JP2558095B2 - Rare earth ferrous iron permanent magnet manufacturing method - Google Patents
Rare earth ferrous iron permanent magnet manufacturing methodInfo
- Publication number
- JP2558095B2 JP2558095B2 JP61041006A JP4100686A JP2558095B2 JP 2558095 B2 JP2558095 B2 JP 2558095B2 JP 61041006 A JP61041006 A JP 61041006A JP 4100686 A JP4100686 A JP 4100686A JP 2558095 B2 JP2558095 B2 JP 2558095B2
- Authority
- JP
- Japan
- Prior art keywords
- magnet
- rare earth
- cast
- permanent magnet
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は希土類−鉄系永久磁石の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for manufacturing a rare earth-iron-based permanent magnet.
[従来の技術] 従来、R−Fe−B系の磁石の製造には次の3通りの方
法が報告されている。[Prior Art] Conventionally, the following three methods have been reported for producing an R-Fe-B magnet.
(1) 粉末治金法に基づく焼結法(参考文献1)。(1) Sintering method based on powder metallurgy (Reference 1).
(2) アモルファス合金を製造するに用いる急冷薄帯
製造装置で、厚さ30μm程度の急冷薄片を作り、その薄
片を樹脂結合法で磁石にする(参考文献2)。(2) Using a quenching ribbon manufacturing apparatus used for producing an amorphous alloy, a quenching thin piece having a thickness of about 30 μm is formed, and the thin piece is made into a magnet by a resin bonding method (reference document 2).
(3) 前記(2)の方法で使用した同じ薄片を、2段
階のホットプレス法で機械的配向処理を行う方法(参考
文献2)。(3) A method of mechanically orienting the same thin piece used in the method of (2) above by a two-step hot pressing method (Reference 2).
参考文献1. M.Sagawa,S.Fujimura,N.Togawa,H.Yamamot
o and Y.Matsuura;J.Appl.Phys.Vol.55(6),15 March
1984.P2083 参考文献2. R.W.Lee;Appl.Phys.Lett.Vol.46(8),15
April 1985,P790 文献に添って上記の従来技術を説明する。まず、前記
(1)の焼結法では、溶解・鋳造により合金インゴット
を作製し、粉砕されて3μmくらいの粒径を有する磁石
粉にされる。磁石粉は成形助剤となるバインダーと混練
され、磁場中でプレス成形されて、成形体ができあが
る。成形体はアルゴン中で1100℃前後の温度で1時間焼
結され、その後室温まで急冷される。焼結後、600℃前
後の温度で熱処理すると保磁力はさらに向上する。References 1. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamot
o and Y. Matsuura; J.Appl.Phys.Vol.55 (6), 15 March
1984.P2083 Reference 2. RWLee; Appl.Phys.Lett.Vol.46 (8), 15
April 1985, P790 The above-mentioned prior art will be described along with the literature. First, in the sintering method (1), an alloy ingot is produced by melting and casting, and is crushed into magnet powder having a particle size of about 3 μm. The magnet powder is kneaded with a binder serving as a molding aid and press-molded in a magnetic field to form a molded body. The compact is sintered in argon at a temperature of around 1100 ° C. for 1 hour and then quenched to room temperature. After sintering, heat treatment at a temperature of around 600 ° C further improves the coercive force.
前記(2)は、まず急冷薄帯製造装置の最適な回転数
でR−Fe−B合金の急冷薄帯を作る。得られた薄帯は厚
さ30μmのリボン状をしており、直径が1000オングスト
ローム以下の多結晶が集合している。薄帯は脆くて割れ
やすく、結晶粒は等方的に分布しているので磁気的にも
等方性である。この薄帯を適度な粒度にして、樹脂と混
練してプレス成形すれば7ton/cm2程度の圧力で、約85体
積%の充填が可能となる。In the above (2), first, a quenched ribbon of an R-Fe-B alloy is produced at an optimum rotation speed of a quenching ribbon manufacturing apparatus. The obtained ribbon has a ribbon shape with a thickness of 30 μm, and polycrystals having a diameter of 1000 Å or less are aggregated. The ribbon is brittle and easily broken, and since the crystal grains are distributed isotropically, it is magnetically isotropic. If the ribbon is adjusted to an appropriate particle size, kneaded with a resin and press-molded, about 85% by volume can be filled with a pressure of about 7 ton / cm 2 .
前記(3)の製造方法は、始めにリボン状の急冷薄帯
あるいは薄帯の片を、真空中あるいは不活性雰囲気中で
約700℃で予備加熱したグラファイトあるいは他の耐熱
用のプレス型に入れる。該リボンが所望の温度に到達し
たとき一軸の圧力が加えられる。温度、時間は特定しな
いが、充分な塑性が出る条件としてT=725±25℃、圧
力はP=1.4ton/cm2程度が適している。この段階では磁
石はわずかにプレス方向に配向しているとはいえ、全体
的には等方性である。次のホットプレスは、大面積を有
する型で行なわれる。最も一般的には700℃で0.7tonで
数秒間プレスする。すると試料は最初の厚みの1/2にな
りプレス方向と平行に磁化容易軸が配向してきて、合金
は異方性化する。これらの工程は、二段階ホットプレス
法(two−stags hot−press procedure)と呼ばれてい
る。この方法により緻密で異方性を有するR−Fe−B磁
石が製造できる。In the manufacturing method (3), first, the ribbon-shaped quenched ribbon or strip is put into graphite or another heat-resistant press die preheated at about 700 ° C. in a vacuum or an inert atmosphere. . Uniaxial pressure is applied when the ribbon reaches the desired temperature. Although the temperature and time are not specified, T = 725 ± 25 ° C. and pressure P = 1.4 ton / cm 2 are suitable conditions for producing sufficient plasticity. At this stage the magnets are generally isotropic although they are slightly oriented in the pressing direction. The next hot pressing is performed with a mold having a large area. It is most commonly pressed at 700 ° C. at 0.7 ton for a few seconds. Then, the sample becomes 1/2 of the initial thickness, the easy axis of magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic. These steps are called the two-stags hot-press procedure. By this method, a dense and anisotropic R-Fe-B magnet can be manufactured.
なお、最初のメルトスピニング法で作られるリボン薄
帯の結晶粒は、それが最大の保磁力を示す時の粒径より
も小さめにしておき、後にホットプレス中に結晶粒の粗
大化が生じて最適の粒径になるようにしておく。In addition, the crystal grains of the ribbon ribbon made by the first melt spinning method should be smaller than the grain size when it shows the maximum coercive force, and later the crystal grains become coarse during hot pressing. Make sure the particle size is optimal.
[発明が解決しようとする問題点] 上述した従来技術で、R−Fe−B系の磁石は一応作製
できるのであるが、これらの技術を利用した製造方法は
次のような欠点を有している。[Problems to be Solved by the Invention] Although the R-Fe-B magnets can be produced for some time by the above-mentioned conventional techniques, the production methods utilizing these techniques have the following drawbacks. There is.
前記(1)の焼結法は、合金を粉末にするのが必須で
あるが、R−Fe−B系合金はたいへん酸素に対して活性
であるので、粉末化すると余計酸化が激しくなり、焼結
体中の酸素濃度はどうしても高くなってしまう。また粉
末を成形するときに、例えばステアリン酸亜鉛のような
成形助剤を使用しなければならず、これは焼結工程で前
もって取り除かれるのであるが、数割は磁石体の中に炭
素の形で残ってしまう。この炭素は著しくR−Fe−Bの
磁気性能を低下させる。成形助剤を加えてプレス成形し
た後の成形体はグリーン体と言われる。これはたんへん
脆く、ハンドリングが難しい。従って焼結炉にきれいに
並べて入れるのには、相当の手間がかかることも大きな
欠点である。これらの欠点があるので一般的に言ってR
−Fe−B系の焼結磁石の製造には、高価な設備が必要に
なるばかりでなく、生産効率が悪く、磁石の製造費が高
くなってしまう。従って、R−Fe−B系磁石の原料費の
安さを充分に引き出せる製造法とは言い難い。In the sintering method of the above (1), it is essential to make the alloy into a powder, but since the R-Fe-B type alloy is very active with respect to oxygen, if it is made into a powder, excessive oxidation will occur, resulting in burning. The oxygen concentration in the body will inevitably increase. Also, when molding the powder, a molding aid, such as zinc stearate, must be used, which is removed beforehand during the sintering process, but a few tenths of the form of carbon in the magnet body. Will remain. This carbon significantly reduces the magnetic performance of R-Fe-B. The green body is the green body after press molding by adding a molding aid. This is very fragile and difficult to handle. Therefore, it is a great disadvantage that it takes a considerable amount of time to neatly arrange them in the sintering furnace. Generally speaking, because of these drawbacks, R
In order to manufacture a —Fe—B system sintered magnet, not only expensive equipment is required, but also the production efficiency is poor and the manufacturing cost of the magnet becomes high. Therefore, it cannot be said that the manufacturing method can sufficiently bring out the low raw material cost of the R-Fe-B magnet.
前記(2)および(3)の製造法は、真空メルトスピ
ニング装置を使う。この装置は現在では、たいへん生産
性が悪くしかも高価である。前記(2)では原理的に等
方性であるので低エネルギー積であり、ヒステリシスル
ープの角形性もよくないので温度特性に対しても、使用
する向きにおいても不利である。前記(3)の方法は、
ホットプレスを2段階に使うというユニークな方法であ
るが、実際に量産を考えるとたいへん非効率になること
は否めないであろう。The manufacturing methods (2) and (3) use a vacuum melt spinning device. This device is currently very unproductive and expensive. In the above (2), since it is isotropic in principle, it is a low energy product, and the squareness of the hysteresis loop is not good, which is disadvantageous in terms of temperature characteristics as well as in the direction of use. The method of (3) above is
This is a unique method of using hot pressing in two steps, but it cannot be denied that it will be very inefficient when actually considering mass production.
さらに、前記(1)および前記(3)の方法による磁
石の欠点として、機械的強度の低いことが挙げられる。
これらの磁石は本来、粉末またはリボンの状態にあった
ものを、高温で焼結あるいは圧縮結合した磁石である。
そのため、取り扱う上でチッピングが起こり易く、ハン
ドリングが非常に困難となる。Further, as a drawback of the magnets according to the methods (1) and (3), low mechanical strength can be mentioned.
These magnets are magnets that were originally in the state of powder or ribbon and are sintered or compression bonded at high temperature.
Therefore, chipping is likely to occur in handling and handling becomes very difficult.
本発明によるR−Fe−B系磁石の製造方法はこれらの
欠点を解決するものであり、その目的とするところは、
低コストでしかも高性能な磁石を提供するところにあ
る。The method for producing an R-Fe-B magnet according to the present invention solves these drawbacks, and its purpose is to:
It aims to provide high-performance magnets at low cost.
[問題点を解決するための手段] 本発明は、希土類−鉄系永久磁石の製造方法に関する
ものであり、具体的には、鉄を主成分とし、原子百分率
においてR:8〜25%(但しRは、Yを含む希土類元素の
うち少なくとも1種)及びB:2〜8%を含む合金を溶解
し、その鋳造マクロ組織が柱状晶となるように鋳造した
後、該鋳造インゴットを500℃以上の温度で熱処理する
ことにより磁気的に硬化させ、さらに切断・研削を施し
て磁石形状とすることを特徴とする希土類−鉄系永久磁
石の製造方法である。[Means for Solving Problems] The present invention relates to a method for producing a rare earth-iron-based permanent magnet, and specifically, contains iron as a main component and has an atomic percentage of R: 8 to 25% (however, R is at least one of rare earth elements including Y) and B: an alloy containing 2 to 8% is melted and cast so that the cast macrostructure becomes columnar crystals, and the cast ingot is heated to 500 ° C. or higher. The method for producing a rare earth-iron-based permanent magnet is characterized in that it is magnetically hardened by heat treatment at a temperature of, and further cut and ground into a magnet shape.
また、本発明は、鉄を主成分とし、原子百分率におい
てR:8〜25%(但しRは、Yを含む希土類元素のうち少
なくとも1種)、B:2〜8%及びCo〜40%(0を除く)
を含む合金を溶解し、その鋳造マクロ組織が柱状晶とな
るように鋳造した後、該鋳造インゴットを500℃以上の
温度で熱処理することにより磁気的に硬化させ、さらに
切断・研削を施して磁石形状とすることを特徴とする希
土類−鉄系永久磁石の製造方法である。Further, the present invention contains iron as a main component, and in atomic percentage, R: 8 to 25% (however, R is at least one of rare earth elements including Y), B: 2 to 8% and Co to 40% ( (Excluding 0)
After melting the alloy containing, and casting so that the cast macrostructure becomes columnar crystals, the cast ingot is magnetically hardened by heat treatment at a temperature of 500 ° C or higher, and further cut and ground to obtain a magnet. It is a method for producing a rare earth-iron-based permanent magnet, which is characterized in that it has a shape.
前記のように、現存の希土類−鉄系永久磁石の製造方
法である焼結法、急冷法は、それぞれ粉砕による粉末管
理の困難さ、生産性の悪さ、機械的強度の低さといった
大きな欠点を有している。本発明者らは、これらの欠点
を改良するため、バルク状態で保磁力を得ることができ
るような合金の研究に着手し、前記のような組成におい
てバルク状態での保磁力の獲得が可能であり、このとき
鋳造組織が柱状晶となるようにすると保磁力が得やす
く、かつ柱状晶の面内異方性を利用することにより異方
性磁石となるので、等軸晶を用いるよりも、より高性能
な永久磁石が得られることを見出し、本発明に至った。
本発明では、鋳造インゴットを粉砕する必要がないの
で、焼結法ほどの厳密な雰囲気管理を行なう必要はな
く、熱処理にもベルト炉のような量産性の高い炉が使用
でき、設備費は大きく低減される。さらに、鋳造状態の
まま磁化することにより、粉末状態を経ることがなくな
った結果、結晶粒相互の結合が非常に強くなり、機械的
強度が増大する。As described above, the existing rare-earth-iron-based permanent magnet manufacturing method has a large drawback such as difficulty in powder management by pulverization, poor productivity, and low mechanical strength in the sintering method and the quenching method, respectively. Have In order to improve these drawbacks, the present inventors have started research on an alloy capable of obtaining a coercive force in the bulk state, and it is possible to obtain the coercive force in the bulk state in the above composition. Yes, coercive force is easily obtained by making the cast structure columnar crystals at this time, and since it becomes an anisotropic magnet by utilizing the in-plane anisotropy of columnar crystals, rather than using equiaxed crystals, The present invention has been accomplished by finding that a higher performance permanent magnet can be obtained.
In the present invention, since it is not necessary to crush the cast ingot, there is no need to perform strict atmosphere control as in the sintering method, and a furnace with high mass productivity such as a belt furnace can be used for heat treatment, and the equipment cost is large. Will be reduced. Further, by magnetizing the alloy in the as-cast state, it does not go through a powder state, and as a result, the bonds between the crystal grains become very strong and the mechanical strength increases.
なお、同系統の研究には、三保広晃他(日本金属学
会、昭和60年度秋期講演会、講演番号(544))がある
が、同研究は本発明と組成域を異にするのみならず、マ
クロ組織による性能変化については一切言及しておら
ず、性能的にも本発明に大きく劣っている。また、磁気
的に硬化せしめた後、求める形状を得るための二次加工
も、本系の場合、従来のサマリウムコバルト系希土類磁
石に比して曲げ強さ、圧縮強さ等が大きいので非常にや
りやすい。In addition, research on the same system includes Hiroaki Miho et al. (The Japan Institute of Metals, Autumn 1994, Lecture No. (544)), but this research not only differs from the present invention in composition range. No mention is made of any change in performance due to the macrostructure, and the performance is greatly inferior to the present invention. In addition, the secondary processing for obtaining the desired shape after magnetically hardening is also extremely effective in this system because it has a large bending strength, compressive strength, etc. compared to conventional samarium-cobalt rare earth magnets. Cheap.
従来のR−Fe−B系磁石の組成は、前記参考文献1に
代表されるR15Fe77B8である。この組成はR−Fe−B系
磁石の主相R2Fe14B化合物を原子百分率で表した組成R
11.7Fe82.4B5.9に比してR、B両元素に富む側に移行
している。これは、保磁力を得るためには主相のみでな
くRrich相、Brich相と呼ばれる非磁性相が必要であると
いう点から説明されている。ところが、本発明による組
成では、これとは逆にBが少ない側に移行したところに
ピーク値が存在する。The composition of the conventional R-Fe-B magnet is R 15 Fe 77 B 8 represented by the reference 1. This composition is the composition R in which the main phase R 2 Fe 14 B compound of the R-Fe-B magnet is expressed in atomic percentage.
Compared to 11.7 Fe 82.4 B 5.9 , it shifts to the side rich in both R and B elements. This is explained by the fact that not only the main phase but also non-magnetic phases called Rrich phase and Brich phase are necessary to obtain the coercive force. On the contrary, in the composition according to the present invention, on the contrary, a peak value is present when the composition shifts to the side with less B.
これは、本合金の特徴として、第一にB量を低減する
と結晶粒が微細化すること、第二に良好な柱状晶を形成
させるため溶湯を急冷したことにより結晶粒が微細化す
ること、により核生成タイプの保磁力機構を有する本発
明による磁石に特有の組成域となったものと考えられ
る。This is a feature of the present alloy. Firstly, when the amount of B is reduced, the crystal grains become finer, and secondly, when the molten metal is rapidly cooled to form good columnar crystals, the crystal grains become finer. It is considered that the composition range is peculiar to the magnet according to the present invention having a nucleation type coercive force mechanism.
永久磁石材料に柱状晶を用いることは、アルニコ磁石
を初め、希土類磁石系のサマリウム−コバルト磁石でも
行なわれており、本発明者のひとりはすでに1981年、樹
脂結合型サマリウムコバルト磁石への応用として発表し
ている(T.Shimoda他、Proceedings of the fifth Inte
rnational Workshop on Rare Earth−Cobalt Permanent
Magnets,1981,P595)。The use of columnar crystals in the permanent magnet material has been performed in rare earth magnet-based samarium-cobalt magnets as well as in Alnico magnets. Announced (T. Shimoda et al., Proceedings of the fifth Inte
rnational Workshop on Rare Earth-Cobalt Permanent
Magnets, 1981, P595).
本発明において、鋳造状態で柱状晶を得ることは高性
能磁石化の重要点となっている。すなわち、熱処理によ
って保磁力を得る過程が拡散によるものであり、サマリ
ウムコバルトと同様、柱状晶による方が保磁力が得やす
い。さらに本系磁石は、柱状晶に垂直な面に磁化容易軸
が配向する性質があるので、柱状晶を利用すれば面内異
方性磁石を作製することができる。In the present invention, obtaining columnar crystals in a cast state is an important point for high performance magnetization. That is, the process of obtaining coercive force by heat treatment is due to diffusion, and columnar crystals are easier to obtain coercive force, as in samarium-cobalt. Further, the present magnet has a property that the easy axis of magnetization is oriented in a plane perpendicular to the columnar crystals, so that an in-plane anisotropic magnet can be produced by using the columnar crystals.
以下、本発明による永久磁石の組成限定理由を説明す
る。希土類元素としては、Y、La、Ce、Pr、Nd、Sm、F
u、Gd、Tb、Dy、Ho、En、Tm、Yb、Luが候補として挙げ
られ、これらのうちの1種あるいは2種以上を組み合わ
せて用いられる。最も高い磁気特性はPrで得られる。従
って実用的には、Pr、Pr−Nd合金、Ce−Pr−Nd合金等が
用いられる。また、少量の添加元素、例えば重希土類元
素のDy−Tb等やAl、Mo、Si等は、保磁力の向上に有効で
ある。R−Fe−B系磁石の主相はR2Fe14Bである。従っ
て、Rが8原子%未満では、もはや上記化合物を形成せ
ず、α−鉄と同一構造の立方晶組織となるため高磁気性
は得られない。一方、Rが25原子%を超えると非磁性の
Rrich相が多くなり磁気特性は著しく低下する。よっ
て、Rの範囲は、8〜25%原子%が適当である。The reasons for limiting the composition of the permanent magnet according to the present invention will be described below. Rare earth elements include Y, La, Ce, Pr, Nd, Sm, F
u, Gd, Tb, Dy, Ho, En, Tm, Yb, and Lu are listed as candidates, and one or more of these may be used in combination. The highest magnetic properties are obtained with Pr. Therefore, practically, Pr, Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are used. In addition, a small amount of additional elements, such as heavy rare earth elements such as Dy-Tb, Al, Mo, and Si, are effective for improving the coercive force. Main phase of R-Fe-B magnet is R 2 Fe 14 B. Therefore, if R is less than 8 atomic%, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is obtained, so that high magnetic properties cannot be obtained. On the other hand, if R exceeds 25 atom%, it is non-magnetic.
The Rrich phase is increased and the magnetic properties are significantly reduced. Therefore, the range of R is appropriately 8 to 25% atomic%.
Bは、R2Fe14B相を形成するための必須元素であり、
2原子%未満では菱面体のR−Fe系になるため高保磁力
は望めない。しかし、従来の焼結法による磁石のように
8原子%を超えて添加すると、逆に鋳造状態での保磁力
は得られなくなってしまう。従って、Bの量は2〜8原
子%が範囲として適している。B is an essential element for forming the R 2 Fe 14 B phase,
If the content is less than 2 atomic%, a high coercive force cannot be expected because of the rhombohedral R-Fe system. However, if it is added in excess of 8 atomic% as in the case of a magnet produced by the conventional sintering method, the coercive force in the cast state cannot be obtained. Therefore, the amount of B is preferably in the range of 2 to 8 atomic%.
Coは、キュリー点の上昇や温度特性の改良に有用な元
素であるが、添加量を増やすに従って保磁力を減ずる傾
向を有する。また、Coを増すと本系磁石の特徴であると
ころの低コストや加工のしやすさが失なわれる。これら
の点からCo量は0〜40原子%が範囲として適している。Co is an element useful for increasing the Curie point and improving the temperature characteristics, but it tends to decrease the coercive force as the amount of addition increases. Further, if Co is increased, the low cost and the ease of processing, which are the features of this magnet, are lost. From these points, the range of Co content is preferably 0 to 40 atomic%.
[実施例1] 本発明による製造工程図を第1図に示す。まず、所望
の組成の合金を誘導炉で溶解し、鉄鋳型に鋳造し、柱状
晶を形成せしめる。次に、インゴットを磁気的に硬化さ
せるため500〜1050℃の温度範囲でアニール処理を施
す。本発明による鋳造タイプ磁石は、この段階で切断や
研削を施すことにより、柱状晶の異方性を利用した面内
異方性磁石となる。Example 1 A manufacturing process diagram according to the present invention is shown in FIG. First, an alloy having a desired composition is melted in an induction furnace and cast in an iron mold to form columnar crystals. Next, in order to magnetically harden the ingot, annealing treatment is performed in a temperature range of 500 to 1050 ° C. The casting type magnet according to the present invention becomes an in-plane anisotropic magnet utilizing the anisotropy of columnar crystals by cutting or grinding at this stage.
本実施例では、まず柱状晶化の効果を示すために、代
表的な組成として、Pr14Fe82B4組成を取り上げ、熱処理
温度・時間・マクロ組織による保磁力iHcの変化をとら
えた。第2図に示すように、800〜1000℃まで温度・時
間が増加するにしたがってiHcも増加している。このこ
とは、iHcの増加が特定相の析出によるものではなく、
拡散支配的であることを示している。さらに、比較例と
して掲げた等軸晶のサンプルは、1000℃で熱処理を施し
ているにもかかわらず、保磁力は小さい。本系磁石の主
相Pr2Fe14Bは、溶湯から鉄相を初晶とする包晶反応 Fe+L→R2Fe14B で生じ、初晶サイズは冷却速度に大きく依存する。その
ため冷却速度の遅い等軸晶は初晶が大きく粗大化し、主
相中への拡散に長時間を要するものと思われる。In this example, first, in order to show the effect of columnar crystallization, Pr 14 Fe 82 B 4 composition was taken as a typical composition, and changes in coercive force iHc due to heat treatment temperature, time and macrostructure were captured. As shown in Fig. 2, iHc increases as the temperature and time increase from 800 to 1000 ° C. This means that the increase in iHc is not due to the precipitation of the specific phase,
It shows that it is diffusion-dominant. Furthermore, the sample of the equiaxed crystal given as a comparative example has a small coercive force even though it is heat-treated at 1000 ° C. The main phase Pr 2 Fe 14 B of the present magnet is generated by the peritectic reaction Fe + L → R 2 Fe 14 B in which the iron phase is the primary crystal from the molten metal, and the primary crystal size largely depends on the cooling rate. Therefore, it is considered that the equiaxed crystal with a slow cooling rate has a large primary crystal and is coarsened, and it takes a long time to diffuse into the main phase.
第1表に示す組成の合金を溶解し、第1図に示す方法
で、本発明の鋳造面内異方性磁石と、参考として、水素
粉砕後、エポキシ樹脂を4重量%混練した樹脂結合磁石
とを作製した。The alloy with the composition shown in Table 1 was melted, and the cast in-plane anisotropic magnet of the present invention was melted by the method shown in FIG. 1 and, as a reference, a resin-bonded magnet obtained by kneading 4 wt% of an epoxy resin after pulverizing with hydrogen. And were made.
なお、アニールはすべて1000℃×24時間行った。得ら
れた結果を第2表に示す。 The annealing was all performed at 1000 ° C. for 24 hours. The results obtained are shown in Table 2.
第2表に示すように、本発明による鋳造タイプの磁石
は、樹脂結合タイプの磁石に比べ、高い保持力が得られ
ている。 As shown in Table 2, the casting type magnet according to the present invention has a higher holding force than the resin-bonded type magnet.
[実施例2] 次に、実施例1のサンプルNo.2および7の合金を用い
て、前記参考文献1に基づいて焼結磁石を作製し、JIS
R1601に基づき長さ36mm、幅4mm、厚さ3mmのサンプルを
切り出し、曲げ強さを本発明品と比較した。その結果を
第3表に示す。No.2は本発明による代表組成、No.7は参
考文献1による焼結法の最適組成の近傍の組成、さらに
No.6は中間組成である。第3表より、組成にかかわら
ず、本発明による方が機械的に強度に優れることがわか
る。[Example 2] Next, using the alloys of Sample Nos. 2 and 7 of Example 1, a sintered magnet was produced based on the above-mentioned reference document 1, and JIS
Based on R1601, a sample having a length of 36 mm, a width of 4 mm and a thickness of 3 mm was cut out and the bending strength was compared with that of the product of the present invention. The results are shown in Table 3. No. 2 is a representative composition according to the present invention, No. 7 is a composition near the optimum composition of the sintering method according to Reference 1, and
No. 6 is an intermediate composition. It can be seen from Table 3 that the mechanical strength of the present invention is excellent regardless of the composition.
[実施例3] 次に、第4表に示す組成の合金を実施例1と同様の手
法で溶解し柱状晶インゴットを得た。次に1000℃におい
て20時間の熱処理を施した後、実施例2と同様にJIS R1
601に基づき長さ36mm、幅4mm、厚さ3mmのサンプルを切
り出し曲げ強さを測定した。結果を第4表に示す。 Example 3 Next, an alloy having the composition shown in Table 4 was melted in the same manner as in Example 1 to obtain a columnar crystal ingot. Then, after heat treatment at 1000 ° C. for 20 hours, JIS R1
Based on 601, a sample with a length of 36 mm, a width of 4 mm and a thickness of 3 mm was cut out and the bending strength was measured. The results are shown in Table 4.
この第4表及び実施例2の第3表から、本発明の低B
量組成(B=2〜6at%)において、優れた機械的強度
が得られることがわかる。 From this Table 4 and Table 3 of Example 2, the low B of the present invention is shown.
It can be seen that excellent mechanical strength can be obtained in the quantitative composition (B = 2 to 6 at%).
[発明の効果] 以上、本発明によれば、従来の焼結法では保磁力の得
にくかった組成域で、バルク状態のまま保磁力を得るこ
とが可能となり、機械的強度に優れ、製造工程も単純化
された鋳造希土類鉄系磁石を得ることができる。[Effects of the Invention] As described above, according to the present invention, it is possible to obtain a coercive force in a bulk state in a composition range where it is difficult to obtain a coercive force by a conventional sintering method, which is excellent in mechanical strength, It is possible to obtain a simplified cast rare earth iron-based magnet.
第1図は、本発明および参考例のR−Fe−B系磁石の製
造工程図である。 第2図は、Pr14Fe82B4合金の熱処理による保磁力変化図
である。FIG. 1 is a manufacturing process diagram of the R—Fe—B magnets of the present invention and the reference example. FIG. 2 is a diagram showing changes in coercive force of Pr 14 Fe 82 B 4 alloy by heat treatment.
フロントページの続き (72)発明者 小林 理 諏訪市大和3丁目3番5号 セイコーエ プソン株式会社内 (56)参考文献 特開 昭62−177101(JP,A)Front page continuation (72) Inventor Rin Kobayashi 3-5 Yamato, Suwa-shi Seiko Epson Corp. (56) Reference JP-A-62-177101 (JP, A)
Claims (2)
〜25%(但しRは、Yを含む希土類元素のうち少なくと
も1種)及びB:2〜8%を含む合金を溶解し、その鋳造
マクロ組織が柱状晶となるように鋳造した後、該鋳造イ
ンゴットを500℃以上の温度で熱処理することにより磁
気的に硬化させ、さらに切断・研削を施して磁石形状と
することを特徴とする希土類−鉄系永久磁石の製造方
法。1. Iron as a main component, R: 8 in atomic percentage.
-25% (where R is at least one of rare earth elements including Y) and B: 2-8% is melted and cast so that the cast macrostructure becomes columnar crystals, A method for producing a rare earth-iron-based permanent magnet, which comprises magnetically hardening an ingot by heat-treating it at a temperature of 500 ° C. or higher, and further cutting and grinding it into a magnet shape.
〜25%(但しRは、Yを含む希土類元素のうち少なくと
も1種)、B:2〜8%及びCo〜40%(0を除く)を含む
合金を溶解し、その鋳造マクロ組織が柱状晶となるよう
に鋳造した後、該鋳造インゴットを500℃以上の温度で
熱処理することにより磁気的に硬化させ、さらに切断・
研削を施して磁石形状とすることを特徴とする希土類−
鉄系永久磁石の製造方法。2. Iron as a main component and R: 8 in atomic percentage.
~ 25% (where R is at least one of rare earth elements including Y), B: 2 to 8% and Co to 40% (excluding 0) are melted, and the cast macrostructure is columnar crystals. After being cast so that the cast ingot will be magnetically hardened by heat treatment at a temperature of 500 ° C. or higher, further cutting and
Rare earth characterized by being ground into a magnet-
Manufacturing method of iron-based permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61041006A JP2558095B2 (en) | 1986-02-26 | 1986-02-26 | Rare earth ferrous iron permanent magnet manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61041006A JP2558095B2 (en) | 1986-02-26 | 1986-02-26 | Rare earth ferrous iron permanent magnet manufacturing method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5037056A Division JP2730441B2 (en) | 1993-02-25 | 1993-02-25 | Manufacturing method of alloy powder for permanent magnet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62198103A JPS62198103A (en) | 1987-09-01 |
JP2558095B2 true JP2558095B2 (en) | 1996-11-27 |
Family
ID=12596306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61041006A Expired - Lifetime JP2558095B2 (en) | 1986-02-26 | 1986-02-26 | Rare earth ferrous iron permanent magnet manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2558095B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2725004B2 (en) | 1986-04-30 | 1998-03-09 | セイコーエプソン株式会社 | Manufacturing method of permanent magnet |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6136099A (en) * | 1985-08-13 | 2000-10-24 | Seiko Epson Corporation | Rare earth-iron series permanent magnets and method of preparation |
US5538565A (en) * | 1985-08-13 | 1996-07-23 | Seiko Epson Corporation | Rare earth cast alloy permanent magnets and methods of preparation |
EP0599815B1 (en) * | 1987-04-30 | 1998-01-07 | Seiko Epson Corporation | Magnetic alloy and method of making the same |
US5460662A (en) * | 1987-04-30 | 1995-10-24 | Seiko Epson Corporation | Permanent magnet and method of production |
EP0288637B1 (en) * | 1987-04-30 | 1994-08-10 | Seiko Epson Corporation | Permanent magnet and method of making the same |
IE891581A1 (en) * | 1988-06-20 | 1991-01-02 | Seiko Epson Corp | Permanent magnet and a manufacturing method thereof |
JP2730441B2 (en) * | 1993-02-25 | 1998-03-25 | セイコーエプソン株式会社 | Manufacturing method of alloy powder for permanent magnet |
US7207102B1 (en) * | 2004-04-01 | 2007-04-24 | Sandia Corporation | Method for forming permanent magnets with different polarities for use in microelectromechanical devices |
CN108122652A (en) * | 2017-12-19 | 2018-06-05 | 北京京磁电工科技有限公司 | The special preparation technique of Sintered NdFeB magnet |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62177101A (en) * | 1986-01-29 | 1987-08-04 | Daido Steel Co Ltd | Production of permanent magnet material |
-
1986
- 1986-02-26 JP JP61041006A patent/JP2558095B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2725004B2 (en) | 1986-04-30 | 1998-03-09 | セイコーエプソン株式会社 | Manufacturing method of permanent magnet |
Also Published As
Publication number | Publication date |
---|---|
JPS62198103A (en) | 1987-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2558095B2 (en) | Rare earth ferrous iron permanent magnet manufacturing method | |
JPS62276803A (en) | Rare earth-iron permanent magnet | |
JPS62203302A (en) | Cast rare earth element-iron system permanent magnet | |
US5186761A (en) | Magnetic alloy and method of production | |
EP0288637B1 (en) | Permanent magnet and method of making the same | |
JPH07123083B2 (en) | Cast rare earth-method for manufacturing iron-based permanent magnets | |
JP2530185B2 (en) | Manufacturing method of permanent magnet | |
JP2857824B2 (en) | Rare earth-iron permanent magnet manufacturing method | |
US5460662A (en) | Permanent magnet and method of production | |
JP2579787B2 (en) | Manufacturing method of permanent magnet | |
JP2730441B2 (en) | Manufacturing method of alloy powder for permanent magnet | |
JP2609106B2 (en) | Permanent magnet and manufacturing method thereof | |
JP2611221B2 (en) | Manufacturing method of permanent magnet | |
JP2631380B2 (en) | Rare earth-iron permanent magnet manufacturing method | |
JPH01175207A (en) | Manufacture of permanent magnet | |
KR930002559B1 (en) | Permanent magnet and making method thereof | |
JPS63286515A (en) | Manufacture of permanent magnet | |
EP0599815B1 (en) | Magnetic alloy and method of making the same | |
JPH08250312A (en) | Rare earth-fe permanent magnet and manufacture thereof | |
JPH0766892B2 (en) | Permanent magnet manufacturing method | |
JPS63286514A (en) | Manufacture of permanent magnet | |
JPH0684628A (en) | Radial anisotropic rare earth-iron based permanent magnet | |
JPH01161802A (en) | Manufacture of permanent magnet | |
JPS63286516A (en) | Manufacture of permanent magnet | |
JPH07166304A (en) | Alloy for permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |