JP2753431B2 - Sintered permanent magnet - Google Patents

Sintered permanent magnet

Info

Publication number
JP2753431B2
JP2753431B2 JP4290169A JP29016992A JP2753431B2 JP 2753431 B2 JP2753431 B2 JP 2753431B2 JP 4290169 A JP4290169 A JP 4290169A JP 29016992 A JP29016992 A JP 29016992A JP 2753431 B2 JP2753431 B2 JP 2753431B2
Authority
JP
Japan
Prior art keywords
permanent magnet
sintered
powder
amorphous
koe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4290169A
Other languages
Japanese (ja)
Other versions
JPH06124823A (en
Inventor
公行 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JENERARU MOOTAASU CORP
Original Assignee
JENERARU MOOTAASU CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JENERARU MOOTAASU CORP filed Critical JENERARU MOOTAASU CORP
Priority to JP4290169A priority Critical patent/JP2753431B2/en
Publication of JPH06124823A publication Critical patent/JPH06124823A/en
Application granted granted Critical
Publication of JP2753431B2 publication Critical patent/JP2753431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/058Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、高保磁力を有する永久
磁石粉末を用いた硬質磁性材料、特に高保磁力永久磁石
粉末の焼結体から成る焼結永久磁石に関する。 【0002】 【従来の技術】従来、鉄族遷移金属と半金属元素よりな
る例えばFe8020に代表されるような組成の非晶質合
金は軟質磁性材料として公知である。又、鉄族遷移金属
とランタニド元素を基本組成とする結晶質合金は硬質磁
性材料としてよく知られているところである。 【0003】ところで、上記従来の硬質磁性材料はラン
タニド元素と鉄族遷移金属の組成が原子比で1:5から
2:17までの合金である。かかる合金をつくるには、
各元素を所定の配合組成としたのち、溶解法あるいは直
接還元法等により得ていたが、2:17系合金は組成が
複雑であり、直接還元法による製造は困難である。その
ため、現在では、各組成元素を高純度金属として用意
し、不活性ガス中の高周波炉で溶解して得る場合が多
い。しかし、この方法では溶解の途中での組成のずれが
しばしば問題となる。経験的に組成がずれ易い元素は配
合の段階でそのずれを補正すべく配慮しなければならな
い。 【0004】そして、溶解によって得られたインゴット
をもって永久磁石をつくるに当っては、焼結法による場
合には、粉砕−磁界中成形−焼結−時効という工程をと
る。 【0005】 【発明が解決しようとする課題】いずれにしても、従来
の焼結法の場合は、インゴットの粉砕および成形という
工程が必要となり、粉末の酸化の問題が生じる。さらに
焼結後室温まで急冷することが必要であり、試料が大型
の場合には均一急冷ということが問題となる。冷却速度
が不均一であれば結晶粒の大きさが不均一となり、すぐ
れた永久磁石特性が得られないのである。 【0006】本発明は、非晶質合金を出発材料として硬
質磁性材料を得るもので、上記製造上の問題を解決し、
高保磁力を有する安定した永久磁石粉末を用いた焼結磁
石である。 【0007】 【課題を解決するための手段】すなわち、本発明は、遷
移金属(T)、半金属元素(M)および希土類元素(R)が下
記組成式: T:Fe及びCo M:B,Si及びCからなる群から選択された1種以上
の元素、 R:Nd及び/又はPrに、La,Sm及びTbからな
る群から選択された1種以上の元素より成り、且つ、 非晶質再結晶粒径の大きさの結晶粒を有する高保磁力の
永久磁石粉末の焼結体より成ることを特徴とする焼結永
久磁石である。 【0008】上記において、半金属元素(M)は、非晶
質合金を得るのに有効な元素である。しかし、この半金
属元素(M)は磁気特性の上からは合金の飽和磁束密度
(自発磁化σも同様)を低下させる傾向があるので総量
を25%以下に抑える事が望まれ、その範囲で、上記の
ようにxおよびzの数値を決定する。 【0009】すなわち、後述の実施例、比較例を含む多
くの実験の結果、希土類元素(R)の含有量を規定する
係数1−zとしては、自発磁化σが高く、かつ、高い保
磁力iHcを有する永久磁石材料を得るためには、0.
65≧1−z≧0.11の範囲が望ましい。すなわち、
還移金属(T)+半金属元素(M)の含有量を規定する
係数zは、0.35≦z≦0.89の範囲が望ましいこ
とがわかった。 【0010】そして、半金属元素(M)の総量は、本発
明の組成式においては、(x)×(z)であるから、こ
の値が0.25以下になるように(M)の係数xの上限
を規定した。すなわち、xの上限は0.25÷0.89
=0.28の式から得られる0.28とした。又、xの
下限の0.01はその有効性の限界を示すものである。 【0011】本発明の永久磁石をつくるには、非晶質合
金材料が用いられる。合金を非晶質化するには、目的と
する組成の合金を溶融状態から高速急冷もしくはスパッ
タ法により、イオンを基板上に到達せしめて急冷する。
こうして得た非晶質合金は、良く溶体化処理されたイン
ゴットと殆ど類似の状態にあり、非常に均一な状態であ
る。 【0012】本発明は、かかる非晶質合金材料を適当な
温度で熱処理し、再結晶化して得られる微細な結晶粒を
有する高保磁力永久磁石粉末を、成形焼結によって結合
した永久磁石である。 【0013】非晶質合金材料を再結晶化して得た永久磁
石粉末は従来のようにインゴットを粉砕して得た粉末に
比べて、結晶粒の大きさが格段に小さく判然としてい
る。そのため、耐酸化性にすぐれており、焼結磁石製造
時の粉砕や成形における取扱いが、従来のインゴットを
用いるものに比べてやり易いという特徴がある。 【0014】本発明は、容易に、しかも安定した特性の
下で提供される永久磁石粉末よりなる焼結永久磁石であ
る。 【0015】 【実施例】つぎに実施例について説明する。 【0016】参考例1 (Fe0.60Ni0.250.150.70La0.10Pr0.20 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、10KOeの磁界中で500℃で20時間熱
処理した。熱処理後室温で振動型時速計により、その磁
性値を測定したところσ(emu/g)は105、IC
(KOe)は3であった。 【0017】参考例2 (Co0.55Fe0.15Ni0.15Si0.150.65Nd0.10Tb0.25 なる組成の試料を実施例1と同様にして非晶質の粉末と
した。これを実施例1と同じく石英管にアルゴンと共に
封入し、10KOeの磁界中で650℃で15時間熱処
理した。この磁性値は、σ(emu/g)は70、IC
(KOe)は8であった。 【0018】実施例1 (Fe0.81Co0.090.100.88Nd0.12 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、600℃で1時間熱処理した。熱処理後室温
で振動型時速計により、その磁性値を測定したところσ
(emu/g)は143、IC(KOe)は8.9であ
った。 【0019】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に600℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
9.4、bc(KOe)は7.1、(BH)max(MG
Oe)は18.8であった。 【0020】実施例2 (Fe0.70Co0.180.120.85Pr0.15 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、600℃で1時間熱処理した。熱処理後室温
で振動型時速計により、その磁性値を測定したところσ
(emu/g)は135、IC(KOe)は13.5で
あった。 【0021】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に600℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
8.9、bc(KOe)は7.0、(BH)max(MG
Oe)は16.8であった。 【0022】実施例3 (Fe0.60Co0.250.150.80Nd0.16Pr0.04 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、600℃で1時間熱処理した。熱処理後室温
で振動型時速計により、その磁性値を測定したところσ
(emu/g)は130、IC(KOe)は12.2で
あった。 【0023】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に600℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
8.6、bc(KOe)は6.9、(BH)max(MG
Oe)は15.7であった。 【0024】実施例4 (Fe0.80Co0.10Si0.050.050.80Nd0.10Pr0.10 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、650℃で1時間熱処理した。熱処理後室温
で振動型時速計により、その磁性値を測定したところσ
(emu/g)は92、IC(KOe)は5.7であっ
た。 【0025】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に650℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
6.0、bc(KOe)は5.1、(BH)max(MG
Oe)は7.7であった。 【0026】実施例5 (Fe0.70Co0.10Si0.100.100.80Nd0.10Pr0.10 なる組成の試料をアルゴンガス雰囲気に置換された遠心
急冷法による非晶質製造装置(銅製中空円筒で外径20
0mm、内径180mm、長さ600mm、回転速度2
500〜4000rpm)中に噴射し、非晶質の微粉末
を得た。この非晶質微粉末を石英管中にアルゴンととも
に封入し、650℃で1時間熱処理した。熱処理後室温
で振動型時速計により、その磁性値を測定したところσ
(emu/g)は72、IC(KOe)は4.5であっ
た。 【0027】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に650℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
5.0、bc(KOe)は4.3、(BH)max(MG
Oe)は5.5であった。 【0028】実施例6 (Fe0.70Co0.200.100.60Pr0.40 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
00℃で12時間熱処理し、永久磁石粉末を得た。この
磁性値は、σ(emu/g)は68、IC(KOe)は
5.1であった。 【0029】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に650℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
5.0、bc(KOe)は4.2、(BH)max(MG
Oe)は5.5であった。 【0030】実施例7 (Fe0.70Co0.20Si0.100.60Pr0.40 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
00℃で12時間熱処理し、永久磁石粉末を得た。この
磁性値は、σ(emu/g)は65、IC(KOe)は
5.1であった。 【0031】次に、この粉末を3t/cm2の圧力で圧
縮成形を行い、1000〜1100℃の温度で焼結を行
い、更に650℃で1時間熱処理して焼結磁石を作製
し、その磁気特性を測定したところ、Br(KG)は
4.9、bc(KOe)は4.0、(BH)max(MG
Oe)は5.2であった。 【0032】実施例8 (Fe0.70Co0.100.100.100.60Pr0.40 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
00℃で12時間熱処理し、永久磁石粉末を得た。この
磁性値は、σ(emu/g)は59、IC(KOe)は
4.1であった。次に、この粉末を3t/cm2の圧力
で圧縮成形を行い、1000〜1100℃の温度で焼結
を行い、更に650℃で1時間熱処理して焼結磁石を作
製し、その磁気特性を測定したところ、Br(KG)は
4.3、bc(KOe)は3.7、(BH)max(MG
Oe)は4.0であった。 【0033】実施例9 (Fe0.80Co0.100.100.85Nd0.12La0.03 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
00℃で12時間熱処理し、永久磁石粉末を得た。この
磁性値は、σ(emu/g)は120、IC(KOe)
は8.8であった。次に、この粉末を3t/cm2の圧
力で圧縮成形を行い、1000〜1100℃の温度で焼
結を行い、更に、650℃で1時間熱処理して焼結磁石
を作製し、その磁気特性を測定したところ、Br(K
G)は7.7、bc(KOe)は6.5、(BH)max
(MGOe)は12.7であった。 【0034】実施例10 (Fe0.85Co0.050.100.85Nd0.12Tb0.03 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
00℃で12時間熱処理し、永久磁石粉末を得た。この
磁性値は、σ(emu/g)は101、IC(KOe)
は16.0であった。次に、この粉末を3t/cm2
圧力で圧縮成形を行い、1000〜1100℃の温度で
焼結を行い、更に、650℃で1時間熱処理して焼結磁
石を作製し、その磁気特性を測定したところ、Br(K
G)は7.4、bc(KOe)は6.1、(BH)max
(MGOe)は11.7であった。 【0035】実施例11 (Fe0.70Co0.12Si0.180.70Nd0.25Sm0.05 なる組成の試料をアーク溶解炉でアルゴンガス中で溶解
し、アルゴンガス雰囲気に置換された遠心急冷法による
非晶質製造装置中に噴射し、非晶質の微粉末を得た。こ
の非晶質微粉末を石英管中にアルゴンと共に封入し、6
00℃で12時間熱処理し、永久磁石粉末を得た。この
磁性値は、σ(emu/g)は89、IC(KOe)は
5.9であった。次に、この粉末を3t/cm2の圧力
で圧縮成形を行い、1000〜1100℃の温度で焼結
を行い、更に、650℃で1時間熱処理して焼結磁石を
作製し、その磁気特性を測定したところ、Br(KG)
は6.3、bc(KOe)は5.4、(BH)max(M
GOe)は8.6であった。 【0036】実施例12 (Fe0.85Co0.090.060.85Nd0.15 なる組成の試料を、高周波溶解炉でアルゴンガス中で溶
解し、実施例1と同様の方法で非晶質のリボンを得た。
このリボンを切断し、アルゴンガス中で650℃で1時
間熱処理し、永久磁石粉末を得た。この磁性値は、σ
(emu/g)は140、IC(KOe)は9.5であ
った。次に、このリボンをノルマルヘキサン中で振動ミ
ルにより、平均粒径が約3μmになるように粉砕し、こ
の粉末を15kOeの磁界を圧縮方向と直角方向に印加
し、3t/cm2の圧力で圧縮成形を行い、1100℃
の温度で焼結を行い、更に650℃で1時間熱処理して
焼結磁石を作製し、その磁気特性を測定したところ、B
r(KG)は11.8、bc(KOe)は7.8、(B
H)max(MGOe)は31であった。 【0037】 【発明の効果】本発明は、高保磁力を有する永久磁石粉
末の焼結体から成る焼結永久磁石である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard magnetic material using a permanent magnet powder having a high coercive force, and more particularly to a sintered permanent magnet made of a sintered body of a high coercive force permanent magnet powder. About magnets. 2. Description of the Related Art Conventionally, an amorphous alloy composed of an iron group transition metal and a metalloid element and having a composition represented by Fe 80 B 20 has been known as a soft magnetic material. Further, crystalline alloys having a basic composition of an iron group transition metal and a lanthanide element are well known as hard magnetic materials. The above conventional hard magnetic material is an alloy having a composition of a lanthanide element and an iron group transition metal in an atomic ratio of 1: 5 to 2:17. To make such an alloy,
After each element has a predetermined composition, it has been obtained by a melting method or a direct reduction method. However, the composition of a 2:17 series alloy is complicated, and it is difficult to produce by the direct reduction method. Therefore, at present, it is often the case that each composition element is prepared as a high-purity metal and is melted in a high-frequency furnace in an inert gas. However, in this method, a compositional deviation during the dissolution often poses a problem. It is empirical that elements that tend to shift in composition must be considered in order to correct the shift at the stage of compounding. [0004] When a permanent magnet is produced from an ingot obtained by melting, a sintering method involves the steps of pulverization, molding in a magnetic field, sintering and aging. [0005] In any case, in the case of the conventional sintering method, the steps of pulverizing and molding the ingot are required, and the problem of powder oxidation occurs. Furthermore, it is necessary to rapidly cool to room temperature after sintering. If the sample is large, uniform rapid cooling becomes a problem. If the cooling rate is not uniform, the size of the crystal grains will be uneven, and excellent permanent magnet characteristics cannot be obtained. The present invention is to obtain a hard magnetic material by using an amorphous alloy as a starting material.
This is a sintered magnet using a stable permanent magnet powder having a high coercive force. That is, according to the present invention, a transition metal (T), a metalloid element (M) and a rare earth element (R) are represented by the following composition formula: T: Fe and Co M: one or more elements selected from the group consisting of B, Si and C, R: Nd and / or Pr, one or more elements selected from the group consisting of La, Sm and Tb A sintered permanent magnet comprising a sintered body of a high coercive force permanent magnet powder having a crystal grain having a size of an amorphous recrystallized grain and made of an element. In the above, the metalloid element (M) is an effective element for obtaining an amorphous alloy. However, this metalloid element (M) tends to lower the saturation magnetic flux density (similarly to the spontaneous magnetization σ) of the alloy from the viewpoint of magnetic properties. Therefore, it is desired to suppress the total amount to 25% or less. , X and z are determined as described above. That is, as a result of many experiments including Examples and Comparative Examples to be described later, the coefficient 1-z defining the content of the rare earth element (R) has a high spontaneous magnetization σ and a high coercive force iHc In order to obtain a permanent magnet material having
The range of 65 ≧ 1−z ≧ 0.11 is desirable. That is,
It has been found that the coefficient z defining the content of the transition metal (T) + the metalloid element (M) is preferably in the range of 0.35 ≦ z ≦ 0.89. Since the total amount of the metalloid element (M) is (x) × (z) in the composition formula of the present invention, the coefficient of (M) is set so that this value becomes 0.25 or less. The upper limit of x was specified. That is, the upper limit of x is 0.25 ÷ 0.89
= 0.28 obtained from the equation of = 0.28. Further, the lower limit of x of 0.01 indicates the limit of its effectiveness. In order to produce the permanent magnet of the present invention, an amorphous alloy material is used. In order to make the alloy amorphous, ions are allowed to reach the substrate by rapid quenching or sputtering from a molten state and rapidly cooled.
The amorphous alloy thus obtained is in a state almost similar to the well-solution-treated ingot, and is in a very uniform state. The present invention is a permanent magnet obtained by subjecting such an amorphous alloy material to a heat treatment at an appropriate temperature and recrystallizing the amorphous alloy material to form a high coercive force permanent magnet powder having fine crystal grains, which is combined by molding and sintering. . The permanent magnet powder obtained by recrystallizing an amorphous alloy material has a distinctly smaller crystal grain size than a conventional powder obtained by pulverizing an ingot. Therefore, it is excellent in oxidation resistance, and is characterized in that it is easier to handle in pulverization and molding at the time of manufacturing a sintered magnet than in a conventional ingot. The present invention is a sintered permanent magnet made of a permanent magnet powder provided easily and under stable characteristics. Next, an embodiment will be described. REFERENCE EXAMPLE 1 Amorphous manufacturing apparatus (centrifugal quenching with a copper hollow cylinder having an outer diameter of 20 mm) by a centrifugal quenching method in which a sample having a composition of (Fe 0.60 Ni 0.25 B 0.15 ) 0.70 La 0.10 Pr 0.20 was replaced with an argon gas atmosphere.
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 500 ° C. for 20 hours in a magnetic field of 10 KOe. After the heat treatment, the magnetic value was measured at room temperature by a vibration type tachometer. The σ (emu / g) was 105, and I H C
(KOe) was 3. Reference Example 2 A sample having a composition of (Co 0.55 Fe 0.15 Ni 0.15 Si 0.15 ) 0.65 Nd 0.10 Tb 0.25 was made into an amorphous powder in the same manner as in Example 1. This was sealed in a quartz tube together with argon as in Example 1, and heat-treated at 650 ° C. for 15 hours in a magnetic field of 10 KOe. This magnetic value is such that σ (emu / g) is 70, I H C
(KOe) was 8. Example 1 An amorphous production apparatus (a copper hollow cylinder having an outer diameter of 20 mm by a centrifugal quenching method) in which a sample having a composition of (Fe 0.81 Co 0.09 B 0.10 ) 0.88 Nd 0.12 was replaced with an argon gas atmosphere.
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 600 ° C. for 1 hour. After the heat treatment, the magnetic value was measured at room temperature with a vibration-type hour speed meter.
(Emu / g) is 143, I H C (KOe) was 8.9. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 600 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 9.4, b H c (kOe) is 7.1, (BH) max (MG
Oe) was 18.8. [0020] Example 2 (Fe 0.70 Co 0.18 B 0.12 ) 0.85 amorphous maker according centrifugal quenching method in which the sample was substituted in an argon gas atmosphere Pr 0.15 a composition (outer diameter 20 made of copper hollow cylinder
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 600 ° C. for 1 hour. After the heat treatment, the magnetic value was measured at room temperature with a vibration-type hour speed meter.
(Emu / g) is 135, I H C (KOe) was 13.5. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 600 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 8.9, b H c (kOe) is 7.0, (BH) max (MG
Oe) was 16.8. Example 3 An amorphous manufacturing apparatus (a copper hollow cylinder having an outer diameter of 20 mm) by a centrifugal quenching method in which a sample having a composition of (Fe 0.60 Co 0.25 B 0.15 ) 0.80 Nd 0.16 Pr 0.04 was replaced with an argon gas atmosphere.
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 600 ° C. for 1 hour. After the heat treatment, the magnetic value was measured at room temperature with a vibration-type hour speed meter.
(Emu / g) is 130, I H C (KOe) was 12.2. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 600 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 8.6, b H c (kOe) is 6.9, (BH) max (MG
Oe) was 15.7. Example 4 An amorphous manufacturing apparatus (a copper hollow cylinder having an outer diameter of 20 mm) by a centrifugal quenching method in which a sample having a composition of (Fe 0.80 Co 0.10 Si 0.05 B 0.05 ) 0.80 Nd 0.10 Pr 0.10 was replaced with an argon gas atmosphere.
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 650 ° C. for 1 hour. After the heat treatment, the magnetic value was measured at room temperature with a vibration-type hour speed meter.
(Emu / g) is 92, I H C (KOe) was 5.7. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 6.0, b H c (kOe) is 5.1, (BH) max (MG
Oe) was 7.7. Example 5 An amorphous manufacturing apparatus (a copper hollow cylinder having an outer diameter of 20 mm) was manufactured by a centrifugal quenching method in which a sample having a composition of (Fe 0.70 Co 0.10 Si 0.10 B 0.10 ) 0.80 Nd 0.10 Pr 0.10 was replaced with an argon gas atmosphere.
0mm, inner diameter 180mm, length 600mm, rotation speed 2
(500-4000 rpm) to obtain amorphous fine powder. This amorphous fine powder was sealed together with argon in a quartz tube and heat-treated at 650 ° C. for 1 hour. After the heat treatment, the magnetic value was measured at room temperature with a vibration-type hour speed meter.
(Emu / g) is 72, I H C (KOe) was 4.5. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 5.0, b H c (kOe) is 4.3, (BH) max (MG
Oe) was 5.5. Example 6 A sample having a composition of (Fe 0.70 Co 0.20 B 0.10 ) 0.60 Pr 0.40 was melted in an argon gas in an arc melting furnace, and was replaced with an argon gas atmosphere in an amorphous manufacturing apparatus by a centrifugal quenching method. To obtain an amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 00 ° C. for 12 hours to obtain a permanent magnet powder. The magnetic values, σ (emu / g) is 68, I H C (KOe) was 5.1. Next, this powder was subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 5.0, b H c (kOe) is 4.2, (BH) max (MG
Oe) was 5.5. Example 7 A sample having a composition of (Fe 0.70 Co 0.20 Si 0.10 ) 0.60 Pr 0.40 was melted in an argon gas in an arc melting furnace, and was replaced with an argon gas atmosphere. To obtain an amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 00 ° C. for 12 hours to obtain a permanent magnet powder. The magnetic values, σ (emu / g) is 65, I H C (KOe) was 5.1. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. As a result of measurement of magnetic properties, Br (KG) is 4.9, b H c (kOe) is 4.0, (BH) max (MG
Oe) was 5.2. Example 8 A sample having a composition of (Fe 0.70 Co 0.10 C 0.10 B 0.10 ) 0.60 Pr 0.40 was melted in an argon gas in an arc melting furnace, and the amorphous material was manufactured by a centrifugal quenching method in which the atmosphere was replaced with an argon gas atmosphere. Injection into the apparatus yielded amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 00 ° C. for 12 hours to obtain a permanent magnet powder. The magnetic values, σ (emu / g) is 59, I H C (KOe) was 4.1. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. was measured, Br (KG) is 4.3, b H c (KOe) is 3.7, (BH) max (MG
Oe) was 4.0. Example 9 A sample having a composition of (Fe 0.80 Co 0.10 B 0.10 ) 0.85 Nd 0.12 La 0.03 was melted in an argon gas in an arc melting furnace, and was subjected to a centrifugal quenching method in which the atmosphere was replaced with an argon gas atmosphere. Injection into the apparatus yielded amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 00 ° C. for 12 hours to obtain a permanent magnet powder. This magnetic value is such that σ (emu / g) is 120 and I H C (KOe)
Was 8.8. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. Was measured, Br (K
G) is 7.7, b H c (KOe) is 6.5, (BH) max
(MGOe) was 12.7. EXAMPLE 10 A sample having a composition of (Fe 0.85 Co 0.05 B 0.10 ) 0.85 Nd 0.12 Tb 0.03 was melted in an argon gas in an arc melting furnace, and was manufactured by a centrifugal quenching method in which the atmosphere was replaced with an argon gas atmosphere. Injection into the apparatus yielded amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 00 ° C. for 12 hours to obtain a permanent magnet powder. This magnetic value is such that σ (emu / g) is 101 and I H C (KOe)
Was 16.0. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. Was measured, Br (K
G) is 7.4, b H c (KOe) is 6.1, (BH) max
(MGOe) was 11.7. EXAMPLE 11 A sample having a composition of (Fe 0.70 Co 0.12 Si 0.18 ) 0.70 Nd 0.25 Sm 0.05 was melted in an argon gas in an arc melting furnace, and was manufactured by a centrifugal quenching method in which the atmosphere was replaced with an argon gas atmosphere. Injection into the apparatus yielded amorphous fine powder. This amorphous fine powder was sealed in a quartz tube together with argon,
Heat treatment was performed at 00 ° C. for 12 hours to obtain a permanent magnet powder. The magnetic values, σ (emu / g) is 89, I H C (KOe) was 5.9. Next, this powder is subjected to compression molding at a pressure of 3 t / cm 2 , sintered at a temperature of 1000 to 1100 ° C., and further heat-treated at 650 ° C. for 1 hour to produce a sintered magnet. Is measured, Br (KG)
Is 6.3, b H c (KOe) is 5.4, (BH) max (M
GOe) was 8.6. Example 12 A sample having a composition of (Fe 0.85 Co 0.09 B 0.06 ) 0.85 Nd 0.15 was melted in an argon gas in a high-frequency melting furnace, and an amorphous ribbon was produced in the same manner as in Example 1. Obtained.
This ribbon was cut and heat-treated at 650 ° C. for 1 hour in argon gas to obtain a permanent magnet powder. This magnetic value is σ
(Emu / g) is 140, I H C (KOe) was 9.5. Next, the vibration mill the ribbon in normal hexane, ground to an average particle size of about 3 [mu] m, the powder applying a magnetic field of 15kOe in the compression direction perpendicular to the direction, at a pressure of 3t / cm 2 Perform compression molding, 1100 ° C
Sintering was performed at 650 ° C. for 1 hour to produce a sintered magnet, and its magnetic properties were measured.
r (KG) is 11.8, b H c (KOe) is 7.8, (B
H) max (MGOe) was 31. According to the present invention, there is provided a sintered permanent magnet comprising a sintered body of permanent magnet powder having a high coercive force.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−124825(JP,A) 特開 昭56−116844(JP,A) 特開 昭60−194502(JP,A) 特開 平2−71506(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01F 1/00 - 1/08 C22C 19/07 C22C 38/00──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-6-124825 (JP, A) JP-A-56-116844 (JP, A) JP-A-60-194502 (JP, A) JP-A-2- 71506 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01F 1/00-1/08 C22C 19/07 C22C 38/00

Claims (1)

(57)【特許請求の範囲】 1.遷移金属(T)、半金属元素(M)および希土類元素
(R)が下記組成式: T:Fe及びCo M:B,Si及びCからなる群から選択された1種以上
の元素、 R:Nd及び/又はPrに、La,Sm及びTbからな
る群から選択された1種以上の元素より成り、且つ、 非晶質再結晶粒径の大きさの結晶粒を有する高保磁力の
永久磁石粉末の焼結体より成ることを特徴とする焼結永
久磁石。 2.構成成分の半金属元素(M)が、Bであることを特
徴とする請求項1に記載の焼結永久磁石。 3.構成成分の希土類元素(R)が、Ndおよび/また
はPrであることを特徴とする、請求項1に記載の焼結
永久磁石。 4.構成成分の半金属元素(M)が、Bであり、かつ、
構成成分の希土類元素(R)が、Ndおよび/またはP
rであることを特徴とする、請求項1に記載の焼結永久
磁石。
(57) [Claims] Transition metal (T), metalloid element (M) and rare earth element
(R) has the following composition formula: T: Fe and Co M: one or more elements selected from the group consisting of B, Si and C, R: Nd and / or Pr, one or more elements selected from the group consisting of La, Sm and Tb A sintered permanent magnet, comprising: a sintered body of a high coercive force permanent magnet powder having a crystal grain having a size of an amorphous recrystallized grain and made of an element. 2. 2. The sintered permanent magnet according to claim 1, wherein the constituent metalloid element (M) is B. 3. 3. The sintered permanent magnet according to claim 1, wherein the rare earth element (R) as a constituent component is Nd and / or Pr. 4. The metalloid element (M) of the constituent is B, and
When the constituent rare earth element (R) is Nd and / or P
The sintered permanent magnet according to claim 1, wherein r is r.
JP4290169A 1992-10-28 1992-10-28 Sintered permanent magnet Expired - Lifetime JP2753431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4290169A JP2753431B2 (en) 1992-10-28 1992-10-28 Sintered permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4290169A JP2753431B2 (en) 1992-10-28 1992-10-28 Sintered permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP56026075A Division JPS57141901A (en) 1981-02-26 1981-02-26 Permanent magnet powder

Publications (2)

Publication Number Publication Date
JPH06124823A JPH06124823A (en) 1994-05-06
JP2753431B2 true JP2753431B2 (en) 1998-05-20

Family

ID=17752646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4290169A Expired - Lifetime JP2753431B2 (en) 1992-10-28 1992-10-28 Sintered permanent magnet

Country Status (1)

Country Link
JP (1) JP2753431B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2753432B2 (en) * 1992-10-28 1998-05-20 ゼネラル・モーターズ・コーポレーション Sintered permanent magnet
JP2011214148A (en) * 2010-03-17 2011-10-27 Daihatsu Motor Co Ltd Amorphous metal and magnetic material
CN104851542B (en) * 2015-05-21 2017-01-18 杨仲辉 Method for preparing Ce-doped permanent magnetic material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116844A (en) * 1980-02-15 1981-09-12 Seiko Instr & Electronics Ltd Manufacture of amorphous magnetic material and rare earth element magnet
JPS60194502A (en) * 1984-03-16 1985-10-03 Seiko Epson Corp Preparation of permanent magnet blank
JP2625163B2 (en) * 1988-08-05 1997-07-02 ゼネラル・モーターズ・コーポレーション Manufacturing method of permanent magnet powder
JP2753432B2 (en) * 1992-10-28 1998-05-20 ゼネラル・モーターズ・コーポレーション Sintered permanent magnet

Also Published As

Publication number Publication date
JPH06124823A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
JPH0128489B2 (en)
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2774372B2 (en) Permanent magnet powder
JP2753432B2 (en) Sintered permanent magnet
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2753429B2 (en) Bonded magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JP4170468B2 (en) permanent magnet
JP2625163B2 (en) Manufacturing method of permanent magnet powder
JP2794496B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JP2753431B2 (en) Sintered permanent magnet
JP2739525B2 (en) R-Fe-BC permanent magnet alloy with low irreversible demagnetization and excellent thermal stability
JP2753430B2 (en) Bonded magnet
JP3151265B2 (en) Manufacturing method of rare earth permanent magnet
JP2818718B2 (en) Permanent magnet powder
JP3126199B2 (en) Manufacturing method of rare earth permanent magnet
JP2003213384A (en) Permanent magnet alloy and bond magnet
JPH06124824A (en) Sintered permanent magnet
JP3092673B2 (en) Rare earth-Fe-B based anisotropic magnet
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JPH0696925A (en) Bond magnet
JP2794494B2 (en) R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability
JPH0521216A (en) Permanent magnet alloy and its production
JPS61143553A (en) Production of material for permanent magnet