JP2753432B2 - Sintered permanent magnet - Google Patents

Sintered permanent magnet

Info

Publication number
JP2753432B2
JP2753432B2 JP4290172A JP29017292A JP2753432B2 JP 2753432 B2 JP2753432 B2 JP 2753432B2 JP 4290172 A JP4290172 A JP 4290172A JP 29017292 A JP29017292 A JP 29017292A JP 2753432 B2 JP2753432 B2 JP 2753432B2
Authority
JP
Japan
Prior art keywords
permanent magnet
sintered
powder
amorphous
koe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4290172A
Other languages
Japanese (ja)
Other versions
JPH06124825A (en
Inventor
公行 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JENERARU MOOTAASU CORP
Original Assignee
JENERARU MOOTAASU CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JENERARU MOOTAASU CORP filed Critical JENERARU MOOTAASU CORP
Priority to JP4290172A priority Critical patent/JP2753432B2/en
Publication of JPH06124825A publication Critical patent/JPH06124825A/en
Application granted granted Critical
Publication of JP2753432B2 publication Critical patent/JP2753432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、高保磁力を有する永久
磁石粉末を用いた硬質磁性材料、特に高保磁力永久磁石
粉末の焼結体から成る焼結永久磁石に関する。 【0002】 【従来の技術】従来、鉄族遷移金属と半金属元素よりな
る例えばFe8020に代表されるような組成の非晶質合
金は軟質磁性材料として公知である。又、鉄族遷移金属
とランタニド元素を基本組成とする結晶質合金は硬質磁
性材料としてよく知られているところである。 【0003】ところで、上記従来の硬質磁性材料はラン
タニド元素と鉄族遷移金属の組成が原子比で1:5から
2:17までの合金である。かかる合金をつくるには、
各元素を所定の配合組成としたのち、溶解法あるいは直
接還元法等により得ていたが、2:17系合金は組成が
複雑であり、直接還元法による製造は困難である。その
ため、現在では、各組成元素を高純度金属として用意
し、不活性ガス中の高周波炉で溶解して得る場合が多
い。しかし、この方法では溶解の途中での組成のずれが
しばしば問題となる。経験的に組成がずれ易い元素は配
合の段階でそのずれを補正すべく配慮しなければならな
い。 【0004】そして、溶解によって得られたインゴット
をもって永久磁石をつくるに当っては、焼結法による場
合には、粉砕−磁界中成形−焼結−時効という工程をと
る。 【0005】 【発明が解決しようとする課題】いずれにしても、従来
の焼結法の場合はインゴットの粉砕および成形という工
程が必要となり、粉末の酸化の問題が生じる。さらに焼
結後に、室温まで急冷することが必要であり、試料が大
型の場合には均一急冷ということが問題となる。冷却速
度が不均一であれば結晶粒の大きさが不均一となり、す
ぐれた永久磁石特性が得られないのである。 【0006】本発明は、非晶質合金を出発材料として硬
質磁性材料を得るもので、上記製造上の問題を解決し、
高保磁力を有する安定した永久磁石粉末を用いた焼結磁
石である。 【0007】 【課題を解決するための手段】すなわち、本発明は、遷
移金属(T)、半金属元素(M)および希土類元素
(R)が下記組成式: T:Feに、Ni及びCrからなる群から選択された1
種以上の元素を組み合わせたもの、 M:B,Si及びCからなる群から選択された1種以上
の元素、 R:Nd及び/又はPrに、La,Sm及びTbからな
る群から選択された1種以上の元素より成り、且つ、 非晶質再結晶粒径の大きさの結晶粒を有する高保持力の
永久磁石粉末の焼結体より成ることを特徴とする焼結永
久磁石である。 【0008】上記において、半金属元素(M)は、非晶
質合金を得るのに有効な元素である。しかし、この半金
属元素(M)は磁気特性の上からは合金の飽和磁束密度
(自発磁化σも同様)を低下させる傾向があるので総量
を25%以下に抑える事が望まれ、その範囲で、上記の
ようにxおよびzの数値を決定する。 【0009】すなわち、後述の実施例、比較例を含む多
くの実験の結果、希土類元素(R)の含有量を規定する
係数1−zとしては、自発磁化σが高く、かつ、高い保
磁力iHcを有する永久磁石材料を得るためには、0.
65≧1−z≧0.11の範囲が望ましい。すなわち、
還移金属(T)+半金属元素(M)の含有量を規定する
係数zは、0.35≦z≦0.89の範囲が望ましいこ
とがわかった。 【0010】そして、半金属元素(M)の総量は、本発
明の組成式においては、(x)×(z)であるから、こ
の値が0.25以下になるように(M)の係数xの上限
を規定した。すなわち、xの上限は0.25÷0.89
=0.28の式から得られる0.28とした。又、xの
下限の0.01はその有効性の限界を示すものである。 【0011】本発明の永久磁石をつくるには、非晶質合
金材料が用いられる。合金を非晶質化するには、目的と
する組成の合金を溶融状態から高速急冷もしくはスパッ
タ法により、イオンを基板上に到達せしめて急冷する。
こうして得た非晶質合金は、良く溶体化処理されたイン
ゴットと殆ど類似の状態にあり、非常に均一な状態であ
る。 【0012】本発明は、かかる非晶質合金材料を適当な
温度で熱処理し、再結晶化して得られる微細な結晶粒を
有する高保磁力永久磁石粉末を、成形、焼結によって結
合した永久磁石である。 【0013】非晶質合金材料を再結晶化して得た永久磁
石粉末は従来のようにインゴットを粉砕して得た粉末に
比べて、結晶粒の大きさが格段に小さく判然としてい
る。そのため、耐酸化性にすぐれており、焼結磁石製造
時の粉砕や成形における取扱いが従来のインゴットを用
いるものに比べてやり易いという特徴がある。 【0014】本発明は、容易に、しかも安定した特性の
下で提供される永久磁石粉末よりなる焼結永久磁石であ
る。 【0015】 【実施例】つぎに実施例について説明する。 【0016】実施例1 (Fe0.60Ni0.250.150.70La0.10Pr0.20 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、10KOeの磁界中で500℃で20時間熱
処理した。熱処理後室温で振動型時速計により、その磁
性値を測定したところσ(emu/g)は105、IC
(KOe)は3であった。 【0017】実施例2 (Co0.55Fe0.15Ni0.15Si0.150.65Nd0.10Tb0.25 なる組成の試料を実施例1と同様にして非晶質の粉末と
した。これを実施例1と同じく石英管にアルゴンと共に
封入し、10KOeの磁界中で650℃で15時間熱処
理した。この磁性値は、σ(emu/g)は70、IC
(KOe)は8であった。 【0018】実施例3 (Fe0.81Co0.04Ni0.030.120.80Nd0.10Pr0.10 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
50℃で1時間熱処理し、永久磁石粉末を得た。この磁
性値は、σ(emu/g)は85、IC(KOe)は
5.5であった。 【0019】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に、550℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
5.8、bc(KOe)は5.0、(BH)max(MG
Oe)は7.7であった。 【0020】実施例4 (Fe0.81Co0.04Cr0.030.10Si0.010.010.80Nd0.18Sm0.02 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
50℃で1時間熱処理し、永久磁石粉末を得た。この磁
性値は、σ(emu/g)は83、IC(KOe)は
4.5であった。 【0021】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に、550℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
5.5、bc(KOe)は5.0、(BH)max(MG
Oe)は7.0であった。 【0022】実施例5 (Fe0.60Ni0.250.150.70La0.10Pr0.20 なる組成の試料を高周波溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、1
0KOeの磁界中で500℃で20時間熱処理し、熱処
理後室温で振動磁束計によりその磁性値を測定したとこ
ろ、σ(emu/g)は105、IC(KOe)は3で
あった。 【0023】次に、この粉末をノルマンヘキサン中で振
動ミルにより、平均粒径が約3μmになるように更に粉
砕し、この粉末を15KOeの磁界を圧縮方向と直角方
向に印加し、3t/cm2の圧力で圧縮成形を行い、1
000℃の温度で焼結を行い、更に400℃で1時間熱
処理して焼結磁石を作製し、その磁気特性を測定したと
ころ、Br(KG)は9.0、bc(KOe)は6.
0、(BH)max(MGOe)は18であった。 【0024】実施例6 (Co0.55Fe0.15Ni0.15Si0.150.65Nd0.10Tb0.25 なる組成の試料を高周波溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、1
0KOeの磁界中で650℃15時間熱処理し、熱処理
後室温で振動磁束計によりその磁性値を測定したとこ
ろ、σ(emu/g)は70、IC(KOe)は8であ
った。 【0025】次に、この粉末をノルマンヘキサン中で振
動ミルにより、平均粒径が約3μmになるように更に粉
砕し、この粉末を15kOeの磁界を圧縮方向と直角方
向に印加し、3t/cm2の圧力で圧縮成形を行い、1
000℃の温度で焼結を行い、更に400℃で1時間熱
処理して焼結磁石を作製し、その磁気特性を測定したと
ころ、Br(KG)は6.0、bc(KOe)は5.
0、(BH)max(MGOe)は8であった。 【0026】 【0027】 【0028】 【0029】 【0030】 【0031】 【0032】 【0033】 【0034】 【0035】 【発明の効果】本発明は、高保磁力を有する永久磁石粉
末の焼結体から成る焼結永久磁石である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard magnetic material using a permanent magnet powder having a high coercive force, and more particularly to a sintered permanent magnet made of a sintered body of a high coercive force permanent magnet powder. About magnets. 2. Description of the Related Art Conventionally, an amorphous alloy composed of an iron group transition metal and a metalloid element and having a composition represented by Fe 80 B 20 has been known as a soft magnetic material. Further, crystalline alloys having a basic composition of an iron group transition metal and a lanthanide element are well known as hard magnetic materials. The above conventional hard magnetic material is an alloy having a composition of a lanthanide element and an iron group transition metal in an atomic ratio of 1: 5 to 2:17. To make such an alloy,
After each element has a predetermined composition, it has been obtained by a melting method or a direct reduction method. However, the composition of a 2:17 series alloy is complicated, and it is difficult to produce by the direct reduction method. Therefore, at present, it is often the case that each composition element is prepared as a high-purity metal and is melted in a high-frequency furnace in an inert gas. However, in this method, a compositional deviation during the dissolution often poses a problem. It is empirical that elements that tend to shift in composition must be considered in order to correct the shift at the stage of compounding. [0004] When a permanent magnet is produced from an ingot obtained by melting, a sintering method involves the steps of pulverization, molding in a magnetic field, sintering and aging. [0005] In any case, in the case of the conventional sintering method, the steps of pulverizing and molding the ingot are required, and the problem of powder oxidation occurs. Furthermore, after sintering, it is necessary to rapidly cool to room temperature. If the sample is large, uniform rapid cooling becomes a problem. If the cooling rate is not uniform, the size of the crystal grains will be uneven, and excellent permanent magnet characteristics cannot be obtained. The present invention is to obtain a hard magnetic material by using an amorphous alloy as a starting material.
This is a sintered magnet using a stable permanent magnet powder having a high coercive force. That is, according to the present invention, a transition metal (T), a metalloid element (M) and a rare earth element (R) are represented by the following composition formula: T: 1 selected from the group consisting of Ni and Cr
M: one or more elements selected from the group consisting of B, Si and C; R: Nd and / or Pr; selected from the group consisting of La, Sm and Tb A sintered permanent magnet comprising a sintered body of a high coercive force permanent magnet powder having one or more elements and having crystal grains having an amorphous recrystallized grain size. In the above, the metalloid element (M) is an effective element for obtaining an amorphous alloy. However, this metalloid element (M) tends to lower the saturation magnetic flux density (similarly to the spontaneous magnetization σ) of the alloy from the viewpoint of magnetic properties. Therefore, it is desired to suppress the total amount to 25% or less. , X and z are determined as described above. That is, as a result of many experiments including Examples and Comparative Examples to be described later, the coefficient 1-z defining the content of the rare earth element (R) has a high spontaneous magnetization σ and a high coercive force iHc In order to obtain a permanent magnet material having
The range of 65 ≧ 1−z ≧ 0.11 is desirable. That is,
It has been found that the coefficient z defining the content of the transition metal (T) + the metalloid element (M) is preferably in the range of 0.35 ≦ z ≦ 0.89. Since the total amount of the metalloid element (M) is (x) × (z) in the composition formula of the present invention, the coefficient of (M) is set so that this value becomes 0.25 or less. The upper limit of x was specified. That is, the upper limit of x is 0.25 ÷ 0.89
= 0.28 obtained from the equation of = 0.28. Further, the lower limit of x of 0.01 indicates the limit of its effectiveness. In order to produce the permanent magnet of the present invention, an amorphous alloy material is used. In order to make the alloy amorphous, ions are allowed to reach the substrate by rapid quenching or sputtering from a molten state and rapidly cooled.
The amorphous alloy thus obtained is in a state almost similar to the well-solution-treated ingot, and is in a very uniform state. The present invention relates to a permanent magnet obtained by subjecting such an amorphous alloy material to a heat treatment at an appropriate temperature and recrystallizing the same to form a high coercive force permanent magnet powder having fine crystal grains, which is combined by molding and sintering. is there. The permanent magnet powder obtained by recrystallizing an amorphous alloy material has a distinctly smaller crystal grain size than a conventional powder obtained by pulverizing an ingot. Therefore, it is excellent in oxidation resistance, and is characterized in that it is easier to handle in pulverization and molding at the time of manufacturing a sintered magnet than in a conventional ingot. The present invention is a sintered permanent magnet made of a permanent magnet powder provided easily and under stable characteristics. Next, an embodiment will be described. Example 1 An amorphous manufacturing apparatus (a copper hollow cylinder having an outer diameter of 20 mm by a centrifugal quenching method) in which a sample having a composition of (Fe 0.60 Ni 0.25 B 0.15 ) 0.70 La 0.10 Pr 0.20 was replaced with an argon gas atmosphere.
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 500 ° C. for 20 hours in a magnetic field of 10 KOe. After the heat treatment, the magnetic value was measured at room temperature by a vibration type tachometer. The σ (emu / g) was 105, and I H C
(KOe) was 3. Example 2 A sample having a composition of (Co 0.55 Fe 0.15 Ni 0.15 Si 0.15 ) 0.65 Nd 0.10 Tb 0.25 was made into an amorphous powder in the same manner as in Example 1. This was sealed in a quartz tube together with argon as in Example 1, and heat-treated at 650 ° C. for 15 hours in a magnetic field of 10 KOe. This magnetic value is such that σ (emu / g) is 70, I H C
(KOe) was 8. Example 3 A sample having a composition of (Fe 0.81 Co 0.04 Ni 0.03 C 0.12 ) 0.80 Nd 0.10 Pr 0.10 was melted in an argon gas in an arc melting furnace, and was subjected to a centrifugal quenching method replaced by an argon gas atmosphere. And injected into the quality production apparatus to obtain an amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 50 ° C. for 1 hour to obtain a permanent magnet powder. The magnetic values, σ (emu / g) is 85, I H C (KOe) was 5.5. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 550 ° C. for 1 hour to produce a sintered magnet. was measured for its magnetic properties, Br (KG) is 5.8, b H c (kOe) is 5.0, (BH) max (MG
Oe) was 7.7. Example 4 A sample having a composition of (Fe 0.81 Co 0.04 Cr 0.03 B 0.10 Si 0.01 C 0.01 ) 0.80 Nd 0.18 Sm 0.02 was dissolved in an argon gas in an arc melting furnace, and the centrifugal quenching was replaced with an argon gas atmosphere. It was sprayed into an amorphous manufacturing apparatus by a method to obtain amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 50 ° C. for 1 hour to obtain a permanent magnet powder. The magnetic values, σ (emu / g) is 83, I H C (KOe) was 4.5. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 550 ° C. for 1 hour to produce a sintered magnet. was measured for its magnetic properties, Br (KG) is 5.5, b H c (kOe) is 5.0, (BH) max (MG
Oe) was 7.0. EXAMPLE 5 A sample having a composition of (Fe 0.60 Ni 0.25 B 0.15 ) 0.70 La 0.10 Pr 0.20 was melted in an argon gas in a high-frequency melting furnace, and was subjected to a centrifugal quenching method in which the atmosphere was replaced with an argon gas atmosphere. Injection into the apparatus yielded amorphous fine powder. This amorphous fine powder is sealed together with argon in a quartz tube,
Treated at 500 ° C. 20 hours in a magnetic field of 0 kOe, was measured and the magnetic value by vibration magnetometer at heat treatment after room temperature, σ (emu / g) is 105, I H C (KOe) was 3. Next, this powder was further pulverized by a vibration mill in norman hexane so as to have an average particle size of about 3 μm, and the powder was applied with a magnetic field of 15 KOe in a direction perpendicular to the compression direction to obtain 3 t / cm 3 Compression molding with pressure of 2
Sintering was performed at a temperature of 000 ° C., and a heat treatment was further performed at 400 ° C. for 1 hour to produce a sintered magnet. The magnetic properties were measured. The Br (KG) was 9.0 and the b H c (KOe) was 6.
0, (BH) max (MGOe) was 18. Example 6 A sample having a composition of (Co 0.55 Fe 0.15 Ni 0.15 Si 0.15 ) 0.65 Nd 0.10 Tb 0.25 was melted in an argon gas in a high-frequency melting furnace, and was subjected to a centrifugal quenching method in which the atmosphere was replaced with an argon gas atmosphere. And injected into the quality production apparatus to obtain an amorphous fine powder. This amorphous fine powder is sealed together with argon in a quartz tube,
Heat treatment in a magnetic field of 0 kOe 650 ° C. 15 hours, was measured the magnetic value by vibration magnetometer at heat treatment after room temperature, σ (emu / g) is 70, I H C (KOe) was 8. Next, this powder was further pulverized by a vibration mill in normanhexane so as to have an average particle diameter of about 3 μm. Compression molding with pressure of 2
Was sintered at a temperature of 000 ° C., to produce a sintered magnet heat treated for 1 hour at further 400 ° C., was measured for its magnetic properties, Br (KG) is 6.0, b H c (KOe) is 5.
0 and (BH) max (MGOe) were 8. The present invention provides a sintered body of a permanent magnet powder having a high coercive force. A sintered permanent magnet made of

フロントページの続き (56)参考文献 特開 平6−124823(JP,A) 特開 昭64−7502(JP,A) 特開 昭64−7501(JP,A) 特開 平2−71506(JP,A) 特開 昭56−116844(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/00 - 1/08 C22C 19/07 C22C 38/00Continuation of the front page (56) References JP-A-6-124823 (JP, A) JP-A-64-7502 (JP, A) JP-A-64-7501 (JP, A) JP-A-2-71506 (JP, A) , A) JP-A-56-116844 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01F 1/00-1/08 C22C 19/07 C22C 38/00

Claims (1)

(57)【特許請求の範囲】 1.遷移金属(T)、半金属元素(M)および希土類元
素(R)が下記組成式: T:Feに、Ni及びCrからなる群から選択された1
種以上の元素を組み合わせたもの、 M:B,Si及びCからなる群から選択された1種以上
の元素、 R:Nd及び/又はPrに、La,Sm及びTbからな
る群から選択された1種以上の元素より成り、且つ、 非晶質再結晶粒径の大きさの結晶粒を有する高保持力の
永久磁石粉末の焼結体より成ることを特徴とする焼結永
久磁石。 2.構成成分の半金属元素(M)がBであることを特徴
とする請求項1に記載の焼結永久磁石。 3.構成成分の希土類元素(R)がNd及び/又はPr
であることを特徴とする請求項1に記載の焼結永久磁
石。 4.構成成分の半金属元素(M)がBであり、構成成分
の希土類元素(R)がNd及び/又はPrであることを
特徴とする請求項1に記載の焼結永久磁石。
(57) [Claims] The transition metal (T), metalloid element (M) and rare earth element (R) have the following composition formula: T: 1 selected from the group consisting of Ni and Cr
M: one or more elements selected from the group consisting of B, Si and C; R: Nd and / or Pr; selected from the group consisting of La, Sm and Tb A sintered permanent magnet comprising a sintered body of a high coercive force permanent magnet powder comprising one or more elements and having crystal grains having a size of an amorphous recrystallized grain. 2. The sintered permanent magnet according to claim 1, wherein the semimetal element (M) as a constituent component is B. 3. The constituent rare earth element (R) is Nd and / or Pr
The sintered permanent magnet according to claim 1, wherein: 4. The sintered permanent magnet according to claim 1, wherein the semimetal element (M) of the constituent is B, and the rare earth element (R) of the constituent is Nd and / or Pr.
JP4290172A 1992-10-28 1992-10-28 Sintered permanent magnet Expired - Lifetime JP2753432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290172A JP2753432B2 (en) 1992-10-28 1992-10-28 Sintered permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290172A JP2753432B2 (en) 1992-10-28 1992-10-28 Sintered permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56026075A Division JPS57141901A (en) 1981-02-26 1981-02-26 Permanent magnet powder

Publications (2)

Publication Number Publication Date
JPH06124825A JPH06124825A (en) 1994-05-06
JP2753432B2 true JP2753432B2 (en) 1998-05-20

Family

ID=17752685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290172A Expired - Lifetime JP2753432B2 (en) 1992-10-28 1992-10-28 Sintered permanent magnet

Country Status (1)

Country Link
JP (1) JP2753432B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753431B2 (en) * 1992-10-28 1998-05-20 ゼネラル・モーターズ・コーポレーション Sintered permanent magnet
DE69814762T2 (en) 1997-08-22 2003-12-04 Alps Electric Co Ltd Hard magnetic alloy with supercooled melting region, sintered product thereof and applications
US6332933B1 (en) * 1997-10-22 2001-12-25 Santoku Corporation Iron-rare earth-boron-refractory metal magnetic nanocomposites
GB9805487D0 (en) * 1998-03-17 1998-05-13 Ici Plc Plastic material
AU5313899A (en) 1998-07-13 2000-02-01 Santoku America, Inc. High performance iron-rare earth-boron-refractory-cobalt nanocomposites
JP4868182B2 (en) * 2008-11-10 2012-02-01 信越化学工業株式会社 Sm-R-T-B (-M) sintered magnet
CN103475162B (en) * 2013-07-20 2016-05-25 南通飞来福磁铁有限公司 A kind of preparation method of the rare-earth permanent magnet for energy-saving electric machine
CN110853855B (en) * 2019-11-21 2021-08-27 厦门钨业股份有限公司 R-T-B series permanent magnetic material and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116844A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of amorphous magnetic material and rare earth element magnet
JP2727506B2 (en) * 1986-04-15 1998-03-11 ティーディーケイ株式会社 Permanent magnet and manufacturing method thereof
JP2625163B2 (en) * 1988-08-05 1997-07-02 ゼネラル・モーターズ・コーポレーション Manufacturing method of permanent magnet powder
JP2753431B2 (en) * 1992-10-28 1998-05-20 ゼネラル・モーターズ・コーポレーション Sintered permanent magnet

Also Published As

Publication number Publication date
JPH06124825A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JPH0128489B2 (en)
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2774372B2 (en) Permanent magnet powder
JP2753432B2 (en) Sintered permanent magnet
JP2753429B2 (en) Bonded magnet
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP4170468B2 (en) permanent magnet
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2753431B2 (en) Sintered permanent magnet
JP2753430B2 (en) Bonded magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP2818718B2 (en) Permanent magnet powder
JP3009405B2 (en) Permanent magnet material and manufacturing method thereof
JPH06124824A (en) Sintered permanent magnet
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH052735B2 (en)
JP2580067B2 (en) Manufacturing method of rare earth permanent magnet
JPH0521216A (en) Permanent magnet alloy and its production
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JPH0696925A (en) Bond magnet
JPS61143553A (en) Production of material for permanent magnet
JPH0521219A (en) Production of rare-earth permanent magnet