JPS60194502A - Preparation of permanent magnet blank - Google Patents

Preparation of permanent magnet blank

Info

Publication number
JPS60194502A
JPS60194502A JP59050739A JP5073984A JPS60194502A JP S60194502 A JPS60194502 A JP S60194502A JP 59050739 A JP59050739 A JP 59050739A JP 5073984 A JP5073984 A JP 5073984A JP S60194502 A JPS60194502 A JP S60194502A
Authority
JP
Japan
Prior art keywords
alloy
permanent magnet
magnetic field
blank
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59050739A
Other languages
Japanese (ja)
Inventor
Tatsuya Shimoda
達也 下田
Itaru Okonogi
格 小此木
Ryuichi Ozaki
隆一 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP59050739A priority Critical patent/JPS60194502A/en
Publication of JPS60194502A publication Critical patent/JPS60194502A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve characteristics peculiar to a permanent magnet by bringing a rare earth metal R, a transition metal T and a R-T-S alloy as a submetal or a semiconductor S to an amorphous state and thermally treating them in a magnetic field. CONSTITUTION:An alloy having a composition such as one represented by Table I is melted by using an induction furnace and an ingot is obtained and employed as a hardener, and a permanent magnet blank is prepared through an ultra-quenching method by one-sided roll in an Ar gas atmosphere at fixed gas pressure by using an amorphous thin-band forming device. The blank is thermally treated in argon gas for 0.5-3hr at an optimum temperature between 500- 900 deg.C as it is left as it is prepared through the quenching method. Accordingly, a magnet having high performance is acquired by a blank, cost thereof is low.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は希土類系永久磁石の製造方法に関する〔従来技
術〕 従来希土類磁石合金は通常のるつぼによる溶解とその後
、鋳型に鋳造するという一般的な方法で作製されていた
。この方法で作製された合金は規則的な結晶構造を有す
る。一方最近になって溶融金属を超急冷することによっ
て得られる結晶構造を有しないアモルファス合金が高保
磁力を有することが発見された。これらの合金系には、
Na−Fe 、 Pr−Fe 、 Tb−Fe 、 F
e−B−La−4bなどの合金が報告されている(例え
ば、J、J 、Croat:、T、Appl、Phys
、Vol、53゜(1981)、5161)。このアモ
ルファス永久磁石は、平衡相でない準安定相を利用でき
るために、過去にはないようなすぐれた特性が数多く見
出されている。また、熱処理を促すことにより、準安定
相の状態を容易にコントロールできこれによっても特性
を改善することができる。しかし、これらの合金よりな
る永久磁石は等方性磁石でそのエネルギー積は高々6〜
8MGOe程度と現在の希土類コバルト磁石に比べてか
なり低い値を有しているという問題点があった。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for producing rare earth permanent magnets [Prior Art] Conventionally, rare earth magnet alloys have been produced by a general method of melting in a normal crucible and then casting into a mold. It had been. Alloys made with this method have a regular crystal structure. On the other hand, it has recently been discovered that an amorphous alloy, which does not have a crystalline structure and is obtained by ultra-quenching molten metal, has a high coercive force. These alloy systems include
Na-Fe, Pr-Fe, Tb-Fe, F
Alloys such as e-B-La-4b have been reported (e.g. J, J, Croat:, T, Appl, Phys
, Vol. 53° (1981), 5161). Because this amorphous permanent magnet can utilize a metastable phase that is not an equilibrium phase, many excellent properties have been discovered that were not found in the past. In addition, by promoting heat treatment, the state of the metastable phase can be easily controlled and the properties can also be improved. However, permanent magnets made of these alloys are isotropic magnets, and their energy product is at most 6~
There was a problem in that it had a value of about 8MGOe, which was considerably lower than current rare earth cobalt magnets.

〔目的〕〔the purpose〕

本発明はこのような問題点を解決するもので、その目的
とするところは、前述したような希土類アモルファス永
久磁石の飽和磁化と保磁力を高め、さらにヒステリシス
曲線の角形性を向上させ)結果として最大エネルギー積
を向上させることGこある。
The present invention is intended to solve these problems, and its purpose is to increase the saturation magnetization and coercive force of the rare earth amorphous permanent magnet as described above, and further improve the squareness of the hysteresis curve. It is possible to improve the maximum energy product.

〔概要つ 本発明は、希土類金属R9遷移金属Tそして半金属ある
いは半導体SのR−T −S合金のアモルファス状態を
何らかの方法で実現きせて、それを磁場中で熱処理する
ことにより、原子の配タロを従来しこない並び方にする
ことにより、永久磁石をこ特有の特性の向上を計ったこ
とを特徴とする。
[Summary] The present invention achieves an amorphous state of an RT-S alloy of rare earth metals, R, transition metals, and semimetals or semiconductors by some method, and heat-treats it in a magnetic field to change the arrangement of atoms. It is characterized by improving the unique characteristics of permanent magnets by arranging taro in an unconventional way.

〔実施例〕〔Example〕

以下、本発明について実施例に基づき詳鯛B&こ説明す
る。
Hereinafter, the present invention will be explained in detail based on examples.

実施例1 第1表に示す組成の合金を誘導炉を用し1て溶解してイ
ンゴットを得た。これらを母合金とした。
Example 1 An alloy having the composition shown in Table 1 was melted in an induction furnace to obtain an ingot. These were used as the mother alloy.

第 1 表 本合金は希土類が含有されてし)るので酸イヒされやす
い。従ってガス雰囲気制御力;できるアモルファス薄帯
作成装置を用l/1て、一定ガス圧のArガス雰囲気中
で片ロール法による超急冷法で作成した。ロールは銅製
(直径240 mm )で回転数3600〜480.0
1e、p、mであった。作成した試料は幅1〜2 ta
 %厚さ20〜30μ情程度である。
Table 1 This alloy contains rare earth elements and is therefore susceptible to acid oxidation. Therefore, using an amorphous ribbon producing apparatus capable of controlling the gas atmosphere at 1/1, it was produced by an ultra-quenching method using a single roll method in an Ar gas atmosphere at a constant gas pressure. The roll is made of copper (diameter 240 mm) and has a rotation speed of 3600 to 480.0.
They were 1e, p, and m. The prepared sample has a width of 1 to 2 ta
% thickness is about 20 to 30 μm.

得られた試料は■急冷法で作製されたまま0500〜9
00℃の間の最適な温度で0.5〜5時間アルゴンガス
中で熱処理した後、あるいはまた■15000e の磁
場中で■で得られた最適熱処理条件を用いて磁場中熱処
理を行った後の3条件を振動試料型磁気測定機(VSM
)を用いて磁気性能を調べた。得た結果を第1図に示す
。保磁力iHIが熱処理によりまたさらに磁場中熱処理
により大幅に改善されていることが分る。
The obtained sample was prepared by the rapid cooling method and the temperature was 0500-9.
After heat treatment in argon gas for 0.5 to 5 hours at an optimal temperature between 00℃ or alternatively after heat treatment in a magnetic field using the optimal heat treatment conditions obtained in step 1 in a magnetic field of 15000e. 3 conditions using a vibrating sample magnetic measuring machine (VSM)
) was used to investigate magnetic performance. The results obtained are shown in Figure 1. It can be seen that the coercive force iHI is significantly improved by heat treatment and further by heat treatment in a magnetic field.

実施例2 合金組成が、OeQ、6NdO,2PrO,2(?eG
、94130,06ン6.0 の母合金を誘導炉を用い
て溶解し、この母合金から実施例1と同様な方法で急冷
薄帯を作製し、この薄体の長手方向と並行な0〜3KO
eの磁場を印加しながら800℃で3時間熱処理した。
Example 2 The alloy composition is OeQ, 6NdO, 2PrO, 2(?eG
, 94130,06n6.0 was melted using an induction furnace, and a quenched ribbon was produced from this master alloy in the same manner as in Example 1. 3KO
Heat treatment was performed at 800° C. for 3 hours while applying a magnetic field of e.

得られた試料はVSMにより室温での磁気性能が調べら
れた。結果を第2図に示す。保磁力iHcは、磁場強度
が0.5 K Oθを過ぎるころから上昇し始め飽和磁
化は、25000程度の低い磁場で162〜2. Q 
]11m013程度がよいことがこの場合&は最適であ
った。全体的にみて、磁場熱処理Gこより、磁気性能は
たいへん向上することが明ら力)&こなった。
The magnetic performance of the obtained sample at room temperature was examined by VSM. The results are shown in Figure 2. The coercive force iHc begins to rise when the magnetic field strength exceeds 0.5 K Oθ, and the saturation magnetization is 162 to 2. Q
]11m013 was the best value for & in this case. Overall, it is clear that the magnetic performance is greatly improved by magnetic field heat treatment.

実施例6 0eO,05NdO,2PrO,2LaO,05(Fe
d、92 Bo、06 Si0.01!At0.01)
6.2の組成を有する合金のアモルファス薄帯を実施1
と同様な方法で作製した。この薄帯を実施例1と同様な
6条件(すなわち■〜の))Gごおいて、B−Hカーブ
を測定した。測定値を第3図に示す。最大エネルギー積
は■の薄帯作製時で番ま2、IMGOe、■の熱処理時
では、7.3MGOe となっており、磁場中熱処理に
より、大幅に向上している。
Example 6 0eO, 05NdO, 2PrO, 2LaO, 05(Fe
d, 92 Bo, 06 Si0.01! At0.01)
6. Conducting an amorphous ribbon of an alloy with a composition of 1
It was made in the same way as. This ribbon was subjected to the same six conditions as in Example 1 (i.e., ■ to )) G, and the B-H curve was measured. The measured values are shown in Figure 3. The maximum energy product was 7.3 MGOe when producing the thin ribbon (■), IMGOe, and 7.3 MGOe during the heat treatment (■), which was significantly improved by the heat treatment in the magnetic field.

実施例4 実施例3で磁場中熱処理によって得た、合金薄帯を粉砕
して粉末にし、それを樹脂ノくインタ゛−で結合して、
樹脂ボンド磁石を作製した。成形法番ま(1)圧粉成形
 (11)射出成形で行った。し)ずれも15KO6程
度の磁場中で配向成形をした。製造条件を第2表に示す
。また得た磁石の性能を第6表・に示す。
Example 4 The alloy ribbon obtained by heat treatment in a magnetic field in Example 3 was pulverized into powder, which was bonded with a resin interlayer.
A resin bonded magnet was manufactured. Molding method (1) Powder molding (11) Injection molding was performed. (b) The alignment molding was performed in a magnetic field of about 15KO6. The manufacturing conditions are shown in Table 2. The performance of the obtained magnet is shown in Table 6.

第 2 表 〔効果〕 以上述べたように本発明によれば、急速冷却により得た
薄帯を磁場中で熱処理することにより、従来にない高性
能な磁石を作製できることが分りこれは磁石の高性能化
という効果ばかりでなく、安価な原料でもかなりの特性
が得られるので磁石の低コスト化という効果が生れ、産
業界に果す役
Table 2 [Effects] As described above, according to the present invention, it has been found that by heat-treating the ribbon obtained by rapid cooling in a magnetic field, it is possible to produce a magnet with unprecedented high performance. Not only does it have the effect of improving performance, but it also has the effect of lowering the cost of magnets, since considerable properties can be obtained with inexpensive raw materials, and it plays a role in industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、種々の組成の合金の磁場中熱処Unの効果を
示す図である。 第2図は、磁場中熱処理の磁場強度と磁気性能の関係を
示す図である。 第3図は、本発明の磁場中熱処理によりどれだけB−H
カーブが改善されたか示す図である。 ■・・・・・・無処理 ■・・・・・・熱処理 ■・・・・・・磁場中熱処理 以 上 出願人 株式会社詐訪精玉舎 代理人 弁理士 最上 務 第1図 羞ム 為 (RρC) 箪2陥 第3図
FIG. 1 is a diagram showing the effects of heat treatment Un in a magnetic field on alloys of various compositions. FIG. 2 is a diagram showing the relationship between magnetic field strength and magnetic performance in magnetic field heat treatment. Figure 3 shows how much B-H is produced by heat treatment in a magnetic field according to the present invention.
It is a figure which shows whether a curve was improved. ■・・・No treatment■・・・Heat treatment■・・・・・・Heat treatment in magnetic field or more (RρC) Chest 2, Figure 3

Claims (1)

【特許請求の範囲】[Claims] 希土類金属(以下Rで示す)と遷移金属(以下Tで示す
)そして半金属あるいは半導体元素(以下Sで示す)の
合金R−T−8において、超急冷法によってアモルファ
ス合金を作製し、しかる後にその合金を磁場中で熱処理
することを特徴とする永久磁石の製造方法。
In the alloy R-T-8 of a rare earth metal (hereinafter denoted by R), a transition metal (hereinafter denoted by T), and a semimetal or semiconductor element (hereinafter denoted by S), an amorphous alloy is produced by an ultra-quenching method, and then A method for producing a permanent magnet, which comprises heat-treating the alloy in a magnetic field.
JP59050739A 1984-03-16 1984-03-16 Preparation of permanent magnet blank Pending JPS60194502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59050739A JPS60194502A (en) 1984-03-16 1984-03-16 Preparation of permanent magnet blank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59050739A JPS60194502A (en) 1984-03-16 1984-03-16 Preparation of permanent magnet blank

Publications (1)

Publication Number Publication Date
JPS60194502A true JPS60194502A (en) 1985-10-03

Family

ID=12867204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59050739A Pending JPS60194502A (en) 1984-03-16 1984-03-16 Preparation of permanent magnet blank

Country Status (1)

Country Link
JP (1) JPS60194502A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4834812A (en) * 1987-11-02 1989-05-30 Union Oil Company Of California Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
JPH01211902A (en) * 1987-03-23 1989-08-25 Tokin Corp Manufacture of bonded magnet of rare earth, transistion metal, and boron
US4975213A (en) * 1988-01-19 1990-12-04 Kabushiki Kaisha Toshiba Resin-bonded rare earth-iron-boron magnet
JPH06124823A (en) * 1992-10-28 1994-05-06 Mitsubishi Steel Mfg Co Ltd Sintered permanent magnet
JPH06124821A (en) * 1992-10-28 1994-05-06 Mitsubishi Steel Mfg Co Ltd Bond magnet
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same
EP0874375A1 (en) * 1997-04-21 1998-10-28 Shin-Etsu Chemical Co., Ltd. Method for the preparation of rare earth based anisotropic permanent magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57141901A (en) * 1981-02-26 1982-09-02 Mitsubishi Steel Mfg Co Ltd Permanent magnet powder

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34838E (en) * 1984-12-31 1995-01-31 Tdk Corporation Permanent magnet and method for producing same
JPH01211902A (en) * 1987-03-23 1989-08-25 Tokin Corp Manufacture of bonded magnet of rare earth, transistion metal, and boron
US4834812A (en) * 1987-11-02 1989-05-30 Union Oil Company Of California Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
US4975213A (en) * 1988-01-19 1990-12-04 Kabushiki Kaisha Toshiba Resin-bonded rare earth-iron-boron magnet
JPH06124823A (en) * 1992-10-28 1994-05-06 Mitsubishi Steel Mfg Co Ltd Sintered permanent magnet
JPH06124821A (en) * 1992-10-28 1994-05-06 Mitsubishi Steel Mfg Co Ltd Bond magnet
EP0874375A1 (en) * 1997-04-21 1998-10-28 Shin-Etsu Chemical Co., Ltd. Method for the preparation of rare earth based anisotropic permanent magnet
US5976271A (en) * 1997-04-21 1999-11-02 Shin-Etsu Chemical Co., Ltd. Method for the preparation of rare earth based anisotropic permanent magnet

Similar Documents

Publication Publication Date Title
Wecker et al. Coercivity after heat treatment of overquenched and optimally quenched Nd‐Fe‐B
JP2713404B2 (en) Magnetic material for permanent magnet comprising iron, boron and rare earth metal and method for producing the same
JPS60194502A (en) Preparation of permanent magnet blank
JP6042602B2 (en) Method for producing α-Fe / R2TM14B nanocomposite magnet
JP2017157738A (en) MANUFACTURING METHOD OF Mn-Al PERMANENT MAGNET AND Mn-Al PERMANENT MAGNET
JPH01219143A (en) Sintered permanent magnet material and its production
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
US4854979A (en) Method for the manufacture of an anisotropic magnet material on the basis of Fe, B and a rare-earth metal
JP3720489B2 (en) Method for producing iron-based alloy for fine crystal permanent magnet
JP3230581B1 (en) Manufacturing method of giant magnetostrictive material under microgravity environment
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JPS6115944A (en) Rare earth magnet thin strip
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JPH04143221A (en) Production of permanent magnet
JP2631513B2 (en) Manufacturing method of magnetic alloy
KR100213333B1 (en) Nd-fe-b hyperfine grain permanent magnet composition and method for manufacturing therewith
JPS6347301A (en) Production of permanent magnet powder
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS58136757A (en) Manufacture of permanent magnet alloy
JPH01171219A (en) Manufacture of permanent magnet integral with york
KR20240030327A (en) METHOD OF PREPARING ThMn12 MAGNETIC MATERIAL POWDER
KR20240030497A (en) METHOD OF PREPARING Fe-BASED PERMANENT MAGNET AND Fe-BASED PERMANENT MAGNET THEREFROM
JPH04246103A (en) Production of r2co17 type bond magnet powder
JPS61166949A (en) Alloy for permanent magnet
JPS62262404A (en) Manufacture of rare earth-iron permanent magnet