JPH07245208A - Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method - Google Patents

Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method

Info

Publication number
JPH07245208A
JPH07245208A JP6060325A JP6032594A JPH07245208A JP H07245208 A JPH07245208 A JP H07245208A JP 6060325 A JP6060325 A JP 6060325A JP 6032594 A JP6032594 A JP 6032594A JP H07245208 A JPH07245208 A JP H07245208A
Authority
JP
Japan
Prior art keywords
phase
ihc
magnet
alloy powder
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6060325A
Other languages
Japanese (ja)
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP6060325A priority Critical patent/JPH07245208A/en
Publication of JPH07245208A publication Critical patent/JPH07245208A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a Fe3B type R-Fe-B system magnet enhancing iHc and (BH) max and having optimum residual magnetic flux density Br by a method wherein an alloy hot melt of a specific composition is made an amorphous organization by a quenching method and further heat-treated to obtain an ultra- fine crystal aggregate. CONSTITUTION:In an alloy hot melt that a composition range of Fe100-x-y-zCoxBy(R1-aDya)Pbw (R is Pr or Nd) satisfies 0.05<=x<=15at%, 16<=y<=22at%, 3<=z<=5.5at%, 0.02<=a<=0.9 and 0.1<=w<=3at%, it is made an amorphous organization by a quenching method, and further heat-treated. Thus, a mean crystal particle size becomes an ultra-fine cyrstal aggreate of 0.01 to 0.1mum, and a quantity ratio of Nd2Fe14B type crystal configuration increases in addition to a Fe3B type compound phase of a main phase to form a permanent magnet thin band. This can be pulverized to obtain magnetic characteristic of iHc>=4kOe, Br>=7kG and (BH)max>=8MGOe, and also obtain the optimum magnetic alloy powder for a bond magnet having residual magnetic flux density of 5kG or more.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、モーターやアクチュ
エーターなどに最適な希土類焼結磁石やボンド磁石に係
り、希土類元素の含有量が少ない特定組成のFe−Co
−B−(R,Dy)−Pb合金溶湯(但し、RはPr、
Ndの1種または2種)を超急冷法にてアモルファス組
織となし、特定の熱処理にて微細結晶集合体を得ること
により、ハードフェライト磁石では得られなかった5k
G以上の残留磁束密度Brを有するボンド磁石に最適の
希土類磁石合金粉末を得る製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered magnet or a bonded magnet most suitable for a motor, an actuator, etc., and Fe-Co of a specific composition containing a small amount of rare earth elements.
-B- (R, Dy) -Pb alloy molten metal (where R is Pr,
5d which could not be obtained with a hard ferrite magnet by forming an amorphous structure of Nd (1 or 2 types of Nd) by a super-quenching method and obtaining a fine crystal aggregate by a specific heat treatment.
The present invention relates to a manufacturing method for obtaining a rare earth magnet alloy powder most suitable for a bonded magnet having a residual magnetic flux density Br of G or more.

【0002】[0002]

【従来の技術】電装品用モーターやアクチュエーターな
どに使用される永久磁石は主にハードフェライト磁石に
限定されていたが、低温でのiHc低下に伴う低温減
磁、セラミックス材質のために機械的強度が低くて割
れ、欠けが発生し易いこと、複雑な形状が得難いことな
どの問題があった。
2. Description of the Prior Art Permanent magnets used in motors and actuators for electrical equipment have been mainly limited to hard ferrite magnets, but they have low mechanical strength due to low temperature demagnetization associated with iHc reduction at low temperatures and ceramic materials. However, there were problems such as low hardness, easy cracking and chipping, and difficulty in obtaining a complicated shape.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。
Nowadays, automobiles are strongly required to reduce fuel consumption in order to save resources and to improve fuel efficiency, and electric components for automobiles are required to be further reduced in size and weight. Also,
Designs for maximizing the performance-to-weight ratio are also being considered for applications such as home electric motors other than automobile electrical components. In the current motor structure, magnet materials with Br of about 5 to 7 kG are optimal. It is said that. That is,
When the magnet material used has a Br of 8 kG or more, the current motor structure requires an increase in the cross-sectional area of the iron plate of the rotor or stator that becomes the magnetic path, which causes an increase in weight. If so, the performance-to-weight ratio can be maximized.

【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。
Therefore, a magnetic material for a small motor is required to have a residual magnetic flux density Br of 5 kG or more in terms of magnetic characteristics, but it cannot be obtained with a conventional hard ferrite magnet. For example, Nd-Fe-B based bonded magnets satisfy such magnetic characteristics, but Nd, etc., which require a large number of steps and a large-scale facility for separation and purification of metals and reduction reaction.
Since it is contained at ˜15 at%, it is remarkably expensive as compared with a hard ferrite magnet, and at present, a magnet material with a Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe7719(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.、C
8,1988,669〜670頁)された。この磁石材
料はアモルファスリボンを熱処理することにより、Fe
3BとNd2Fe14Bの結晶集合組織を有する準安定構造
であるが、iHcが2〜3kOe程度と高くなく、また
このiHcを得るための熱処理条件が狭く限定され、工
業生産上実用的でない。
On the other hand, Nd-Fe-B
Recently, a magnet material having a Fe 3 B type compound as a main phase in the vicinity of Nd 4 Fe 77 B 19 (at%) has been proposed (R. Coehorn et al., J. de Phys., C).
8, 1988, pp. 669-670). This magnet material is made of Fe by heat treatment of the amorphous ribbon.
Although it is a metastable structure having a crystal texture of 3 B and Nd 2 Fe 14 B, iHc is not as high as about 2 to 3 kOe, and the heat treatment conditions for obtaining this iHc are narrowly limited, which is practical for industrial production. Not.

【0006】このFe3B型化合物を主相とする磁石材
料に添加元素を加えて多成分化し、性能向上を図った研
究が発表されている。その1つは希土類元素にNdのほ
かにDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn.Magn.M
at.83(1990)228〜230頁)。
[0006] A study has been published in which an additive element is added to the magnetic material having the Fe 3 B type compound as a main phase to make it a multi-component to improve performance. One is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. However, in addition to the problem of adding an expensive element, the magnetic moment of the added rare earth element is Nd or Fe. There is a problem that the magnetization decreases due to coupling in antiparallel with the moment (R. Coehoorn, J. Magn. Magn. M.
at. 83 (1990) 228-230).

【0007】他の研究(Shen Bao−genら、
J.Magn.Magn.Mat.89(1991)3
35〜340頁)として、 Feの一部をCoにて置換
してキュリー温度を上昇させ、iHcの温度係数を改善
するものであるが、Coの添加にともないBrを低下さ
せる問題がある。
Other studies (Shen Bao-gen et al.,
J. Magn. Magn. Mat. 89 (1991) 3
35 to 340), a part of Fe is replaced with Co to raise the Curie temperature and improve the temperature coefficient of iHc, but there is a problem that Br is lowered with the addition of Co.

【0008】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理してハード磁石材料化できるが、iHcが低く、かつ
前記熱処理条件が狭く、添加元素にて高iHc化を図る
と磁気エネルギー積が低下するなど、安定した工業生産
ができず、ハードフェライト磁石の代替えとして安価に
提供することができない。
In any case, Fe 3 B type Nd-Fe-B
The system magnet can be made into a hard magnet material by heat treatment after being made amorphous by the ultra-quenching method, but iHc is low, and the heat treatment condition is narrow, and if the iHc is increased by the additive element, the magnetic energy product decreases. As such, stable industrial production cannot be performed, and it cannot be provided at a low cost as an alternative to the hard ferrite magnet.

【0009】また、Nd−Fe−B系合金をアモルファ
ス化するためには、超急冷時のロール周速度を著しく速
くする必要があり、製品の回収率や歩留りが低下する問
題があり、さらにFe基合金であることから、保存時の
腐食が進行し易く、長期間の保存により初期の磁気特性
が維持できずに劣化する問題があった。
Further, in order to amorphize the Nd-Fe-B system alloy, it is necessary to remarkably increase the roll peripheral speed during the ultra-quenching, which causes a problem that the product recovery rate and the yield decrease. Since it is a base alloy, there is a problem that corrosion during storage tends to proceed, and the initial magnetic characteristics cannot be maintained and deteriorates after long-term storage.

【0010】この発明は、Fe3B型Fe−B−R系磁
石(Rは希土類元素)に着目して、iHcと(BH)m
axを向上させ、安定した工業生産が可能な製造方法の
確立と、5kG以上の残留磁束密度Brを有しハードフ
ェライト磁石の代替えとして安価に提供できるFe3
型R−Fe−B系磁石を目的としている。
The present invention focuses on an Fe 3 B type Fe-BR magnet (R is a rare earth element), iHc and (BH) m
Fe 3 B that can improve the ax and establish a manufacturing method that enables stable industrial production and has a residual magnetic flux density Br of 5 kG or more and can be provided at a low cost as an alternative to a hard ferrite magnet.
Intended for type R-Fe-B magnets.

【0011】[0011]

【課題を解決するための手段】この発明は、Fe3B型
系Fe−B−R磁石のiHcと(BH)maxを向上さ
せ、安定した工業生産が可能な製造方法を目的に種々検
討した結果、希土類元素RはPr、Ndの1種または両
者の任意の比率の混合物の一部をDyで置換することに
よりNd2Fe14B相の異方性磁界を向上させ、高保磁
力を図ると共に、Coの添加により超急冷法を用いたア
モルファス生成能力を高め、かつiHcの温度係数を改
善し、さらに、Pbを少量添加することにより結晶粒の
微細化を図り、特定の昇温速度による熱処理にて微細結
晶集合体を得ることにより、ハードフェライト磁石では
得られなかった5kG以上の残留磁束密度Brとともに
保磁力及び磁化の向上を図ったボンド磁石に最適の希土
類磁石合金粉末が得られることを知見し、この発明を完
成した。
The present invention has been variously studied for the purpose of improving the iHc and (BH) max of Fe 3 B type Fe-B-R magnets and enabling a stable industrial production. As a result, the rare earth element R improves the anisotropic magnetic field of the Nd 2 Fe 14 B phase by substituting Dy for a part of a mixture of Pr and Nd or a mixture of Pr and Nd in an arbitrary ratio. , Co to increase the amorphous forming ability using the ultra-quenching method and to improve the temperature coefficient of iHc, and to add a small amount of Pb to refine the crystal grains, and to perform heat treatment at a specific heating rate. By obtaining a fine crystal aggregate in, a rare earth magnet alloy powder suitable for a bond magnet, which is improved in coercive force and magnetization together with a residual magnetic flux density Br of 5 kG or more, which cannot be obtained in a hard ferrite magnet, can be obtained. The inventors have found that it can be obtained and completed the present invention.

【0012】この発明は、組成式をFe100-x-y-zCox
y(R1-aDyazPbw (但し、RはPr、Ndの
1種または両者の任意の混合物)と表し、組成範囲を限
定する記号x、y、z、a、wが下記値を満足し、Fe
3B型化合物を主相とし、Nd2Fe14B型結晶構造を有
する強磁性相を有し、平均結晶粒径が0.01〜0.1
μmの微細結晶集合体からなることを特徴とする希土類
磁石である。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.9 0.1≦w≦3at%
This invention uses the composition formula Fe 100-xyz Co x
B y (R 1-a Dy a) z Pb w ( where, R represents Pr, any mixtures of one or both of Nd) represents the symbol x to limit the composition range, y, z, a, w is Fe satisfies the following values and Fe
3 B type compound as a main phase having a ferromagnetic phase having a Nd 2 Fe 14 B crystal structure, an average grain size of 0.01 to 0.1
It is a rare earth magnet characterized by comprising a fine crystal aggregate of μm. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.02 ≦ a ≦ 0.9 0.1 ≦ w ≦ 3 at%

【0013】また、この発明は、組成式をFe
100-x-y-zCoxy(R1-aDyazPbw (但し、R
はPr、Ndの1種または両者の任意の混合物)と表
し、組成範囲を限定する記号x、y、z、a、wが上記
値を満足し、Fe3B型化合物を主相とし、Nd2Fe14
B型結晶構造を有する強磁性相を有し、平均結晶粒径が
0.01〜0.1μmの微細結晶集合体からなり、平均
粒径が3〜500μm、磁気特性がiHc≧4kOe、
Br≧7kG、(BH)max≧8MGOeであること
を特徴とする希土類磁石合金粉末である。
Further, the present invention uses the composition formula Fe
100-xyz Co x B y ( R 1-a Dy a) z Pb w ( Here, R
Represents one of Pr and Nd or an arbitrary mixture of both, and the symbols x, y, z, a, and w that limit the composition range satisfy the above values, and Fe 3 B type compound as the main phase, Nd 2 Fe 14
It has a ferromagnetic phase having a B-type crystal structure and is composed of a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm, an average grain size of 3 to 500 μm, and a magnetic property of iHc ≧ 4 kOe,
It is a rare earth magnet alloy powder characterized in that Br ≧ 7 kG and (BH) max ≧ 8 MGOe.

【0014】また、この発明は、(1)組成式をFe
100-x-y-zCoxy(R1-aDyazPbw (但し、R
はPr、Ndの1種または両者の任意の混合物)と表
し、組成範囲を限定する記号x、y、z、a、wが上述
の値を満足する合金溶湯を超急冷法にて実質的に90%
以上をアモルファス組織となし、(2)さらに熱処理に
際し500℃からの昇温速度を1〜15℃/分で昇温し
て550〜700℃で30秒〜6時間保持する熱処理を
施し、(3)Fe3B型化合物を主相とし、Nd2Fe14
B型結晶構造を有する強磁性相を有し、平均結晶粒径が
0.01〜0.1μmの微細結晶集合体を得たのち、
(4)これを粉砕して磁石合金粉末を得ることを特徴と
する希土類磁石合金粉末の製造方法である。
Further, according to the present invention, the composition formula (1) is represented by Fe
100-xyz Co x B y ( R 1-a Dy a) z Pb w ( Here, R
Represents one of Pr and Nd or an arbitrary mixture of both, and the alloy melt in which the symbols x, y, z, a and w for limiting the composition range satisfy the above-mentioned values is substantially prepared by the ultra-quenching method. 90%
The above is an amorphous structure, and (2) the heat treatment is performed by further increasing the heating rate from 500 ° C. at 1 to 15 ° C./min and holding at 550 to 700 ° C. for 30 seconds to 6 hours. ) Fe 3 B type compound as a main phase and Nd 2 Fe 14
After obtaining a fine crystal aggregate having a ferromagnetic phase having a B-type crystal structure and an average crystal grain size of 0.01 to 0.1 μm,
(4) In the method for producing a rare earth magnet alloy powder, the magnet alloy powder is pulverized to obtain a magnet alloy powder.

【0015】組成の限定理由 希土類元素は特定量のR(RはPr、Ndの1種または
両者の任意の混合物)に加えてDyを含有するときのみ
高い磁気特性が得られ、他の希土類、例えばCe、La
ではiHcが4kOe以上の特性が得られず、またSm
以降の中希土類元素、重希土類元素は磁気特性の劣化を
招来するとともに磁石を高価格にするため好ましくな
い。R(Nd、Dyの1種または2種)は、3at%未
満では4kOe以上のiHcが得られず、また5.5a
t%を超えるとFe3B相が生成せず、硬磁性を示さな
い準安定相のNd2Fe233相が折出しiHcは著しく
低下するので好ましくないため、3〜5.5at%の範
囲とする。R中のDyはiHcを向上させるために特に
作用する。R中のDy量を0.02〜0.9に限定した
理由は、DyはiHcを向上させるのに特に有効に作用
するが、0.02未満では4kOe以上のiHcが得ら
れず、0.9を超えるとBrの低下が著しく好ましくな
いためである。
Reasons for limiting composition The rare earth element has high magnetic properties only when it contains Dy in addition to a specific amount of R (R is one or both of Pr and Nd) and other rare earth elements, For example Ce, La
In iHc, the characteristics of 4 kOe or more cannot be obtained, and Sm
Subsequent medium rare earth elements and heavy rare earth elements are not preferable because they lead to deterioration of magnetic properties and make the magnet expensive. If R (one or two of Nd and Dy) is less than 3 at%, iHc of 4 kOe or more cannot be obtained, and 5.5 a
When it exceeds t%, the Fe 3 B phase is not generated, and the metastable phase Nd 2 Fe 23 B 3 phase which does not exhibit hard magnetism is extruded and iHc is significantly lowered. Range. Dy in R acts particularly to improve iHc. The reason why the amount of Dy in R is limited to 0.02 to 0.9 is that Dy acts particularly effectively to improve iHc, but if it is less than 0.02, iHc of 4 kOe or more cannot be obtained, and it is less than 0. This is because if it exceeds 9, the decrease of Br is extremely unfavorable.

【0016】Bは、16at%未満および22at%を
超えると2kOe以上のiHcが得られないため、16
〜22at%の範囲とする。
When B is less than 16 at% or more than 22 at%, iHc of 2 kOe or more cannot be obtained.
The range is -22 at%.

【0017】Coは、iHc及び減磁曲線の角型性の向
上改善に有効であるが、0.05at%未満ではかかる
効果が得られず、15at%を超えるとiHcは著しく
低下し、2kOe以上のiHcが得られないため、0.
05〜15at%の範囲とする。
Co is effective in improving the squareness of iHc and the demagnetization curve, but if it is less than 0.05 at%, such an effect cannot be obtained, and if it exceeds 15 at%, iHc is remarkably reduced and 2 kOe or more. IHc cannot be obtained, so 0.
The range is from 05 to 15 at%.

【0018】Pbは熱処理温度範囲を拡大して減磁曲線
の角型性を改善し、磁気特性のBr、(BH)maxを
増大させる効果を有し、かかる効果を得るには少なくと
も0.1at%以上の添加が必要であるが、3at%を
超えるとかえって角型性を劣化させ、(BH)maxも
低下するため、0.1〜3at%の範囲とする。
Pb has the effect of expanding the heat treatment temperature range to improve the squareness of the demagnetization curve and increasing the magnetic properties Br and (BH) max. To obtain such an effect, at least 0.1 atm is required. %, It is necessary to add 0.1% or more, but if it exceeds 3 at%, the squareness is rather deteriorated and (BH) max is also lowered, so the range is 0.1 to 3 at%.

【0019】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above-mentioned elements.

【0020】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスとなし、500℃以上から1〜15
℃/分の昇温速度で昇温した後、550〜700℃で3
0秒〜6時間保持する熱処理を施すことにより、熱力学
的には準安定相であるFe3B型化合物とNd2Fe14
型結晶構造を有する強磁性相を有し、平均結晶粒径が
0.01〜0.1μmの微細結晶集合体として得ること
が最も重要であり、合金溶湯の超急冷処理には公知の回
転ロールを用いた超急冷法を採用することができるが、
実質的に90%以上をアモルファスとなす必要がある。
例えばCu製ロールを用いる場合は、そのロール表面周
速度が10〜50m/秒の範囲が好適な組織が得られる
ため好ましい。すなわち周速度が10m/秒未満ではア
モルファスとならずα−Fe相の析出量が増大して好ま
しくなく、ロール表面周速度が50m/秒を超えると、
急冷された合金が連続的なリボンとして生成せず、合金
片が飛散し、装置から合金を回収する際の回収率や回収
能率が低下して好ましくない。ただし、微量のα−Fe
相が急冷薄帯中に存在しても特性を著しく低下させるも
のでなく許容される。
Reasons for limiting manufacturing conditions In the present invention, the molten alloy having the above-mentioned specific composition is made amorphous by the ultra-quenching method, and it is 1 to 15 from 500 ° C. or higher.
After raising the temperature at a temperature rising rate of ℃ / min, 3 at 550 ~ 700 ℃
By performing a heat treatment for holding for 0 seconds to 6 hours, the Fe 3 B type compound and Nd 2 Fe 14 B which are thermodynamically metastable phases are obtained.
It is most important to obtain a fine crystal aggregate having a ferromagnetic phase having a type crystal structure and an average crystal grain diameter of 0.01 to 0.1 μm. Although it is possible to adopt the ultra-quenching method using
It is necessary to make substantially 90% or more amorphous.
For example, when a Cu roll is used, a roll surface peripheral velocity in the range of 10 to 50 m / sec is preferable because a suitable structure can be obtained. That is, when the peripheral speed is less than 10 m / sec, it does not become amorphous and the amount of α-Fe phase deposited increases, which is not preferable, and when the roll surface peripheral velocity exceeds 50 m / sec,
The rapidly cooled alloy does not form as a continuous ribbon, the alloy pieces scatter, and the recovery rate and recovery efficiency when recovering the alloy from the apparatus are reduced, which is not preferable. However, a small amount of α-Fe
The presence of phases in the quenched ribbon is acceptable as it does not significantly degrade the properties.

【0021】この発明において、上述の特定組成の合金
溶湯を超急冷法にてアモルファスとなした後、磁気特性
が最高となる熱処理は組成に依存するが、熱処理温度が
550℃未満ではアモルファス相のままで4kOe以上
のiHcが得られず、また700℃を超えると熱平衡相
であるα−Fe相とFe2BまたはNd1.1Fe44相が
生成してiHcが発源しないため、熱処理温度は550
〜700℃に限定する。熱処理雰囲気はArガス中など
の不活性ガス雰囲気が好ましい。
In the present invention, the heat treatment for maximizing the magnetic properties after the alloy melt of the above-mentioned specific composition is made amorphous by the ultra-quenching method depends on the composition, but when the heat treatment temperature is less than 550 ° C., the amorphous phase is formed. Until iHc of 4 kOe or more cannot be obtained, and when the temperature exceeds 700 ° C, the α-Fe phase and the Fe 2 B or Nd 1.1 Fe 4 B 4 phase that are thermal equilibrium phases are generated and iHc does not originate, so the heat treatment temperature Is 550
Limited to ~ 700 ° C. The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar gas.

【0022】熱処理時間は短くてもよいが、30秒未満
では十分なミクロ組織の生成が行われず、iHc及び減
磁曲線の角型性が劣化し、また6時間を超えると4kO
e以上のiHcが得られないので、熱処理保持時間を3
0秒〜6時間に限定する。
The heat treatment time may be short, but if it is less than 30 seconds, a sufficient microstructure is not formed, iHc and the squareness of the demagnetization curve are deteriorated, and if it exceeds 6 hours, it is 4 kO.
Since iHc above e cannot be obtained, the heat treatment holding time is set to 3
Limited to 0 seconds to 6 hours.

【0023】この発明において重要な特徴として、熱処
理に際して500℃以上からの昇温速度があり、1℃/
分未満の昇温速度では、昇温中にNd2Fe14B相とF
3B相の結晶粒径が大きく成長しすぎてiHcが劣化
し、4kOe以上のiHcが得られない。また、15℃
/分を超える昇温速度では、500℃を通過してから生
成するNd2Fe14B相の析出が十分に行われず、α−
Fe相の析出量が増大して、磁化曲線の第2象限にBr
点近傍に磁化の低下のある減磁曲線となり、(BH)m
axが劣化するため好ましくない。ただし、微量のα−
Fe相の存在は許容できる。なお、熱処理に際して50
0℃未満までは急速加熱などその昇温速度は任意であ
る。
An important feature of the present invention is the rate of temperature increase from 500 ° C. or higher during heat treatment, and
If the heating rate is less than a minute, the Nd 2 Fe 14 B phase and the F
The crystal grain size of the e 3 B phase grows too large and iHc deteriorates, and iHc of 4 kOe or more cannot be obtained. Also, 15 ℃
If the heating rate exceeds / min, the Nd 2 Fe 14 B phase generated after passing 500 ° C. is not sufficiently precipitated, and α-
The amount of precipitation of the Fe phase increases and Br falls to the second quadrant of the magnetization curve.
It becomes a demagnetization curve with a decrease in magnetization near the point, (BH) m
It is not preferable because ax is deteriorated. However, a small amount of α-
The presence of the Fe phase is acceptable. In addition, at the time of heat treatment, 50
The rate of temperature increase such as rapid heating up to 0 ° C. is arbitrary.

【0024】結晶構造 この発明による希土類磁石並びに希土類磁石合金粉末の
結晶相は、Fe3B型化合物を主相とし、Nd2Fe14
型結晶構造を有する強磁性相を有し、平均結晶粒径が
0.01〜0.1μmの微細結晶集合体からなることを
特徴としている。
Crystal Structure The crystal phase of the rare earth magnet and the rare earth magnet alloy powder according to the present invention is Fe 3 B type compound as a main phase and Nd 2 Fe 14 B.
It is characterized by having a ferromagnetic phase having a type crystal structure and comprising a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm.

【0025】この発明において、磁石合金の平均結晶粒
径が0.1μmを超えると、減磁曲線の角型性が著しく
劣化し、Br≧7kG、(BH)max≧8MGOeの
磁気特性を得ることができない。また、平均結晶粒径は
細かいほど好ましいが、0.01μm未満の平均結晶粒
径を得ることは工業生産上困難であるため、下限を0.
01μmとする。
In the present invention, when the average grain size of the magnet alloy exceeds 0.1 μm, the squareness of the demagnetization curve is significantly deteriorated, and the magnetic properties of Br ≧ 7 kG and (BH) max ≧ 8 MGOe are obtained. I can't. Further, the smaller the average crystal grain size is, the more preferable, but it is difficult to obtain the average crystal grain size of less than 0.01 μm in industrial production.
It is set to 01 μm.

【0026】磁石化方法 特定組成の合金溶湯を超急冷法にてアモルファスとな
し、500℃以上からの昇温速度を1〜15℃/分で昇
温した後、550〜700℃で30秒〜6時間保持する
熱処理を施すことにより、平均結晶粒径が0.01〜
0.1μmの微細結晶集合体として得たこの発明による
希土類磁石合金粉末を用いて磁石化するには、700℃
以下で固化、圧密化できる公知の焼結磁石化方法並びに
ボンド磁石化方法の何れも採用することができ、特に、
当該合金を平均粒径が3〜500μmの合金粉末に粉砕
したのち、公知のバインダーと混合して所要のボンド磁
石となすことにより、5kG以上の残留磁束密度Brを
有するボンド磁石を得ることができる。
Magnetization method A molten alloy having a specific composition is made amorphous by a super-quenching method, and the temperature rising rate from 500 ° C. or higher is raised at 1 to 15 ° C./minute, and then at 550 to 700 ° C. for 30 seconds to. By performing a heat treatment of holding for 6 hours, the average crystal grain size is 0.01 to
To magnetize using the rare earth magnet alloy powder according to the present invention obtained as a 0.1 μm fine crystal aggregate, 700 ° C.
Any of known sintering magnetizing methods and bond magnetizing methods that can be solidified and consolidated below can be adopted, and in particular,
After crushing the alloy into alloy powder having an average particle size of 3 to 500 μm and mixing it with a known binder to form a required bond magnet, a bond magnet having a residual magnetic flux density Br of 5 kG or more can be obtained. .

【0027】[0027]

【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−Co−B−(Nd,Dy)−Pb系合金溶
湯を超急冷法にて実質的に90%以上をアモルファス組
織となすと、特定量のCoを含有するためアモルファス
薄帯の回収率が著しく向上し、さらに得られたフレー
ク、リボンを500℃以上から1〜15℃/分の昇温速
度で昇温した後、550〜700℃で30秒〜6時間保
持する熱処理を施すことにより、平均結晶粒径が0.0
1〜0.1μmの微細結晶集合体となり、主相のFe3
B型化合物相のほか、Nd2Fe14B型結晶構造相を有
する強磁性相の量比が増大し、α−Fe相が減少し、P
bを含有するためCoを含有してもiHcの低下がな
く、さらに減磁曲線の角型性が改善されることにより、
iHc≧4kOe、Br≧7kG、(BH)max≧8
MGOeの磁気特性が得られ、さらにこれを粉砕して磁
石合金粉末化することによって、5kG以上の残留磁束
密度Brを有するボンド磁石に最適のFe−Co−B−
R−Pb系磁石合金粉末を得ることができ、また焼結磁
石化することにより従来のアルニコ系磁石と同等以上の
磁気特性を得ることができる。
According to the present invention, substantially 90% or more of the Fe-Co-B- (Nd, Dy) -Pb alloy melt having a specific composition containing a small amount of rare earth elements is made into an amorphous structure by the superquenching method. And since the amorphous ribbon is contained in a specific amount, the recovery rate of the amorphous ribbon is remarkably improved. Further, the temperature of the obtained flakes and ribbons is increased from 500 ° C. or higher to 1 to 15 ° C./min, and then 550 The average crystal grain size is 0.0 by applying a heat treatment of holding at ~ 700 ° C for 30 seconds to 6 hours.
It becomes a fine crystal aggregate of 1 to 0.1 μm, and Fe 3 of the main phase
In addition to the B-type compound phase, the amount ratio of the ferromagnetic phase having the Nd 2 Fe 14 B-type crystal structure phase increases, the α-Fe phase decreases, and P
Since it contains b, iHc does not decrease even if Co is contained, and the squareness of the demagnetization curve is further improved.
iHc ≧ 4 kOe, Br ≧ 7 kG, (BH) max ≧ 8
The magnetic properties of MGOe are obtained, and by further pulverizing this to make a magnet alloy powder, Fe-Co-B- which is most suitable for a bonded magnet having a residual magnetic flux density Br of 5 kG or more.
It is possible to obtain an R-Pb based magnet alloy powder, and it is possible to obtain magnetic characteristics equal to or higher than those of a conventional alnico based magnet by forming a sintered magnet.

【0028】[0028]

【実施例】【Example】

実施例1 表1のNo.1〜3の組成となるように、純度99.5
%以上のFe、Co、B、Nd、Pr、Dy、Pbの金
属を用いて、総量が30grとなるように秤量し、底部
に直径0.8mmのオリフィスを有する石英るつぼ内に
投入し、圧力56cmHgのAr雰囲気中で高周波加熱
により溶解し、溶解温度を1400℃にした後、湯面を
Arガスにより加圧して室温にてロール周速度20m/
秒にて高速回転するCu製ロールの外周面に0.7mm
の高さから溶湯を噴出させて、幅2〜3mm、厚み30
〜40μmの超急冷薄帯を作製した。得られた超急冷薄
帯をCuKαの特性X線によりアモルファスであること
を確認した。
Example 1 No. 1 in Table 1 Purity 99.5 so that the composition is 1-3.
% Or more of Fe, Co, B, Nd, Pr, Dy, and Pb metals are weighed so that the total amount becomes 30 gr, and charged into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and pressure is applied. After melting by high-frequency heating in an Ar atmosphere of 56 cmHg and setting the melting temperature to 1400 ° C., the molten metal surface is pressurized with Ar gas and the roll peripheral speed is 20 m /
0.7mm on the outer surface of the Cu roll that rotates at high speed in seconds
The molten metal is ejected from the height of 2 to 3 mm in width and 30 in thickness.
An ultra-quenched ribbon of -40 μm was prepared. The obtained ultra-quenched ribbon was confirmed to be amorphous by the characteristic X-ray of CuKα.

【0029】この超急冷薄帯をArガス中で500℃ま
で急速加熱した後、500℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持し、そ
の後室温まで冷却して薄帯を取り出し、幅2〜3mm、
厚み30〜40μm、長さ3〜5mmの試料を作製し、
VSHを用いて磁気特性を測定した。測定結果を表2に
示す。なお、試料の測定結果は、正方晶と斜方晶が混在
するFe3B相が主相で、Nd2Fe14B相とα−Fe相
が混在する多相組織であり、平均結晶粒径はいずれも
0.1μm以下であった。なお、Coはこれらの各相で
Feの一部を置換するが、Pbについては添加量が少な
い上、超微細結晶であるため分析不能であった。また、
Dyは主相のNd2Fe14B相のNdの一部と置換す
る。
After rapidly heating the ultra-quenched ribbon in Ar gas to 500 ° C., the temperature was raised to 500 ° C. or higher at the heating rate shown in Table 1 and kept at the heat treatment temperature shown in Table 1 for 10 minutes. Cool to room temperature, take out the ribbon, width 2-3 mm,
A sample having a thickness of 30 to 40 μm and a length of 3 to 5 mm is prepared,
The magnetic properties were measured using VSH. The measurement results are shown in Table 2. The measurement result of the sample is a multiphase structure in which the main phase is the Fe 3 B phase in which the tetragonal crystal and the orthorhombic crystal are mixed and the Nd 2 Fe 14 B phase and the α-Fe phase are mixed, and the average crystal grain size is Was 0.1 μm or less. Although Co partially replaces Fe in each of these phases, Pb could not be analyzed because the addition amount was small and it was an ultrafine crystal. Also,
Dy substitutes a part of Nd of the main phase Nd 2 Fe 14 B phase.

【0030】比較例 表1のNo.4の組成となるように純度99.5%以上
のFe、Co、B、Ndを用いて実施例1と同条件で超
急冷薄帯を作製した。得られた薄帯を実施例1と同一条
件の熱処理を施し、冷却後に実施例1と同条件で試料化
(比較例No.4)してVSMを用いて磁気特性を測定
した。測定結果を表2に示す。
Comparative Example No. 1 in Table 1 An ultra-quenched ribbon was prepared under the same conditions as in Example 1 using Fe, Co, B, and Nd having a purity of 99.5% or more so that the composition of Example 4 was obtained. The obtained ribbon was heat-treated under the same conditions as in Example 1, cooled, and then sampled under the same conditions as in Example 1 (Comparative Example No. 4), and the magnetic characteristics were measured using VSM. The measurement results are shown in Table 2.

【0031】実施例2 実施例1で得られた表1の組成No.3の超急冷薄帯
を、表1の熱処理後に平均粒径150μm以下に粉砕
し、エポキシ樹脂なるバインダーを2wt%の割合で混
合したのち、15mm×15mm×7mm寸法のボンド
磁石を作成した。得られたボンド磁石の磁気特性は、i
Hc=5kOe、Br=6.4kG、(BH)max=
5MGOeであった。
Example 2 Composition No. of Table 1 obtained in Example 1 After the heat treatment shown in Table 1, the ultra-quenched ribbon No. 3 was crushed to an average particle size of 150 μm or less, and a binder of an epoxy resin was mixed at a ratio of 2 wt%, and then a bonded magnet having a size of 15 mm × 15 mm × 7 mm was prepared. The magnetic properties of the obtained bonded magnet are i
Hc = 5 kOe, Br = 6.4 kG, (BH) max =
It was 5 MGOe.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】この発明は、特定組成のFe−Co−B
−(Nd,Dy)−Pb系合金溶湯を超急冷法にてアモ
ルファス組織となし、これに特定条件の熱処理を施すこ
とにより、平均結晶粒径が0.01〜0.1μmの微細
結晶集合体となり、主相のFe3B型化合物相のほか、
Nd2Fe14B型結晶構造相の量比が増大し、α−Fe
相が減少することにより、永久磁石薄帯となり、さらに
これを粉砕して磁石合金粉末化することによって、iH
c≧4kOe、Br≧7kG、(BH)max≧8MG
Oeの磁気特性が得られ、5kG以上の残留磁束密度B
rを有するボンド磁石に最適のFe−Co−B−(N
d,Dy)−Pb系磁石合金粉末を得ることができ、ま
た焼結磁石化することにより従来のアルニコ系磁石と同
等以上の磁気特性を得ることができる。また、この発明
は、希土類元素の含有量が少なく、製造方法が簡単で大
量生産に適しているため、5kG以上の残留磁束密度B
rを有し、ハードフェライト磁石を超える磁気的性能を
有し、磁気部品と磁石体との一体成型を採用することに
よって工程を短縮することができ、焼結ハードフェライ
トを凌ぐ性能対コスト比を実現し得るボンド磁石を提供
することができる。
INDUSTRIAL APPLICABILITY The present invention has a specific composition of Fe-Co-B.
A fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm is obtained by forming an amorphous structure of a — (Nd, Dy) —Pb-based alloy melt by a super-quenching method and subjecting this to a heat treatment under specific conditions. In addition to the main phase Fe 3 B type compound phase,
The amount ratio of the Nd 2 Fe 14 B type crystal structure phase is increased, and α-Fe
By reducing the phase, it becomes a permanent magnet ribbon, and by further pulverizing this into a magnet alloy powder, iH
c ≧ 4 kOe, Br ≧ 7 kG, (BH) max ≧ 8 MG
Oe magnetic characteristics are obtained, and residual magnetic flux density B of 5 kG or more
Fe-Co-B- (N optimal for bonded magnets with r
d, Dy) -Pb based magnet alloy powder can be obtained, and by forming a sintered magnet, magnetic characteristics equivalent to or higher than those of conventional alnico based magnets can be obtained. In addition, the present invention has a small content of rare earth elements, a simple manufacturing method, and is suitable for mass production, and therefore has a residual magnetic flux density B of 5 kG or more.
With r, it has magnetic performance exceeding that of hard ferrite magnets, and the process can be shortened by adopting integral molding of magnetic parts and magnet body, and the performance-to-cost ratio surpassing that of sintered hard ferrite. A bond magnet that can be realized can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/00 303 D 38/10 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C22C 38/00 303 D 38/10 H01F 1/053

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-y-zCoxy(R1-a
DyazPbw (但し、RはPr、Ndの1種または
両者の任意の比率の混合物)と表し、組成範囲を限定す
る記号x、y、z、a、wが下記値を満足し、Fe3
型化合物を主相とし、Nd2Fe14B型結晶構造を有す
る強磁性相を有し、平均結晶粒径が0.01〜0.1μ
mの微細結晶集合体からなることを特徴とする希土類磁
石。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.9 0.1≦w≦3at%
The method according to claim 1] composition formula Fe 100-xyz Co x B y (R 1-a
Dy a ) z Pb w (where R is one of Pr and Nd or a mixture of both at any ratio), and the symbols x, y, z, a and w that limit the composition range satisfy the following values: , Fe 3 B
-Type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to 0.1 μm
A rare earth magnet comprising a fine crystal aggregate of m. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.02 ≦ a ≦ 0.9 0.1 ≦ w ≦ 3 at%
【請求項2】 組成式をFe100-x-y-zCoxy(R1-a
DyazPbw (但し、RはPr、Ndの1種または
両者の任意の比率の混合物)と表し、組成範囲を限定す
る記号x、y、z、a、wが下記値を満足し、Fe3
型化合物を主相とし、Nd2Fe14B型結晶構造を有す
る強磁性相を有し、平均結晶粒径が0.01〜0.1μ
mの微細結晶集合体からなり、平均粒径が3〜500μ
m、磁気特性がiHc≧4kOe、Br≧7kG、(B
H)max≧8MGOeであることを特徴とする希土類
磁石合金粉末。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.9 0.1≦w≦3at%
2. A method composition formula Fe 100-xyz Co x B y (R 1-a
Dy a ) z Pb w (where R is one of Pr and Nd or a mixture of both at any ratio), and the symbols x, y, z, a and w that limit the composition range satisfy the following values: , Fe 3 B
-Type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to 0.1 μm
It is composed of m fine crystal aggregates and has an average particle size of 3 to 500 μ.
m, magnetic characteristics are iHc ≧ 4 kOe, Br ≧ 7 kG, (B
H) A rare earth magnet alloy powder characterized in that max ≧ 8 MGOe. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.02 ≦ a ≦ 0.9 0.1 ≦ w ≦ 3 at%
【請求項3】 組成式をFe100-x-y-zCoxy(R1-a
DyazPbw (但し、RはPr、Ndの1種または
両者の任意の比率の混合物)と表し、組成範囲を限定す
る記号x、y、z、a、wが下記値を満足する合金溶湯
を超急冷法にて実質的に90%以上をアモルファス組織
となし、さらに熱処理に際し500℃からの昇温速度を
1〜15℃/分で昇温して550〜700℃で30秒〜
6時間保持する熱処理を施し、Fe3B型化合物を主相
とし、Nd2Fe14B型結晶構造を有する強磁性相を有
し、平均結晶粒径が0.01〜0.1μmの微細結晶集
合体を得たのち、これを粉砕して磁石合金粉末を得るこ
とを特徴とする希土類磁石合金粉末の製造方法。 0.05≦x≦15at% 16≦y≦22at% 3≦z≦5.5at% 0.02≦a≦0.9 0.1≦w≦3at%
The 3. A composition formula Fe 100-xyz Co x B y (R 1-a
Dy a ) z Pb w (where R is one of Pr and Nd or a mixture of both at any ratio), and the symbols x, y, z, a, and w that limit the composition range satisfy the following values: Substantially 90% or more of the molten alloy is formed into an amorphous structure by the ultra-quenching method, and further the heat treatment is performed at a temperature rising rate from 500 ° C of 1 to 15 ° C / min for 30 seconds to 550 to 700 ° C.
A fine crystal having a ferromagnetic phase having an Fe 3 B type compound as a main phase and an Nd 2 Fe 14 B type crystal structure, which is subjected to heat treatment for 6 hours, and has an average crystal grain size of 0.01 to 0.1 μm. A method for producing a rare earth magnet alloy powder, which comprises obtaining an aggregate and then pulverizing the aggregate to obtain a magnet alloy powder. 0.05 ≦ x ≦ 15 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.02 ≦ a ≦ 0.9 0.1 ≦ w ≦ 3 at%
JP6060325A 1994-03-03 1994-03-03 Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method Pending JPH07245208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6060325A JPH07245208A (en) 1994-03-03 1994-03-03 Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6060325A JPH07245208A (en) 1994-03-03 1994-03-03 Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method

Publications (1)

Publication Number Publication Date
JPH07245208A true JPH07245208A (en) 1995-09-19

Family

ID=13138913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6060325A Pending JPH07245208A (en) 1994-03-03 1994-03-03 Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH07245208A (en)

Similar Documents

Publication Publication Date Title
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JPH0657311A (en) Production of rare earth alloy magnet powder
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JPH0653019A (en) Rare earth magnet, rare earth magnet alloy powder and its manufacture
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPH07245208A (en) Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH05299222A (en) Fe-b-r bonded magnet
JPH0681009A (en) Production of rare-earth magnet alloy powder
JPH0657312A (en) Production of rare earth alloy magnet powder
JP3131040B2 (en) Method for producing Fe-BR bonded magnet
JPH0657313A (en) Production of rare earth alloy magnet powder
JP3032385B2 (en) Fe-BR bonded magnet
JPH07161513A (en) Iron based bond magnet and its production