JPH0657311A - Production of rare earth alloy magnet powder - Google Patents

Production of rare earth alloy magnet powder

Info

Publication number
JPH0657311A
JPH0657311A JP5117714A JP11771493A JPH0657311A JP H0657311 A JPH0657311 A JP H0657311A JP 5117714 A JP5117714 A JP 5117714A JP 11771493 A JP11771493 A JP 11771493A JP H0657311 A JPH0657311 A JP H0657311A
Authority
JP
Japan
Prior art keywords
alloy powder
alloy
rare earth
magnet
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5117714A
Other languages
Japanese (ja)
Inventor
Satoru Hirozawa
哲 広沢
Hirokazu Kanekiyo
裕和 金清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5117714A priority Critical patent/JPH0657311A/en
Publication of JPH0657311A publication Critical patent/JPH0657311A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve iHc and (BH)max and residual magnetic flux density by rapidly cooling a molten iron-base alloy having a specific compsn. contg. rare earths at a lower ratio by an atomization method and heat treating the rapidly cooled alloy under specific conditions, thereby forming a fine crystalline assemblage. CONSTITUTION:The molten alloy expressed by Fe100-x-y-zCoxByRz is rapidly cooled by the atomization method, by which substantially >=90% thereof is made into an amorphous structure. In the formula, R is one or two kinds of Pr and Nd; (x), (y), (z) are 0.05<=x<=15at.%, 16<=y<=22%, 3<=z<=5.5%. The average grain size of the resulted alloy powder is specified to 0.1-100mum. This alloy powder is heated up at 1-15 deg.C/min from 500 deg.C and is held for 30 seconds - 6 hours at 550-700 deg.C. The alloy powder for the rare earth magnet yielding the fine crystalline assemblage which has a ferromagnetic phase having an Nd2Fe14B type crystal structure contg. an Fe3B type compd. as a main phase and has 5 to 100nm average crystal grain sizes is obtd. by this heat treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、モーターやアクチュ
エーターなどに最適な希土類焼結磁石やボンド磁石に係
り、希土類元素の含有量が少ない特定組成のFe−Co
−B−R合金溶湯をアトマイズ法にてアモルファス組織
となし、特定の熱処理にて微細結晶集合体を得ることに
より、ハードフェライト磁石では得られなかった5kG
以上の残留磁束密度Brを有するボンド磁石に最適の希
土類磁石合金粉末を得る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered magnet or a bonded magnet most suitable for a motor, an actuator, etc., and Fe-Co of a specific composition containing a small amount of rare earth elements.
-By forming the amorphous structure of the B-R alloy molten metal by the atomizing method and obtaining the fine crystal aggregate by the specific heat treatment, 5 kG which could not be obtained by the hard ferrite magnet
The present invention relates to a manufacturing method for obtaining a rare earth magnet alloy powder most suitable for a bonded magnet having the above residual magnetic flux density Br.

【0002】[0002]

【従来の技術】電装品用モーターやアクチュエーターな
どに使用される永久磁石は主にハードフェライト磁石に
限定されていたが、低温でのiHc低下に伴う低温減
磁、セラミックス材質のために機械的強度が低くて割
れ、欠けが発生し易いこと、複雑な形状が得難いことな
どの問題があった。
2. Description of the Related Art Permanent magnets used in motors and actuators for electrical equipment have been mainly limited to hard ferrite magnets, but they have low mechanical strength due to low temperature demagnetization accompanying iHc reduction at low temperatures and ceramic materials. However, there were problems such as low hardness, easy cracking and chipping, and difficulty in obtaining a complicated shape.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。
Nowadays, automobiles are strongly required to reduce fuel consumption in order to save resources and to improve fuel efficiency, and electric components for automobiles are required to be further reduced in size and weight. Also,
Designs for maximizing the performance-to-weight ratio are also being considered for applications such as home electric motors other than automobile electrical components. In the current motor structure, magnet materials with Br of about 5 to 7 kG are optimal. It is said that. That is,
When the magnet material used has a Br of 8 kG or more, the current motor structure requires an increase in the cross-sectional area of the iron plate of the rotor or stator that becomes the magnetic path, which causes an increase in weight. If so, the performance-to-weight ratio can be maximized.

【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。
Therefore, a magnetic material for a small motor is required to have a residual magnetic flux density Br of 5 kG or more in terms of magnetic characteristics, but it cannot be obtained with a conventional hard ferrite magnet. For example, Nd-Fe-B based bonded magnets satisfy such magnetic characteristics, but Nd, etc., which require a large number of steps and a large-scale facility for separation and purification of metals and reduction reaction.
Since it is contained at ˜15 at%, it is remarkably expensive as compared with a hard ferrite magnet, and at present, a magnet material with a Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe7719(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.、C
8,1988,669〜670頁)された。この磁石材
料は上記組成の合金を回転ロールを用いた超急冷法にて
アモルファスリボン化し、このアモルファスリボンを熱
処理することにより、Fe3BとNd2Fe14Bの結晶集
合組織を有する準安定構造が得られる。しかし、iHc
が2〜3kOe程度と高くなく、またこのiHcを得る
ための熱処理条件が狭く限定され、工業生産上実用的で
ない。
On the other hand, Nd-Fe-B
Recently, a magnet material having a Fe 3 B type compound as a main phase in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed (R. Coehorn et al., J. de Phys., C).
8, 1988, pp. 669-670). This magnet material is a metastable structure having a crystal texture of Fe 3 B and Nd 2 Fe 14 B obtained by converting the alloy having the above composition into an amorphous ribbon by a super-quenching method using a rotating roll and heat-treating this amorphous ribbon. Is obtained. However, iHc
Is not so high as about 2 to 3 kOe, and the heat treatment conditions for obtaining this iHc are narrowly limited, which is not practical in industrial production.

【0006】このFe3B型化合物を主相とする磁石材
料に添加元素を加えて多成分化し、性能向上を図った研
究が発表されている。その1つは希土類元素にNdのほ
かにDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn,Magn,M
at、83(1990)228〜230頁)。
[0006] A study has been published in which an additive element is added to the magnetic material having the Fe 3 B type compound as a main phase to make it a multi-component to improve the performance. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. However, in addition to the problem of adding an expensive element, the added rare earth element has a magnetic moment of Nd or Fe. There is a problem that the magnetization decreases due to coupling in antiparallel to the moment (R. Coehoorn, J. Magn, Magn, M
at, 83 (1990) 228-230).

【0007】他の研究(Shen Bao−genら、
J.Magn,Magn,Mat、89(1991)3
35〜340頁)として、 Feの一部をCoにて置換
してキュリー温度を上昇させ、iHcの温度係数を改善
するものであるが、Coの添加にともないBrを低下さ
せる問題がある。
Other studies (Shen Bao-gen et al.,
J. Magn, Magn, Mat, 89 (1991) 3
35 to 340), a part of Fe is replaced with Co to raise the Curie temperature and improve the temperature coefficient of iHc, but there is a problem that Br is lowered with the addition of Co.

【0008】いずれにしてもFe3B型Nd−Fe−B
系磁石は、回転ロールを用いた超急冷法によりアモルフ
ァス化した後、熱処理してハード磁石材料化できるが、
iHcが低く、かつ前記熱処理条件が苛酷であり、添加
元素にて高iHc化を図ると磁気エネルギー積が低下す
るなど、安定した工業生産ができず、ハードフェライト
磁石の代替えとして安価に提供することができない。
In any case, Fe 3 B type Nd-Fe-B
A system magnet can be made into a hard magnet material by heat treatment after it is made amorphous by a super-quenching method using a rotating roll.
The iHc is low, the heat treatment conditions are severe, and the magnetic energy product is lowered when the iHc is increased by adding elements, so stable industrial production cannot be performed, and it should be provided at a low cost as a substitute for the hard ferrite magnet. I can't.

【0009】また、Nd−Fe−B系合金をアモルファ
ス化するために回転ロールを用いた超急冷法を採用する
場合、超急冷時のロール周速度を著しく速くする必要が
あり、製品の回収率や歩留りが低下する問題があり、さ
らに、熱処理後に粉砕して合金粉末とするため、工程が
複雑になり、安価に大量生産できない。
Further, when adopting the super-quenching method using a rotating roll for amorphizing the Nd-Fe-B type alloy, it is necessary to remarkably increase the roll peripheral speed during the super-quenching, and thus the product recovery rate. In addition, since the alloy powder is pulverized after the heat treatment to make an alloy powder, the process becomes complicated and mass production cannot be performed at low cost.

【0010】この発明は、Fe3B型Fe−B−R系磁
石(Rは希土類元素)に着目して、iHcと(BH)m
axを向上させ、超急冷法を用いることなく安定した工
業生産が可能な製造方法の確立と、5kG以上の残留磁
束密度Brを有しハードフェライト磁石の代替えとして
安価に提供できるFe3B型Nd−Fe−B系磁石を目
的としている。
The present invention focuses on an Fe 3 B type Fe-BR magnet (R is a rare earth element), iHc and (BH) m
Fe 3 B type Nd which has improved ax and is capable of providing stable industrial production without using a super-quenching method and which has a residual magnetic flux density Br of 5 kG or more and can be provided at a low cost as a substitute for a hard ferrite magnet. The purpose is a -Fe-B system magnet.

【0011】[0011]

【課題を解決するための手段】発明者らは、Fe3B型
系Fe−B−R磁石のiHcと(BH)maxを向上さ
せ、安定した工業生産が可能な製造方法を目的に種々検
討した。従来この合金組成においては、回転ロールを用
いた超急冷法を用いてアモルファス組織を得ていたが、
特定合金組成では、回転ロールの周速度が比較的遅い領
域(5〜20m/秒)でもアモルファス組織が得られる
ことに注目して、超急冷法に比べ冷却速度の遅いガスア
トマイズ法を採用したもので、希土類元素の含有量が少
なく、CoおよびAl,Si,Cu,Ga,Ag,Au
の少なくとも1種を少量添加した鉄基の特定組成の合金
溶湯をアトマイズ法を用いて急冷し、大部分がアモルフ
ァス組織からなる合金粉末となし、特定の昇温速度によ
る熱処理にて微細結晶集合体を得ることにより、ハード
フェライト磁石では得られなかった5kG以上の残留磁
束密度Brを有するボンド磁石に最適の希土類磁石合金
粉末を安定して量産できることを知見し、この発明を完
成した。
Means for Solving the Problems The inventors of the present invention have variously studied for the purpose of a manufacturing method capable of improving iHc and (BH) max of a Fe 3 B type Fe-BR magnet and enabling stable industrial production. did. Conventionally, in this alloy composition, an amorphous structure was obtained by using a super-quenching method using a rotating roll,
With the specific alloy composition, the amorphous structure is obtained even in the region where the peripheral speed of the rotating roll is relatively slow (5 to 20 m / sec), and the gas atomizing method with a slower cooling rate than the ultra-quenching method is adopted. , Low content of rare earth elements, Co and Al, Si, Cu, Ga, Ag, Au
Of the iron-based alloy having a specific composition containing a small amount of at least one of the above are rapidly cooled by an atomizing method to obtain an alloy powder having an amorphous structure for the most part, and a fine crystal aggregate is formed by heat treatment at a specific heating rate. It has been found that by obtaining the above, it is possible to stably mass-produce the rare earth magnet alloy powder which is most suitable for the bond magnet having the residual magnetic flux density Br of 5 kG or more, which could not be obtained by the hard ferrite magnet, and completed the present invention.

【0012】この発明は、 1) 組成式をFe100-x-y-zCoxyz (但しRは
PrまたはNdの1種または2種)と表し、組成範囲を
限定する記号x、y、zが下記値を満足する合金溶湯を
アトマイズ法にて実質的に90%以上をアモルファス組
織とした、平均粒径が0.1〜100μmの合金粉末を
得、 2) 得られた合金粉末に500℃からの昇温速度を1
〜15℃/分で昇温して550〜700℃で30秒〜6
時間保持する熱処理を施し、 3) Fe3B型化合物を主相とし、Nd2Fe14B型結
晶構造を有する強磁性相を有し、平均結晶粒径が5〜1
00nmの微細結晶集合体を有する磁石合金粉末を得る
ことを特徴とする希土類磁石合金粉末の製造方法であ
る。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at%
[0012] The present invention, 1) represents the composition formula Fe 100-xyz Co x B y R z ( where R is Pr or one or two of Nd), symbol limiting the composition range x, y, z Of the alloy melt satisfying the following values by an atomizing method to have substantially 90% or more of an amorphous structure and an alloy powder having an average particle diameter of 0.1 to 100 μm. 2) The obtained alloy powder has a temperature of 500 ° C. Heating rate from 1
Temperature rises at -15 ° C / min and 550-700 ° C for 30 seconds-6
3) Fe 3 B type compound as a main phase and a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure and an average crystal grain size of 5 to 1
A method for producing a rare earth magnet alloy powder, which comprises obtaining a magnet alloy powder having a fine crystal aggregate of 00 nm. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%

【0013】また、この発明は、 1) 組成式をFe100-x-y-zCoxyzw(但しR
はPrまたはNdの1種または2種、MはAl、Si、
Cu、Ga、Ag、Auの1種または2種以上)と表
し、組成範囲を限定する記号x、y、z、wが下記値を
満足する合金溶湯をアトマイズ法にて実質的に90%以
上をアモルファス組織とした平均粒径が0.1〜100
μmの合金粉末を得、 2) 得られた合金粉末に500℃からの昇温速度を1
〜15℃/分で昇温して550〜700℃で30秒〜6
時間保持する熱処理を施し、 3) Fe3B型化合物を主相とし、Nd2Fe14B型結
晶構造を有する強磁性相を有し、平均結晶粒径が5〜1
00nmの微細結晶集合体を有する磁石合金粉末を得る
ことを特徴とする希土類磁石合金粉末の製造方法であ
る。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
Further, the present invention is 1) the composition formula Fe 100-xyz Co x B y R z M w ( where R
Is one or two of Pr or Nd, M is Al, Si,
(Cu, Ga, Ag, Au, one or more kinds), and a symbol x, y, z, w that limits the composition range is substantially 90% or more of the molten alloy by the atomizing method. The average grain size is 0.1-100
μm alloy powder was obtained, and 2) the temperature rise rate from 500 ° C. was 1 for the obtained alloy powder.
Temperature rises at -15 ° C / min and 550-700 ° C for 30 seconds-6
3) Fe 3 B type compound as a main phase and a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure and an average crystal grain size of 5 to 1
A method for producing a rare earth magnet alloy powder, which comprises obtaining a magnet alloy powder having a fine crystal aggregate of 00 nm. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%

【0014】[0014]

【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−Co−B−R−M系合金溶湯をアトマイズ
法にて急冷することにより、実質的に90%以上をアモ
ルファス組織とする平均粒径が0.1〜100μmの合
金粉末が得られ、さらに得られた合金粉末に500℃か
ら1〜15℃/分の昇温速度で昇温した後、550〜7
00℃で30秒〜6時間保持する熱処理を施すことによ
り、平均粒径が5〜100nmの微細結晶集合体を有す
る希土類磁石用合金粉末が得られ、回転ロールを用いた
超急冷法とは異なり、熱処理後にリボンを粉砕するとい
う工程を必要とせず、磁石合金粉末を製造できる。
According to the present invention, the Fe-Co-B-R-M type alloy melt having a specific composition containing a small amount of rare earth elements is rapidly cooled by the atomizing method to substantially 90% or more of the amorphous structure. Alloy powder having an average particle size of 0.1 to 100 μm was obtained, and the obtained alloy powder was heated from 500 ° C. at a heating rate of 1 to 15 ° C./min, and then 550 to 7
By performing a heat treatment of holding at 00 ° C for 30 seconds to 6 hours, an alloy powder for rare earth magnets having a fine crystal aggregate having an average particle size of 5 to 100 nm is obtained, which is different from the ultra-quench method using a rotating roll. The magnet alloy powder can be manufactured without the need for the step of crushing the ribbon after the heat treatment.

【0015】また、この発明は、主相のFe3B型化合
物相のほか、Nd2Fe14B型結晶構造相を有する強磁
性相の量比が増大し、α−Fe相が減少し、Al、S
i、Cu、Ga、Ag、Auの1種または2種以上を含
有するためCoを含有してもBrの低下がなく、さらに
減磁曲線の角型性が改善されることにより、iHc≧3
kOe、Br≧8kG、(BH)max≧8MGOeの
磁気特性が得られ、さらにこれを粉砕して磁石合金粉末
化することによって、5kG以上の残留磁束密度Brを
有するボンド磁石に最適のFe−Co−B−R−M系磁
石合金粉末を得ることができる。
Further, according to the present invention, in addition to the Fe 3 B type compound phase of the main phase, the amount ratio of the ferromagnetic phase having the Nd 2 Fe 14 B type crystal structure phase is increased and the α-Fe phase is decreased, Al, S
Since at least one of i, Cu, Ga, Ag, and Au is contained, Br does not decrease even if Co is contained, and the squareness of the demagnetization curve is improved, resulting in iHc ≧ 3.
Magnetic properties of kOe, Br ≧ 8 kG, (BH) max ≧ 8 MGOe are obtained, and by further pulverizing this to make a magnetic alloy powder, Fe-Co most suitable for a bond magnet having a residual magnetic flux density Br of 5 kG or more. -B-R-M system magnet alloy powder can be obtained.

【0016】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では2kOe以
上のiHcが得られず、また6at%を超えるとFe3
B相が生成せず、硬磁性を示さない準安定相のR2Fe
233相が折出してiHcは著しく低下し好ましくない
ため、3〜5.5at%の範囲とする。
Reasons for limiting the composition The rare earth element R has high magnetic properties only when it contains one or two Pr or Nd in a specific amount.
For example, in the case of Ce and La, the characteristic that iHc is 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 2 kOe or more cannot be obtained, and if it exceeds 6 at%, Fe 3
A metastable phase R 2 Fe that does not form B phase and does not exhibit hard magnetism
23 B 3 phase is projected and iHc is remarkably lowered, which is not preferable, so that the range is 3 to 5.5 at%.

【0017】Bは、16at%未満および22at%を
超えると2kOe以上のiHcが得られないため、16
〜22at%の範囲とする。
When B is less than 16 at% or more than 22 at%, iHc of 2 kOe or more cannot be obtained.
The range is -22 at%.

【0018】Coは、iHc及び減磁曲線の角型性の向
上改善に有効であるが、0.05at%未満ではかかる
効果が得られず、15at%を超えるとiHcは著しく
低下し、2kOe以上のiHcが得られないため、0.
05〜15at%の範囲とする。
Co is effective for improving the squareness of iHc and the demagnetization curve, but if it is less than 0.05 at%, such an effect cannot be obtained, and if it exceeds 15 at%, iHc is remarkably reduced and 2 kOe or more. IHc cannot be obtained, so 0.
The range is from 05 to 15 at%.

【0019】Al、Si、Cu、Ga、Ag、Auは熱
処理温度範囲を拡大して減磁曲線の角形性を改善し、磁
気特性のBr、(BH)maxを増大させる効果を有
し、かかる効果を得るには少なくとも0.1at%以上
の添加が必要であるが、3at%を超えるとかえって角
型性を劣化させ、(BH)maxも低下するため、0.
1〜3at%の範囲とする。
Al, Si, Cu, Ga, Ag and Au have the effects of expanding the heat treatment temperature range to improve the squareness of the demagnetization curve and increasing the magnetic properties Br and (BH) max. In order to obtain the effect, it is necessary to add at least 0.1 at% or more, but if it exceeds 3 at%, the squareness is rather deteriorated and (BH) max is also lowered.
The range is 1 to 3 at%.

【0020】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above elements.

【0021】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯をアトマ
イズ法にて急冷し、大部分をアモルファスとなし、50
0℃以上から1〜15℃/分の昇温速度で昇温した後、
550〜700℃で30秒〜6時間保持する熱処理を施
すことにより、熱力学的には安定相であるFe3B型化
合物とNd2Fe14B型結晶構造を有する強磁性相を有
し、平均結晶粒径が5〜100nmの微細結晶集合体と
して得ることが最も重要であり、合金溶湯の急冷処理に
は、公知のアトマイズ法を採用できるが、アトマイズ法
により得られる合金粉末は実質的に90%以上をアモル
ファスとなす必要がある。例えば、Arガスを急冷ガス
に用いたガスアトマイズの場合、その実質噴射圧が10
〜80kgf/cm2の範囲が好適な組織及び粉末粒径
が得られるため好ましい。すなわち、噴射圧が10kg
f/cm2未満ではアモルファスとはならず、α−Fe
相の析出量が増大するだけでなく、十分冷却されない状
態で回収容器に堆積するため、粉末が溶着して塊となっ
て合金粉末の回収率が著しく低下する。また、噴射圧が
80kgf/cm2を超えると、粉末粒径が0.1μm
以下の微粉とするため、装置からの回収率や回収能率が
低下するだけでなく、プレス時に密度の低下を招き好ま
しくない。
Reasons for Limiting Manufacturing Conditions In the present invention, the molten alloy having the above-mentioned specific composition is rapidly cooled by an atomizing method to make most of it amorphous.
After raising the temperature from 0 ° C. or higher at a heating rate of 1 to 15 ° C./min,
By performing a heat treatment of holding at 550 to 700 ° C. for 30 seconds to 6 hours, a thermodynamically stable Fe 3 B type compound and a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure are obtained, It is most important to obtain a fine crystal aggregate having an average crystal grain size of 5 to 100 nm, and a known atomizing method can be used for quenching the molten alloy, but the alloy powder obtained by the atomizing method is substantially It is necessary to make 90% or more amorphous. For example, in the case of gas atomizing using Ar gas as a quenching gas, the substantial injection pressure is 10
The range of -80 kgf / cm 2 is preferable because a suitable structure and powder particle size can be obtained. That is, the injection pressure is 10 kg
If it is less than f / cm 2 , it does not become amorphous and α-Fe
Not only the amount of precipitation of the phase increases, but also the powder is deposited in the recovery container in a state where it is not sufficiently cooled, so that the powder is fused to form a lump, and the recovery rate of the alloy powder is significantly reduced. When the injection pressure exceeds 80 kgf / cm 2 , the powder particle size is 0.1 μm.
Since the following fine powder is used, not only the recovery rate and recovery efficiency from the apparatus are lowered, but also the density is lowered during pressing, which is not preferable.

【0022】この発明において、上述の特定組成の合金
溶湯をアトマイズ法にて急冷し、大部分をアモルファス
となした後、磁気特性が最高となる熱処理は組成に依存
するが、熱処理温度が550℃未満ではアモルファス相
のままで2kOe以上のiHcが得られず、また700
℃を超えると熱平衡相であるα−Fe相とFe2Bまた
はNd1.1Fe44相が生成してiHcが発源しないた
め、熱処理温度は550〜700℃に限定する。熱処理
雰囲気はArガス中などの不活性ガス雰囲気が好まし
い。
In the present invention, after the molten alloy having the above-mentioned specific composition is rapidly cooled by the atomizing method to make most of it amorphous, the heat treatment at which the magnetic characteristics become maximum depends on the composition, but the heat treatment temperature is 550 ° C. If less than 2, iHc of 2 kOe or more cannot be obtained in the amorphous phase and 700
When the temperature exceeds ℃, α-Fe phase and Fe 2 B or Nd 1.1 Fe 4 B 4 phase, which are thermal equilibrium phases, are generated and iHc is not generated. Therefore, the heat treatment temperature is limited to 550 to 700 ° C. The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar gas.

【0023】熱処理時間は短くてもよいが、30秒未満
では十分なミクロ組織の生成が行われず、iHc及び減
磁曲線の角型性が劣化し、また6時間を超えると2kO
e以上のiHcが得られないので、熱処理保持時間を3
0秒〜6時間に限定する。
The heat treatment time may be short, but if it is less than 30 seconds, a sufficient microstructure is not formed, iHc and the squareness of the demagnetization curve are deteriorated, and if it exceeds 6 hours, it is 2 kO.
Since iHc above e cannot be obtained, the heat treatment holding time is set to 3
Limited to 0 seconds to 6 hours.

【0024】この発明において重要な特徴として、熱処
理に際して500℃以上からの昇温速度があり、1℃/
分未満の昇温速度では、昇温中にNd2Fe14B相とF
3B相の結晶粒径が大きく成長しすぎてiHcが劣化
し、2kOe以上のiHcが得られない。また、15℃
/分を超える昇温速度では、500℃を通過してから生
成するNd2Fe14B相の析出が十分に行われず、α−
Fe相の析出量が増大して、磁化曲線の第2象限にBr
点近傍に磁化の低下のある減磁曲線となり、(BH)m
axが劣化するため好ましくない。ただし、微量のα−
Fe相の存在は許容できる。なお、熱処理に際して50
0℃未満までは急速加熱などその昇温速度は任意であ
る。
An important feature of the present invention is the rate of temperature increase from 500 ° C. or higher during heat treatment, which is 1 ° C. /
If the heating rate is less than a minute, the Nd 2 Fe 14 B phase and the F
Since the crystal grain size of the e 3 B phase grows too large and iHc deteriorates, iHc of 2 kOe or more cannot be obtained. Also, 15 ℃
If the heating rate exceeds / min, the Nd 2 Fe 14 B phase generated after passing 500 ° C. is not sufficiently precipitated, and α-
The amount of precipitation of the Fe phase increases and Br falls to the second quadrant of the magnetization curve.
It becomes a demagnetization curve with a decrease in magnetization near the point, (BH) m
It is not preferable because ax is deteriorated. However, a small amount of α-
The presence of the Fe phase is acceptable. In addition, at the time of heat treatment, 50
The rate of temperature increase such as rapid heating up to 0 ° C. is arbitrary.

【0025】結晶構造 この発明による希土類磁石合金粉末の結晶相は、Fe3
B型化合物を主相とし、Nd2Fe14B型結晶構造を有
する強磁性相を有し、平均結晶粒径が5〜100nmの
微細結晶集合体からなることを特徴としている。
Crystal Structure The crystal phase of the rare earth magnet alloy powder according to the present invention is Fe 3
A B-type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B-type crystal structure, and a fine crystal aggregate having an average crystal grain size of 5 to 100 nm are featured.

【0026】この発明において、磁石合金粉末中の平均
結晶粒径が100nmを超えると、減磁曲線の角型性が
著しく劣化し、Br≧7kG、(BH)max≧8MG
Oeの磁気特性を得ることができない。また、平均結晶
粒径は細かいほど好ましいが、5nm未満の平均結晶粒
径を得ることは工業生産上困難であるため、下限を5n
mとする。
In the present invention, if the average crystal grain size in the magnet alloy powder exceeds 100 nm, the squareness of the demagnetization curve is significantly deteriorated and Br ≧ 7 kG, (BH) max ≧ 8 MG.
The magnetic properties of Oe cannot be obtained. Further, the smaller the average crystal grain size is, the more preferable, but it is difficult to obtain the average crystal grain size of less than 5 nm in industrial production.
m.

【0027】磁石化方法 特定組成の合金溶湯をアトマイズ法にて急冷し、大部分
をアモルファス組織とする平均粒径0.1〜100μm
の合金粉末を得、これに500℃以上からの昇温速度を
1〜10℃/分で昇温した後、550〜700℃で30
秒〜6時間保持する熱処理を施すことにより、平均結晶
粒径が5〜100nmの微細結晶集合体として得たこの
発明による希土類磁石合金粉末を用いて磁石化するに
は、700℃以下で固化、圧密化できる公知の焼結磁石
化方法並びにボンド磁石化方法の何れも採用することが
でき、公知のバインダーと混合して所要のボンド磁石と
なすことにより、5kG以上の残留磁束密度Brを有す
るボンド磁石を得ることができる。
Magnetization Method A molten alloy having a specific composition is rapidly cooled by an atomizing method, and most of the molten alloy has an amorphous structure. Average particle size is 0.1 to 100 μm.
Alloy powder was obtained, and the temperature was raised from 500 ° C. or higher at a rate of 1 to 10 ° C./minute, and then 30 at 550 to 700 ° C.
By magnetizing using the rare earth magnet alloy powder according to the present invention obtained as a fine crystal aggregate having an average crystal grain size of 5 to 100 nm by performing heat treatment for holding for 2 seconds to 6 hours, solidification at 700 ° C. or lower, Any of the known sintered magnetizing method and bond magnetizing method that can be consolidated can be adopted, and a bond having a residual magnetic flux density Br of 5 kG or more can be obtained by mixing with a known binder to form a required bond magnet. You can get a magnet.

【0028】[0028]

【実施例】【Example】

実施例1 表1のNo.1〜7の組成となるように純度99.5%
以上のFe、Co、B、Nd、Pr、Al、Si、C
u、Ga、Ag、Auの金属を用いて、総量が1kgと
なるように秤量し、底部に直径2.0mmのオリフィス
を有するアルミナ製るつぼに内に投入し、圧力56cm
HgのAr雰囲気中で高周波加熱により溶解し、溶解温
度が1300℃に達したところでオリフィスを閉じてい
た栓を引き抜き、溶湯を流出させ、るつぼの直下にある
ガス噴射ノズルから純度99.9%のArガスを実質圧
力40kgf/cm2で噴射し、合金溶湯を急冷するこ
とで、粒径が数μmから50μm程度の合金粉末を得
た。得られた合金粉末をCuKαの特性X線によりアモ
ルファスであることを確認した。
Example 1 No. 1 in Table 1 Purity 99.5% so that the composition is 1-7
Fe, Co, B, Nd, Pr, Al, Si, C
Metals of u, Ga, Ag, and Au were weighed so that the total amount was 1 kg, and the mixture was put into an alumina crucible having an orifice with a diameter of 2.0 mm at the bottom, and the pressure was 56 cm.
It was melted by high-frequency heating in an Ar atmosphere of Hg, and when the melting temperature reached 1300 ° C., the stopper that closed the orifice was pulled out, the molten metal was allowed to flow out, and the gas injection nozzle immediately below the crucible had a purity of 99.9% By injecting Ar gas at a substantial pressure of 40 kgf / cm 2 and quenching the molten alloy, an alloy powder having a particle size of several μm to 50 μm was obtained. The obtained alloy powder was confirmed to be amorphous by characteristic X-ray of CuKα.

【0029】この合金粉末をArガス中で500℃まで
急速加熱した後、500℃以上を10℃/分の昇温速度
で昇温し、表1に示す温度および時間で熱処理し、その
後室温まで冷却して合金粉末を取り出し、粉末30mg
をパラフィンとまぜた後、熱を加え硬化させた試料の磁
気特性をVSMを用いて測定した。測定結果を表2に示
す。なお、試料の測定結果は、正方晶と斜方晶が混在す
るFe3B相が主相で、Nd2Fe14B相とα−Fe相が
混在する多相組織であり、平均結晶粒径はいずれも10
0mm以下であった。なお、Coはこれらの各相でFe
の一部を置換するが、Al、Si、Cu、Ga、Ag、
Auについては添加量が少ない上、超微細結晶であるた
め分析不能であった。
This alloy powder was rapidly heated to 500 ° C. in Ar gas, then heated to 500 ° C. or more at a temperature rising rate of 10 ° C./min, heat-treated at the temperature and time shown in Table 1, and then to room temperature. Cool down to take out alloy powder, powder 30mg
After being mixed with paraffin, the magnetic properties of the sample that was heated and cured were measured using VSM. The measurement results are shown in Table 2. The measurement result of the sample is a multiphase structure in which the main phase is the Fe 3 B phase in which the tetragonal crystal and the orthorhombic crystal are mixed and the Nd 2 Fe 14 B phase and the α-Fe phase are mixed, and the average crystal grain size is Is 10
It was 0 mm or less. Note that Co is Fe in each of these phases.
Of Al, Si, Cu, Ga, Ag,
With respect to Au, the addition amount was small, and since it was an ultrafine crystal, analysis was impossible.

【0030】実施例2 実施例1で得られた表1の組成No.3の磁性粉を、エ
ポキシ樹脂なるバインダーを2wt%の割合で混合した
のち、15mm×15mm×7mm寸法のボンド磁石を
作成した。得られたボンド磁石の磁気特性は、iHc=
3.5kOe、Br=7.0kG、(BH)max=
5.5MGOeであった。
Example 2 Composition No. of Table 1 obtained in Example 1 After mixing the magnetic powder of No. 3 with a binder of epoxy resin at a ratio of 2 wt%, a bonded magnet having dimensions of 15 mm × 15 mm × 7 mm was prepared. The magnetic properties of the obtained bond magnet are iHc =
3.5 kOe, Br = 7.0 kG, (BH) max =
It was 5.5 MGOe.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】この発明は、特定組成のFe−Co−B
−R−M系合金溶湯をガスアトマイズ法にて急冷し、大
部分をアモルファス組織となした平均粒径0.1〜10
0μmの合金粉末を得、これに特定条件の熱処理を施す
ことにより、アモルファス合金粉末を平均結晶粒径が5
〜100nmの微細結晶集合体の磁石合金粉末とする。
従来、この合金組成では、アモルファス組織を得るため
に回転ロールを用いた超急冷法を採用していたが、本発
明ではガスアトマイズ法を用いた急冷法を採用すること
で、回転ロールを用いた超急冷法で必要としていた、超
急冷薄帯の粉砕工程がはぶけ、より簡単な工程でiHc
≧3kOe、Br≧8kG、(BH)max≧8MGO
eの磁気特性を持ち、5kG以上の残留磁束密度Brを
有するボンド磁石に最適のFe−Co−B−R−M系磁
石合金粉末が安定して大量に供給できる。また、この発
明は、希土類元素の含有量が少なく、製造方法が簡単で
大量生産に適しているため、5kG以上の残留磁束密度
Brを有し、ハードフェライト磁石を超える磁気的性能
を有し、磁気部品と磁石体との一体成型を採用すること
によって工程を短縮することができ、焼結ハードフェラ
イトを凌ぐ性能対コスト比を実現し得るボンド磁石を提
供することができる。
INDUSTRIAL APPLICABILITY The present invention has a specific composition of Fe-Co-B.
-RM alloy melt is rapidly cooled by a gas atomization method, and most of it has an amorphous structure.
By obtaining a 0 μm alloy powder and subjecting it to heat treatment under specific conditions, the amorphous alloy powder has an average crystal grain size of 5
The magnet alloy powder is a fine crystal aggregate of ˜100 nm.
Conventionally, in this alloy composition, a super-quenching method using a rotating roll was adopted to obtain an amorphous structure, but in the present invention, by adopting a quenching method using a gas atomizing method, a super-cooling method using a rotating roll is adopted. The crushing process of the ultra-quenching ribbon, which was required in the quenching method, is eliminated, and iHc can be simplified.
≧ 3 kOe, Br ≧ 8 kG, (BH) max ≧ 8 MGO
It is possible to stably supply a large amount of Fe-Co-B-R-M-based magnet alloy powder, which is optimum for a bonded magnet having a magnetic characteristic of e and a residual magnetic flux density Br of 5 kG or more. In addition, the present invention has a low content of rare earth elements, a simple manufacturing method, and is suitable for mass production, and therefore has a residual magnetic flux density Br of 5 kG or more and magnetic performance exceeding that of a hard ferrite magnet. By adopting integral molding of the magnetic component and the magnet body, the process can be shortened, and it is possible to provide a bond magnet that can realize a performance-to-cost ratio exceeding that of sintered hard ferrite.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-y-zCoxyz
(但しRはPrまたはNdの1種または2種)と表し、
組成範囲を限定する記号x、y、zが下記値を満足する
合金溶湯をアトマイズ法にて実質的に90%以上をアモ
ルファス組織とした、平均粒径が0.1〜100μmの
合金粉末を得、得られた合金粉末に500℃からの昇温
速度を1〜15℃/分で昇温して550〜700℃で3
0秒〜6時間保持する熱処理を施し、Fe3B型化合物
を主相とし、Nd2Fe14B型結晶構造を有する強磁性
相を有し、平均結晶粒径が5〜100nmの微細結晶集
合体を有する磁石合金粉末を得ることを特徴とする希土
類磁石合金粉末の製造方法。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at%
The method according to claim 1] composition formula Fe 100-xyz Co x B y R z
(However, R is one or two of Pr or Nd)
An alloy melt having a composition range limiting symbols x, y, and z satisfying the following values was obtained by an atomizing method to have substantially 90% or more of an amorphous structure, and an alloy powder having an average particle diameter of 0.1 to 100 μm was obtained. , The obtained alloy powder is heated at a heating rate from 500 ° C. at a rate of 1 to 15 ° C./min to 3 at 550 to 700 ° C.
A fine crystal aggregate having an average crystal grain size of 5 to 100 nm, which has been subjected to heat treatment for 0 second to 6 hours and has a ferromagnetic phase having an Fe 3 B type compound as a main phase and an Nd 2 Fe 14 B type crystal structure. A method for producing a rare earth magnet alloy powder, comprising obtaining a magnet alloy powder having a body. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項2】 組成式をFe100-x-y-zCoxyzw
(但しRはPrまたはNdの1種または2種、MはA
l、Si、Cu、Ga、Ag、Auの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、wが
下記値を満足する合金溶湯をアトマイズ法にて実質的に
90%以上をアモルファス組織とした平均粒径が0.1
〜100μmの合金粉末を得、得られた合金粉末に50
0℃からの昇温速度を1〜15℃/分で昇温して550
〜700℃で30秒〜6時間保持する熱処理を施し、F
3B型化合物を主相とし、Nd2Fe14B型結晶構造を
有する強磁性相を有し、平均結晶粒径が5〜100nm
の微細結晶集合体を有する磁石合金粉末を得ることを特
徴とする希土類磁石合金粉末の製造方法。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
2. A method composition formula Fe 100-xyz Co x B y R z M w
(However, R is one or two of Pr or Nd, M is A
1, 1 or 2 or more of Si, Cu, Ga, Ag, and Au) and the symbols x, y, z, and w that limit the composition range substantially satisfy the following values by an atomizing method. 90% or more of which has an amorphous structure and an average grain size of 0.1
˜100 μm alloy powder was obtained, and the obtained alloy powder had 50
The temperature rising rate from 0 ° C. is raised at 1 to 15 ° C./min to 550
Heat treatment at ~ 700 ° C for 30 seconds to 6 hours is performed, and F
e 3 B type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 5 to 100 nm
2. A method for producing a rare earth magnet alloy powder, comprising obtaining a magnet alloy powder having the fine crystal aggregate according to 1. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
JP5117714A 1992-06-08 1993-04-20 Production of rare earth alloy magnet powder Pending JPH0657311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5117714A JPH0657311A (en) 1992-06-08 1993-04-20 Production of rare earth alloy magnet powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-174767 1992-06-08
JP17476792 1992-06-08
JP5117714A JPH0657311A (en) 1992-06-08 1993-04-20 Production of rare earth alloy magnet powder

Publications (1)

Publication Number Publication Date
JPH0657311A true JPH0657311A (en) 1994-03-01

Family

ID=26455780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5117714A Pending JPH0657311A (en) 1992-06-08 1993-04-20 Production of rare earth alloy magnet powder

Country Status (1)

Country Link
JP (1) JPH0657311A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116715A (en) * 1997-06-26 1999-01-22 Sumitomo Special Metals Co Ltd Manufacturing method of laminated permanent magnet
JPH1126272A (en) * 1997-07-04 1999-01-29 Sumitomo Special Metals Co Ltd Manufacture of laminated permanent magnet
JP2013204067A (en) * 2012-03-27 2013-10-07 Nec Tokin Corp Powder and spherical particle combination and method for producing them, mixed powder of powder and spherical particle combination, magnetic paste containing the mixed powder, and inductor and magnetic core material using the magnetic paste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1116715A (en) * 1997-06-26 1999-01-22 Sumitomo Special Metals Co Ltd Manufacturing method of laminated permanent magnet
JPH1126272A (en) * 1997-07-04 1999-01-29 Sumitomo Special Metals Co Ltd Manufacture of laminated permanent magnet
JP2013204067A (en) * 2012-03-27 2013-10-07 Nec Tokin Corp Powder and spherical particle combination and method for producing them, mixed powder of powder and spherical particle combination, magnetic paste containing the mixed powder, and inductor and magnetic core material using the magnetic paste

Similar Documents

Publication Publication Date Title
JPH07263210A (en) Permanent magnet, alloy powder for permanent magnet and their production
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH0657311A (en) Production of rare earth alloy magnet powder
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH0653019A (en) Rare earth magnet, rare earth magnet alloy powder and its manufacture
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JPH0657312A (en) Production of rare earth alloy magnet powder
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JPH0657313A (en) Production of rare earth alloy magnet powder
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JPH05299222A (en) Fe-b-r bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH0681009A (en) Production of rare-earth magnet alloy powder
JP3131040B2 (en) Method for producing Fe-BR bonded magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH07245208A (en) Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JPH0661026A (en) Manufacture of fe-b-r bonded magnet