JP3238779B2 - Rare earth magnet alloy powder and its manufacturing method - Google Patents

Rare earth magnet alloy powder and its manufacturing method

Info

Publication number
JP3238779B2
JP3238779B2 JP03136293A JP3136293A JP3238779B2 JP 3238779 B2 JP3238779 B2 JP 3238779B2 JP 03136293 A JP03136293 A JP 03136293A JP 3136293 A JP3136293 A JP 3136293A JP 3238779 B2 JP3238779 B2 JP 3238779B2
Authority
JP
Japan
Prior art keywords
phase
crystal structure
type crystal
alloy powder
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03136293A
Other languages
Japanese (ja)
Other versions
JPH06220501A (en
Inventor
裕和 金清
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP03136293A priority Critical patent/JP3238779B2/en
Publication of JPH06220501A publication Critical patent/JPH06220501A/en
Application granted granted Critical
Publication of JP3238779B2 publication Critical patent/JP3238779B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、マグネットロール、
スピーカー、磁気センサー用磁気回路、各種メーターお
よびフォーカス用マグネットならびにモーターやアクチ
ュエーターなどに最適な希土類ボンド磁石用合金粉末と
その製造方法に係り、希土類元素の含有量が少ない特定
組成のFe−V−B−R、Fe−V−B−R−M(M=
Al,Si)合金溶湯を回転ロールを用いた超急冷法、
スプラット急冷法、ガスアトマイズ法あるいはこれらの
併用法にてアモルファス組織とし、特定の熱処理にて体
心正方晶Fe3P型結晶構造を有する鉄を主成分とする
ホウ化物相とNd2Fe14B型結晶構造の構成相との微
細結晶集合体をからなる合金粉末を得、これを樹脂にて
結合することにより、ハードフェライト磁石では得られ
なかった5kG以上の残留磁束密度Brを有するFe−
B−R系磁石を得ることができる希土類磁石合金粉末と
その製造方法に関する。
The present invention relates to a magnet roll,
The present invention relates to an alloy powder for a rare earth bonded magnet which is most suitable for a speaker, a magnetic circuit for a magnetic sensor, various kinds of meters and focusing magnets, a motor and an actuator, and a method for producing the same, and a specific composition of Fe-V-B having a low rare earth element content. -R, Fe-V-B-R-M (M =
Al, Si) super-quenching method using a rotating roll of molten alloy,
An amorphous structure is formed by a splat quenching method, a gas atomizing method, or a combination thereof, and a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure and Nd 2 Fe 14 B type by a specific heat treatment. By obtaining an alloy powder comprising a fine crystal aggregate with a constituent phase of a crystal structure and bonding the obtained alloy powder with a resin, a Fe—
The present invention relates to a rare earth magnet alloy powder capable of obtaining a BR-based magnet and a method for producing the same.

【0002】[0002]

【従来の技術】静電現像用マグネットロール、電装品用
モーター、アクチュエーターなどに使用される永久磁石
は主にハードフェライト磁石に限定されていたが、低温
でのiHc低下に伴う低温減磁特性が有ること、セラミ
ックス材質のために機械的強度が低くて割れ、欠けが発
生し易いこと、複雑な形状が得難いことなどの問題があ
った。
2. Description of the Related Art Permanent magnets used in magnet rolls for electrostatic development, motors for electrical components, actuators, and the like have been mainly limited to hard ferrite magnets. There is a problem that the ceramic material has a low mechanical strength due to a low mechanical strength, so that cracking and chipping are likely to occur, and a complicated shape is difficult to obtain.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。
[0003] Today, there is a strong demand for automobiles to improve fuel efficiency by reducing the weight of the vehicles in order to save resources, and it is required to further reduce the size and weight of electrical components for automobiles. Also,
Designs to maximize the performance-to-weight ratio are also being considered for applications such as motors for home appliances other than automotive electrical components, and the current motor structure is optimal for magnet materials with a Br material of about 5 to 7 kG. It has been. That is,
When Br of the magnet material to be used is 8 kG or more, the current motor structure needs to increase the cross-sectional area of the iron plate of the rotor or the stator which becomes the magnetic path, which leads to an increase in weight. If so, the performance to weight ratio can be maximized.

【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。
Accordingly, a magnetic material for a small motor is required to have a residual magnetic flux density Br of at least 5 kG in terms of magnetic properties, but cannot be obtained with a conventional hard ferrite magnet. For example, an Nd—Fe—B-based bonded magnet satisfies such magnetic properties, but Nd or the like, which requires a large number of steps and large-scale facilities for metal separation and purification or reduction reaction, is required.
Since it contains 1515 at%, it is significantly more expensive than a hard ferrite magnet, and at present, a magnet material having Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe7719(at%)近
傍でFe3 B化合物を主相とする磁石材料が提案(R.
Coehoorn等、J.de Phys.,C8,1
988,669〜670頁)された。この磁石材料はア
モルファスリボンを熱処理することにより、Fe3Bと
Nd2Fe14Bの結晶集合組織を有する準安定構造であ
るが、iHcが2〜3kOe程度と低く、またこのiH
cを得るための熱処理条件が狭く限定され、工業生産上
実用的でない。
On the other hand, Nd-Fe-B
In the system magnet, recently, Nd 4 Fe 77 B 19 ( at%) magnetic material is proposed as a main phase an Fe 3 B of compound in the vicinity (R.
Coehorn et al. de Phys. , C8,1
988, 669-670). This magnet material has a metastable structure having a crystal texture of Fe 3 B and Nd 2 Fe 14 B by heat-treating an amorphous ribbon. However, the iHc is as low as about 2 to 3 kOe.
The heat treatment conditions for obtaining c are narrow and limited, and are not practical for industrial production.

【0006】このFe3 B化合物を主相とする磁石材料
に添加元素を加えて多成分化し、性能向上を図った研究
が発表されている。その1つは希土類元素にNdのほか
にDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn,Magn,M
at.、83(1990)228〜230頁)。
[0006] The Fe 3 B of compound was multicomponenting adding additive elements to the magnet material as a main phase, it has been published studies which aimed to improve the performance. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. In addition to the problem of adding an expensive element, the added rare earth element has a magnetic moment of Nd or Fe. There is a problem that magnetization decreases due to coupling in anti-parallel to the moment (R. Coehorn, J. Magn, Magn, M
at. , 83 (1990) 228-230).

【0007】他の研究(Shen Bao−genら,
J.Magn, Magn,Mat.、89(199
1)335〜340頁)として、 Feの一部をCoに
て置換してキュリー温度を上昇させ、iHcの温度係数
を改善するものであるが、Coの添加にともないBrを
低下させる問題がある。
[0007] Other studies (Shen Bao-gen et al.,
J. See Magn, Magn, Mat. , 89 (199
1) pp. 335-340) is to improve the temperature coefficient of iHc by replacing a part of Fe with Co to increase the Curie temperature, but there is a problem that Br is decreased with the addition of Co. .

【0008】いずれにしてもFe3化合物を主相とす
Nd−Fe−B系磁石は、超急冷法によりアモルファ
ス化した後、熱処理してハード磁石材料化できるが、i
Hcが低く、かつ前記熱処理条件が狭く、添加元素にて
高iHc化を図ると磁気エネルギー積が低下するなど、
安定した工業生産ができず、ハードフェライト磁石の代
替えとして安価に提供することができない。
In any case, the main phase is an Fe 3 B compound.
That Nd-Fe-B based magnet, after amorphous by rapid quenching, can be hard magnet material by being heat-treated, i
Hc is low, and the heat treatment conditions are narrow, and when increasing the iHc with an additional element, the magnetic energy product is reduced.
Stable industrial production is not possible, and it cannot be provided inexpensively as a substitute for hard ferrite magnets.

【0009】この発明は、Fe3化合物を主相とする
Nd−Fe−B系磁石(Rは希土類元素)に着目して、
iHcと(BH)maxを向上させ、安定した工業生産
が可能な製造方法の確立と、5kG以上の残留磁束密度
Brを有しハードフェライト磁石に匹敵するコストパフ
ォーマンスを有し、安価に提供できるFe3化合物を
主相とするFe−B−R系磁石を得るための希土類磁石
合金粉末とその製造方法の提供を目的としている。
The present invention focuses on a Nd—Fe—B-based magnet (R is a rare earth element) having an Fe 3 B compound as a main phase .
A method for improving iHc and (BH) max to establish a manufacturing method capable of stable industrial production, and having a residual magnetic flux density Br of 5 kG or more, having a cost performance comparable to a hard ferrite magnet, and providing Fe at a low cost 3 B compound
It is an object of the present invention to provide a rare earth magnet alloy powder for obtaining an Fe-BR based magnet as a main phase and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】この発明は、Fe3
合物を主相とするFe−B−R磁石のiHcと(BH)
maxを向上させ、安定した工業生産が可能な製造方法
を目的に種々検討した結果、希土類元素の含有量が少な
く、VあるいはさらにAl、Siの少なくとも1種を少
量添加した鉄基の特定組成の合金溶湯を超急冷法等にて
アモルファス組織となし、特定の昇温速度による熱処理
にて微細結晶集合体を得ることにより、ハードフェライ
ト磁石では得られなかった5kG以上の残留磁束密度B
rを有するボンド磁石に最適の希土類磁石合金粉末が得
られることを知見し、この発明を完成した。
Means for Solving the Problems] The present invention, Fe 3 B of
Of iHc and (BH) of Fe-BR magnet having compound as main phase
As a result of various studies aimed at a production method capable of improving the max and achieving stable industrial production, the content of the rare earth element is small, and V or further a specific composition of an iron group to which a small amount of at least one of Al and Si is added. By forming the molten alloy into an amorphous structure by a rapid quenching method or the like and obtaining a fine crystal aggregate by heat treatment at a specific heating rate, a residual magnetic flux density B of 5 kG or more, which cannot be obtained with a hard ferrite magnet,
The present inventors have found that a rare earth magnet alloy powder optimal for a bonded magnet having r can be obtained, and completed the present invention.

【0011】この発明は、組成式をFe100-x-y-zx
yz (但しRはPrまたはNdの1種または2種)と
表し、あるいはさらに、組成式をFe100-x-y-zx
yzw (但しRはPrまたはNdの1種または2
種、MはAlまたはSiの1種または2種)と表し、組
成範囲を限定する記号x、y、z、wが下記値を満足
し、体心正方晶Fe3P型結晶構造を有する鉄を主成分
とするホウ化物相とNd2Fe14B型結晶構造を有する
構成相とが同一粉末粒子中に共存し、各構成相の平均結
晶粒径が5nm〜100nmの範囲にあり、平均粒径が
3μm〜500μm、磁気特性がiHc≧3kOe、B
r≧6kG、(BH)max≧7MGOeであることを
特徴とする希土類合金粉末である。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
According to the present invention, the composition formula is represented by Fe 100-xyz V x B
y R z (where R is one or two of Pr or Nd), or the composition formula is Fe 100-xyz V x B
y R z M w (where R is one of Pr or Nd or 2
And M is one or two of Al or Si), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and have the body-centered tetragonal Fe 3 P-type crystal structure. And a constituent phase having a Nd 2 Fe 14 B-type crystal structure coexists in the same powder particles, and the average crystal grain size of each constituent phase is in the range of 5 nm to 100 nm. The diameter is 3 μm to 500 μm, the magnetic properties are iHc ≧ 3 kOe, B
A rare earth alloy powder characterized in that r ≧ 6 kG and (BH) max ≧ 7MGOe. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%

【0012】また、この発明は、 (1)組成式をFe100-x-y-zxyz (但しRはP
rまたはNdの1種または2種)と表し、あるいはさら
に、組成式をFe100-x-y-zxyzw (但しRは
PrまたはNdの1種または2種、MはAlまたはSi
の1種または2種)と表し、組成範囲を限定する記号
x、y、z、wが上述の値を満足する合金溶湯を回転ロ
ールを用いた超急冷法、スプラット急冷法、ガスアトマ
イズ法あるいはこれらを組み合せて急冷し、実質的に9
0%以上をアモルファス組織となし、 (2)さらに熱処理の際に、Fe3P型結晶構造を有す
る鉄を主成分とするホウ化物相が析出する温度付近から
の昇温温度を1℃/分〜15℃/分で昇温して620℃
〜750℃で10秒間〜6時間保持する熱処理を施し、 (3)Fe3P型結晶構造を有する鉄を主成分とするホ
ウ化物相と、Nd2Fe14B型結晶構造を有す構成相
とが同一粉末粒子中に共存し、各構成相の平均結晶粒径
が5nm〜100nmの範囲にある微結晶集合体を得た
のち、 (4)前記急冷によるアモルファス組織化条件にて生成
形態が異なるため、必要に応じてこれを、平均粒径3μ
m〜500μmに粉砕して磁石合金粉末を得ることを特
徴とする希土類合金粉末の製造方法である。
Further, the present invention is, (1) the composition formula Fe 100-xyz V x B y R z ( where R is P
It represents r or one or two of Nd) with, or in addition, one or two of the compositional formula Fe 100-xyz V x B y R z M w ( where R is Pr or Nd, M is Al or Si
And the symbols x, y, z, and w, which limit the composition range, satisfy the above-mentioned values. An ultra-rapid cooling method using a rotating roll, a splat quenching method, a gas atomizing method, or any of these methods. And quenched, practically 9
0% or more has an amorphous structure. (2) During the heat treatment, the temperature is raised from 1 ° C./min from around the temperature at which a boride phase mainly composed of iron having an Fe 3 P type crystal structure is precipitated. 620 ℃ by heating up to ~ 15 ℃ / min
Heat treatment of holding to 750 ° C. for 10 seconds to 6 hours, (3) and the boride phase composed mainly of iron with a Fe 3 P type crystalline structure, configuration that having a Nd 2 Fe 14 B crystal structure After obtaining a microcrystalline aggregate in which the phase coexists in the same powder particles and the average crystal grain size of each constituent phase is in the range of 5 nm to 100 nm, (4) the amorphous phase is formed under the above-mentioned quenching and amorphous structure conditions.
Since the form is different, if necessary, the average particle size is 3 μm.
A method for producing a rare earth alloy powder, characterized in that a magnet alloy powder is obtained by pulverizing the magnet alloy powder to m to 500 μm.

【0013】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では2kOe以
上のiHcが得られず、また5.5at%を超えるとF
3B相が生成せず、硬磁性を示さない準安定相のR2
233相が折出しiHcは著しく低下するので好まし
くないため、3〜5.5at%の範囲とする。
Reasons for Restriction of Composition Only when the rare earth element R contains one or two kinds of Pr or Nd in a specific amount, high magnetic properties can be obtained.
For example, in Ce and La, iHc characteristics of 2 kOe or more cannot be obtained, and middle rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 2 kOe or more cannot be obtained, and if it exceeds 5.5 at%, F
R 2 F, a metastable phase that does not produce e 3 B phase and shows no hard magnetism
Since e 23 B 3 phase folding out iHc is not preferable because it decreases significantly, and the range of 3~5.5at%.

【0014】Bは、16at%未満および22at%を
超えると2kOe以上のiHcが得られないため、16
〜22at%の範囲とする。
If B is less than 16 at% or more than 22 at%, iHc of 2 kOe or more cannot be obtained.
2222 at%.

【0015】Vは、iHcの向上に有効であるが、0.
01at%未満ではかかる効果が得られず、10at%
を超えるとBrおよび減磁曲線の角形性が著しく低下
し、6kG以上のBrが得られないため、0.01〜1
0at%の範囲とする。
V is effective for improving iHc.
If it is less than 01 at%, such an effect cannot be obtained and 10 at%
Is exceeded, the squareness of Br and the demagnetization curve is significantly reduced, and Br of 6 kG or more cannot be obtained.
The range is 0 at%.

【0016】Al、Siは熱処理温度範囲を拡大してか
つ減磁曲線の角型性を改善し、磁気特性のBr、(B
H)maxを増大させる効果を有し、かかる効果を得る
には少なくとも0.1at%以上の添加が必要である
が、3at%を超えるとかえって角型性を劣化させ、
(BH)maxも低下するため、0.1〜3at%の範
囲とする。
Al and Si increase the temperature range of the heat treatment and improve the squareness of the demagnetization curve.
H) has an effect of increasing max, and at least 0.1 at% or more is required to obtain such an effect, but if it exceeds 3 at%, the squareness is rather deteriorated,
Since (BH) max also decreases, the range is 0.1 to 3 at%.

【0017】Feは、上述の元素の含有残余を占める。Fe occupies the residual content of the above-mentioned elements.

【0018】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスとなし、Fe3P型結晶構造を有す
る鉄を主成分とするホウ化物相が析出する温度付近から
の昇温温度を1℃/分〜15℃/分で昇温して620℃
〜750℃で10秒間〜6時間保持する熱処理を施すこ
とにより、熱力学的には準安定相であるFe3P型結晶
構造を持つFe3B相と、Nd2Fe14B型結晶構造を有
する強磁性相が共存し、各構成相の平均結晶粒径が5n
m〜100nmの範囲にある微結晶集合体を得ることが
最も重要であり、合金溶湯の超急冷処理には公知の回転
ロールを用いた超急冷法を採用できるが、実質的に90
%以上のアモルファスが得られれば、回転ロールを用い
た超急冷法の他にもスプラット急冷法、ガスアトマイズ
法あるいはこれらを組み合せた急冷方法を採用してもよ
い。例えば、Cu製ロールを用いる場合は、そのロール
表面周速度が10〜50m/秒の範囲が好適な組織が得
られるため好ましい。すなわち周速度が10m/秒未満
ではアモルファスとならずα−Fe相の析出量が増大し
て好ましくなく、ロール表面周速度が50m/秒を超え
ると、急冷された合金が連続的なリボンとして生成せ
ず、合金片が飛散し、装置から合金を回収する際の回収
率や回収能率が低下して好ましくない。ただし、微量の
α−Fe相が急冷薄帯中に存在しても特性を著しく低下
させるものでなく許容される。
Reasons for Limiting Manufacturing Conditions In the present invention, the temperature at which the molten alloy having the above-mentioned specific composition is made amorphous by a rapid quenching method and a boride phase mainly composed of iron having an Fe 3 P type crystal structure is precipitated. The temperature is raised from 1 ° C / min to 15 ° C / min.
By performing heat treatment at 750 ° C. for 10 seconds to 6 hours, a Fe 3 B phase having a Fe 3 P type crystal structure and a Nd 2 Fe 14 B type crystal structure which are thermodynamically Ferromagnetic phases coexist and the average crystal grain size of each constituent phase is 5n
It is most important to obtain a microcrystal aggregate in the range of m to 100 nm. For the ultra-quenching treatment of the molten alloy, a known ultra-quenching method using a rotating roll can be employed.
If an amorphous content of not less than% is obtained, a splat quenching method, a gas atomizing method, or a quenching method combining these may be employed in addition to the ultra-quenching method using a rotating roll. For example, when a Cu roll is used, it is preferable that the roll surface peripheral speed is in the range of 10 to 50 m / sec because a suitable structure can be obtained. In other words, if the peripheral speed is less than 10 m / sec, it does not become amorphous and the precipitation amount of the α-Fe phase increases, which is not preferable. If the roll surface peripheral speed exceeds 50 m / sec, a quenched alloy is formed as a continuous ribbon. However, the alloy pieces are scattered, and the recovery rate and recovery efficiency when recovering the alloy from the apparatus are undesirably reduced. However, even if a trace amount of the α-Fe phase is present in the quenched ribbon, the characteristics are not remarkably deteriorated but are acceptable.

【0019】この発明において、上述の特定組成の合金
溶湯を超急冷法にて実質的に90%以上をアモルファス
となした後、磁気特性が最高となる熱処理は組成に依存
するが、熱処理温度が620℃未満ではNd2Fe14
相が析出せず、3kOe以上のiHcが得られず、また
750℃を超えると熱平衡相であるα−Fe相とFe2
BまたはNd1.1Fe44相が生成してiHcが発源し
ないため、熱処理温度は620〜750℃以下に限定す
る。熱処理雰囲気はArガスなどの不活性ガス雰囲気が
好ましい。熱処理時間は短くてもよいが、10秒未満で
は十分なミクロ組織の生成が行われず、iHc及び減磁
曲線の角型性が劣化し、また6時間を超えると3kOe
以上のiHcが得られないので、熱処理保持時間を10
〜6時間に限定する。
In the present invention, after the molten alloy having the above-mentioned specific composition is made to be substantially 90% or more amorphous by the ultra-quenching method, the heat treatment for maximizing the magnetic properties depends on the composition. If the temperature is lower than 620 ° C., Nd 2 Fe 14 B
No phase was precipitated, iHc of 3 kOe or more was not obtained, and when the temperature exceeded 750 ° C., the α-Fe phase, which is a thermal equilibrium phase, and Fe 2
Since the B or Nd 1.1 Fe 4 B 4 phase is formed and iHc is not generated, the heat treatment temperature is limited to 620 to 750 ° C. or less. The heat treatment atmosphere is Ar gas of any inert gas atmosphere is preferable. Although the heat treatment time may be short, if it is less than 10 seconds , a sufficient microstructure is not formed, iHc and the squareness of the demagnetization curve deteriorate, and if it exceeds 6 hours, 3 kOe
Since the above iHc cannot be obtained, the heat treatment holding time is set at 10
Limited to seconds to 6 hours.

【0020】この発明において重要な特徴として、熱処
理に際してFe3B相が析出する温度580℃以上から
の昇温速度があり、1℃/分未満の昇温速度では、昇温
中にNd2Fe14B相とFe3B相の結晶粒径が大きく成
長しすぎてiHcが劣化し、3kOe以上のiHcが得
られない。また、15℃/分を超える昇温速度では、6
20℃を通過してから生成するNd2Fe14B相の析出
が十分に行われず、α−Fe相の析出量が増大して、磁
化曲線の第2象限にBr点近傍に磁化の低下のある減磁
曲線となり、(BH)maxが劣化するため好ましくな
い。ただし、微量のα−Fe相の存在は許容できる。な
お、熱処理に際してFe3B相が析出する温度580℃
未満まではその昇温速度は任意であり、急速加熱などを
適用して処理能率を高めることができる。
As an important feature of the present invention, there is a heating rate from a temperature of 580 ° C. or more at which the Fe 3 B phase precipitates during the heat treatment. At a heating rate of less than 1 ° C./min, Nd 2 Fe The crystal grain size of the 14 B phase and the Fe 3 B phase grows so large that iHc deteriorates, and iHc of 3 kOe or more cannot be obtained. At a heating rate exceeding 15 ° C./min,
The precipitation of the Nd 2 Fe 14 B phase generated after passing through 20 ° C. is not sufficiently performed, and the precipitation amount of the α-Fe phase increases, and the magnetization decreases in the second quadrant of the magnetization curve near the Br point. This results in a certain demagnetization curve, which is not preferable because (BH) max deteriorates. However, the presence of a small amount of the α-Fe phase is acceptable. The temperature at which the Fe 3 B phase precipitates during the heat treatment is 580 ° C.
The heating rate is arbitrary up to the lower limit, and the processing efficiency can be increased by applying rapid heating or the like.

【0021】結晶構造 この発明による希土類磁石並びに希土類磁石合金粉末の
結晶相は、Fe3P型結晶構造を有する鉄を主成分とす
るホウ化物を主相とし、Nd2Fe14B型結晶構造を有
する強磁性相を有し、平均結晶粒径が5nm〜100n
mの微細結晶集合体からなることを特徴としている。こ
の発明において、磁石合金の平均結晶粒径が100nm
を超えると、減磁曲線の角型性が著しく劣化し、Br≧
6kG、(BH)max≧7MGOeの磁気特性を得る
ことができない。また、平均結晶粒径は細かいほど好ま
しいが、5nm未満の平均結晶粒径を得ることは工業生
産上困難であるため、下限を5nmとする。
The crystal phase of the rare earth magnet and the rare earth magnet alloy powder according to the present invention is mainly composed of a boride mainly composed of iron having a Fe 3 P type crystal structure, and has a Nd 2 Fe 14 B type crystal structure. Having an average crystal grain size of 5 nm to 100 n
It is characterized by comprising a fine crystal aggregate of m. In the present invention, the average grain size of the magnet alloy is 100 nm.
Is exceeded, the squareness of the demagnetization curve is significantly deteriorated, and Br ≧
Magnetic properties of 6 kG and (BH) max ≧ 7 MGOe cannot be obtained. The average crystal grain size is preferably as small as possible, but it is difficult to obtain an average crystal grain size of less than 5 nm in industrial production, so the lower limit is set to 5 nm.

【0022】磁石化方法 特定組成の合金溶湯を前述の超急冷法にてアモルファス
となし、Fe3B相が析出する温度580℃以上からの
昇温速度を1〜15℃/分で昇温した後、620〜75
0℃で10秒〜6時間保持する熱処理を施すことによ
り、平均結晶粒径が5nm〜100nmの微細結晶集合
体として得たこの発明による希土類磁石合金粉末を用い
て磁石化するには、750℃以下で固化、圧密化できる
公知の焼結磁石化方法並びにボンド磁石化方法の何れも
採用することができ、例えば回転ロールによるリボンや
スプラットによる粒片状など急冷法やそのアモルファス
組織化条件によって粉砕が必要な場合は、当該合金を平
均粒径が3〜500μmの合金粉末に粉砕したのち、公
知のバインダーと混合して所要のボンド磁石となすこと
により、5kG以上の残留磁束密度Brを有するボンド
磁石を得ることができる。
Magnetization Method A molten alloy having a specific composition was made amorphous by the above-mentioned ultra-quenching method, and the temperature was raised at a temperature of 580 ° C. or more at which the Fe 3 B phase was precipitated at a rate of 1 to 15 ° C./min. Later, 620-75
In order to magnetize using the rare earth magnet alloy powder according to the present invention obtained as a fine crystal aggregate having an average crystal grain size of 5 nm to 100 nm by performing a heat treatment at 0 ° C. for 10 seconds to 6 hours, 750 ° C. hereinafter solidification, none of the known sintered magnet method and a bonded magnet method capable compaction can be employed, for example, a ribbon Ya by rotating roll
Rapid cooling method such as flakes with splats and its amorphous
When pulverization is necessary depending on the organization conditions, the alloy is pulverized into an alloy powder having an average particle diameter of 3 to 500 μm, and then mixed with a known binder to form a required bond magnet, thereby obtaining a residual magnetic flux of 5 kG or more. A bond magnet having a density Br can be obtained.

【0023】[0023]

【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−V−B−R合金溶湯(RはNdまたはP
r)あるいはFe−V−B−R−M合金溶湯(MはA
l、Siの1種もしくは2種)を前述の超急冷法にて実
質的に90%以上をアモルファス組織となし、得られた
リボン、フレーク、球状粉末をFe3B析出温度以上か
ら1〜15℃/分の昇温速度で昇温した後、620〜7
50℃で10秒〜6時間保持する熱処理を施すことによ
り、熱力学的には、準安定相であるFe3P型結晶構造
をもつFe3B相とNd2Fe14B型結晶構造を有する強
磁性相が共存し、各構造相の平均結晶粒径が5nm〜1
00nmの範囲にある微結晶集合体を得る。この際、V
を含有しない組成では700℃を越えると熱平衡相であ
るα−Fe相とFe2B相またはNd1.1Fe44が生成
してiHcが発現しないが、V含有組成ではFe3B相
とNd2Fe14B相がVを添加しない組成に比べ熱的に
より安定となり、620℃〜750℃程度の広い温度範
囲でVを含有しない組成より高い iHcが発現する。
さらにVと同時にAl、Siを1種あるいは2種含有す
ることにより、V含有時のBr、減磁曲線の角形の劣化
を改善することができ、iHc≧3kG、Br≧7k
G、(BH)max≧8MGOeの磁気特性を有するボ
ンド磁石原料として、最適な磁石合金粉末を得ることが
できる。
According to the present invention, a molten Fe—V—B—R alloy having a specific composition containing a small amount of rare earth element (R is Nd or Pd)
r) or Fe-VBRM alloy melt (M is A
(1 or 2 types of Si) by the above-mentioned ultra-quenching method to form substantially 90% or more of an amorphous structure, and to obtain the obtained ribbon, flake, and spherical powder from 1 to 15 from the Fe 3 B precipitation temperature or higher. After raising the temperature at a rate of 60 ° C./min,
By performing heat treatment at 50 ° C. for 10 seconds to 6 hours, thermodynamically, it has a Fe 3 B phase having a Fe 3 P type crystal structure and a Nd 2 Fe 14 B type crystal structure, which are metastable phases. Ferromagnetic phases coexist, and the average crystal grain size of each structural phase is 5 nm to 1
A microcrystalline aggregate in the range of 00 nm is obtained. At this time, V
In a composition containing no, when the temperature exceeds 700 ° C., an α-Fe phase and a Fe 2 B phase, which are thermal equilibrium phases, or Nd 1.1 Fe 4 B 4 are formed and iHc is not expressed, whereas in a composition containing V, the Fe 3 B phase and Nd The 2 Fe 14 B phase is more thermally stable than the composition without V, and exhibits higher iHc than the composition without V in a wide temperature range of about 620 ° C. to 750 ° C.
Further, by containing one or two kinds of Al and Si simultaneously with V, it is possible to improve the deterioration of Br and the square shape of the demagnetization curve when V is contained, and iHc ≧ 3 kG, Br ≧ 7 k
G, an optimal magnet alloy powder can be obtained as a bonded magnet raw material having magnetic properties of (BH) max ≧ 8 MGOe.

【0024】[0024]

【実施例】【Example】

実施例1 表1のNo.1〜4の組成となるように、純度99.5
%以上のFe、V、B、Nd、Pr、Al、Siの金属
を用いて、総量が30grとなるように秤量し、底部に
直径0.8mmのオリフィスを有する石英るつぼ内に投
入し、圧力56cmHgのAr雰囲気中で高周波加熱に
より溶解し、溶解温度を1300℃にした後、湯面をA
rガスにより加圧して室温にてロール周速度20m/秒
にて高速回転するCu製ロールの外周面に0.7mmの
高さから溶湯を噴出させて、幅2〜3mm、厚み30〜
40μmの超急冷薄帯を作製した。得られた超急冷薄帯
をCuKαの特性X線によりアモルファスであることを
確認した。
Example 1 No. 1 in Table 1. Purity 99.5 so as to have a composition of 1 to 4.
% Or more of metals of Fe, V, B, Nd, Pr, Al, and Si, weighed so that the total amount becomes 30 gr, and put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom and pressure. After melting by high frequency heating in an Ar atmosphere of 56 cmHg and setting the melting temperature to 1300 ° C.,
A molten metal is jetted from a height of 0.7 mm onto the outer peripheral surface of a Cu roll which is pressurized with r gas and rotates at a high speed at a roll peripheral speed of 20 m / sec at room temperature, with a width of 2 to 3 mm and a thickness of 30 to 30 mm.
A 40 μm ultra-quenched ribbon was produced. The obtained ultra-quenched ribbon was confirmed to be amorphous by characteristic X-rays of CuKα.

【0025】この超急冷薄帯をArガス中で580℃ま
で急速加熱した後、580℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持し、そ
の後室温まで冷却して薄帯を取り出し、幅2〜3mm、
厚み30〜40μm、長さ3〜5mmの試料を作製し、
VSMを用いて磁気特性、平均結晶粒径を測定した。測
定結果を表2に示す。なお、試料の測定結果は、正方晶
と斜方晶が混在するFe3B相が主相で、Nd2Fe14
相とα−Fe相が混在する多相組織であり、平均結晶粒
径はいずれも100nm以下であった。なお、Vはこれ
らの各相でFeの一部を置換するが、Al、Siについ
ては添加量が少ない上、超微細結晶であるため分析不能
であった。
After the ultra-quenched ribbon was rapidly heated to 580 ° C. in Ar gas, the temperature was raised to 580 ° C. or higher at the temperature raising rate shown in Table 1, and kept at the heat treatment temperature shown in Table 1 for 10 minutes. After cooling to room temperature, take out the ribbon, width 2-3mm,
A sample having a thickness of 30 to 40 μm and a length of 3 to 5 mm is prepared,
Magnetic properties and average crystal grain size were measured using VSM. Table 2 shows the measurement results. The measurement results of the sample show that the main phase is Fe 3 B phase in which tetragonal and orthorhombic are mixed, and Nd 2 Fe 14 B
It was a multiphase structure in which a phase and an α-Fe phase were mixed, and the average crystal grain size was 100 nm or less in each case. V substitutes a part of Fe in each of these phases. However, Al and Si could not be analyzed due to the small amount of addition and ultrafine crystals.

【0026】比較例 表1のNo.5の組成となるように純度99.5%以上
のFe、B、Ndを用いて実施例1と同条件で超急冷薄
帯を作製した。得られた薄帯を実施例1と同一条件の熱
処理を施し、冷却後に実施例1と同条件で試料化(比較
例No.5)してVSMを用いて磁気特性、平均結晶粒
を測定した。測定結果を表2に示す。比較例No.5
の組織は実施例1の組織と類似していたが、結晶粒が実
施例1に比較して粗大化していた。
Comparative Example No. 1 in Table 1 A super-quenched ribbon was produced under the same conditions as in Example 1 using Fe, B, and Nd having a purity of 99.5% or more so as to obtain a composition of No. 5. The resulting ribbons heat-treated at the same conditions as in Example 1, the magnetic properties using a VSM and a sample of the same conditions as in Example 1 after cooling (Comparative Example No.5), the average crystal grain
The diameter was measured. Table 2 shows the measurement results. Comparative Example No. 5
Was similar to that of Example 1, but the crystal grains were coarser than that of Example 1.

【0027】実施例2 実施例1で得られた表1の組成No.4の超急冷薄帯
を、表1の熱処理後に平均粒径は150μm以下に粉砕
し、エポキシ樹脂からなるバインダーを2wt%の割合
で混合したのち、12mm×12mm×8mm寸法のボ
ンド磁石を作成した。得られたボンド磁石の磁気特性
は、密度6.0g/cm3、iHc=4.7kOe、B
r=7kG、(BH)max=8MGOeであった。
Example 2 In the composition No. of Table 1 obtained in Example 1, After the heat treatment shown in Table 1, the ultra-quenched ribbon No. 4 was pulverized to an average particle size of 150 μm or less, and a binder made of an epoxy resin was mixed at a ratio of 2 wt%, and then a bonded magnet having a size of 12 mm × 12 mm × 8 mm was prepared. . The magnetic properties of the obtained bonded magnet were as follows: density 6.0 g / cm 3 , iHc = 4.7 kOe, B
r = 7 kG, (BH) max = 8 MGOe.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【発明の効果】この発明は、希土類元素の含有量が少な
い特定組成のFe−V−B−R合金溶湯(Rは Ndま
たはPr)あるいはFe−V−B−R−M合金溶湯(M
は Al、Siの1種もしくは2種)を前述の超急冷法
にて実質的に90%以上をアモルファス組織となし、得
られたリボン、フレーク、球状粉末を得、これに特定条
件の熱処理を施すことにより、熱力学的には準安定相で
あるFe3P型結晶構造をもつFe3B相とNd2Fe14
B型結晶構造を有する強磁性相が共存し、各構成相の平
均結晶粒径が5nm〜100nmの範囲にある微結晶集
合体を得る。この際、Vを含有しない組成では700℃
を越えると熱平衡相であるα−Fe相とFe2B相また
はNd1.1Fe44が生成してiHcが発現しないが、
V含有組成ではFe3B相とNd2Fe14B相がVを添加
しない組成に比べ、熱的により安定となり620℃〜7
50℃程度の広い温度範囲でVを含有しない組成より高
い iHcが発現する。さらにVと同時にAl、Siを
1種あるいは2種含有することにより、V含有時のB
r、減磁曲線の角形の劣化が改善されることにより、i
Hc≧3kG、Br≧7kG、(BH)max≧8MG
Oeの磁気特性を有するボンド磁石原料として、最適な
磁石合金粉末を得ることができる。また、この発明は、
希土類元素の含有量が少なく、製造方法が簡単で大量生
産に適しているため、5kG以上の残留磁束密度Brを
有し、ハードフェライト磁石を超える磁気的性能を有す
るボンド磁石を提供できる。
According to the present invention, a molten Fe—V—B—R alloy (R is Nd or Pr) or a molten Fe—V—B—R—M alloy (M
Is one or two of Al and Si) by the above-described ultra-quenching method to form substantially 90% or more of an amorphous structure to obtain the obtained ribbon, flake, and spherical powder, which is subjected to heat treatment under specific conditions. By performing this, a Fe 3 B phase having an Fe 3 P type crystal structure, which is thermodynamically a metastable phase, and Nd 2 Fe 14
A microcrystalline aggregate in which a ferromagnetic phase having a B-type crystal structure coexists and the average crystal grain size of each constituent phase is in the range of 5 nm to 100 nm is obtained. At this time, 700 ° C. for a composition containing no V
Is exceeded, the thermal equilibrium phase α-Fe phase and Fe 2 B phase or Nd 1.1 Fe 4 B 4 are formed and iHc is not expressed,
In the V-containing composition, the Fe 3 B phase and the Nd 2 Fe 14 B phase are more thermally stable than the composition without V added, and the temperature is 620 ° C. to 7 ° C.
IHc higher than the composition not containing V is exhibited in a wide temperature range of about 50 ° C. Further, by containing one or two kinds of Al and Si simultaneously with V, B containing V
r, by improving the deterioration of the square shape of the demagnetization curve,
Hc ≧ 3 kG, Br ≧ 7 kG, (BH) max ≧ 8MG
An optimum magnet alloy powder can be obtained as a bonded magnet raw material having Oe magnetic properties. In addition, the present invention
Since the content of the rare earth element is small, the manufacturing method is simple and suitable for mass production, it is possible to provide a bonded magnet having a residual magnetic flux density Br of 5 kG or more and a magnetic performance exceeding that of a hard ferrite magnet.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) B22F 1/00 B22F 9/04 C22C 38/00 H01F 1/053 H01F 1/06 Continuation of the front page (58) Field surveyed (Int. Cl. 7 , DB name) B22F 1/00 B22F 9/04 C22C 38/00 H01F 1/053 H01F 1/06

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 組成式をFe100-x-y-zxyz (但
しRはPrまたはNdの1種または2種)と表し、組成
範囲を限定する記号x、y、zが下記値を満足し、体心
正方晶Fe3P型結晶構造を有する鉄を主成分とするホ
ウ化物相と、Nd2Fe14B型結晶構造を有する構成相
とが同一粉末粒子中に共存し、各構成相の平均結晶粒径
が5nm〜100nmの範囲にあり、平均粒径が3μm
〜500μm、磁気特性がiHc≧3kOe、Br≧6
kG、(BH)max≧7MGOeであることを特徴と
する希土類合金粉末。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at%
[Claim 1] represents the composition formula Fe 100-xyz V x B y R z ( where R is Pr or one or two of Nd), symbol x to limit the composition range, y, z are the following value Satisfactory, a boride phase mainly composed of iron having a body-centered tetragonal Fe 3 P type crystal structure and a constituent phase having an Nd 2 Fe 14 B type crystal structure coexist in the same powder particle. The average grain size of the phase is in the range of 5 nm to 100 nm, and the average grain size is 3 μm.
500500 μm, magnetic properties iHc ≧ 3 kOe, Br ≧ 6
A rare earth alloy powder characterized in that kG and (BH) max ≧ 7MGOe. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項2】 組成式をFe100-x-y-zxyzw
(但しRはPrまたはNdの1種または2種、MはAl
またはSiの1種または2種)と表し、組成範囲を限定
する記号x、y、z、wが下記値を満足し、体心正方晶
Fe3P型結晶構造を有する鉄を主成分とするホウ化物
相と、Nd2Fe14B型結晶構造を有する構成相とが同
一粉末粒子中に共存し、各構成相の平均結晶粒径が5n
m〜100nmの範囲にあり、平均粒径が3μm〜50
0μm、磁気特性がiHc≧3kOe、Br≧7kG、
(BH)max≧8MGOeであることを特徴とする希
土類合金粉末。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
2. A method composition formula Fe 100-xyz V x B y R z M w
(Where R is one or two of Pr or Nd, M is Al
Or one or two types of Si), and the symbols x, y, z, and w that limit the composition range satisfy the following values, and are mainly composed of iron having a body-centered tetragonal Fe 3 P-type crystal structure. The boride phase and the constituent phase having the Nd 2 Fe 14 B type crystal structure coexist in the same powder particle, and the average crystal grain size of each constituent phase is 5n.
m to 100 nm, and the average particle size is 3 μm to 50 μm.
0 μm, magnetic properties iHc ≧ 3 kOe, Br ≧ 7 kG,
(BH) a rare earth alloy powder, wherein max ≧ 8MGOe. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
【請求項3】 組成式をFe100-x-y-zxyz (但
しRはPrまたはNdの1種または2種)と表し、組成
範囲を限定する記号x、y、zが下記値を満足する合金
溶湯を回転ロールを用いた超急冷法、スプラット急冷
法、ガスアトマイズ法あるいはこれらを組み合せて急冷
し、実質的に90%以上をアモルファス組織となし、さ
らに熱処理の際に、Fe3P型結晶構造を有する鉄を主
成分とするホウ化物相が析出する温度付近からの昇温温
度を1℃/分〜15℃/分で昇温して620℃〜750
℃で10秒間〜6時間保持する熱処理を施し、Fe3
型結晶構造を有する鉄を主成分とするホウ化物相と、N
2Fe14B型結晶構造を有する構成相とが同一粉末粒
子中に共存し、各構成相の平均結晶粒径が5nm〜10
0nmの範囲にある微結晶集合体を得たのち、これを平
均粒径3μm〜500μmに粉砕して磁石合金粉末を得
ることを特徴とする希土類合金粉末の製造方法。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at%
3. A represents a composition formula Fe 100-xyz V x B y R z ( where R is Pr or one or two of Nd), symbol x to limit the composition range, y, z are the following value rapid quenching the satisfactory alloy melt using a rotating roll, splat quenching method, and quenched in conjunction gas atomizing method or these, substantially no more than 90% amorphous structure, further during heat treatment, Fe 3 P type The temperature is raised from about the temperature at which the boride phase mainly composed of iron having a crystal structure is precipitated at a rate of 1 ° C./min to 15 ° C./min to 620 ° C. to 750 ° C.
℃ heat treatment of holding for 10 seconds to 6 hours, Fe 3 P
A boride phase containing iron as a main component and having a crystalline structure;
A component phase having a d 2 Fe 14 B type crystal structure coexists in the same powder particle, and the average crystal grain size of each component phase is 5 nm to 10 nm.
After obtaining a microcrystalline aggregate in the range of 0 nm, the method of producing the rare-earth alloy powder, characterized in that this obtain an average particle size 3μm~500μm magnet alloy powder and pulverized into. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項4】 組成式をFe100-x-y-zxyzw
(但しRはPrまたはNdの1種または2種、MはA
g、AlまたはSiの1種または2種)と表し、組成範
囲を限定する記号x、y、z、wが下記値を満足する合
金溶湯を回転ロールを用いた超急冷法、スプラット急冷
法、ガスアトマイズ法あるいはこれらを組み合せて急冷
し、実質的に90%以上をアモルファス組織となし、さ
らに熱処理の際に、Fe3P型結晶構造を有する鉄を主
成分とするホウ化物相が析出する温度付近からの昇温温
度を1℃/分〜15℃/分で昇温して620℃〜750
℃で10秒間〜6時間保持する熱処理を施し、Fe3
型結晶構造を有する鉄を主成分とするホウ化物相と、N
2Fe14B型結晶構造を有す構成相とが同一粉末粒
子中に共存し、各構成相の平均結晶粒径が5nm〜10
0nmの範囲にある微結晶集合体を得たのち、これを平
均粒径3μm〜500μmに粉砕して磁石合金粉末を得
ることを特徴とする希土類合金粉末の製造方法。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
The 4. A composition formula Fe 100-xyz V x B y R z M w
(Where R is one or two of Pr or Nd, M is A
g, Al or Si), and the symbols x, y, z, and w that limit the composition range satisfy the following values: a super-quenching method using a rotating roll, a splat quenching method, A gas atomizing method or a combination thereof is quenched to substantially form an amorphous structure of substantially 90% or more, and at the vicinity of a temperature at which a boride phase mainly composed of iron having an Fe 3 P type crystal structure is precipitated during heat treatment. From 620 ° C to 750 at a rate of 1 ° C / min to 15 ° C / min.
℃ heat treatment of holding for 10 seconds to 6 hours, Fe 3 P
A boride phase containing iron as a main component and having a crystalline structure;
d 2 Fe 14 configuration phase and that having a B-type crystal structure coexist in the same powder particle, an average crystal grain size of the constituent phases is 5nm~10
After obtaining a microcrystalline aggregate in the range of 0 nm, the method of producing the rare-earth alloy powder, characterized in that this obtain an average particle size 3μm~500μm magnet alloy powder and pulverized into. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
【請求項5】 組成式をFe 100-x-y-z x y z (但
しRはPrまたはNdの1種または2種)と表し、組成
範囲を限定する記号x、y、zが下記値を満足する合金
溶湯を回転ロールを用いた超急冷法、スプラット急冷
法、ガスアトマイズ法あるいはこれらを組み合せて急冷
し(但し回転ロールを用いた超急冷法の みの場合を除
く)、実質的に90%以上をアモルファス組織となし、
さらに熱処理の際に、Fe 3 P型結晶構造を有する鉄を
主成分とするホウ化物相が析出する温度付近からの昇温
温度を1℃/分〜15℃/分で昇温して620℃〜75
0℃で10秒間〜6時間保持する熱処理を施し、Fe 3
P型結晶構造を有する鉄を主成分とするホウ化物相と、
Nd 2 Fe 14 B型結晶構造を有する構成相とが同一粉末
粒子中に共存し、各構成相の平均結晶粒径が5nm〜1
00nmの範囲にある微結晶集合体であり、かつ平均粒
径3μm〜500μmの磁石合金粉末を得ることを特徴
とする希土類合金粉末の製造方法。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at%
5. The composition formula Fe 100-xyz V x B y R z ( however
R is one or two of Pr or Nd)
An alloy in which the symbols x, y, and z that define the range satisfy the following values:
Super quenching method using rotating rolls, splat quenching
Method, gas atomizing method, or a combination of these methods for rapid cooling
And (provided that except in the case of only the super-quenching method using a rotating roll
A) substantially 90% or more of the amorphous structure;
Further, during the heat treatment, iron having an Fe 3 P type crystal structure
Temperature rise near the temperature at which the boride phase as the main component precipitates
The temperature is raised from 1 ° C / min to 15 ° C / min to 620 ° C to 75 ° C.
0 heat treatment of holding for 10 seconds to 6 hours at ° C., Fe 3
An iron-based boride phase having a P-type crystal structure;
The same powder as the constituent phase having the Nd 2 Fe 14 B type crystal structure
Coexist in the particles, and the average crystal grain size of each constituent phase is 5 nm to 1
A crystallite aggregate in the range of 00 nm and an average grain size
It is characterized by obtaining magnet alloy powder with a diameter of 3 μm to 500 μm.
Production method of rare earth alloy powder. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項6】 組成式をFe 100-x-y-z x y z w
(但しRはPrまたはNdの1種または2種、MはA
g、AlまたはSiの1種または2種)と表し、組成範
囲を限定する記号x、y、z、wが下記値を満足する合
金溶湯を回転ロールを用いた超急冷法、スプラット急冷
法、ガスアトマイズ法あるいはこれらを組み合せて急冷
し(但し回転ロールを用いた超急冷法のみの場合を除
く)、実質的に90%以上をアモルファス組織となし、
さらに熱処理の際に、Fe 3 P型結晶構造を有する鉄を
主成分とするホウ化物相が析出する温度付近からの昇温
温度を1℃/分〜15℃/分で昇温して620℃〜75
0℃で10秒間〜6時間保持する熱処理を施し、Fe 3
P型結晶構造を有する鉄を主成分とするホウ化物相と、
Nd 2 Fe 14 B型結晶構造を有する構成相とが同一粉末
粒子中に共存し、各構成相の平均結晶粒径が5nm〜1
00nmの範囲にある微結晶集合体であり、かつ平均粒
径3μm〜500μmの磁石合金粉末を得ることを特徴
とする希土類合金粉末の製造方法。 0.01≦x≦10at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
6. A composition formula Fe 100-xyz V x B y R z M w
(Where R is one or two of Pr or Nd, M is A
g, Al or Si).
If the symbols x, y, z, and w that define the box satisfy the following values:
Super quenching method using molten rolls, splat quenching of molten gold
Method, gas atomizing method, or a combination of these methods for rapid cooling
(Except for the case of only the rapid quenching method using rotating rolls)
A) substantially 90% or more of the amorphous structure;
Further, during the heat treatment, iron having an Fe 3 P type crystal structure
Temperature rise near the temperature at which the boride phase as the main component precipitates
The temperature is raised from 1 ° C / min to 15 ° C / min to 620 ° C to 75 ° C.
0 heat treatment of holding for 10 seconds to 6 hours at ° C., Fe 3
An iron-based boride phase having a P-type crystal structure;
The same powder as the constituent phase having the Nd 2 Fe 14 B type crystal structure
Coexist in the particles, and the average crystal grain size of each constituent phase is 5 nm to 1
A crystallite aggregate in the range of 00 nm and an average grain size
It is characterized by obtaining magnet alloy powder with a diameter of 3 μm to 500 μm.
Production method of rare earth alloy powder. 0.01 ≦ x ≦ 10 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
JP03136293A 1993-01-26 1993-01-26 Rare earth magnet alloy powder and its manufacturing method Expired - Lifetime JP3238779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03136293A JP3238779B2 (en) 1993-01-26 1993-01-26 Rare earth magnet alloy powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03136293A JP3238779B2 (en) 1993-01-26 1993-01-26 Rare earth magnet alloy powder and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH06220501A JPH06220501A (en) 1994-08-09
JP3238779B2 true JP3238779B2 (en) 2001-12-17

Family

ID=12329136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03136293A Expired - Lifetime JP3238779B2 (en) 1993-01-26 1993-01-26 Rare earth magnet alloy powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3238779B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024250A (en) * 2016-08-02 2016-10-12 广西南宁胜祺安科技开发有限公司 Ferromagnet suitable for high temperature environment and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102990057B (en) * 2012-11-26 2014-11-26 包头市科锐微磁新材料有限责任公司 Technological method for producing high-performance neodymium iron boron bonding magnetic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024250A (en) * 2016-08-02 2016-10-12 广西南宁胜祺安科技开发有限公司 Ferromagnet suitable for high temperature environment and preparation method thereof

Also Published As

Publication number Publication date
JPH06220501A (en) 1994-08-09

Similar Documents

Publication Publication Date Title
US5545266A (en) Rare earth magnets and alloy powder for rare earth magnets and their manufacturing methods
EP0542529A1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3622550B2 (en) Anisotropic exchange spring magnet powder and method for producing the same
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH0653019A (en) Rare earth magnet, rare earth magnet alloy powder and its manufacture
JP2925840B2 (en) Fe-BR bonded magnet
JPH0657311A (en) Production of rare earth alloy magnet powder
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JPH07161513A (en) Iron based bond magnet and its production

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 12