JPH0653019A - Rare earth magnet, rare earth magnet alloy powder and its manufacture - Google Patents

Rare earth magnet, rare earth magnet alloy powder and its manufacture

Info

Publication number
JPH0653019A
JPH0653019A JP5085292A JP8529293A JPH0653019A JP H0653019 A JPH0653019 A JP H0653019A JP 5085292 A JP5085292 A JP 5085292A JP 8529293 A JP8529293 A JP 8529293A JP H0653019 A JPH0653019 A JP H0653019A
Authority
JP
Japan
Prior art keywords
rare earth
earth magnet
phase
alloy powder
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5085292A
Other languages
Japanese (ja)
Inventor
Hirokazu Kanekiyo
裕和 金清
Satoru Hirozawa
哲 広沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP5085292A priority Critical patent/JPH0653019A/en
Publication of JPH0653019A publication Critical patent/JPH0653019A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Abstract

PURPOSE:To obtain a rare earth magnet excellent in magnetic characteristics, by turning Fe-Ni-B-R alloy melt or Fe-Ni-B-R-N alloy melt of specified composition into amorphous texture by a super-quenching method, and turning the texture into magnetic alloy powder by heat treatment under a specified condition. CONSTITUTION:A composition formula is expressed by Fe100-x-y-zNixByRz (R is one kind or two kinds out of Pr or Nd), or Fe100-x-y-zNixByRzMw (M is one more kinds out of Ag, Al, Si, Cu and Ga) where 0.01<=x<=2 atomic %, 16<=y<=22 atomic %, 3<=z<=5.5 atomic % and 0.1<=w<=3 atomic %. The title rare earth magnet is fine crystal aggregate whose average crystal grain diameter is 0.01-0.1mum which has ferromagnetic phase having Nd2Fe14B type crystal structure wherein the main phase is Fe3B type compound. Thereby an Fe3B type Nd-Fe-B based magnet having residual magnetic flux density of 5kG or higher wherein stable inductrial production is possible can be obtained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、モーターやアクチュ
エーターなどに最適な希土類焼結磁石やボンド磁石に係
り、希土類元素の含有量が少ない特定組成のFe−Ni
−B−R(Nd,Pr)合金溶湯あるいはFe−Ni−
B−R(Nd,Pr)−M合金溶湯を超急冷法にてアモ
ルファス組織となし、特定の熱処理にて微細結晶集合体
を得ることにより、ハードフェライト磁石では得られな
かった5kG以上の残留磁束密度Brを有するボンド磁
石に最適の希土類磁石合金粉末を得る製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth sintered magnet or a bonded magnet most suitable for a motor or an actuator, and has a specific composition of Fe-Ni containing a small amount of rare earth elements.
-BR (Nd, Pr) alloy melt or Fe-Ni-
The B-R (Nd, Pr) -M alloy melt was formed into an amorphous structure by the ultra-quenching method, and a fine crystal aggregate was obtained by a specific heat treatment to obtain a residual magnetic flux of 5 kG or more that could not be obtained with a hard ferrite magnet. The present invention relates to a manufacturing method for obtaining a rare earth magnet alloy powder most suitable for a bonded magnet having a density Br.

【0002】[0002]

【従来の技術】電装品用モーターやアクチュエーターな
どに使用される永久磁石は主にハードフェライト磁石に
限定されていたが、低温でのiHc低下に伴う低温減
磁、セラミックス材質のために機械的強度が低くて割
れ、欠けが発生し易いこと、複雑な形状が得難いことな
どの問題があった。
2. Description of the Related Art Permanent magnets used in motors and actuators for electrical equipment have been mainly limited to hard ferrite magnets, but they have low mechanical strength due to low temperature demagnetization accompanying iHc reduction at low temperatures and ceramic materials. However, there were problems such as low hardness, easy cracking and chipping, and difficulty in obtaining a complicated shape.

【0003】今日、自動車は省資源のため車両の軽量化
による燃費の向上が強く要求されており、自動車用電装
品はより一層の小型、軽量化が求められている。また、
自動車用電装品以外の家電用モーターなどの用途におい
ても、性能対重量比を最大にするための設計が検討され
ており、現在のモーター構造では磁石材料としてBrが
5〜7kG程度のものが最適とされている。すなわち、
使用する磁石材料のBrが8kG以上の場合、現在のモ
ーター構造では磁路となる回転子やステーターの鉄板の
断面積を増大させる必要があり、重量の増大を招来する
が、Brが5〜7kGであれば性能対重量比を最大にす
ることができる。
Nowadays, automobiles are strongly required to reduce fuel consumption in order to save resources and to improve fuel efficiency, and electric components for automobiles are required to be further reduced in size and weight. Also,
Designs for maximizing the performance-to-weight ratio are also being considered for applications such as home electric motors other than automobile electrical components. In the current motor structure, magnet materials with Br of about 5 to 7 kG are optimal. It is said that. That is,
When the magnet material used has a Br of 8 kG or more, the current motor structure requires an increase in the cross-sectional area of the iron plate of the rotor or stator that becomes the magnetic path, which causes an increase in weight. If so, the performance-to-weight ratio can be maximized.

【0004】従って、小型モーター用の磁石材料は磁気
特性的には特に5kG以上の残留磁束密度Brが要求さ
れているが、従来のハードフェライト磁石では得ること
ができない。例えばNd−Fe−B系ボンド磁石ではか
かる磁気特性を満足するが、金属の分離精製や還元反応
に多大の工程並びに大規模な設備を要するNd等を10
〜15at%含有しているため、ハードフェライト磁石
に比較して著しく高価であり、現在のところ大量生産が
可能で安価に提供できるBrが5〜7kG程度の磁石材
料は、見出されていない。
Therefore, a magnetic material for a small motor is required to have a residual magnetic flux density Br of 5 kG or more in terms of magnetic characteristics, but it cannot be obtained with a conventional hard ferrite magnet. For example, Nd-Fe-B based bonded magnets satisfy such magnetic characteristics, but Nd, etc., which require a large number of steps and a large-scale facility for separation and purification of metals and reduction reaction.
Since it is contained at ˜15 at%, it is remarkably expensive as compared with a hard ferrite magnet, and at present, a magnet material with a Br of about 5 to 7 kG that can be mass-produced and can be provided at low cost has not been found.

【0005】[0005]

【発明が解決しようとする課題】一方、Nd−Fe−B
系磁石において、最近、Nd4Fe7719(at%)近
傍でFe3B型化合物を主相とする磁石材料が提案
(R.Coehoorn等、J.de Phys.,C
8,1988,669〜670頁)された。この磁石材
料はアモルファスリボンを熱処理することにより、Fe
3BとNd2Fe14Bの結晶集合組織を有する準安定構造
であるが、iHcが2〜3kOe程度と高くなく、また
このiHcを得るための熱処理条件が狭く限定され、工
業生産上実用的でない。
On the other hand, Nd-Fe-B
In a magnet system, a magnet material having a Fe 3 B type compound as a main phase in the vicinity of Nd 4 Fe 77 B 19 (at%) has recently been proposed (R. Coehorn et al., J. de Phys., C).
8, 1988, pp. 669-670). This magnet material is made of Fe by heat treatment of the amorphous ribbon.
Although it is a metastable structure having a crystal texture of 3 B and Nd 2 Fe 14 B, iHc is not so high as about 2 to 3 kOe, and the heat treatment conditions for obtaining this iHc are narrowly limited, which is practical for industrial production. Not.

【0006】このFe3B型化合物を主相とする磁石材
料に添加元素を加えて多成分化し、性能向上を図った研
究が発表されている。その1つは希土類元素にNdのほ
かにDyとTbを用いてiHcの向上を図るものである
が、高価な元素を添加する問題のほか、添加希土類元素
はその磁気モーメントがNdやFeの磁気モーメントと
反平行して結合するため磁化が減少する問題がある
(R.Coehoorn、J.Magn,Magn,M
at.、83(1990)228〜230頁)。
[0006] A study has been published in which an additive element is added to the magnetic material having the Fe 3 B type compound as a main phase to make it a multi-component to improve the performance. One of them is to improve iHc by using Dy and Tb in addition to Nd as a rare earth element. However, in addition to the problem of adding an expensive element, the added rare earth element has a magnetic moment of Nd or Fe. There is a problem that the magnetization decreases due to coupling in antiparallel to the moment (R. Coehoorn, J. Magn, Magn, M
at. , 83 (1990) 228-230).

【0007】他の研究(Shen Bao−genら,
J.Magn, Magn,Mat.、89(199
1)335〜340頁)として、 Feの一部をCoに
て置換してキュリー温度を上昇させ、iHcの温度係数
を改善するものであるが、Coの添加にともないBrを
低下させる問題がある。
Other studies (Shen Bao-gen et al.,
J. Magn, Magn, Mat. , 89 (199
1) pages 335 to 340), a part of Fe is replaced with Co to raise the Curie temperature and improve the temperature coefficient of iHc, but there is a problem that Br is lowered with the addition of Co. .

【0008】いずれにしてもFe3B型Nd−Fe−B
系磁石は、超急冷法によりアモルファス化した後、熱処
理してハード磁石材料化できるが、iHcが低く、かつ
前記熱処理条件が狭く、添加元素にて高iHc化を図る
と磁気エネルギー積が低下するなど、安定した工業生産
ができず、ハードフェライト磁石の代替えとして安価に
提供することができない。
In any case, Fe 3 B type Nd-Fe-B
A system magnet can be made into a hard magnet material by heat treatment after being made amorphous by a super-quenching method, but iHc is low, and the heat treatment conditions are narrow, and if a high iHc is achieved by an additive element, the magnetic energy product decreases. As such, stable industrial production cannot be performed, and it cannot be provided at a low cost as an alternative to the hard ferrite magnet.

【0009】また、Nd−Fe−B系合金をアモルファ
ス化するためには、超急冷時のロール周速度を著しく速
くする必要があり、製品の回収率や歩留りが低下する問
題があり、さらにFe基合金であることから、保存時の
腐食が進行し易く、長期間の保存により初期の磁気特性
が維持できずに劣化する問題があった。
Further, in order to amorphize the Nd-Fe-B system alloy, it is necessary to remarkably increase the roll peripheral speed during the ultra-quenching, which causes a problem that the product recovery rate and the yield decrease. Since it is a base alloy, there is a problem that corrosion during storage tends to proceed, and the initial magnetic characteristics cannot be maintained and deteriorates after long-term storage.

【0010】この発明は、Fe3B型Fe−B−R系磁
石(Rは希土類元素)に着目して、iHcと(BH)m
axを向上させ、安定した工業生産が可能な製造方法の
確立と、5kG以上の残留磁束密度Brを有しハードフ
ェライト磁石の代替えとして安価に提供できるFe3
型Nd−Fe−B系磁石を目的としている。
The present invention focuses on an Fe 3 B type Fe-BR magnet (R is a rare earth element), iHc and (BH) m
Fe 3 B that can improve the ax and establish a manufacturing method that enables stable industrial production and has a residual magnetic flux density Br of 5 kG or more and can be provided at a low cost as an alternative to a hard ferrite magnet.
Aims to be a type Nd-Fe-B system magnet.

【0011】[0011]

【課題を解決するための手段】この発明は、Fe3B型
系Fe−B−R磁石のiHcと(BH)maxを向上さ
せ、安定した工業生産が可能な製造方法を目的に種々検
討した結果、希土類元素の含有量が少なく、Niあるい
はさらにAg、Al、Si、Ga、Cuの少なくとも1
種を少量添加した鉄基の特定組成の合金溶湯を超急冷法
にてアモルファス組織となし、特定の昇温速度による熱
処理にて微細結晶集合体を得ることにより、ハードフェ
ライト磁石では得られなかった5kG以上の残留磁束密
度Brを有するボンド磁石に最適の希土類磁石合金粉末
が得られることを知見し、この発明を完成した。
The present invention has been variously studied for the purpose of improving the iHc and (BH) max of Fe 3 B type Fe-B-R magnets and enabling a stable industrial production. As a result, the content of rare earth elements is low, and Ni or at least 1 of Ag, Al, Si, Ga and Cu is added.
It was not possible to obtain it with a hard ferrite magnet by making a molten alloy of iron-based specific composition with a small amount of seeds formed into an amorphous structure by the ultra-quenching method and obtaining a fine crystal aggregate by heat treatment at a specific heating rate. The inventors have found that an optimum rare earth magnet alloy powder can be obtained for a bonded magnet having a residual magnetic flux density Br of 5 kG or more, and completed the present invention.

【0012】この発明は、組成式をFe100-x-y-zNix
yz (但しRはPrまたはNdの1種または2種)
と表し、あるいはさらに、組成式をFe100-x-y-z
xyzw (但しRはPrまたはNdの1種または
2種、MはAg、Al、Si、CuまたはGaの1種ま
たは2種以上)と表し、組成範囲を限定する記号x、
y、z、wが下記値を満足し、Fe3B型化合物を主相
とし、Nd2Fe14B型結晶構造を有する強磁性相を有
し、平均結晶粒径が0.01〜0.1μmの微細結晶集
合体からなることを特徴とする希土類磁石である。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
This invention uses the composition formula Fe 100-xyz Ni x.
B y R z (where R is one or two of Pr or Nd)
Or, in addition, the composition formula is Fe 100-xyz N
i x B y R z M w ( where R is Pr or one or two Nd, M is Ag, Al, Si, one or more of Cu or Ga) represents the symbol limiting the composition range x,
y, z, w satisfy the following values, Fe 3 B type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to 0. It is a rare earth magnet characterized by comprising a fine crystal aggregate of 1 μm. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%

【0013】また、この発明は、組成式をFe
100-x-y-zNixyz (但しRはPrまたはNdの1
種または2種)と表し、あるいはさらに、組成式をFe
100-x-y-z Nixyzw (但しRはPrまたはN
dの1種または2種、MはAg、Al、Si、Cuまた
はGaの1種または2種以上)と表し、組成範囲を限定
する記号x、y、z、wが上記値を満足し、Fe3B型
化合物を主相とし、Nd2Fe14B型結晶構造を有する
強磁性相を有し、平均結晶粒径が0.01〜0.1μm
の微細結晶集合体からなり、平均粒径が3〜500μ
m、磁気特性がiHc≧2kOe、Br≧7kG、(B
H)max≧8MGOeであることを特徴とする希土類
磁石合金粉末である。
Further, the present invention uses the composition formula Fe
100-xyz Ni x B y R z ( where R is 1 Pr or Nd
Or two)), or in addition, the composition formula is Fe.
100-xyz Ni x B y R z M w ( where R is Pr or N
1 or 2 kinds of d, M is 1 or 2 kinds or more of Ag, Al, Si, Cu or Ga), and the symbols x, y, z and w for limiting the composition range satisfy the above values, Fe 3 B type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to 0.1 μm.
The average grain size is 3 to 500μ.
m, magnetic characteristics are iHc ≧ 2 kOe, Br ≧ 7 kG, (B
H) max ≧ 8 MGOe, which is a rare earth magnet alloy powder.

【0014】また、この発明は、(1)組成式をFe
100-x-y-zNixyz (但しRはPrまたはNdの1
種または2種)と表し、あるいはさらに、組成式をFe
100-x-y-z Nixyzw(但しRはPrまたはNd
の1種または2種、MはAg、Al、Si、Cuまたは
Gaの1種または2種以上)と表し、組成範囲を限定す
る記号x、y、z、wが上述の値を満足する合金溶湯を
超急冷法にて実質的に90%以上をアモルファス組織と
なし、(2)さらに熱処理に際し500℃からの昇温速
度を1〜15℃/分で昇温して550〜700℃で30
秒〜6時間保持する熱処理を施し、(3)Fe3B型化
合物を主相とし、Nd2Fe14B型結晶構造を有する強
磁性相を有し、平均結晶粒径が0.01〜0.1μmの
微細結晶集合体を得たのち、(4)これを粉砕して磁石
合金粉末を得ることを特徴とする希土類磁石合金粉末の
製造方法である。
Further, according to the present invention, the composition formula (1) is represented by Fe
100-xyz Ni x B y R z ( where R is 1 Pr or Nd
Or two)), or in addition, the composition formula is Fe.
100-xyz Ni x B y R z M w ( where R is Pr or Nd
Alloy of which the symbols x, y, z and w for limiting the composition range satisfy the above-mentioned values, and M is one or more of Ag, Al, Si, Cu or Ga). Substantially 90% or more of the molten metal is formed into an amorphous structure by the ultra-quenching method, and (2) the temperature is raised from 500 ° C. at a rate of 1 to 15 ° C./min during heat treatment to 30 at 550 to 700 ° C.
A heat treatment is carried out for 2 seconds to 6 hours, and (3) a Fe 3 B type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to 0. The method for producing a rare earth magnet alloy powder is characterized in that after obtaining a fine crystal aggregate of 1 μm, (4) this is pulverized to obtain a magnet alloy powder.

【0015】組成の限定理由 希土類元素RはPrまたはNdの1種また2種を特定量
含有のときのみ、高い磁気特性が得られ、他の希土類、
例えばCe、LaではiHcが2kOe以上の特性が得
られず、またSm以降の中希土類元素、重希土類元素は
磁気特性の劣化を招来するとともに磁石を高価格にする
ため好ましくない。Rは、3at%未満では2kOe以
上のiHcが得られず、また5.5at%を超えるとF
3B相が生成せず、硬磁性を示さない準安定相のR2
233相が折出しiHcは著しく低下するので好まし
くないため、3〜5.5at%の範囲とする。
Reasons for limiting composition The rare earth element R has high magnetic characteristics only when one or two kinds of Pr or Nd are contained in a specified amount.
For example, in the case of Ce and La, the characteristic that iHc is 2 kOe or more cannot be obtained, and medium rare earth elements and heavy rare earth elements after Sm cause deterioration of magnetic characteristics and make the magnet expensive, which is not preferable. If R is less than 3 at%, iHc of 2 kOe or more cannot be obtained, and if it exceeds 5.5 at%, F is F.
e 3 B phase is not generated and R 2 F is a metastable phase that does not exhibit hard magnetism
The e 23 B 3 phase is unfavorably prominent because iHc is significantly reduced, so the range is 3 to 5.5 at%.

【0016】Bは、16at%未満および22at%を
超えると2kOe以上のiHcが得られないため、16
〜22at%の範囲とする。
When B is less than 16 at% or more than 22 at%, iHc of 2 kOe or more cannot be obtained.
The range is -22 at%.

【0017】Niは、iHc及び減磁曲線の角型性の向
上改善に有効であるが、0.05at%未満ではかかる
効果が得られず、2at%を超えるとiHcは著しく低
下し、2kOe以上のiHcが得られないため、0.0
5〜2at%の範囲とする。
Ni is effective in improving the squareness of iHc and demagnetization curve, but if it is less than 0.05 at%, such an effect cannot be obtained, and if it exceeds 2 at%, iHc is remarkably reduced and 2 kOe or more. Since iHc of is not obtained, 0.0
The range is 5 to 2 at%.

【0018】Ag、Al、Si、Cu及びGaは熱処理
温度範囲を拡大してかつ減磁曲線の角型性を改善し、磁
気特性のBr、(BH)maxを増大させる効果を有
し、かかる効果を得るには少なくとも0.1at%以上
の添加が必要であるが、3at%を超えるとかえって角
型性を劣化させ、(BH)maxも低下するため、0.
1〜3at%の範囲とする。
Ag, Al, Si, Cu and Ga have the effects of expanding the heat treatment temperature range and improving the squareness of the demagnetization curve and increasing the magnetic properties Br and (BH) max. In order to obtain the effect, it is necessary to add at least 0.1 at% or more, but if it exceeds 3 at%, the squareness is rather deteriorated and (BH) max is also lowered.
The range is 1 to 3 at%.

【0019】Feは、上述の元素の含有残余を占める。Fe occupies the remaining content of the above-mentioned elements.

【0020】製造条件の限定理由 この発明において、上述の特定組成の合金溶湯を超急冷
法にてアモルファスとなし、500℃以上から1〜15
℃/分の昇温速度で昇温した後、550〜700℃で3
0秒〜6時間保持する熱処理を施すことにより、熱力学
的には準安定相であるFe3B型化合物とNd2Fe14
型結晶構造を有する強磁性相を有し、平均結晶粒径が
0.01〜0.1μmの微細結晶集合体として得ること
が最も重要であり、合金溶湯の超急冷処理には公知の回
転ロールを用いた超急冷法を採用することができるが、
実質的に90%以上をアモルファスとなす必要がある。
例えばCu製ロールを用いる場合は、そのロール表面周
速度が10〜50m/秒の範囲が好適な組織が得られる
ため好ましい。すなわち周速度が10m/秒未満ではア
モルファスとならずα−Fe相の析出量が増大して好ま
しくなく、ロール表面周速度が50m/秒を超えると、
急冷された合金が連続的なリボンとして生成せず、合金
片が飛散し、装置から合金を回収する際の回収率や回収
能率が低下して好ましくない。ただし、微量のα−Fe
相が急冷薄帯中に存在しても特性を著しく低下させるも
のでなく許容される。
Reasons for limiting manufacturing conditions In the present invention, the molten alloy having the above-mentioned specific composition is made amorphous by the ultra-quenching method, and it is 1 to 15 from 500 ° C. or higher.
After raising the temperature at a temperature rising rate of ℃ / min, 3 at 550 ~ 700 ℃
By performing a heat treatment for holding for 0 seconds to 6 hours, the Fe 3 B type compound and Nd 2 Fe 14 B which are thermodynamically metastable phases are obtained.
It is most important to obtain a fine crystal aggregate having a ferromagnetic phase having a type crystal structure and an average crystal grain diameter of 0.01 to 0.1 μm. Although it is possible to adopt the ultra-quenching method using
It is necessary to make substantially 90% or more amorphous.
For example, when a Cu roll is used, a roll surface peripheral velocity in the range of 10 to 50 m / sec is preferable because a suitable structure can be obtained. That is, when the peripheral speed is less than 10 m / sec, it does not become amorphous and the amount of α-Fe phase deposited increases, which is not preferable, and when the roll surface peripheral velocity exceeds 50 m / sec,
The rapidly cooled alloy does not form as a continuous ribbon, the alloy pieces scatter, and the recovery rate and recovery efficiency when recovering the alloy from the apparatus are reduced, which is not preferable. However, a small amount of α-Fe
The presence of phases in the quenched ribbon is acceptable as it does not significantly degrade the properties.

【0021】この発明において、上述の特定組成の合金
溶湯を超急冷法にて実質的に90%以上をアモルファス
となした後、磁気特性が最高となる熱処理は組成に依存
するが、熱処理温度が550℃未満ではアモルファス相
のままで2kOe以上のiHcが得られず、また700
℃を超えると熱平衡相であるα−Fe相とFe2Bまた
はNd1.1Fe44相が生成してiHcが発源しないた
め、熱処理温度は550〜700℃に限定する。熱処理
雰囲気はArガス中などの不活性ガス雰囲気が好まし
い。
In the present invention, after the molten alloy having the above-mentioned specific composition is made substantially amorphous by 90% or more by the ultra-quenching method, the heat treatment at which the magnetic characteristics are maximized depends on the composition. If it is less than 550 ° C, iHc of 2 kOe or more cannot be obtained in the amorphous phase, and 700
When the temperature exceeds ℃, α-Fe phase and Fe 2 B or Nd 1.1 Fe 4 B 4 phase, which are thermal equilibrium phases, are generated and iHc is not generated. Therefore, the heat treatment temperature is limited to 550 to 700 ° C. The heat treatment atmosphere is preferably an inert gas atmosphere such as Ar gas.

【0022】熱処理時間は短くてもよいが、30秒未満
では十分なミクロ組織の生成が行われず、iHc及び減
磁曲線の角型性が劣化し、また6時間を超えると2kO
e以上のiHcが得られないので、熱処理保持時間を3
0秒〜6時間に限定する。
The heat treatment time may be short, but if it is less than 30 seconds, a sufficient microstructure is not formed, iHc and the squareness of the demagnetization curve are deteriorated, and if it exceeds 6 hours, it is 2 kO.
Since iHc above e cannot be obtained, the heat treatment holding time is set to 3
Limited to 0 seconds to 6 hours.

【0023】この発明において重要な特徴として、熱処
理に際して500℃以上からの昇温速度があり、1℃/
分未満の昇温速度では、昇温中にNd2Fe14B相とF
3B相の結晶粒径が大きく成長しすぎてiHcが劣化
し、2kOe以上のiHcが得られない。また、15℃
/分を超える昇温速度では、500℃を通過してから生
成するNd2Fe14B相の析出が十分に行われず、α−
Fe相の析出量が増大して、磁化曲線の第2象限にBr
点近傍に磁化の低下のある減磁曲線となり、(BH)m
axが劣化するため好ましくない。ただし、微量のα−
Fe相の存在は許容できる。なお、熱処理に際して50
0℃未満までは急速加熱などその昇温速度は任意であ
る。
An important feature of the present invention is the rate of temperature increase from 500 ° C. or higher during heat treatment, which is 1 ° C. /
If the heating rate is less than a minute, the Nd 2 Fe 14 B phase and the F
Since the crystal grain size of the e 3 B phase grows too large and iHc deteriorates, iHc of 2 kOe or more cannot be obtained. Also, 15 ℃
If the heating rate exceeds / min, the Nd 2 Fe 14 B phase generated after passing 500 ° C. is not sufficiently precipitated, and α-
The amount of precipitation of the Fe phase increases and Br falls to the second quadrant of the magnetization curve.
It becomes a demagnetization curve with a decrease in magnetization near the point, (BH) m
It is not preferable because ax is deteriorated. However, a small amount of α-
The presence of the Fe phase is acceptable. In addition, at the time of heat treatment, 50
The rate of temperature increase such as rapid heating up to 0 ° C. is arbitrary.

【0024】結晶構造 この発明による希土類磁石並びに希土類磁石合金粉末の
結晶相は、Fe3B型化合物を主相とし、Nd2Fe14
型結晶構造を有する強磁性相を有し、平均結晶粒径が
0.01〜0.1μmの微細結晶集合体からなることを
特徴としている。
Crystal Structure The crystal phase of the rare earth magnet and the rare earth magnet alloy powder according to the present invention is Fe 3 B type compound as a main phase and Nd 2 Fe 14 B.
It is characterized by having a ferromagnetic phase having a type crystal structure and comprising a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm.

【0025】この発明において、磁石合金の平均結晶粒
径が0.1μmを超えると、減磁曲線の角型性が著しく
劣化し、Br≧8kG、(BH)max≧7MGOeの
磁気特性を得ることができない。また、平均結晶粒径は
細かいほど好ましいが、0.01μm未満の平均結晶粒
径を得ることは工業生産上困難であるため、下限を0.
01μmとする。
In the present invention, when the average crystal grain size of the magnet alloy exceeds 0.1 μm, the squareness of the demagnetization curve is significantly deteriorated, and magnetic properties of Br ≧ 8 kG and (BH) max ≧ 7 MGOe are obtained. I can't. Further, the smaller the average crystal grain size is, the more preferable, but it is difficult to obtain the average crystal grain size of less than 0.01 μm in industrial production.
It is set to 01 μm.

【0026】磁石化方法 特定組成の合金溶湯を超急冷法にてアモルファスとな
し、500℃以上からの昇温速度を1〜15℃/分で昇
温した後、550〜700℃で30秒〜6時間保持する
熱処理を施すことにより、平均結晶粒径が0.01〜
0.1μmの微細結晶集合体として得たこの発明による
希土類磁石合金粉末を用いて磁石化するには、700℃
以下で固化、圧密化できる公知の焼結磁石化方法並びに
ボンド磁石化方法の何れも採用することができ、特に、
当該合金を平均粒径が3〜500μmの合金粉末に粉砕
したのち、公知のバインダーと混合して所要のボンド磁
石となすことにより、5kG以上の残留磁束密度Brを
有するボンド磁石を得ることができる。
Magnetization method A molten alloy having a specific composition is made amorphous by a super-quenching method, and the temperature rising rate from 500 ° C. or higher is raised at 1 to 15 ° C./minute, and then at 550 to 700 ° C. for 30 seconds to. By performing a heat treatment of holding for 6 hours, the average crystal grain size is 0.01 to
To magnetize using the rare earth magnet alloy powder according to the present invention obtained as a 0.1 μm fine crystal aggregate, 700 ° C.
Any of known sintering magnetizing methods and bond magnetizing methods that can be solidified and consolidated below can be adopted, and in particular,
After crushing the alloy into alloy powder having an average particle size of 3 to 500 μm and mixing it with a known binder to form a required bond magnet, a bond magnet having a residual magnetic flux density Br of 5 kG or more can be obtained. .

【0027】[0027]

【作用】この発明は、希土類元素の含有量が少ない特定
組成のFe−Ni−B−R(Nd,Pr)合金溶湯ある
いはFe−Ni−B−R(Nd,Pr)−M合金溶湯を
超急冷法にて実質的に90%以上をアモルファス組織と
なすと、特定量のNiを含有するためアモルファス薄帯
の回収率が著し向上し、さらに得られたフレーク、リボ
ンを500℃以上から1〜15℃/分の昇温速度で昇温
した後、550〜700℃で30秒〜6時間保持する熱
処理を施すことにより、平均結晶粒径が0.01〜0.
1μmの微細結晶集合体となり、主相のFe3B型化合
物相のほか、Nd2Fe14B型結晶構造相を有する強磁
性相の量比が増大し、α−Fe相が減少し、さらにA
g、Al、Si、CuまたはGaを含有することにより
Niを含有してもiHcの低下がなく、さらに減磁曲線
の角型性が改善されることにより、iHc≧3kOe、
Br≧8kG、(BH)max≧8MGOeの磁気特性
が得られ、さらにこれを粉砕して磁石合金粉末化するこ
とによって、iHc≧2kOe、Br≧7kG、(B
H)max≧8MGOeの磁気特性が得られ、5kG以
上の残留磁束密度Brを有するボンド磁石に最適のFe
−Ni−B−R系あるいはFe−Ni−B−R−M系磁
石合金粉末を得ることができ、また焼結磁石化すること
により従来のアルニコ系磁石と同等以上の磁気特性を得
ることができる。
According to the present invention, the Fe-Ni-BR (Nd, Pr) alloy melt or the Fe-Ni-BR (Nd, Pr) -M alloy melt having a specific composition containing a small amount of rare earth elements is used. When the amorphous structure is made to have substantially 90% or more by the quenching method, the recovery rate of the amorphous ribbon is remarkably improved because a specific amount of Ni is contained, and the obtained flakes and ribbons have a temperature of 500 ° C. or higher to 1 After the temperature is raised at a temperature rising rate of -15 ° C / min, a heat treatment is performed at 550 to 700 ° C for 30 seconds to 6 hours to obtain an average crystal grain size of 0.01 to 0.
It becomes a fine crystal aggregate of 1 μm, and in addition to the Fe 3 B type compound phase of the main phase, the amount ratio of the ferromagnetic phase having the Nd 2 Fe 14 B type crystal structure phase increases, the α-Fe phase decreases, and A
By containing g, Al, Si, Cu, or Ga, iHc does not decrease even when Ni is contained, and further, the squareness of the demagnetization curve is improved, so that iHc ≧ 3 kOe,
Magnetic properties of Br ≧ 8 kG and (BH) max ≧ 8 MGOe are obtained, and further crushed to form a magnetic alloy powder, iHc ≧ 2 kOe, Br ≧ 7 kG, (B
H) magnetic properties of max ≧ 8 MGOe are obtained, and Fe is most suitable for a bond magnet having a residual magnetic flux density Br of 5 kG or more.
-Ni-B-R system or Fe-Ni-B-R-M system magnet alloy powder can be obtained, and by making it a sintered magnet, magnetic properties equivalent to or better than those of conventional Alnico system magnets can be obtained. it can.

【0028】[0028]

【実施例】【Example】

実施例1 表1のNo.1〜7の組成となるように、純度99.5
%以上のFe、Ni、B、Nd、Pr、Ag、Al、S
i、Cu、Gaの金属を用いて、総量が30grとなる
ように秤量し、底部に直径0.8mmのオリフィスを有
する石英るつぼ内に投入し、圧力56cmHgのAr雰
囲気中で高周波加熱により溶解し、溶解温度を1400
℃にした後、湯面をArガスにより加圧して室温にてロ
ール周速度20m/秒にて高速回転するCu製ロールの
外周面に0.7mmの高さから溶湯を噴出させて、幅2
〜3mm、厚み30〜40μmの超急冷薄帯を作製し
た。得られた超急冷薄帯をCuKαの特性X線によりア
モルファスであることを確認した。
Example 1 No. 1 in Table 1 Purity 99.5 so that the composition becomes 1 to 7.
% Or more of Fe, Ni, B, Nd, Pr, Ag, Al, S
Metals of i, Cu, and Ga were weighed so that the total amount was 30 gr, put into a quartz crucible having an orifice with a diameter of 0.8 mm at the bottom, and melted by high frequency heating in an Ar atmosphere with a pressure of 56 cmHg. , Melting temperature 1400
C., the molten metal surface is pressurized with Ar gas, and the molten metal is ejected from a height of 0.7 mm onto the outer peripheral surface of a Cu roll that rotates at a high speed at a roll peripheral speed of 20 m / sec at room temperature to give a width of 2
An ultra-quenched ribbon having a thickness of 3 mm and a thickness of 30 to 40 μm was produced. The obtained ultra-quenched ribbon was confirmed to be amorphous by the characteristic X-ray of CuKα.

【0029】この超急冷薄帯をArガス中で500℃ま
で急速加熱した後、500℃以上を表1に示す昇温速度
で昇温し、表1に示す熱処理温度で10分間保持し、そ
の後室温まで冷却して薄帯を取り出し、幅2〜3mm、
厚み30〜40μm、長さ3〜5mmの試料を作製し、
VSMを用いて磁気特性を測定した。測定結果を表2に
示す。なお、試料の測定結果は、正方晶と斜方晶が混在
するFe3B相が主相で、Nd2Fe14B相とα−Fe相
が混在する多相組織であり、平均結晶粒径はいずれも
0.1μm以下であった。なお、Niはこれらの各相で
Feの一部を置換するが、Ag、Al、Si、Ga、C
uについては添加量が少ない上、超微細結晶であるため
分析不能であった。
After rapidly heating the ultra-quenched ribbon in Ar gas to 500 ° C., the temperature was raised to 500 ° C. or higher at the heating rate shown in Table 1 and kept at the heat treatment temperature shown in Table 1 for 10 minutes. Cool to room temperature, take out the ribbon, width 2-3 mm,
A sample having a thickness of 30 to 40 μm and a length of 3 to 5 mm is prepared,
The magnetic properties were measured using VSM. The measurement results are shown in Table 2. The measurement result of the sample is a multiphase structure in which the main phase is the Fe 3 B phase in which the tetragonal crystal and the orthorhombic crystal are mixed and the Nd 2 Fe 14 B phase and the α-Fe phase are mixed, and the average crystal grain size is Was 0.1 μm or less. Although Ni replaces a part of Fe in each of these phases, Ag, Al, Si, Ga, C
With respect to u, the addition amount was small, and since it was an ultrafine crystal, analysis was impossible.

【0030】比較例 表1のNo.8〜10の組成となるように純度99.5
%以上のFe、B、Ndを用いて実施例1と同条件で超
急冷薄帯を作製した。得られた薄帯を実施例1と同一条
件の熱処理を施し、冷却後に実施例1と同条件で試料化
(比較例No.8〜10)してVSMを用いて磁気特性
を測定した。測定結果を表2に示す。比較例No.8〜
10の組織は実施例1の組織と類似していたが、結晶粒
が実施例1に比較して粗大化していいた。
Comparative Example No. 1 in Table 1 Purity 99.5 so that the composition is 8 to 10
% Of Fe, B and Nd were used to fabricate an ultra-quenched ribbon under the same conditions as in Example 1. The obtained ribbon was heat-treated under the same conditions as in Example 1, cooled, and then sampled under the same conditions as in Example 1 (Comparative Examples Nos. 8 to 10), and the magnetic characteristics were measured using VSM. The measurement results are shown in Table 2. Comparative Example No. 8 ~
The structure of No. 10 was similar to that of Example 1, but the crystal grains were coarser than those of Example 1.

【0031】実施例2 実施例1で得られた表1の組成No.2の超急冷薄帯
を、表1の熱処理後に平均粒径は100μm以下に粉砕
し、エポキシ樹脂からなるバインダーを2wt%の割合
で混合したのち、12mm×12mm×8mm寸法のボ
ンド磁石を作成した。得られたボンド磁石の磁気特性
は、密度5.7g/cm3、iHc=3.5kOe、B
r=7.3kG、(BH)max=6MGOeであっ
た。
Example 2 Composition No. of Table 1 obtained in Example 1 After the heat treatment of Table 1, the ultra-thin quenched ribbon No. 2 was crushed to an average particle size of 100 μm or less, and a binder made of an epoxy resin was mixed at a ratio of 2 wt%, and then a bonded magnet having a size of 12 mm × 12 mm × 8 mm was prepared. . The magnetic properties of the obtained bonded magnet are as follows: density 5.7 g / cm 3 , iHc = 3.5 kOe, B
r = 7.3 kG, (BH) max = 6 MGOe.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】この発明は、特定組成のFe−Ni−B
−R(Nd,Pr)合金溶湯あるいはFe−Ni−B−
R(Nd,Pr)−M合金溶湯を超急冷法にてアモルフ
ァス組織となし、これに特定条件の熱処理を施すことに
より、平均結晶粒径が0.01〜0.1μmの微細結晶
集合体となり、主相のFe3B型化合物相のほか、Nd2
Fe14B型結晶構造相の量比が増大し、α−Fe相が減
少することにより、永久磁石薄帯となり、さらにこれを
粉砕して磁石合金粉末化することによって、iHc≧2
kOe、Br≧7kG、(BH)max≧8MGOeの
磁気特性が得られ、5kG以上の残留磁束密度Brを有
するボンド磁石に最適のFe−Ni−B−R系あるいは
Fe−Ni−B−R−M系磁石合金粉末を得ることがで
き、また焼結磁石化することにより従来のアルニコ系磁
石と同等以上の磁気特性を得ることができる。また、こ
の発明は、希土類元素の含有量が少なく、製造方法が簡
単で大量生産に適しているため、5kG以上の残留磁束
密度Brを有し、ハードフェライト磁石を超える磁気的
性能を有し、磁気部品と磁石体との一体成型を採用する
ことによって工程を短縮することができ、焼結ハードフ
ェライトを凌ぐ性能対コスト比を実現し得るボンド磁石
を提供することができる。
INDUSTRIAL APPLICABILITY The present invention has a specific composition of Fe-Ni-B.
-R (Nd, Pr) alloy melt or Fe-Ni-B-
The R (Nd, Pr) -M alloy melt is formed into an amorphous structure by the ultra-quenching method, and by subjecting this to a heat treatment under specific conditions, a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm is formed. , Fe 3 B type compound phase of the main phase, Nd 2
By increasing the amount ratio of the Fe 14 B type crystal structure phase and decreasing the α-Fe phase, a permanent magnet ribbon is formed, which is further pulverized into a magnetic alloy powder to obtain iHc ≧ 2.
Magnetic properties of kOe, Br ≧ 7 kG, (BH) max ≧ 8 MGOe are obtained, and an Fe—Ni—B—R system or Fe—Ni—B—R— which is optimum for a bond magnet having a residual magnetic flux density Br of 5 kG or more. It is possible to obtain an M-based magnet alloy powder, and it is possible to obtain magnetic characteristics equivalent to or better than those of a conventional alnico-based magnet by forming a sintered magnet. In addition, the present invention has a low content of rare earth elements, a simple manufacturing method, and is suitable for mass production, and therefore has a residual magnetic flux density Br of 5 kG or more and magnetic performance exceeding that of a hard ferrite magnet. By adopting integral molding of the magnetic component and the magnet body, the process can be shortened, and it is possible to provide a bond magnet that can realize a performance-to-cost ratio exceeding that of sintered hard ferrite.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 組成式をFe100-x-y-zNixyz
(但しRはPrまたはNdの1種または2種)と表し、
組成範囲を限定する記号x、y、zが下記値を満足し、
Fe3B型化合物を主相とし、Nd2Fe14B型結晶構造
を有する強磁性相を有し、平均結晶粒径が0.01〜
0.1μmの微細結晶集合体からなることを特徴とする
希土類磁石。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at%
The method according to claim 1] composition formula Fe 100-xyz Ni x B y R z
(However, R is one or two of Pr or Nd)
Symbols x, y, z that limit the composition range satisfy the following values,
Fe 3 B type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to
A rare earth magnet comprising a 0.1 μm fine crystal aggregate. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項2】 組成式をFe100-x-y-z Nixyz
w (但しRはPrまたはNdの1種または2種、Mは
Ag、Al、Si、CuまたはGaの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、wが
下記値を満足し、Fe3B型化合物を主相とし、Nd2
14B型結晶構造を有する強磁性相を有し、平均結晶粒
径が0.01〜0.1μmの微細結晶集合体からなるこ
とを特徴とする希土類磁石。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
2. A method composition formula Fe 100-xyz Ni x B y R z M
w (wherein R is one or two of Pr or Nd, M is one or two or more of Ag, Al, Si, Cu or Ga), and the symbols x, y, z, w for limiting the composition range Satisfy the following values, Fe 3 B type compound as the main phase, and Nd 2 F
e 14 A rare earth magnet having a ferromagnetic phase having a B-type crystal structure and comprising a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
【請求項3】 組成式をFe100-x-y-zNixyz
(但しRはPrまたはNdの1種または2種)と表し、
組成範囲を限定する記号x、y、zが下記値を満足し、
Fe3B型化合物を主相とし、Nd2Fe14B型結晶構造
を有する強磁性相を有し、平均結晶粒径が0.01〜
0.1μmの微細結晶集合体からなり、平均粒径が3〜
500μm、磁気特性がiHc≧2kOe、Br≧7k
G、(BH)max≧8MGOeであることを特徴とす
る希土類磁石合金粉末。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at%
The 3. A composition formula Fe 100-xyz Ni x B y R z
(However, R is one or two of Pr or Nd)
Symbols x, y, z that limit the composition range satisfy the following values,
Fe 3 B type compound as a main phase, a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure, and an average crystal grain size of 0.01 to
It is composed of 0.1 μm fine crystal aggregates and has an average particle size of 3 to
500 μm, magnetic characteristics iHc ≧ 2 kOe, Br ≧ 7 k
G, (BH) max ≧ 8 MGOe, a rare earth magnet alloy powder. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項4】 組成式をFe100-x-y-z Nixyz
w (但しRはPrまたはNdの1種または2種、Mは
Ag、Al、Si、CuまたはGaの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、wが
下記値を満足し、Fe3B型化合物を主相とし、Nd2
14B型結晶構造を有する強磁性相を有し、平均結晶粒
径が0.01〜0.1μmの微細結晶集合体からなり、
平均粒径が3〜500μm、磁気特性がiHc≧3kO
e、Br≧8kG、(BH)max≧8MGOeである
ことを特徴とする希土類磁石合金粉末。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
The 4. A composition formula Fe 100-xyz Ni x B y R z M
w (wherein R is one or two of Pr or Nd, M is one or two or more of Ag, Al, Si, Cu or Ga), and the symbols x, y, z, w for limiting the composition range Satisfy the following values, Fe 3 B type compound as the main phase, and Nd 2 F
e 14 has a ferromagnetic phase having a B-type crystal structure, and is composed of a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm,
Average particle size is 3 to 500 μm, magnetic property is iHc ≧ 3 kO
e, Br ≧ 8 kG, (BH) max ≧ 8 MGOe, a rare earth magnet alloy powder. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
【請求項5】 組成式をFe100-x-y-zNixyz
(但しRはPrまたはNdの1種または2種)と表し、
組成範囲を限定する記号x、y、zが下記値を満足する
合金溶湯を超急冷法にて実質的に90%以上をアモルフ
ァス組織となし、さらに熱処理に際し500℃からの昇
温速度を1〜15℃/分で昇温して550〜700℃で
30秒〜6時間保持する熱処理を施し、Fe3B型化合
物を主相とし、Nd2Fe14B型結晶構造を有する強磁
性相を有し、平均結晶粒径が0.01〜0.1μmの微
細結晶集合体を得たのち、これを粉砕して磁石合金粉末
を得ることを特徴とする希土類磁石合金粉末の製造方
法。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at%
5. A composition formula Fe 100-xyz Ni x B y R z
(However, R is one or two of Pr or Nd)
A molten alloy having the symbols x, y, and z that limit the composition range satisfying the following values is formed into an amorphous structure by substantially 90% or more by a superquenching method, and the rate of temperature rise from 500 ° C. is 1 to 1 during heat treatment. A heat treatment of heating at 15 ° C./min and holding at 550 to 700 ° C. for 30 seconds to 6 hours is performed to have a Fe 3 B type compound as a main phase and a ferromagnetic phase having an Nd 2 Fe 14 B type crystal structure. Then, a fine crystal aggregate having an average crystal grain size of 0.01 to 0.1 μm is obtained and then pulverized to obtain a magnet alloy powder, which is a method for producing a rare earth magnet alloy powder. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at%
【請求項6】 組成式をFe100-x-y-z Nixyz
w (但しRはPrまたはNdの1種または2種、Mは
Ag、Al、Si、CuまたはGaの1種または2種以
上)と表し、組成範囲を限定する記号x、y、z、wが
下記値を満足する合金溶湯を超急冷法にて実質的に90
%以上をアモルファス組織となし、さらに熱処理に際し
500℃からの昇温速度を1〜15℃/分で昇温して5
50〜700℃で30秒〜6時間保持する熱処理を施
し、Fe3B型化合物を主相とし、Nd2Fe14B型結晶
構造を有する強磁性相を有し、平均結晶粒径が0.01
〜0.1μmの微細結晶集合体を得たのち、これを粉砕
して磁石合金粉末を得ることを特徴とする希土類磁石合
金粉末の製造方法。 0.01≦x≦2at% 16≦y≦22at% 3≦z≦5.5at% 0.1≦w≦3at%
6. A composition formula Fe 100-xyz Ni x B y R z M
w (wherein R is one or two of Pr or Nd, M is one or two or more of Ag, Al, Si, Cu or Ga), and the symbols x, y, z, w for limiting the composition range Is 90% by the ultra-quenching method.
% Or more has an amorphous structure, and the temperature is raised from 500 ° C. at a heating rate of 1 to 15 ° C./min during heat treatment to 5
A heat treatment of holding at 50 to 700 ° C. for 30 seconds to 6 hours is performed to have a ferromagnetic phase having an Fe 3 B type compound as a main phase and an Nd 2 Fe 14 B type crystal structure and an average crystal grain size of 0. 01
A method for producing a rare earth magnet alloy powder, which comprises obtaining a fine crystal aggregate of ˜0.1 μm and then pulverizing the fine crystal aggregate to obtain a magnet alloy powder. 0.01 ≦ x ≦ 2 at% 16 ≦ y ≦ 22 at% 3 ≦ z ≦ 5.5 at% 0.1 ≦ w ≦ 3 at%
JP5085292A 1992-03-19 1993-03-19 Rare earth magnet, rare earth magnet alloy powder and its manufacture Pending JPH0653019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5085292A JPH0653019A (en) 1992-03-19 1993-03-19 Rare earth magnet, rare earth magnet alloy powder and its manufacture

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-93782 1992-03-19
JP9378292 1992-03-19
JP5085292A JPH0653019A (en) 1992-03-19 1993-03-19 Rare earth magnet, rare earth magnet alloy powder and its manufacture

Publications (1)

Publication Number Publication Date
JPH0653019A true JPH0653019A (en) 1994-02-25

Family

ID=26426310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5085292A Pending JPH0653019A (en) 1992-03-19 1993-03-19 Rare earth magnet, rare earth magnet alloy powder and its manufacture

Country Status (1)

Country Link
JP (1) JPH0653019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053517A (en) * 2010-05-14 2015-03-19 信越化学工業株式会社 Neodymium-iron-boron based rare earth sintered magnet
CN106505766A (en) * 2016-11-30 2017-03-15 郑金龙 A kind of wind-driven generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053517A (en) * 2010-05-14 2015-03-19 信越化学工業株式会社 Neodymium-iron-boron based rare earth sintered magnet
CN106505766A (en) * 2016-11-30 2017-03-15 郑金龙 A kind of wind-driven generator

Similar Documents

Publication Publication Date Title
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JP3519443B2 (en) Permanent magnet alloy powder and method for producing the same
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPH0653019A (en) Rare earth magnet, rare earth magnet alloy powder and its manufacture
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3519438B2 (en) Rare earth magnet alloy powder and its production method
JP3459440B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JPH0657311A (en) Production of rare earth alloy magnet powder
JP3547016B2 (en) Rare earth bonded magnet and method of manufacturing the same
JP3710154B2 (en) Iron-based permanent magnet, method for producing the same, iron-based permanent magnet alloy powder for bonded magnet, and iron-based bonded magnet
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JPH05299222A (en) Fe-b-r bonded magnet
JPH07176417A (en) Iron based bonded magnet and its manufacture
JPH07245208A (en) Rare-earth magnet and rare-earth magnet alloy powder and its manufacturing method
JPH0657312A (en) Production of rare earth alloy magnet powder
JPH0657313A (en) Production of rare earth alloy magnet powder
JPH0681009A (en) Production of rare-earth magnet alloy powder
JP3795056B2 (en) Iron-based bonded magnet and iron-based permanent magnet alloy powder for bonded magnet
JP3131040B2 (en) Method for producing Fe-BR bonded magnet