JPS62198103A - Rare earth-iron permanent magnet - Google Patents

Rare earth-iron permanent magnet

Info

Publication number
JPS62198103A
JPS62198103A JP61041006A JP4100686A JPS62198103A JP S62198103 A JPS62198103 A JP S62198103A JP 61041006 A JP61041006 A JP 61041006A JP 4100686 A JP4100686 A JP 4100686A JP S62198103 A JPS62198103 A JP S62198103A
Authority
JP
Japan
Prior art keywords
iron
cast
rare earth
alloy
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61041006A
Other languages
Japanese (ja)
Other versions
JP2558095B2 (en
Inventor
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Osamu Kobayashi
理 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP61041006A priority Critical patent/JP2558095B2/en
Publication of JPS62198103A publication Critical patent/JPS62198103A/en
Application granted granted Critical
Publication of JP2558095B2 publication Critical patent/JP2558095B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide a cast rare earth-iron permanent magnet which does not need grinding, sintering and is inexpensive by casting an alloy which has rare earth element including Y, B, Co and iron, and then heat treating at specific temperature or higher. CONSTITUTION:An alloy which contains 8-25, 2-8 and up to 40atom% of R, B and C, the residue of iron and other unavoidable impurities in production is melted, so cast that the cast macrostructure is a columnar crystal, and a cast ingot is heat treated at 500 deg.C or higher to be magnetically cured. The main phase of the obtained R-Re-B magnet is R2Fe14B. If the R is 8atom% or less, this compound is not formed, and since it become the same cubic structure as alpha-iron, high magnetic property is not obtained. If the R exceeds 25atom%, the magnetic property that nonmagnetic R-rich phase content is not large is remarkably reduced. If the B is less than 2atom%, the alloy becomes rhombic structure in R-Fe alloy, and high coercive force is not obtained. If the B is 8atom% or higher, the coercive force in the cast state cannot be obtained. The Co is a useful element to raise Curie point and to improve temperature characteristic, and up to 40atom% of the Co is proper due to low cost and easy workability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類−鉄系永久磁石に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to rare earth-iron permanent magnets.

〔従来の技術〕[Conventional technology]

従来、R−?、−B系の磁石の製造には次の5通りの方
法が報告されている。
Conventionally, R-? The following five methods have been reported for manufacturing -B type magnets.

+11  粉末冶金法に基づく焼結法(参考文献1ン。+11 Sintering method based on powder metallurgy (Reference 1).

(2)  アモルファス合金を製造するに用いる急冷薄
帯[造装置で、厚さ50μm程度の急冷薄片を作シ、そ
の薄片を樹脂結分法で磁石にする(参考文献2)。
(2) A quenched ribbon used to produce an amorphous alloy is used to produce a quenched thin piece with a thickness of about 50 μm, and the thin piece is made into a magnet using a resin binding method (Reference 2).

+3)  +21の方法で使用した同じ薄片を、2段階
のホットプレス法で機械的配向処理を行う方法(参考文
#2)。
+3) A method in which the same flakes used in method +21 are mechanically aligned using a two-step hot press method (Reference #2).

参考文献1.  M、Sagawa、S、F’ujim
ura、N、TogawaH,Yamamoto an
d Y、Matsuura ; 、T、Appl、Ph
ys。
References 1. M, Sagawa, S, F'ujim
ura, N, TogawaH, Yamamoto an
d Y, Matsuura; , T, Appl, Ph
ys.

Vol、55(6)、15 Maroh 1981i 
、 P2O85参考文献2.  R,W、Lee ;A
ppl、Phys、nett、Vo146(8) 、 
15 Apτ111985.P79’0文献に添って上
記の従来技術を説明する。1ず。
Vol, 55(6), 15 Maroh 1981i
, P2O85Reference 2. R,W,Lee;A
ppl, Phys, nett, Vo146(8),
15 Apτ111985. The above-mentioned conventional technology will be explained in conjunction with the P79'0 document. 1s.

(1)の焼結法では、溶解・鋳造により合金インゴット
を作製し、粉砕されて6μmくらいの粒径を有する磁石
粉にされる。磁石粉は成形助剤となるバインダーと混課
され、磁場中でプレス成形されて、成形体ができあがる
。成形体はアルゴン中で1100℃前後の温度で1時間
焼結され、その後室温でで急冷される。焼結後、600
℃前後の温度で熱処理すると保磁力はさらに向上する。
In the sintering method (1), an alloy ingot is produced by melting and casting, and is crushed into magnet powder having a particle size of about 6 μm. Magnetic powder is mixed with a binder, which serves as a molding aid, and press-molded in a magnetic field to complete a molded product. The compact is sintered in argon at a temperature around 1100° C. for 1 hour and then rapidly cooled at room temperature. After sintering, 600
Coercive force is further improved by heat treatment at a temperature around ℃.

(2)は、まず急冷博帝裏逍装置の最適な回転数でR−
Fe−B@−金の急冷薄帯を作る。得られた薄。
(2) First, R-
Make Fe-B@-gold quenched ribbon. The resulting thinness.

帯は厚さ50μmのリボン状をしておシ、直径が100
0又以下の多結晶が集合している。薄帯は脆くて割れや
すく、結晶粒は等方向に分布しているので磁気的にも等
方性である。こり薄帯を適度な粒度にして、樹脂と混練
してプレス成形すれば7tb 可能となる。
The band is ribbon-shaped with a thickness of 50 μm and a diameter of 100 μm.
Polycrystals with less than 0 points are gathered. The ribbon is brittle and easily cracked, and since the crystal grains are distributed in the same direction, it is also magnetically isotropic. 7 tb can be made by making the stiff ribbon into an appropriate particle size, kneading it with resin, and press-molding it.

(3)の製造方法は、始めにリボン状の急冷薄帯あるい
は薄帯の片を、真空中あるいは不活性雰囲気中で約70
0℃で予備加熱し几グラファイトあるいは他の耐熱用の
プレス型に入れる。該リボンが所望の温度に到達したと
き一軸の圧力が加えられる。温度、時間は特定しないが
、充分な塑性が出る悄件としてT=725±250℃、
圧力はPN2、41;on / d程度が適している。
In the manufacturing method (3), first, a ribbon-like quenched ribbon or piece of ribbon is heated in a vacuum or in an inert atmosphere for about 70 minutes.
Preheat at 0°C and place in a press mold made of graphite or other heat-resistant material. Uniaxial pressure is applied when the ribbon reaches the desired temperature. Although the temperature and time are not specified, the conditions for achieving sufficient plasticity are T = 725 ± 250 °C,
A suitable pressure is about PN2,41;on/d.

この段階では磁石はわずかにプレス方向に配向している
とはいえ、全体的には等方性である。次のホットプレス
は、大面積を有する氾で行なわれる。最も一般的には7
00℃で17 tonで数秒間プレスする。すると試料
は最初の厚みの14になシブレス方向と平行に磁化容易
軸が配向してきて、合金は異方性化する。
At this stage, although the magnet is slightly oriented in the pressing direction, it is generally isotropic. The next hot press is carried out in a flood with a large area. most commonly 7
Press at 17 tons for a few seconds at 00°C. Then, the axis of easy magnetization of the sample becomes oriented parallel to the shiveless direction at the initial thickness of 14, and the alloy becomes anisotropic.

これらの工程は、二段階ホットプレス法(two−at
ags hot −press procedure 
)と呼ばれている、この方法により緻密で異方性を有す
るR−Fe−B磁石が製造できる。なお、最初のメルト
スピニング法で作られるリボンM帝の結晶粒は、それが
最大の保磁力を示す時の粒径よりも小さめにしておき、
後にホットプレス中に結晶粒の粗大化が生じて最適の粒
径になるようにしておく。
These steps are performed using a two-step hot press method (two-at-one).
ags hot-press procedure
), a dense and anisotropic R-Fe-B magnet can be produced by this method. In addition, the ribbon M crystal grains made by the first melt spinning method are made smaller than the grain size when they exhibit the maximum coercive force.
Afterward, the crystal grains are coarsened during hot pressing so that they have the optimum grain size.

〔発明が解決しようとする問題点] 上述した従来技術で、R−Fe−B系の磁石は一応作製
できるのであるが、これらの技術を利用した製造方法は
次のような欠点を有している。(1)の焼結法は、合金
を粉末にするのが必須であるが、R−Fe−B系合金は
たいへん酸素に対して活性であるので、粉末化すると余
計酸比が徹しくなり、焼結体中の酸素濃度はどうしても
高くなってし1つ。また粉末を成形するときに、例えば
ステアリン酸亜鉛のような成形助剤を使用しなければな
らず、これは焼結工程で前もってFll、4)除かれる
のであるか、数割は磁石体の中に炭素の形で残ってし1
う。この炭素は著しくR−kP’e−Bの磁気性能を低
下させる。成形助剤ヲ別えてプレス成形した後の成形体
はグリーン体と言われる。これはたいへん脆く、ハンド
リングが熾しい。従って焼結炉にきれいに並べて入れる
のには、相当の手間がかかることも大きな欠点である。
[Problems to be Solved by the Invention] Although R-Fe-B magnets can be manufactured using the above-mentioned conventional techniques, manufacturing methods using these techniques have the following drawbacks. There is. In the sintering method (1), it is essential to turn the alloy into powder, but since R-Fe-B alloys are very active against oxygen, turning them into powder makes the acid ratio even more severe. The oxygen concentration in the sintered body inevitably increases. Also, when molding the powder, a molding aid such as zinc stearate must be used, and this is removed in advance during the sintering process, or some percentage of it is contained in the magnet. remains in the form of carbon 1
cormorant. This carbon significantly reduces the magnetic performance of R-kP'e-B. The molded body after press molding without the molding aid is called a green body. This is very fragile and difficult to handle. Therefore, another major drawback is that it takes a considerable amount of effort to neatly arrange them in the sintering furnace.

これらの欠点があるので一般的に言ってR−Fe−B系
の焼結磁石の製造には、高価な設X#が必要になるばか
シでなく、生産効率が悪く%磁石の製造費が高くなって
しまう。従って、R−Fe−B系磁石の原料費の安さを
充分に引き出せる製造法とは言い難い。
Because of these drawbacks, generally speaking, the production of R-Fe-B sintered magnets does not only require expensive equipment, but also has low production efficiency and low magnet production costs. It gets expensive. Therefore, it cannot be said that this is a manufacturing method that can fully take advantage of the low raw material costs of R-Fe-B magnets.

(2)と(3)の製造法は、真空メルトスピニング装置
を使う。この装置は現在では、たいへん生産性が悪くし
かも高価である。(2)では原理的に等方性であるので
低エネルギー積であシ、ヒステリシスループの角形性も
よくないので温度特性に対しても。
Production methods (2) and (3) use a vacuum melt spinning device. This equipment is currently very unproductive and expensive. In (2), since it is isotropic in principle, the energy product is low, and the squareness of the hysteresis loop is not good, so it also has a negative effect on temperature characteristics.

使用する向においても不利である。(3)の方法は。It is also disadvantageous in terms of use. What is the method for (3)?

ホットプレスを2段階に使うというユニークな方法であ
るが、実際に量産を考えるとたいへん非効率になること
は否めないであろう。
Although this method uses a hot press in two stages, it is a unique method, but it cannot be denied that it is extremely inefficient when considering mass production.

本発明によるR−Fe−B系磁石の製造方法はこれらの
欠点を解決するものであシ、その目的とするところは、
低コストでしかも高性能な磁石を提供するところにある
The method of manufacturing an R-Fe-B magnet according to the present invention solves these drawbacks, and its purpose is to:
Our goal is to provide low-cost, high-performance magnets.

〔問題を解決するための手段〕[Means to solve the problem]

、本発明の永久磁石は希土頌−鉄系永久磁石に関するも
のであシ、具体的にはRが8〜25原子係。
The permanent magnet of the present invention relates to a rare earth iron-based permanent magnet, and specifically R is 8 to 25 atoms.

Bが2〜8原子憾、Co〜40%、残部が鉄及びその他
の梨遺上不可避な不純物から成る合金全溶解し、その鋳
造マクロ組織が柱状晶となるように@遺した後、該鋳造
インゴットを500℃以上の温度で熱処理することによ
シ、磁気的に硬化させることを特徴とし、樹脂納会磁石
化のためには、水素粉砕により結晶格子に与える歪を軽
減して。
An alloy consisting of 2 to 8 atoms of B, ~40% Co, and the remainder iron and other unavoidable impurities is completely melted, and the casting is left so that the macrostructure of the casting becomes a columnar crystal. It is characterized by magnetically hardening the ingot by heat-treating it at a temperature of 500°C or more, and in order to make a resin magnet, the strain on the crystal lattice is reduced by hydrogen pulverization.

有機物樹脂及びゴムと混線せしめることを特徴として、
低コス[1脂結会磁石化のためには、フェライト粉末と
混合することを特徴とする。
Characterized by the fact that it mixes with organic resin and rubber,
For low cost [1 fat bond magnetization, it is characterized by being mixed with ferrite powder.

前記のように現存の希土類−鉄系永久磁石の製造方法で
ある焼結法・急冷法はそれぞれ粉砕による粉末管理の困
難さ、生産性の悪さといった大きな欠点を有している。
As mentioned above, the existing methods of manufacturing rare earth-iron permanent magnets, the sintering method and the quenching method, each have major drawbacks such as difficulty in powder control through pulverization and poor productivity.

本発明者らは、これらの欠点を改良する之めバルク状態
で保磁力を得ることができるような合金の研究に着手し
、前記のような組成においてバルク状態での保磁力の獲
得が可能であシ、このとき鋳造組織が柱状晶となるよう
にすると保磁力が得やすく、かつ柱状晶の異方性を利用
することにより異方性磁石となるので、等軸晶を用いる
よシも、よシ高性能な永久磁石が得られることを発明し
た。鋳造インゴットを粉砕する必要がないので、焼結法
はどの厳密な雰囲気管理を行なう必要はなく、熱処理に
もベルト炉のような量産性の高い炉が使用でき、設備費
は大きく低減される。同系統の研究には、三保広晃他(
日本金属学会、昭和60年度秋期講演会、購演番号(5
714,) )があるが同研究は本発明と組成域を異に
するのみならず、マクロ組織による性能変化については
一切言及しておらず、性能的にも本発明に大きく劣って
いる。また磁気的に硬化せしめた後。
In order to improve these drawbacks, the present inventors began research on an alloy that can obtain coercive force in the bulk state, and found that it is possible to obtain coercive force in the bulk state with the above composition. At this time, it is easier to obtain coercive force if the casting structure is columnar crystals, and an anisotropic magnet can be obtained by utilizing the anisotropy of columnar crystals, so it is also possible to use equiaxed crystals. He invented a permanent magnet with high performance. Since there is no need to crush the cast ingot, the sintering method does not require any strict atmosphere control, and a furnace with high mass productivity such as a belt furnace can be used for heat treatment, greatly reducing equipment costs. Similar studies include Hiroaki Miho et al.
Japan Institute of Metals, 1985 Autumn Lecture, Purchase number (5
714, )), but this research not only differs in the composition range from the present invention, but also makes no mention of changes in performance due to macrostructure, and is significantly inferior to the present invention in terms of performance. Also after being magnetically hardened.

求める形状を得るための二次加工も、本系の場合、従来
のサマリウムコバルト系希土類磁石に比して曲げ強さ・
圧縮強さ等が大きいので非常にやりや丁いO また本発明は、at脂結合磁石への応用も可能である。
In the case of this system, secondary processing to obtain the desired shape is also possible, with bending strength and strength compared to conventional samarium cobalt rare earth magnets.
Since the compressive strength is high, it is very difficult to use.The present invention can also be applied to AT fat bonded magnets.

前述の従来技術(2)の急冷法を利用する樹脂結合型R
−Fe−B系磁石は、低性能・高コストという大きな欠
点を有している。また参考文献1に代表されるNd、、
Fe、、Bl、  といった高B組成では、焼結により
10 KOe程度の保磁力iHcを得たものでも、樹脂
結合化のために粉砕するとI KOe程度に低下してし
まい良好な樹脂結合磁石はつくれない。ところが本発明
になる合金では、結晶格子に与える歪の小さな水素粉砕
を用いれば、粉末状態でもかなりの保磁力が維持され、
磁場配向も可能となるので異方性樹脂納会磁石の作成も
可能となる。樹脂結合型磁石でも、熱可塑性樹脂等を用
いる射出成形の場合、2Co〜500℃という高温での
混練・磁場配向が必要になるが、通常の単純6元系R−
Fθ−B磁石の場会、キュリ一点が500℃程匪しかな
く高温では配向が困難になる。本系の場合、コバルトを
添加することによりキュリ一点金上昇させても、バルク
状態・粉末状態ともiHcか無添加の組成に比して維持
されやすいので射出成形による樹脂結合磁石も容易に製
造できる。
Resin-bonded type R using the rapid cooling method of the prior art (2) mentioned above
-Fe-B magnets have major drawbacks of low performance and high cost. In addition, Nd, as represented by Reference 1,
With high B compositions such as Fe, Bl, etc., even if a coercive force iHc of about 10 KOe is obtained by sintering, the coercive force iHc decreases to about I KOe when crushed for resin bonding, making it difficult to make a good resin bonded magnet. do not have. However, in the alloy of the present invention, if hydrogen pulverization is used, which causes less strain on the crystal lattice, a considerable coercive force can be maintained even in the powder state.
Since magnetic field orientation is also possible, it is also possible to create anisotropic resin magnets. Even with resin-bonded magnets, in the case of injection molding using thermoplastic resin, etc., kneading and magnetic field orientation at high temperatures of 2Co to 500°C are required, but ordinary simple six-element R-
In the case of Fθ-B magnets, one Curie point is only about 500° C., making orientation difficult at high temperatures. In the case of this system, even if the gold is increased by one point by adding cobalt, both the bulk and powder states are more easily maintained than iHc or additive-free compositions, so resin-bonded magnets can be easily manufactured by injection molding. .

現存の射出成形磁石はフェライト(BI(積1〜1.5
MGOe)  とサウリウムコバルト(BH積6〜12
0e)に大別される。しかしフェライトタイプは低コス
トながら低性能・サマリウムコバルトタイプは高性能な
がら高コストというように一長一短を有しており、両者
の中間的な磁石は存在しない。将に最近の軽薄短小の傾
向によシフエライトタイプでは性能が不足するものの、
サマリウムコバルトタイプではコスト的に合わないのみ
ならず、性能的に高すぎて代替が効かないという分野が
多い。こういった分野には本系磁石粉末とフェライト粉
末を混合し九粉末を射出成形すると適切な性能を低コス
トで得ることが容易となる。フェライト粉末はキュリ一
点が450℃程度で、単純5元系のR−Pe−B粉末で
は、キュリ一点差が150℃近くあるので混合粉末の同
時混練・配向は困難だが、本系の34脅コバルト全10
〜15%程度低下しても、実用上と問題となるほどiH
cの低下はきたさず、キュリ一点シまフェライトとほぼ
同様な1直に高するりで、全く単一粉本として扱える。
Existing injection molded magnets are made of ferrite (BI (product: 1 to 1.5)
MGOe) and saurium cobalt (BH product 6 to 12
0e). However, the ferrite type has advantages and disadvantages, such as low cost but low performance, and samarium cobalt type high performance but high cost, and there is no intermediate magnet between the two. Due to the recent trend towards lighter, thinner, shorter and smaller metals, although the performance of the Siphelite type is lacking,
In many fields, the samarium cobalt type is not only cost-effective, but also too expensive to replace. In these fields, appropriate performance can be easily obtained at low cost by mixing the present magnet powder and ferrite powder and injection molding the powder. For ferrite powder, the Curie point temperature is approximately 450°C, and for simple five-element R-Pe-B powder, the Curie point difference is nearly 150°C, making it difficult to simultaneously knead and orient the mixed powder. Total 10
Even if the iH decreases by about 15%, it becomes a practical problem.
There is no drop in c, and it has a straight high rise, almost the same as cucumber single point sima ferrite, so it can be treated as a single powder.

これら樹脂結会用R−Fe−B粉宋は酸化されやすいの
で樹脂と混練する前に表面処理を施し、酸化防止ととも
に樹脂との結合力の増強をはかることができる。フェラ
イト粉末と混合する場合には、樹脂との結合力という而
からフェライト粉末にも同様な表面処理が必要である。
Since these R-Fe-B powders for resin binding are easily oxidized, they can be surface-treated before being kneaded with the resin to prevent oxidation and to enhance the bonding force with the resin. When mixed with ferrite powder, similar surface treatment is required for the ferrite powder due to its bonding strength with the resin.

従来のR−Fe=B系磁石の組成は、前記参考文献1に
代表されるR、gFe、7 Bgである、この組成はR
−Fe−B系磁石の主相R,Fe、4B化合物を原子百
分率で表わした組成R+t、tF’eat、a13s、
o  に比してR−B両元素に富む側に移行している。
The composition of a conventional R-Fe=B magnet is R, gFe, and 7 Bg, as typified by reference 1 mentioned above.
-Composition R+t, tF'eat, a13s of the main phase R, Fe, and 4B compounds of the Fe-B magnet expressed in atomic percentages,
It has shifted to the side rich in both R and B elements compared to o.

これは保磁力を得るためには主相のみでなくRrich
相、 Br1ch相と呼ばれる非磁性相が必要であると
いう点から説明されている、ところが本発明による組成
ではこれとは逆にBが少ない側に移行したところにピー
ク値が存在する。この組成域では焼結法によると、保磁
力が低減するので、これまであ1シ問題にされていなか
った。しかし鋳造直後のバルク状態では本組成域でのみ
高保磁力が得られ、通常のBに富む側では十分な保磁力
が得られない。このことは、保磁力機構になんらかの変
化が起つ几ことを意味し、それが原因で、水素粉砕によ
れば実用上十分な保磁力kWする粉末の#!遺が可能に
なったと考えられる。
This means that in order to obtain coercive force, not only the main phase but also Rrich
However, in the composition according to the present invention, on the contrary, a peak value exists where the amount of B is shifted to the side where there is less B. In this composition range, the coercive force is reduced by the sintering method, so this has not been considered a problem until now. However, in the bulk state immediately after casting, a high coercive force can be obtained only in this composition range, and a sufficient coercive force cannot be obtained in the normal B-rich side. This means that some change has occurred in the coercive force mechanism, and this is the reason why hydrogen milling produces powder with a practically sufficient coercive force of kW. It is thought that the legacy became possible.

永久磁石材料に柱状晶を用いることけアルニコ磁石を初
め、希土類磁石系のサマリウム−コバルト磁石でも行な
われておシ、本発明者のひとI)はすでに1981年、
樹脂結合型サマリウムコバルト磁石への応用として発表
している( T、Shimoda他、Pr0ceθdi
ngs of the fifth jnterhat
ianalWorkshop on Rare Ear
th−Cobalt Pern+orentMagre
ts、1981 、P595)。
The use of columnar crystals as a permanent magnet material has been used not only for alnico magnets but also for samarium-cobalt magnets, which are rare earth magnets.
It has been announced as an application to resin bonded samarium cobalt magnets (T, Shimoda et al., Pr0ceθdi
ngs of the fifth jnterhat
ianalWorkshop on Rare Ear
th-Cobalt Pern+orentMagre
ts, 1981, P595).

本発明においても鋳造状態で柱状晶を得ることは高性能
磁石化を重要点となっている。すなわち、熱処理によっ
て保磁力を得る過程が拡散によるものであり、サマリウ
ムコバルトと同様、柱状晶による方が保磁力が得やすい
。さらに本系磁石は。
In the present invention as well, obtaining columnar crystals in a cast state is an important point for producing a high-performance magnet. That is, the process of obtaining coercive force through heat treatment is due to diffusion, and like samarium cobalt, it is easier to obtain coercive force with columnar crystals. Furthermore, this type of magnet.

柱状晶に垂直な面に磁化容易軸が配向する性質があるの
で、柱状晶を利用すれば面内異方性磁石を作成すること
ができる。
Since the axis of easy magnetization is oriented in a plane perpendicular to the columnar crystals, it is possible to create an in-plane anisotropic magnet by using columnar crystals.

以下、本発明による永久磁石の組成限定理由を説明する
。希土類としては、Y、La、Oe、Pr、Nd。
The reasons for limiting the composition of the permanent magnet according to the present invention will be explained below. Rare earths include Y, La, Oe, Pr, and Nd.

Ss、Fu、Gd、Tb、Dy、Ho、In、Tm、Y
b、Luが候補として挙げられ、これらのうちの1種あ
るいは1種以上を組み合わせて用いられる。最も高い磁
気特性はPrで得られる。従って実用的にはPr。
Ss, Fu, Gd, Tb, Dy, Ho, In, Tm, Y
b, Lu are listed as candidates, and one or more of these may be used in combination. The highest magnetic properties are obtained with Pr. Therefore, Pr practically.

Pr−H6合金、Ce−Pr−Nd合金等が用いられる
Pr-H6 alloy, Ce-Pr-Nd alloy, etc. are used.

また少量の派別元素、例えば重希土元素のDy−Tb等
や成、Mo、81等は保磁力の向上に有効である。
Further, a small amount of a substituent element such as heavy rare earth elements such as Dy-Tb, Mo, 81, etc. is effective in improving the coercive force.

R−Fe−B系磁石の主相はR21Pe、、Bである。The main phase of the R-Fe-B magnet is R21Pe, B.

従ってRか8原子係未満では、もはや上記化合物を形成
せず、α−鉄と同一構造q立方晶組織となるため高磁気
特性は得られない。−万Rが25原子係を越えると非磁
性のRrich相が多くない磁気特性は著しく低下する
。よって只の範囲は、8〜25原子%が適当である。
Therefore, if R is less than 8 atoms, the above compound is no longer formed and the structure becomes a q-cubic crystal structure, which is the same as that of α-iron, so that high magnetic properties cannot be obtained. - If R exceeds 25 atoms, the magnetic properties, which do not have a large amount of non-magnetic Rrich phase, will be significantly degraded. Therefore, a suitable range is 8 to 25 atom %.

Bは、R,Fe14B相全形成するための必須元素であ
シ、2原子俤未満では菱面体のR−Fe系になるた、め
高保磁力は漬めない。しかし従来の焼結法による磁石の
ように8原子チ以上も添加すると、逆に鋳造状態での保
磁力は得られなくなってし1う。
B is an essential element for forming all the R and Fe14B phases, and if it is less than two atoms, it becomes a rhombohedral R-Fe system, so a high coercive force cannot be obtained. However, if 8 or more atoms are added, as in the conventional sintered magnet, the coercive force in the cast state cannot be obtained.

従ってBの量は2〜8原子係が範囲として適している。Therefore, a suitable range for the amount of B is 2 to 8 atoms.

COはキュリ一点の上昇や温度特性の改良に有用な元素
であるが、姫加量ヲ増すに従って保磁力を減する傾向を
有する。またCoを増すと本系磁石の特徴であるところ
の低コスト・加工のしやすさが失なわれる。これらの点
からCotは〜4゜原子%が範囲として適している。
CO is an element useful for raising the Curie point and improving temperature characteristics, but it tends to reduce the coercive force as the amount increases. Furthermore, when the Co content is increased, the low cost and ease of processing, which are the characteristics of this magnet, are lost. From these points of view, a suitable range for Cot is 4° at %.

〔実施例1〕 本発明による製造工程図を第1図に示す。まず所望の組
成の合金を誘導炉で溶解し、鉄鋳をに鋳造し、柱状晶を
形成せしめる。次にインゴットを磁気的に硬化させるt
め5Co〜1,050 tl:の温度範囲でアニール処
理を施す。鋳造タイプの場合は、この段階で切断・研削
を施せば、柱状晶の異方性を利用した面内異方性磁石と
なる。樹脂結合タイプの場合は室温において18−8ス
テンレス)In製、高圧容器中、50気圧程度の水素ガ
ス雰囲気のもとに24時間程度保持することによυ粉砕
し、フェライト粉末を混合する場合はこの段階で混合し
1表面処理を施した後、樹脂と混練し、射出成形する。
[Example 1] A manufacturing process diagram according to the present invention is shown in FIG. First, an alloy with a desired composition is melted in an induction furnace, and iron is cast to form columnar crystals. The ingot is then magnetically hardened.
Annealing treatment is performed in a temperature range of 5Co to 1,050 tl. In the case of a cast type, if cutting and grinding are performed at this stage, it will become an in-plane anisotropic magnet that takes advantage of the anisotropy of columnar crystals. In the case of the resin bonded type, it is made of 18-8 stainless steel (In) at room temperature, and is ground by holding it in a hydrogen gas atmosphere of about 50 atm for about 24 hours in a high-pressure container. When mixing ferrite powder, After mixing and surface treatment at this stage, it is kneaded with resin and injection molded.

次なる表の組成を溶層し、第1図に示す方法で鋳造面内
異方性磁石と水素粉砕後、エポキシ樹脂を4重量幅混練
した樹脂結合磁石を作成した。
A resin-bonded magnet was prepared by melting the composition shown in the following table and pulverizing a cast in-plane anisotropic magnet with hydrogen using the method shown in FIG. 1, followed by kneading 4 weight widths of epoxy resin.

第1表 なおアニールはすべて1000℃x2a時間行った。得
られた結果を第2表に示す。
Table 1 Note that all annealing was performed at 1000° C. for 2 hours. The results obtained are shown in Table 2.

第2表 なお比較例としてN(L、、Feyy Bs (従来技
術の代表的組成)に同様の処理を施した例をかがげた。
Table 2 also shows an example in which N(L, Feyy Bs (a typical composition of the prior art) was subjected to the same treatment as a comparative example).

〔実施例2〕 原子比でCel N d4 F !”4 F e61A
4400H1B4  で表わされる組成の合金(本合金
はキュリー魚釣450℃を有する)を実施例1と同様な
水素粉砕を施した後ストロンチウムフエライ粉末60w
t%と酸化を防ぐため有機溶媒中で混合した後、以下の
表面処理f施した。まずPH10重クロム酸カリウムで
粉末を処理し、粉末の表面に0rlO,の被膜を形成さ
せ、次にシランカップリング剤処理を行った◎続いて該
混合粉末90wt%とナイロン12(1owt%)を2
50℃で混練して、該混会物を磁場射出成形した。
[Example 2] Cel N d4 F in atomic ratio! ”4 F e61A
An alloy having a composition represented by 4400H1B4 (this alloy has a Curie temperature of 450°C) was subjected to hydrogen pulverization in the same manner as in Example 1, and then 60w of strontium ferrite powder was obtained.
After mixing with t% in an organic solvent to prevent oxidation, the following surface treatment f was performed. First, the powder was treated with PH10 potassium dichromate to form a film of 0rlO on the surface of the powder, and then treated with a silane coupling agent. ◎Next, 90wt% of the mixed powder and nylon 12 (1wt%) were added. 2
After kneading at 50° C., the mixture was subjected to magnetic field injection molding.

得られた性能は以下のとおシである。The performance obtained is as follows.

Br=4.5KG Mc=4゜0KG (BH)a+ax= 42 MGOe フェライト焼結磁焼結磁石性能が射出成形法によって達
成されたことがわかる。
Br=4.5KG Mc=4°0KG (BH)a+ax=42 MGOe It can be seen that the performance of the sintered ferrite magnetic sintered magnet was achieved by the injection molding method.

〔発明の効果〕〔Effect of the invention〕

以上述べたように不発明によれば、従来の焼結法では保
磁力1Hcの得られなかった組成域でバルク状態のまま
保磁力を得ることができ、粉砂・焼結等の不要な@遺希
土類−鉄系永久磁石が得られる。さらに水素粉砕によれ
ば、粉末状態でも保磁力が維持されるので、高性能・低
コストな樹脂結合型磁石が得られ、この粉末をフェライ
ト粉末と混合すれば、フェライトポンド磁石より高性能
な樹脂結合磁石が容易に得られる。
As described above, according to the invention, it is possible to obtain a coercive force in the bulk state in a composition range where a coercive force of 1Hc could not be obtained with the conventional sintering method, and there is no need for powder sand, sintering, etc. A rare earth-iron permanent magnet is obtained. Furthermore, with hydrogen pulverization, coercive force is maintained even in the powder state, so a high-performance, low-cost resin-bonded magnet can be obtained.If this powder is mixed with ferrite powder, a resin-bonded magnet with higher performance than ferrite pound magnets can be obtained. Coupled magnets are easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1内は本発明’/)R−Fe−B系磁石の製造工程図
。 以   上 他1名
The first one is a manufacturing process diagram of the present invention'/) R-Fe-B magnet. Above and 1 other person

Claims (3)

【特許請求の範囲】[Claims] (1)原子百分率においてR8〜25%(但しRはYを
含む希土類元素の少なくとも1種)、B2〜8%、Co
〜40%、及び残部が鉄及びその他の製造上不可避な不
純物からなる合金を溶解し、その鋳造マクロ組織が柱状
晶となるように鋳造した後、該鋳造インゴットを500
℃以上の温度で熱処理することにより磁気的に硬化させ
ることを特徴とする希土類−鉄系永久磁石。
(1) In terms of atomic percentage, R8 to 25% (R is at least one rare earth element including Y), B2 to 8%, Co
After melting the alloy consisting of ~40% and the balance consisting of iron and other impurities unavoidable in manufacturing, and casting the cast ingot so that the cast macrostructure becomes a columnar crystal, the cast ingot is
A rare earth-iron permanent magnet characterized by being magnetically hardened by heat treatment at a temperature of ℃ or higher.
(2)前記インゴットを粉砕した磁石粉末をそのままあ
るいは適当な表面処理を施した後有機物樹脂またはゴム
と混練したことを特徴とする特許請求の範囲第1項記載
の希土類−鉄系永久磁石。
(2) The rare earth-iron permanent magnet according to claim 1, wherein the magnet powder obtained by pulverizing the ingot is kneaded with an organic resin or rubber as it is or after an appropriate surface treatment.
(3)強磁性フエライト粉末を混合することを特徴とす
る特許請求の範囲第2項記載の希土類−鉄系永久磁石。
(3) The rare earth-iron permanent magnet according to claim 2, characterized in that it is mixed with ferromagnetic ferrite powder.
JP61041006A 1986-02-26 1986-02-26 Rare earth ferrous iron permanent magnet manufacturing method Expired - Lifetime JP2558095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041006A JP2558095B2 (en) 1986-02-26 1986-02-26 Rare earth ferrous iron permanent magnet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041006A JP2558095B2 (en) 1986-02-26 1986-02-26 Rare earth ferrous iron permanent magnet manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5037056A Division JP2730441B2 (en) 1993-02-25 1993-02-25 Manufacturing method of alloy powder for permanent magnet

Publications (2)

Publication Number Publication Date
JPS62198103A true JPS62198103A (en) 1987-09-01
JP2558095B2 JP2558095B2 (en) 1996-11-27

Family

ID=12596306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041006A Expired - Lifetime JP2558095B2 (en) 1986-02-26 1986-02-26 Rare earth ferrous iron permanent magnet manufacturing method

Country Status (1)

Country Link
JP (1) JP2558095B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0288637A2 (en) * 1987-04-30 1988-11-02 Seiko Epson Corporation Permanent magnet and method of making the same
EP0348038A2 (en) * 1988-06-20 1989-12-27 Seiko Epson Corporation Manufacturing method of a permanent magnet
JPH06112025A (en) * 1993-02-25 1994-04-22 Seiko Epson Corp Alloy for permanent magnet
EP0599815A1 (en) * 1987-04-30 1994-06-01 Seiko Epson Corporation Magnetic alloy and method of making the same
US5460662A (en) * 1987-04-30 1995-10-24 Seiko Epson Corporation Permanent magnet and method of production
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
US7207102B1 (en) * 2004-04-01 2007-04-24 Sandia Corporation Method for forming permanent magnets with different polarities for use in microelectromechanical devices
CN108122652A (en) * 2017-12-19 2018-06-05 北京京磁电工科技有限公司 The special preparation technique of Sintered NdFeB magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725004B2 (en) 1986-04-30 1998-03-09 セイコーエプソン株式会社 Manufacturing method of permanent magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177101A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Production of permanent magnet material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177101A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Production of permanent magnet material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5597425A (en) * 1985-08-13 1997-01-28 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5538565A (en) * 1985-08-13 1996-07-23 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5560784A (en) * 1985-08-13 1996-10-01 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US5565043A (en) * 1985-08-13 1996-10-15 Seiko Epson Corporation Rare earth cast alloy permanent magnets and methods of preparation
US6136099A (en) * 1985-08-13 2000-10-24 Seiko Epson Corporation Rare earth-iron series permanent magnets and method of preparation
EP0599815A1 (en) * 1987-04-30 1994-06-01 Seiko Epson Corporation Magnetic alloy and method of making the same
US5460662A (en) * 1987-04-30 1995-10-24 Seiko Epson Corporation Permanent magnet and method of production
EP0288637A2 (en) * 1987-04-30 1988-11-02 Seiko Epson Corporation Permanent magnet and method of making the same
US5536334A (en) * 1988-06-02 1996-07-16 Seiko Epson Corporation Permanent magnet and a manufacturing method thereof
EP0348038A2 (en) * 1988-06-20 1989-12-27 Seiko Epson Corporation Manufacturing method of a permanent magnet
JPH06112025A (en) * 1993-02-25 1994-04-22 Seiko Epson Corp Alloy for permanent magnet
US7207102B1 (en) * 2004-04-01 2007-04-24 Sandia Corporation Method for forming permanent magnets with different polarities for use in microelectromechanical devices
CN108122652A (en) * 2017-12-19 2018-06-05 北京京磁电工科技有限公司 The special preparation technique of Sintered NdFeB magnet

Also Published As

Publication number Publication date
JP2558095B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
JPH01704A (en) Rare earth-iron permanent magnet
JPS62198103A (en) Rare earth-iron permanent magnet
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
EP0288637A2 (en) Permanent magnet and method of making the same
JPH023201A (en) Permanent magnet
JPH023206A (en) Rare earth-iron system permanent magnet
JPH04143221A (en) Production of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JPH0562815A (en) Permanent magnet and manufacturing method thereof
JPS62257703A (en) Resin-bonded magnetic material
JP2611221B2 (en) Manufacturing method of permanent magnet
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH01171219A (en) Manufacture of permanent magnet integral with york
JPH0422104A (en) Method of manufacturing permanent magnet
JPH023203A (en) Permanent magnet and its manufacture
JPS63287005A (en) Permanent magnet and manufacture thereof
JPS63287007A (en) Manufacture of permanent magnet
JPH0422105A (en) Method of manufacturing permanent magnet
JPH04134806A (en) Manufacture of permanent magnet
JPH0527241B2 (en)
JPH023214A (en) Manufacture of permanent magnet
JPS63107009A (en) Manufacture of permanent magnet

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term