a sample having a width of 2 to 3 mm, a thickness of 30 to 40 μm, and a length of 3 to 5 mm was prepared, and the magnetic characteristics were measured using a VSM. Table 2 shows the measurement results.
The measurement results of the sample show that the main phase is a Fe 3 B phase in which tetragonal and orthorhombic are mixed, and a multiphase structure in which Nd 2 Fe 14 B and α-Fe are mixed. Were all 100 nm or less. Although Cr replaces part of Fe in each of these phases, it was impossible to analyze Al, Si, and Pb because of their small addition amounts and ultrafine crystals.
This ribbon is pulverized to obtain a powder having an average particle size of 60 μm distributed over a particle size of 5 to 120 μm. After mixing 98% by weight of the powder with 2% by weight of the epoxy resin, 6 ton / cm 2. , And cured at 150 ° C. to obtain a bonded magnet.
The density of this bonded magnet was 6.0 gr / cm 3 , and the magnet properties are shown in Table 2.
[0029]
No. of Comparative Example Table 1. A super-quenched ribbon was produced under the same conditions as in Example 1 using Fe, B, and Nd having a purity of 99.5% or more so as to obtain a composition of No. 6.
The obtained ribbon was subjected to a heat treatment under the same conditions as in Example 1, and after cooling, pulverized under the same conditions as in Example 1 to obtain a powder having an average particle diameter of 60 μm, and then bonded under the same conditions as in Example 1. Created a magnet.
Table 2 shows the magnet properties of the obtained bonded magnet.
[Table 1]
Figure 0003547016
[0031]
[Table 2]
Figure 0003547016
[0032]
【The invention's effect】
The present invention (the R Nd, 1 kind or two kinds of Pr, M is Al, Si, 1 kind or 2 or more kinds of Pb) Fe -Cr-BRM alloy melt having a specific composition containing a small amount of rare earth elements to the aforementioned rapid quenching without the hand 90% amorphous structure, resulting resulting ribbons, flakes, spherical powder, followed by heat treatment of the specific conditions in which, in the thermodynamically metastable phase Fe An Fe 3 B phase having a 3P type crystal structure and a ferromagnetic phase having a Nd 2 Fe 14 B type crystal structure coexist, and a fine crystal aggregate having an average crystal grain size of each constituent phase in a range of 5 nm to 100 nm is formed. obtain. At this time, by adding Cr, a part of Cr is replaced with Fe atoms of Nd 2 Fe 14 B phase which is a hard magnetic phase, thereby improving the anisotropy constant of Nd 2 Fe 14 B phase, By forming a nonmagnetic intermetallic compound between Cr and α-Fe, which is a soft magnetic phase that reduces iHc, iHc that is higher than the Cr-free composition is developed.
Further, by containing one or more of Al, Si, and Pb simultaneously with Cr, Br when Cr is contained, the deterioration of the square shape of the demagnetization curve is improved, so that iHc ≧ 4 kG, Br ≧ 6 kG, ( BH) A bonded magnet having magnetic properties of max ≧ 6MGOe can be obtained.
Further, the present invention provides a bonded magnet having a residual magnetic flux density Br of 5 kG or more and a magnetic performance exceeding that of a hard ferrite magnet because the content of rare earth elements is small, the manufacturing method is simple and suitable for mass production. Can be provided.

Claims (2)

組成式をFe 100-x-y-z-w CrxByRzMw (但しRはPrまたはNdの1種または2種、MはAl,SiまたはPbの1種または2種以上)と表し、組成範囲を限定する記号x、y、z、wが下記値を満足し、体心正方晶Fe3P型結晶構造を有する鉄を主成分とするホウ化物相と、Nd2Fe14B型結晶構造を有する構成相とが同一粉末粒子中に共存し、各構成相の平均結晶粒径が5nm〜100nmの範囲にあり、平均粒径が3μm〜500μmである粉末を樹脂にて結合したことを特徴とする希土類ボンド磁石。
0.01≦x≦5at%
16≦y≦22at%
3≦z≦5.5at%
0.1≦w≦3at%
The composition formula is expressed as Fe 100-xyzw Cr x B y R z M w (where R is one or two of Pr or Nd, M is one or more of Al, Si or Pb), and the composition range is The limiting symbols x, y, z, and w satisfy the following values, and have a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P-type crystal structure and an Nd 2 Fe 14 B-type crystal structure The constituent phases coexist in the same powder particles, the average crystal grain size of each constituent phase is in the range of 5 nm to 100 nm, and the powder having an average particle size of 3 μm to 500 μm is bonded with a resin. Rare earth bonded magnet.
0.01 ≦ x ≦ 5at%
16 ≦ y ≦ 22at%
3 ≦ z ≦ 5.5at%
0.1 ≦ w ≦ 3at%
組成式をFe 100-x-y-z-w CrxByRzMw (但しRはPrまたはNdの1種または2種、MはAl、SiまたはPbの1種または2種以上)と表し、組成範囲を限定する記号x、y、z、wが下記値を満足する合金溶湯を回転ロールを用いた超急冷法、スプラット急冷法、ガスアトマイズ法あるいはこれらを組み合せて急冷し90%以上をアモルファス組織となし、さらに熱処理の際に、Fe3P型結晶構造を有する鉄を主成分とするホウ化物相が析出する温度からの昇温速度を1℃/分〜15℃/分で昇温して600℃〜750℃で10秒間〜6時間保持する熱処理を施し、Fe3P型結晶構造を有する鉄を主成分とするホウ化物相と、Nd2Fe14B型結晶構造を有す構成相とが同一粉末粒子中に共存し、各構成相の平均結晶粒径が5nm〜100nmの範囲にある微結晶集合体からなる平均粒径3μm〜500μmの磁石合金粉末を樹脂にて結合したことを特徴とする希土類ボンド磁石の製造方法。
0.01≦x≦5at%
16≦y≦22at%
3≦z≦5.5at%
0.1≦w≦3at%
The composition formula is expressed as Fe 100-xyzw Cr x B y R z M w (where R is one or two of Pr or Nd , M is one or two or more of Al, Si or Pb), and the composition range is Super-quenching method using rotating rolls, splat quenching method, gas atomizing method or a combination of these methods is used to quench the molten alloy whose limiting symbols x, y, z, and w satisfy the following values , and 90% or more has no amorphous structure further during heat treatment, and raising the temperature of the Fe 3 P type heating rate of temperature or et al boride phase is precipitated mainly composed of iron having a crystal structure at 1 ° C. / minute to 15 ° C. / min A heat treatment of holding at 600 ° C. to 750 ° C. for 10 seconds to 6 hours is performed, and a boride phase mainly containing iron having a Fe 3 P type crystal structure and a constituent phase having an Nd 2 Fe 14 B type crystal structure Are present in the same powder particles, and the average crystal grain size of each constituent phase is 5 nm to 100 nm. A method for producing a rare earth bonded magnet, comprising:
0.01 ≦ x ≦ 5at%
16 ≦ y ≦ 22at%
3 ≦ z ≦ 5.5at%
0.1 ≦ w ≦ 3at%
JP29477093A 1993-10-28 1993-10-28 Rare earth bonded magnet and method of manufacturing the same Expired - Lifetime JP3547016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29477093A JP3547016B2 (en) 1993-10-28 1993-10-28 Rare earth bonded magnet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29477093A JP3547016B2 (en) 1993-10-28 1993-10-28 Rare earth bonded magnet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07130514A JPH07130514A (en) 1995-05-19
JP3547016B2 true JP3547016B2 (en) 2004-07-28

Family

ID=17812075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29477093A Expired - Lifetime JP3547016B2 (en) 1993-10-28 1993-10-28 Rare earth bonded magnet and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3547016B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988976A (en) * 2018-06-08 2019-07-09 中南大学 A kind of Al toughening high hardness alloy and its casting and heat treatment method
CN110004378A (en) * 2018-06-08 2019-07-12 中南大学 A kind of bait goes bad toughening high hardness alloy and its casting method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988976A (en) * 2018-06-08 2019-07-09 中南大学 A kind of Al toughening high hardness alloy and its casting and heat treatment method
CN110004378A (en) * 2018-06-08 2019-07-12 中南大学 A kind of bait goes bad toughening high hardness alloy and its casting method
CN109988976B (en) * 2018-06-08 2022-04-01 中南大学 Al toughened high-hardness alloy and casting and heat treatment method thereof

Also Published As

Publication number Publication date
JPH07130514A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
EP0542529B1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
US5545266A (en) Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods
JP2727506B2 (en) Permanent magnet and manufacturing method thereof
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JPH07176417A (en) Iron based bonded magnet and its manufacture
JP2925840B2 (en) Fe-BR bonded magnet
JPH0657311A (en) Production of rare earth alloy magnet powder
JP3032385B2 (en) Fe-BR bonded magnet
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH05299222A (en) Fe-b-r bonded magnet
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH0636916A (en) Fe-b-r base bond magnet
JPH07161513A (en) Iron based bond magnet and its production
JP3131040B2 (en) Method for producing Fe-BR bonded magnet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040408

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080423

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090423

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100423

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110423

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120423

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 10

EXPY Cancellation because of completion of term