JPH06112025A - Alloy for permanent magnet - Google Patents

Alloy for permanent magnet

Info

Publication number
JPH06112025A
JPH06112025A JP5037056A JP3705693A JPH06112025A JP H06112025 A JPH06112025 A JP H06112025A JP 5037056 A JP5037056 A JP 5037056A JP 3705693 A JP3705693 A JP 3705693A JP H06112025 A JPH06112025 A JP H06112025A
Authority
JP
Japan
Prior art keywords
alloy
magnet
cast
powder
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5037056A
Other languages
Japanese (ja)
Other versions
JP2730441B2 (en
Inventor
Koji Akioka
宏治 秋岡
Tatsuya Shimoda
達也 下田
Osamu Kobayashi
理 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5037056A priority Critical patent/JP2730441B2/en
Publication of JPH06112025A publication Critical patent/JPH06112025A/en
Application granted granted Critical
Publication of JP2730441B2 publication Critical patent/JP2730441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an alloy for a low-cost high-quality magnet having improved mechanical strength by a method wherein the alloy is composed of R, B and Co, having specific atomic percentage, and the remaining part consisting of Fe, and its cast macro-structure is formed into columnar crystal. CONSTITUTION:An alloy having the desired composition, namely, R of 8 to 25 atom %, B of 2 to 8 atom %, Co of 0 to 40 atom % and the remaining part consisting of iron and other inevitable impurities required for manufacture, is melted in an induction furnace, and the molten material is cast in such a manner that its cast macro-structure becomes columnar crystal. As a result a race earth-iron magnet alloy, which is effective for manufacturing the alloy using a sintering method, casting method and a resin bonding method, can be obtained. As a columnar crystal rate and magnetic characteristics are almost in a proportional relation, the sinterability of the title alloy can be enhanced by using a columnar crytal ingot having less segregation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄系永久磁石に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth-iron permanent magnet.

【0002】[0002]

【従来の技術】従来、R−Fe−B系の磁石の製造には
次の3通りの方法が報告されている。
2. Description of the Related Art Conventionally, the following three methods have been reported for producing R-Fe-B magnets.

【0003】(1)粉末治金法に基づく焼結法(参考文
献1)。
(1) Sintering method based on powder metallurgy (reference 1).

【0004】(2)アモルファス合金を製造するに用い
られる急冷薄帯製造装置で、厚さ30μm程度の急冷薄
片を作り、その薄片を樹脂結合法で磁石にする(参考文
献2)。
(2) A quenching ribbon manufacturing apparatus used for producing an amorphous alloy is used to produce a quenching foil having a thickness of about 30 μm, and the foil is made into a magnet by a resin bonding method (reference document 2).

【0005】(3)(2)の方法で使用した同じ薄片
を、2段階のホットプレス法で機械的配向処理を行なう
方法(参考文献2)。
(3) A method in which the same thin piece used in the method of (2) is subjected to mechanical orientation treatment by a two-step hot pressing method (reference document 2).

【0006】参考文献1 M.Sagawa,S.Fu
jimura,N.Togawa,H.Yamamot
o and Y.Matsuura;J.Appl.P
hys,Vol55(6),15 Maroh 198
4.P2083 参考文献2 R.W.Lee;Appl.Phys,L
ett.Vol.46(8).15 April 19
85,P790 文献に添って上記の従来技術を説明する。まず(1)の
焼結法では、溶解・鋳造により合金インゴットを作製
し、粉砕されて3μmくらいの粒径を有する磁石粉にさ
れる。磁石粉は成形助剤となるバインダーと混練され、
磁場中でプレス成形されて、成形体ができあがる。成形
体はアルゴン中で1100℃前後の温度で1時間焼結さ
れ、その後室温まで急冷される。焼結後、600℃前後
の温度で熱処理すると保磁力はさらに向上する。
Reference 1 M. Sagawa, S .; Fu
jimura, N .; Togawa, H .; Yamamot
o and Y. Matsuura; J. Appl. P
hys, Vol 55 (6), 15 Maroh 198.
4. P2083 Reference 2 R. W. Lee; Appl. Phys, L
ett. Vol. 46 (8). 15 April 19
85, P790 The above-mentioned conventional technique will be described. First, in the sintering method (1), an alloy ingot is produced by melting and casting, and is crushed into magnet powder having a particle size of about 3 μm. Magnet powder is kneaded with a binder that serves as a molding aid,
It is press-molded in a magnetic field to form a molded body. The molded body is sintered in argon at a temperature around 1100 ° C. for 1 hour, and then rapidly cooled to room temperature. After sintering, heat treatment at a temperature of around 600 ° C. further improves the coercive force.

【0007】(2)は、まず急冷薄帯製造装置の最適な
回転数でR−Fe−B合金の急冷薄帯を作る。得られた
薄帯は厚さ30μmのリボン状をしており、直径が10
00Å以下の多結晶が集結している。薄帯は脆くて割れ
やすく、結晶粒は等方的に分布しているので磁気的にも
等方性である、この薄帯を適度な粒度にして、樹脂と混
練してプレス成形すれば7ton/cm2程度の圧力
で、約85体積%の充填が可能となる。
In (2), first, a quenched ribbon of an R-Fe-B alloy is produced at an optimum rotation speed of a quenching ribbon manufacturing apparatus. The obtained ribbon has a ribbon shape with a thickness of 30 μm and a diameter of 10 μm.
Polycrystals of less than 00Å are concentrated. The ribbon is brittle and easy to crack, and the crystal grains are isotropically distributed so that it is magnetically isotropic. If this ribbon is made to have an appropriate grain size and kneaded with a resin and press-formed, it will be 7 tons. A pressure of about / cm 2 enables filling of about 85% by volume.

【0008】(3)の製造方法は、始めにリボン状の急
冷薄帯あるいは薄帯の片を、真空中あるいは不活性雰囲
気中で約700℃で予備加熱したグラファイトあるいは
他の耐熱用のプレス型に入る。該リボンが所望の温度に
到達したとき一軸の圧力が加えられる。温度、時間は特
定しないが、充分な塑性が出る条件としてT=725±
250℃、圧力はP〜1.4ton/cm2程度が適し
ている。この段階では磁石はわずかにプレス方向に配向
しているとはいえ、全体的には等方性である。次のホッ
トプレスは、大面積を有する型で行なわれる。最も一般
的には700℃で0.7tonで数秒間プレスする。す
ると試料は最初の厚みの1/2になりプレス方向と並行
に磁化容易軸が配向してきて、合金は異方性化する。こ
れらの工程は、二段階ホットプレス法(two−sta
ge hot−press procedure)と呼
ばれている、この方法により緻密で異方性を有するR−
Fe−B磁石が製造できる。なお、最初のメルトスピニ
ング法で作られるリボン薄帯の結晶粒は、それが最大の
保磁力を示す時の粒径よりも小さめにしておき、後にホ
ットプレス中に結晶粒の粗大化が生じて最適の粒径にな
るようにしておく。
In the manufacturing method (3), first, a ribbon-shaped quenched ribbon or a piece of ribbon is preheated at about 700 ° C. in a vacuum or an inert atmosphere, and graphite or another heat-resistant press die is used. to go into. Uniaxial pressure is applied when the ribbon reaches the desired temperature. The temperature and time are not specified, but T = 725 ±
It is suitable that the temperature is 250 ° C. and the pressure is about P to 1.4 ton / cm 2 . At this stage the magnets are generally isotropic although they are slightly oriented in the pressing direction. The next hot pressing is performed with a mold having a large area. Most commonly, press at 700 ° C. and 0.7 ton for a few seconds. Then, the sample becomes ½ of the initial thickness, the easy axis of magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic. These steps are based on a two-step hot press method (two-sta).
This method is called “ge hot-press procedure” and has a dense and anisotropic R-
Fe-B magnets can be manufactured. In addition, the crystal grains of the ribbon ribbon made by the first melt spinning method should be smaller than the grain size when it shows the maximum coercive force, and later the crystal grains become coarse during hot pressing. Make sure the particle size is optimal.

【0009】[0009]

【発明が解決しようとする課題】上述した従来技術で、
R−Fe−B系の磁石は一応製作できるのであるが、こ
れらの技術を利用した製造方法は次のような欠点を有し
ている。(1)の焼結法は、合金を粉末にするのが必須
であるが、R−Fe−B系合金はたいへん酸素に対して
活性であるので、粉末化すると余計酸化が激しくなり、
焼結体中の酸素濃度はどうしても高くなってしまう。ま
た粉末を形成するときに、例えばステアリン酸亜鉛のよ
うな形成助剤を使用しなければならず、これは焼結工程
で前もって取り除かれるのであるが、数割は磁石体の中
に炭素の形で残ってまう。この炭素は著しくR−Fe−
Bの磁気性能を低下させる。成形助剤を加えてプレス成
形した後の成形体はグリーン体と言われる。これはたい
へん脆く、ハンドリングが難しい。従って焼結炉にきれ
いに並べて入るのには、相当の手間がかかることも大き
な欠点である。これらの欠点があるので一般的に言って
R−Fe−B系の焼結磁石の製造には、高価な設備が必
要になるばかりでなく、生産効率が悪く、磁石の製造費
が高くなってしまう。従って、R−Fe−B系磁石の原
料費の安さを充分に引き出せる製造法とは言い難い。
With the above-mentioned conventional technique,
R-Fe-B magnets can be manufactured for the time being, but the manufacturing methods using these techniques have the following drawbacks. In the sintering method of (1), it is essential to make the alloy into powder, but since the R-Fe-B alloy is very active with respect to oxygen, when powdered, excessive oxidation will occur,
The oxygen concentration in the sintered body is inevitably high. Also, when forming the powder, a forming aid such as zinc stearate must be used, which has been removed beforehand during the sintering process, but a few tenths of the form of carbon in the magnet body. Let's remain. This carbon is significantly R-Fe-
It reduces the magnetic performance of B. The green body is the green body after press molding by adding a molding aid. It is very fragile and difficult to handle. Therefore, it takes a great deal of time to neatly line up in the sintering furnace, which is also a big drawback. Due to these drawbacks, generally speaking, not only expensive equipment is required for producing an R—Fe—B based sintered magnet, but also the production efficiency is poor and the manufacturing cost of the magnet is high. I will end up. Therefore, it is hard to say that this is a manufacturing method capable of sufficiently lowering the raw material cost of the R-Fe-B magnet.

【0010】(2)と(3)の製造法は、真空メルトス
ピニング装置を使う。この装置は現在では、たいへん生
産性が悪くしかも高価である。(2)では原理的に等方
性であるので低エネルギー積であり、ヒステリシスルー
プの角形性もよくないので温度特性に対しても、使用す
る向においても不利である。(3)の方法は、ホットプ
レスを2段階に使うというユニークな方法であるが、実
際に量産を考えるとたいへん非効率になることは否めな
いであろう。
The manufacturing methods (2) and (3) use a vacuum melt spinning device. This device is currently very unproductive and expensive. In (2), since it is isotropic in principle, it is a low energy product, and the squareness of the hysteresis loop is not good, so it is disadvantageous in terms of temperature characteristics and use. The method (3) is a unique method in which hot pressing is used in two steps, but it cannot be denied that it will be very inefficient when actually considering mass production.

【0011】本発明によるR−Fe−B系磁石の製造方
法はこれらの欠点を解決するものであり、その目的とす
るところは、低コストでしかも高性能な磁石を提供する
ところにある。
The method for producing an R-Fe-B magnet according to the present invention solves these drawbacks, and an object thereof is to provide a high-performance magnet at low cost.

【0012】[0012]

【課題を解決するための手段】本発明の永久磁石は、希
土類−鉄系永久磁石に関するものであり、具体的にはR
が8〜25原子%、Bが2〜8原子%、Co〜40%、
残部が鉄及びその他の製造上不可避な不純物からなる合
金を溶解し、その鋳造マクロ組織が柱状晶となるように
鋳造した後、該鋳造インゴットを500℃以上の温度で
熱処理することにより、磁気的に硬化させることを特徴
とし、樹脂結合磁石化のためには、水素粉砕により結晶
格子に与える歪を軽減して、有機物樹脂及びゴムと混練
せしめることを特徴として、低コスト樹脂結合磁石化の
ためには、フェライト粉末と混合することを特徴とす
る。
The permanent magnet of the present invention relates to a rare earth-iron-based permanent magnet, and specifically, R
Is 8 to 25 atomic%, B is 2 to 8 atomic%, Co is 40%,
The balance is iron and other alloys containing inevitable impurities are melted and cast so that the cast macrostructure becomes columnar crystals, and then the cast ingot is heat treated at a temperature of 500 ° C. or higher to obtain magnetic properties. In order to make a resin-bonded magnet, it is necessary to reduce the strain applied to the crystal lattice by hydrogen pulverization and to knead it with an organic resin and rubber. Is characterized by being mixed with ferrite powder.

【0013】前記のように現存の希土類−鉄系永久磁石
の製造方法である焼結法・急冷法は、それぞれ粉砕によ
る粉末管理の困難さ、生産性の悪さといった大きな欠点
を有している。本発明者らは、これらの欠点を改良する
ため、バルク状態で保磁力を得ることができるような合
金の研究に着手し、前記のような組成においてバルク状
態での保磁力の獲得が可能であり、このとき鋳造組織が
柱状晶となるようにすると保磁力が得やすく、かつ柱状
晶の異方性を利用することにより異方性磁石となるの
で、等軸晶を用いるよりも、より高性能な永久磁石が得
られることを発明した。鋳造インゴットを粉砕する必要
がないので、焼結法ほどの厳密な雰囲気管理を行なう必
要はなく、熱処理にもベルト炉のような量産性の高い炉
が使用でき、設備費は大きく低減される。同系統の研究
には、三保広晃他(日本金属学会、昭和60年度秋期講
演会、講演番号(544))があるが同研究は本発明と
組成域を異にするのみならず、マクロ組織による性能変
化については一切言及しておらず性能的にも本発明に大
きく劣っている。また磁気的に硬化せしめた後、求める
形状を得るための二次加工も、本系の場合、従来のサマ
リウムコバルト系希土類磁石に比して曲げ強さ・圧縮強
さ等が大きいので、非常にやりやすい。
As described above, the sintering method and the quenching method, which are existing manufacturing methods for rare earth-iron permanent magnets, have major drawbacks such as difficulty in powder management by pulverization and poor productivity. In order to improve these drawbacks, the present inventors have started research on an alloy capable of obtaining a coercive force in the bulk state, and it is possible to obtain the coercive force in the bulk state in the above composition. At this time, if the cast structure is made to be columnar crystals, coercive force is easily obtained, and the anisotropic magnet is formed by utilizing the anisotropy of the columnar crystals. Invented that a high-performance permanent magnet can be obtained. Since it is not necessary to crush the cast ingot, it is not necessary to perform strict atmosphere control as in the sintering method, and a furnace with high mass productivity such as a belt furnace can be used for heat treatment, and the equipment cost is greatly reduced. There is Hiroaki Miho et al. (The Japan Institute of Metals, Autumn 1994, Lecture No. (544)) in the study of the same strain, but the study not only differs from the present invention in the composition range, but also depends on the macro organization. It does not mention any change in performance, and is significantly inferior to the present invention in terms of performance. In addition, the secondary processing to obtain the desired shape after magnetically hardening is also extremely effective in this system because the bending strength, compressive strength, etc. are larger than those of the conventional samarium-cobalt rare earth magnet. Cheap.

【0014】また本発明は、樹脂結合磁石への応用も可
能である。前述の従来技術(2)の急冷法を利用する樹
脂結合型R−Fe−B系磁石は、低性能・高コストとい
う大きな欠点を有している。また参考文献1に代表され
るNd15Fe778といった高B組成では、焼結により
10KOe程度の保磁力iHcを得たものでも、樹脂結
合化のために粉砕すると、1KOe程度に低下してしま
い良好な樹脂結合磁石はつくれない。ところが本発明に
なる合金では、結晶格子に与える歪の小さな水素粉砕を
用いれば、粉末状態でもかなりの保磁力が維持され、磁
場配向も可能となるので異方性樹脂結合磁石の製作も可
能となる。樹脂結合磁石でも、熱可塑性樹脂等を用いて
射出成形の場合、200〜300℃という高温での混練
・磁場配向が必要になるが、通常の単純3元系R−Fe
−Bの場合、キュリー点が300℃程度しかなく高温で
は配向が困難になる。本系の場合、コバルトを添加する
ことによりキュリー点を上昇させても、バルク状態・粉
末状態ともiHcか無添加の組成に比して維持されやす
いので射出成形による樹脂結合磁石も容易に製造でき
る。
The present invention can also be applied to resin-bonded magnets. The resin-bonded R-Fe-B based magnet utilizing the quenching method of the above-mentioned conventional technique (2) has major drawbacks of low performance and high cost. Further, in a high B composition such as Nd 15 Fe 77 B 8 typified by Reference 1, even when a coercive force iHc of about 10 KOe was obtained by sintering, it was reduced to about 1 KOe when pulverized for resin bonding. As a result, good resin-bonded magnets cannot be made. However, in the alloy according to the present invention, if hydrogen pulverization with a small strain applied to the crystal lattice is used, a considerable coercive force is maintained even in the powder state and the magnetic field orientation is possible, so that it is possible to manufacture an anisotropic resin-bonded magnet. Become. In the case of resin-bonded magnets as well, in the case of injection molding using a thermoplastic resin or the like, kneading and magnetic field orientation at a high temperature of 200 to 300 ° C. are required, but ordinary simple ternary R-Fe
In the case of −B, the Curie point is only about 300 ° C., and orientation becomes difficult at high temperatures. In the case of this system, even if the Curie point is raised by adding cobalt, it is easier to maintain the bulk state and the powder state in both the bulk state and the powder state as compared to the composition without iHc or addition, so that a resin-bonded magnet by injection molding can be easily produced. .

【0015】現存の射出成形磁石はフェライト(BH積
1〜1.5MGOe)とサウリウムコバルト(BH積6
〜12Oe)に大別される。しかしフェライトタイプは
低コストながら低性能・サマリウムコバルトタイプは高
性能ながら高コストというように一長一短を有してお
り、両者の中間的な磁石は存在しない。特に最近の軽薄
短小の傾向によりフェライトタイプでは性能が不足する
ものの、サマリウムコバルトタイプではコスト的に合わ
ないのみならず、性能的に高すぎて代替が効かないとい
う分野が多い。こういった分野には本系磁石粉末とフェ
ライト粉末を混合した粉末を射出成形すると適切な性能
を低コストで得ることが容易となる。フェライト粉末は
キュリー点が450℃程度で、単純3元系のR−Fe−
B粉末では、キュリー点が150℃近くあるので混合粉
末の同時混練・配向は困難だが、本系の場合コバルトを
10〜15%程度低下しても、実用上と問題となるほど
iHcの低下はきたさず、キュリー点はフェライトとほ
ぼ同様な値に高まるので、全く単一粉末として扱える。
The existing injection-molded magnets are ferrite (BH product 1 to 1.5 MGOe) and sulium cobalt (BH product 6).
~ 12 Oe). However, the ferrite type has low cost and low performance, and the samarium-cobalt type has both advantages and costs, such as high performance, and there is no magnet between them. In particular, although the ferrite type lacks in performance due to the recent tendency toward lightness, thinness, shortness, and samarium-cobalt type, not only does it not match the cost, but there are many fields in which the performance is too high to substitute. In such fields, it becomes easy to obtain appropriate performance at low cost by injection molding a powder obtained by mixing the present system magnet powder and ferrite powder. The ferrite powder has a Curie point of about 450 ° C. and is a simple ternary R-Fe-
With powder B, the Curie point is close to 150 ° C., so it is difficult to simultaneously knead and orient the mixed powder, but in this system, even if the cobalt content is reduced by about 10 to 15%, the iHc will not be reduced enough to be a practical problem. However, the Curie point rises to almost the same value as ferrite, so it can be handled as a single powder.

【0016】これら樹脂結合用R−Fe−B粉末は酸化
されやすいので樹脂と混練する前に表面処理を施し、酸
化防止とともに樹脂との結合力の増強をはかることがで
きる。フェライト粉末と混合する場合には、樹脂との結
合力という面からフェライト粉末にも同な表面処理が必
要である。
Since these R-Fe-B powders for resin binding are easily oxidized, surface treatment can be performed before kneading with the resin to prevent oxidation and enhance the binding force with the resin. When mixed with the ferrite powder, the ferrite powder also needs the same surface treatment in terms of the binding force with the resin.

【0017】従来のR−Fe−B系磁石の組成は、前記
参考文献1に代表されるR15Fe778である。この組
成はR−Fe−B系磁石の主相R2Fe14B混合物を原
子百分率で表わした組成R11.7Fe82.45.9に比して
R・B両元素に富む側に移行している。これは保磁力を
得るためには主相のみでなくRrich相、Brich
相と呼ばれる非磁性相が必要であるという点から説明さ
れている。ところが本発明による組成ではこれとは逆に
Bが少ない側に移行したところにピーク値が存在する。
この組成域では焼結法によると、保磁力が低下するの
で、これまであまり問題にされていなかった。しかし鋳
造直後のバルク状態では本組成域でのみ高保磁力が得ら
れ、通常のBに富む側では十分な保磁力が得られない。
このことは、保磁力機構になんらかの変化が起こったこ
とを意味し、それが原因で、水素粉砕によれば実用上十
分な保磁力を有する粉末の製造が可能になったと考えら
れる。
The composition of a conventional R-Fe-B system magnet is R 15 Fe 77 B 8 typified by Reference 1. This composition has shifted to the side rich in both R and B elements as compared with the composition R 11.7 Fe 82.4 B 5.9 in which the main phase R 2 Fe 14 B mixture of the R—Fe—B system magnet is expressed in atomic percentage. In order to obtain coercive force, this is not only the main phase but also the Rrich phase and the Brich phase.
It is described in that it requires a non-magnetic phase called a phase. On the contrary, in the composition according to the present invention, on the contrary, a peak value is present when the composition shifts to the side with less B.
In this composition range, the coercive force is lowered by the sintering method, so that it has not been a problem so far. However, in the bulk state immediately after casting, a high coercive force can be obtained only in this composition range, and a sufficient coercive force cannot be obtained on the usual B-rich side.
This means that some change occurred in the coercive force mechanism, and it is considered that hydrogen pulverization made it possible to produce a powder having a practically sufficient coercive force.

【0018】永久磁石材料に柱状晶を用いることはアル
ニコ磁石を初め、希土類磁石系のサマリウム−コバルト
磁石でも行なわれており、本発明者のひとりはすでに1
981年、樹脂結合型サマリウムコバルト磁石への応用
として発表している(T.Simoda他、Proce
edings of the fifth inter
hational Workshop on Pare
Earth−Cobalt Permanent M
agnets, 1981P595)。
The use of columnar crystals as a permanent magnet material has been carried out not only in Alnico magnets but also in rare earth magnet type samarium-cobalt magnets.
In 1998, it was announced as an application to resin-bonded samarium-cobalt magnets (T. Simoda et al., Proce.
edings of the fifth inter
national Workshop on Pare
Earth-Cobalt Permanent M
Agnets, 1981 P595).

【0019】本発明においても鋳造状態で柱状晶を得る
ことは、高性能磁石化の重要点となっている。すなわ
ち、熱処理によって保磁力を得る過程が拡散によるもの
であり、サマリウムコバルトと同様、柱状晶による方が
保磁力が得やすい。さらに本系磁石は、柱状晶に垂直な
面に磁化容易軸が配向する性質があるので、柱状晶を利
用すれば面内異方性磁石を作成する事ができる。
Also in the present invention, obtaining columnar crystals in a cast state is an important point for high performance magnetization. That is, the process of obtaining coercive force by heat treatment is due to diffusion, and columnar crystals are easier to obtain coercive force, as in samarium-cobalt. Further, the present magnet has a property that the easy axis of magnetization is oriented in a plane perpendicular to the columnar crystal, so that an in-plane anisotropic magnet can be produced by using the columnar crystal.

【0020】以下、本発明による永久磁石の組成限定理
由を説明する。希土類としては、Y.La.Ce.P
r.Nd.Sm.Fu.Gd.Tb.Dy.Ho.E
u.Tm.Yb.Luが候補として挙げられ、これらの
うちの1種あるいは1種以上を組合せて用いられる。最
も高い磁気特性はPrで得られる。従って実用的にはP
r.Pr−Nd合金、Ce−Pr−Nd合金等が用いら
れる。また少量の添加元素、例えば重希土類元素のDy
−Tb等やAl.Mo.Si等は保磁力の向上に有効で
ある。R−Fe−B系磁石の主相はR2Fe14Bであ
る。従ってRが8原子%未満では、もはや上記化合物を
形成せず、α−鉄と同一構造の立方晶組織となるため高
磁気特性は得られない。一方Rが25原子%を越えると
非磁性のR rich相が多くない磁気特性は著しく低
下する。よってRの範囲は、8〜25原子%が適当であ
る。
The reasons for limiting the composition of the permanent magnet according to the present invention will be described below. As rare earth, Y. La. Ce. P
r. Nd. Sm. Fu. Gd. Tb. Dy. Ho. E
u. Tm. Yb. Lu is mentioned as a candidate, and one or more of these can be used in combination. The highest magnetic properties are obtained with Pr. Therefore, in practice P
r. Pr-Nd alloy, Ce-Pr-Nd alloy, etc. are used. In addition, a small amount of additional element such as Dy of heavy rare earth element
-Tb and Al. Mo. Si or the like is effective in improving the coercive force. Main phase of R-Fe-B magnet is R 2 Fe 14 B. Therefore, if R is less than 8 atomic%, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is obtained, so that high magnetic properties cannot be obtained. On the other hand, when R exceeds 25 atomic%, the magnetic properties are not significantly reduced because there are not many non-magnetic R rich phases. Therefore, the range of R is appropriately 8 to 25 atomic%.

【0021】Bは、R2Fe14B相を形成するための必
須元素であり、2原子%未満では菱面体のR−Fe系に
なるため高保磁力は望めない。しかし従来の焼結法によ
る磁石のように8原子%以上も添加すると、逆に鋳造状
態での保磁力は得られなくなってしまう。従ってBの量
は2〜8原子%が範囲として適している。
B is an essential element for forming the R 2 Fe 14 B phase, and if it is less than 2 atomic%, a rhombohedral R—Fe system is formed, so that a high coercive force cannot be expected. However, when 8 atom% or more is added like a magnet produced by the conventional sintering method, on the contrary, the coercive force in the cast state cannot be obtained. Therefore, the amount of B is preferably in the range of 2 to 8 atomic%.

【0022】Coはキュリー点の上昇や温度特性の改良
に有用な元素であるが、添加量を増すに従って保磁力を
減ずる傾向を有する。またCoを増すと本系磁石の特徴
であるところの低コスト・加工にしやすさが失われる。
これらの点からCo量は〜40原子%が範囲として適し
ている。
Co is an element useful for raising the Curie point and improving the temperature characteristics, but it tends to decrease the coercive force as the amount of addition increases. Further, if Co is increased, the low cost and easiness of processing, which are the features of this magnet, are lost.
From these points, the range of Co content is -40 atom% is suitable.

【0023】[0023]

【実施例】【Example】

実施例1 本発明による製造工程図を図1に示す。まず所望の組成
の合金を誘導炉で溶解し、鉄鋳に鋳造し、柱状晶を形成
せしめる。次にインゴットを磁気的に硬化させるため5
00〜1050℃の温度範囲でアニール処理を施す。鋳
造タイプの場合は、この段階で切断・研削を施せば、柱
状晶の異方性を利用した面内異方性磁石となる。樹脂結
合タイプの場合は室温において18−8ステンレス鋼
製、高圧容器中、30気圧程度の水素ガス雰囲気のもと
に24時間程度保持することにより粉砕し、クエライト
粉末を混合する場合はこの段階で混合し、表面処理を施
した後、樹脂と混練し、射出成形する。
Example 1 A manufacturing process diagram according to the present invention is shown in FIG. First, an alloy having a desired composition is melted in an induction furnace and cast into iron casting to form columnar crystals. Then to magnetically harden the ingot, 5
Annealing is performed in the temperature range of 00 to 1050 ° C. In the case of the casting type, cutting and grinding at this stage gives an in-plane anisotropic magnet utilizing the anisotropy of columnar crystals. In the case of resin-bonded type, it is crushed by holding it in a high pressure container made of 18-8 stainless steel at room temperature for about 24 hours in a hydrogen gas atmosphere of about 30 atm, and at this stage when mixing querite powder. After mixing and surface treatment, it is kneaded with resin and injection molded.

【0024】次なる表の組成を溶解し、図1に示す方法
で鋳造面内異方性磁石と水素粉砕後、エポキシ樹脂を4
重量%混練した樹脂結合磁石を作成した。
The compositions shown in the following table were melted, cast in-plane anisotropic magnets and hydrogen were pulverized by the method shown in FIG.
A resin-bonded magnet kneaded by weight was prepared.

【0025】[0025]

【表1】 [Table 1]

【0026】なおアニールはすべて1000℃×24時
間行なった。得られた結果を表2に示す。
All annealing was performed at 1000 ° C. for 24 hours. The obtained results are shown in Table 2.

【0027】なお比較例としてNd15Fe778(従来
技術の代表的組成)に同様の処理を施した例をかかげ
た。
As a comparative example, an example in which Nd 15 Fe 77 B 8 (representative composition of the prior art) was subjected to the same treatment is shown.

【0028】[0028]

【表2】 [Table 2]

【0029】実施例2 原子比Ce2Nd8Pr4Fe63Al4Co154で表わさ
れる組成の合金(本合金キュリー点約450℃を有す
る)実施例1と同様な水素粉砕を施した後ストロンチウ
ムフェライト粉末60wt%と酸化を防ぐため有機溶媒
中で混合した後、以下の表面処理を施した。まずPH4
の重クロム酸カリウムで粉末を処理し、粉末の表面にC
23の被膜を形成させ、次にシランカップリング剤処
理を行なった。続いて該混合粉末90wt%とマイロン
12(10wt%)を250℃で混練して、該混合物を
磁場射出成形した。
Example 2 An alloy having a composition represented by an atomic ratio of Ce 2 Nd 8 Pr 4 Fe 63 Al 4 Co 15 B 4 (having an alloy Curie point of about 450 ° C.) was subjected to the same hydrogen pulverization as in Example 1. After mixing with 60 wt% of post-strontium ferrite powder in an organic solvent to prevent oxidation, the following surface treatment was performed. First, PH4
Treat the powder with potassium dichromate and add C to the surface of the powder.
A film of r 2 O 3 was formed and then treated with a silane coupling agent. Subsequently, 90 wt% of the mixed powder and Mylon 12 (10 wt%) were kneaded at 250 ° C., and the mixture was subjected to magnetic field injection molding.

【0030】得られた性能は以下のとうりである。The obtained performance is as follows.

【0031】Br =4.3KG bHc=4.0KG (BH)max=4.2MGOe フェライト焼結磁石並みの性能が射出成形法によって達
成されたことがわかる。
Br = 4.3 KG bHc = 4.0 KG (BH) max = 4.2 MGOe It can be seen that the performance comparable to the ferrite sintered magnet was achieved by the injection molding method.

【0032】[0032]

【発明の効果】以上述べたように本発明によれば、従来
の焼結法では保磁力iHcの得られなかった組成域でバ
ルク状態のまま保磁力を得ることができ、粉砂・焼結等
の不要な鋳造希土類−鉄系永久磁石が得られる。さらに
水素粉砕によれば、粉末状態でも保持力が維持されるの
で、高性能・低コストな樹脂結合型磁石が得られ、この
粉末をフェライト粉末と混合すれば、フェライトボンド
磁石より高性能な樹脂結合磁石が容易に得られる。
As described above, according to the present invention, the coercive force can be obtained in the bulk state in the composition range where the coercive force iHc could not be obtained by the conventional sintering method. It is possible to obtain an unnecessary cast rare earth-iron-based permanent magnet. Furthermore, hydrogen pulverization maintains the coercive force even in the powder state, so a high-performance and low-cost resin-bonded magnet can be obtained. By mixing this powder with ferrite powder, a resin with higher performance than ferrite-bonded magnets can be obtained. A coupling magnet is easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のR−Fe−B系磁石の製造の製造工程
図。
FIG. 1 is a manufacturing process diagram of manufacturing an R—Fe—B based magnet of the present invention.

【手続補正書】[Procedure amendment]

【提出日】平成5年3月26日[Submission date] March 26, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【書類名】 明細書[Document name] Statement

【発明の名称】 永久磁石用合金 [Title of Invention] Alloy for permanent magnet

【特許請求の範囲】[Claims]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄系永久磁石
合金に関する。
FIELD OF THE INVENTION The present invention is for rare earth-iron permanent magnets .
Regarding alloys .

【0002】[0002]

【従来の技術】従来、R−Fe−B系の磁石の製造には
次の3通りの方法が報告されている。
2. Description of the Related Art Conventionally, the following three methods have been reported for producing R-Fe-B magnets.

【0003】(1)粉末治金法に基づく焼結法(参考文
献1)。
(1) Sintering method based on powder metallurgy (reference 1).

【0004】(2)アモルファス合金を製造するに用い
られる急冷薄帯製造装置で、厚さ30μm程度の急冷薄
片を作り、その薄片を樹脂結合法で磁石にする(参考文
献2)。
(2) A quenching ribbon manufacturing apparatus used for producing an amorphous alloy is used to produce a quenching foil having a thickness of about 30 μm, and the foil is made into a magnet by a resin bonding method (reference document 2).

【0005】(3)(2)の方法で使用した同じ薄片
を、2段階のホットプレス法で機械的配向処理を行なう
方法(参考文献2)。
(3) A method in which the same thin piece used in the method of (2) is subjected to mechanical orientation treatment by a two-step hot pressing method (reference document 2).

【0006】参考文献1 M.Sagawa,S.Fu
jimura,N.Togawa,H.Yamamot
o and Y.Matsuura;J.Appl.P
hys,Vol55(6),15 Maroh 198
4.P2083 参考文献2 R.W.Lee;Appl.Phys,L
ett.Vol.46(8).15 April 19
85,P790 文献に添って上記の従来技術を説明する。まず(1)の
焼結法では、溶解・鋳造により合金インゴットを作製
し、粉砕されて3μmくらいの粒径を有する磁石粉にさ
れる。磁石粉は成形助剤となるバインダーと混練され、
磁場中でプレス成形されて、成形体ができあがる。成形
体はアルゴン中で1100℃前後の温度で1時間焼結さ
れ、その後室温まで急冷される。焼結後、600℃前後
の温度で熱処理すると保磁力はさらに向上する。
Reference 1 M. Sagawa, S .; Fu
jimura, N .; Togawa, H .; Yamamot
o and Y. Matsuura; J. Appl. P
hys, Vol 55 (6), 15 Maroh 198.
4. P2083 Reference 2 R. W. Lee; Appl. Phys, L
ett. Vol. 46 (8). 15 April 19
85, P790 The above-mentioned conventional technique will be described. First, in the sintering method (1), an alloy ingot is produced by melting and casting, and is crushed into magnet powder having a particle size of about 3 μm. Magnet powder is kneaded with a binder that serves as a molding aid,
It is press-molded in a magnetic field to form a molded body. The molded body is sintered in argon at a temperature around 1100 ° C. for 1 hour, and then rapidly cooled to room temperature. After sintering, heat treatment at a temperature of around 600 ° C. further improves the coercive force.

【0007】(2)は、まず急冷薄帯製造装置の最適な
回転数でR−Fe−B合金の急冷薄帯を作る。得られた
薄帯は厚さ30μmのリボン状をしており、直径が10
00Å以下の多結晶が集結している。薄帯は脆くて割れ
やすく、結晶粒は等方的に分布しているので磁気的にも
等方性である、この薄帯を適度な粒度にして、樹脂と混
練してプレス成形すれば7ton/cm程度の圧力
で、約85体積%の充填が可能となる。
In (2), first, a quenched ribbon of an R-Fe-B alloy is produced at an optimum rotation speed of a quenching ribbon manufacturing apparatus. The obtained ribbon has a ribbon shape with a thickness of 30 μm and a diameter of 10 μm.
Polycrystals of less than 00Å are concentrated. The ribbon is brittle and easy to crack, and the crystal grains are isotropically distributed so that it is magnetically isotropic. If this ribbon is made to have an appropriate grain size and kneaded with a resin and press-formed, it will be 7 tons. With a pressure of about / cm 2 , about 85% by volume can be filled.

【0008】(3)の製造方法は、始めにリボン状の急
冷薄帯あるいは薄帯の片を、真空中あるいは不活性雰囲
気中で約700℃で予備加熱したグラファイトあるいは
他の耐熱用のプレス型に入る。該リボンが所望の温度に
到達したとき一軸の圧力が加えられる。温度、時間は特
定しないが、充分な塑性が出る条件としてT=725±
250℃、圧力はP〜1.4ton/cm程度が適し
ている。この段階では磁石はわずかにプレス方向に配向
しているとはいえ、全体的には等方性である。次のホッ
トプレスは、大面積を有する型で行なわれる。最も一般
的には700℃で0.7tonで数秒間プレスする。す
ると試料は最初の厚みの1/2になりプレス方向と並行
に磁化容易軸が配向してきて、合金は異方性化する。こ
れらの工程は、二段階ホットプレス法(two−sta
ge hot−press pro−cedure)と
呼ばれている、この方法により緻密で異方性を有するR
−Fe−B磁石が製造できる。なお、最初のメルトスピ
ニング法で作られるリボン薄帯の結晶粒は、それが最大
の保磁力を示す時の粒径よりも小さめにしておき、後に
ホットプレス中に結晶粒の粗大化が生じて最適の粒径に
なるようにしておく。
In the manufacturing method (3), first, a ribbon-shaped quenched ribbon or a piece of ribbon is preheated at about 700 ° C. in a vacuum or an inert atmosphere, and graphite or another heat-resistant press die is used. to go into. Uniaxial pressure is applied when the ribbon reaches the desired temperature. The temperature and time are not specified, but T = 725 ±
It is suitable that the temperature is 250 ° C. and the pressure is about P to 1.4 ton / cm 2 . At this stage the magnets are generally isotropic although they are slightly oriented in the pressing direction. The next hot pressing is performed with a mold having a large area. Most commonly, press at 700 ° C. and 0.7 ton for a few seconds. Then, the sample becomes ½ of the initial thickness, the easy axis of magnetization is oriented parallel to the pressing direction, and the alloy becomes anisotropic. These steps are based on a two-step hot press method (two-sta).
This method is called "ge hot-press pro-cedure" and has a dense and anisotropic R
-Fe-B magnets can be manufactured. In addition, the crystal grains of the ribbon ribbon made by the first melt spinning method should be smaller than the grain size when it shows the maximum coercive force, and later the crystal grains become coarse during hot pressing. Make sure the particle size is optimal.

【0009】[0009]

【発明が解決しようとする課題】上述した従来技術で、
R−Fe−B系の磁石は一応製作できるのであるが、こ
れらの技術を利用した製造方法は次のような欠点を有し
ている。(1)の焼結法は、合金を粉末にするのが必須
であるが、R−Fe−B系合金はたいへん酸素に対して
活性であるので、粉末化し、高温で長時間焼結及び熱処
理すると、酸化が激しくなり、焼結体中の酸素濃度はど
うしても高くなってしまう。また粉末を形成するとき
に、例えばステアリン酸亜鉛のような形成助剤を使用し
なければならず、これは焼結工程で前もって取り除かれ
るのであるが、数割は磁石体の中に炭素の形で残ってま
う。この炭素は著しくR−Fe−Bの磁気性能を低下さ
せる。成形助剤を加えてプレス成形した後の成形体はグ
リーン体と言われる。これはたいへん脆く、ハンドリン
グが難しい。従って焼結炉にきれいに並べて入るのに
は、相当の手間がかかることも大きな欠点である。これ
らの欠点があるので一般的に言ってR−Fe−B系の焼
結磁石の製造には、高価な設備が必要になるばかりでな
く、生産効率が悪く、磁石の製造費が高くなってしま
う。従って、R−Fe−B系磁石の原料費の安さを充分
に引き出せる製造法とは言い難い。
With the above-mentioned conventional technique,
R-Fe-B magnets can be manufactured for the time being, but the manufacturing methods using these techniques have the following drawbacks. In the sintering method of (1), it is essential to make the alloy into a powder, but since the R-Fe-B based alloy is very active with respect to oxygen, it is pulverized and sintered and heat-treated at a high temperature for a long time. Then, the oxidation becomes severe and the oxygen concentration in the sintered body is inevitably high. Also, when forming the powder, a forming aid such as zinc stearate must be used, which has been removed beforehand during the sintering process, but a few tenths of the form of carbon in the magnet body. Let's remain. This carbon significantly deteriorates the magnetic performance of R-Fe-B. The green body is the green body after press molding by adding a molding aid. It is very fragile and difficult to handle. Therefore, it takes a great deal of time to neatly line up in the sintering furnace, which is also a big drawback. Due to these drawbacks, generally speaking, not only expensive equipment is required for producing an R—Fe—B based sintered magnet, but also the production efficiency is poor and the manufacturing cost of the magnet is high. I will end up. Therefore, it is hard to say that this is a manufacturing method capable of sufficiently lowering the raw material cost of the R-Fe-B magnet.

【0010】(2)と(3)の製造法は、真空メルトス
ピニング装置を使う。この装置は現在では、たいへん生
産性が悪くしかも高価である。またできあがったリボン
は、(1)の粉末と同じく酸素に対して活性で、後の高
温加工や熱処理によって圧密体の酸素濃度は高くなる。
(2)では原理的に等方性であるので低エネルギー積で
あり、ヒステリシスループの角形性もよくないので温度
特性に対しても、使用する向においても不利である。
(3)の方法は、ホットプレスを2段階に使うというユ
ニークな方法であるが、実際に量産を考えるとたいへん
非効率になることは否めないであろう。さらに(1)と
(3)磁石の欠点として、機械的強度の低いことが挙げ
られる。これらの磁石は本来、粉末またはリボンの状態
にあったものを、高温で焼結あるいは圧縮接合した磁石
である。そのため、取り扱う上でチッピングが起こり易
く、ハンドリングが非常に困難となる。
The manufacturing methods (2) and (3) use a vacuum melt spinning device. This device is currently very unproductive and expensive. Ribbon made again
Is as active as oxygen in the powder of (1),
The oxygen concentration of the compact increases due to the hot processing and heat treatment.
In (2), since it is isotropic in principle, it is a low energy product, and the squareness of the hysteresis loop is not good, so it is disadvantageous in terms of temperature characteristics and use.
The method (3) is a unique method in which hot pressing is used in two steps, but it cannot be denied that it will be very inefficient when actually considering mass production. Further (1)
(3) A drawback of magnets is that they have low mechanical strength.
To be These magnets are essentially powder or ribbon
Magnets that were sintered or compression bonded at high temperature
Is. Therefore, chipping is likely to occur in handling.
It is very difficult to handle.

【0011】本発明によるR−Fe−B系磁石用合金
これらの欠点を解決するものであり、その目的とすると
ころは、低コストでしかも高性能な磁石用合金を提供す
るところにある。
The R-Fe-B magnet alloy for magnets according to the present invention solves these drawbacks, and an object thereof is to provide a low-cost and high-performance magnet alloy .

【0012】[0012]

【課題を解決するための手段】本発明の永久磁石は、希
土類−鉄系永久磁石に関するものであり、具体的にはR
が8〜25原子%、Bが2〜8原子%、Co0〜40
%、残部が鉄及びその他の製造上不可避な不純物からな
る合金を溶解し、その鋳造マクロ組織が柱状晶となるよ
うに鋳造することを特徴とする。
The permanent magnet of the present invention relates to a rare earth-iron-based permanent magnet, and specifically, R
Is 8 to 25 atomic%, B is 2 to 8 atomic%, Co is 0 to 40
%, With the balance being iron and other impurities that are unavoidable in manufacturing, and cast so that the cast macrostructure becomes columnar crystals .

【0013】前記のように現存の希土類−鉄系永久磁石
の製造方法である焼結法・急冷法は、それぞれ粉砕によ
る粉末管理の困難さ、生産性の悪さ、機械的強度の低さ
といった大きな欠点を有している。本発明者らは、これ
らの欠点を改良するため、合金の鋳造マクロ組織の研究
に着手した。そして鋳造組織が柱状晶となるように急冷
すると、組織が微細化することから、高温時の拡散が促
進され、組成を限定すれば、バルク状態のまま熱処理の
みでも、保磁力が得られることを発明した。本発明を鋳
造磁石として利用すると柱状晶の異方性を利用すること
により異方性磁石となるので、等軸晶を用いるよりも、
より高性能な永久磁石が得られることも判明した。さら
に鋳造インゴットを粉砕する必要がないので、焼結法ほ
どの厳密な雰囲気管理を行なう必要はなく、熱処理にも
ベルト炉のような量産性の高い炉が使用でき、設備費は
大きく低減される。さらに、鋳造状態のまま磁化するこ
とにより、粉末状態を経ることがなくなった結果、結晶
粒相互の結合が非常に強くなり、機械的強度が大きく低
減される。同系統の研究には、三保広晃他(日本金属学
会、昭和60年度秋期講演会、講演番号(544))が
あるが同研究は本発明と組成域を異にするのみならず、
マクロ組織による性能変化については一切言及しておら
ず性能的にも本発明に大きく劣っている。また磁気的に
硬化せしめた後、求める形状を得るための二次加工も、
本系の場合、従来のサマリウムコバルト系希土類磁石に
比して曲げ強さ・圧縮強さ等が大きいので、非常にやり
やすい。
As described above, the sintering method and the quenching method, which are existing manufacturing methods of rare earth-iron-based permanent magnets, have difficulty in powder management by pulverization, poor productivity , and low mechanical strength. /> Has a major drawback. The inventors have investigated the cast macrostructure of the alloy in order to remedy these drawbacks.
Embarked on. And quenching so that the cast structure becomes columnar crystals
Then, since the structure becomes finer, diffusion at high temperature is promoted.
And if the composition is limited, the
It was invented that the coercive force can be obtained even by using only. Casting the invention
Utilizing the anisotropy of columnar crystals when used as a magnet
Since it will be an anisotropic magnet, rather than using equiaxed crystals,
It was also found that a higher performance permanent magnet can be obtained. Furthermore
Since it is not necessary to pulverize the cast ingot, there is no need to perform strict atmosphere control as in the sintering method, and a furnace with high mass productivity such as a belt furnace can be used for heat treatment, and the equipment cost is greatly reduced. . In addition, magnetize as-cast.
As a result, the crystals do not go through the powder state
The bond between the grains becomes very strong, and the mechanical strength is large and low.
Reduced. There is Hiroaki Miho et al. (Japan Institute of Metals, Autumn Talk, 1985, Lecture No. (544)) in the study of the same strain, but this study not only differs from the present invention in composition range,
It does not mention any change in performance due to macrostructure, and is significantly inferior to the present invention in terms of performance. Also, after magnetically hardening, the secondary processing to obtain the desired shape is also
In the case of this system, bending strength, compressive strength, etc. are greater than those of conventional samarium-cobalt rare earth magnets, so that it is very easy to do.

【0014】また本発明は、焼結磁石への応用も可能で
ある。前述したように、柱状晶インゴットは、急冷・微
細化されていることから、偏析が少なく拡散が容易なた
め、焼結・熱処理時間が短時間化されるからである。ま
た柱状晶インゴットは、柱状組織に沿って割れやすいこ
とから、粉砕時間が短縮され、均一な大きさの粉末が容
易に得られ、結果的に焼結性を改善する効果を有する。
The present invention can also be applied to a sintered magnet. As described above, the columnar crystal ingot is rapidly cooled, fine
Since it is thin, there is little segregation and diffusion is easy.
Therefore, the sintering / heat treatment time can be shortened. Well
The columnar crystal ingot is easy to crack along the columnar structure.
Therefore, the crushing time is shortened and the powder of uniform size is
It is easily obtained and, as a result, has the effect of improving sinterability.

【0015】従来のR−Fe−B系磁石の組成は、前記
参考文献1に代表されるR15Fe77である。こ
の組成はR−Fe−B系磁石の主相RFe14B混合
物を原子百分率で表わした組成R11.7Fe82.4
5.9に比してR・B両元素に富む側に移行してい
る。これは保磁力を得るためには主相のみでなくRri
ch相、Brich相と呼ばれる非磁性相が必要である
という点から説明されている。ところが本発明を鋳造磁
石として用いる場合、これとは逆にBが少ない側の組成
に磁気特性のピーク値は存在する。これは、鋳造磁石と
しての使用する場合、粉砕によって粒度調整することが
できないので、第一にB量を低減すると結晶粒が微細化
すること、第二に良好な柱状晶を形成させるため溶湯を
急冷したことにより結晶粒が微細化するという、2種の
as−cast状態での結晶粒微細化効果が核生成タイ
プの保磁力機構を有する本発明による磁石に有利に働い
たものと考えられる。
The composition of the conventional R-Fe-B magnet is R 15 Fe 77 B 8 typified by Reference 1 above. This composition is the composition R 11.7 Fe 82.4 in which the main phase R 2 Fe 14 B mixture of the R—Fe—B magnet is expressed in atomic percentage.
Compared to B5.9 , it shifts to the side rich in both R and B elements. This is because not only the main phase but also Rri
It is explained from the point that a non-magnetic phase called a ch phase or a Brich phase is required. However, when the present invention is used as a cast magnet, on the contrary, the peak value of the magnetic property exists in the composition on the side with less B. This is a cast magnet
If used, the particle size can be adjusted by grinding.
First, if B content is reduced, crystal grains become finer.
Second, the molten metal is used to form good columnar crystals.
The two types of crystal grains that become fine by quenching
The grain refinement effect in the as-cast state is the nucleation type.
Of the magnet according to the present invention having a low coercive force mechanism.
It is believed that

【0016】永久磁石材料に柱状晶を用いることはアル
ニコ磁石を初め、希土類磁石系のサマリウム−コバルト
磁石でも行なわれており、本発明者のひとりはすでに1
981年、樹脂結合型サマリウムコバルト磁石への応用
として発表している(T.Simoda他、Proce
edings of the fifth inter
hational Workshop on Pare
Earth−Coba1t Permanent M
agnets, 1981P595)。
The use of columnar crystals as a permanent magnet material has been carried out not only in Alnico magnets but also in rare earth magnet type samarium-cobalt magnets.
In 1998, it was announced as an application to resin-bonded samarium-cobalt magnets (T. Simoda et al., Proce.
edings of the fifth inter
national Workshop on Pare
Earth-Coba1t Permanent M
Agnets, 1981 P595).

【0017】本発明においても鋳造状態で柱状晶を得る
ことは、高性能磁石化の重要点となっている。すなわ
ち、熱処理によって保磁力を得る過程が拡散によるもの
であり、サマリウムコバルトと同様、柱状晶による方が
保磁力が得やすい。さらに本系磁石は、柱状晶に垂直な
面に磁化容易軸c軸が分布する性質があるので、柱状晶
を利用すれば面内異方性磁石を作成する事ができる。
Also in the present invention, obtaining columnar crystals in a cast state is an important point for high performance magnetization. That is, the process of obtaining coercive force by heat treatment is due to diffusion, and columnar crystals are easier to obtain coercive force, as in samarium-cobalt. Further, the present magnet has a property that the easy axis of magnetization c-axis is distributed in a plane perpendicular to the columnar crystal, so that an in-plane anisotropic magnet can be produced by using the columnar crystal.

【0018】以下、本発明による永久磁石の組成限定理
由を説明する。希土類としては、Y.La.Ce.P
r.Nd.Sm.Fu.Gd.Tb.Dy.Ho.E
u.Tm.Yb.Luが候補として挙げられ、これらの
うちの1種あるいは1種以上を組合せて用いられる。最
も高い磁気特性はPrまたはNdで得られる。従って実
用的にはPr、Nd、Pr−Nd合金、Ce−Pr−N
d合金等が用いられる。また少量の添加元素、例えば重
希土類元素のDy−Tb等やAl.Mo.Si等は保磁
力の向上に有効である。R−Fe−B系磁石の主相はR
Fe14Bである。従ってRが8原子%未満では、も
はや上記化合物を形成せず、α−鉄と同一構造の立方晶
組織となるため高磁気特性は得られない。一方Rが25
原子%を越えると非磁性のRrich相が多くない磁気
特性は著しく低下する。よってRの範囲は、8〜25原
子%が適当である。
The reasons for limiting the composition of the permanent magnet according to the present invention will be described below. As rare earth, Y. La. Ce. P
r. Nd. Sm. Fu. Gd. Tb. Dy. Ho. E
u. Tm. Yb. Lu is mentioned as a candidate, and one or more of these can be used in combination. The highest magnetic properties are obtained with Pr or Nd. Therefore, practically, Pr, Nd, Pr-Nd alloy, Ce-Pr-N
d alloy or the like is used. In addition, a small amount of additional element such as Dy-Tb of heavy rare earth element or Al. Mo. Si or the like is effective in improving the coercive force. The main phase of the R-Fe-B system magnet is R
A 2 Fe 14 B. Therefore, if R is less than 8 atomic%, the above compound is no longer formed and a cubic crystal structure having the same structure as α-iron is obtained, so that high magnetic properties cannot be obtained. On the other hand, R is 25
If it exceeds atomic%, the magnetic properties, in which there are not many non-magnetic Rrich phases, are significantly deteriorated. Therefore, the range of R is appropriately 8 to 25 atomic%.

【0019】Bは、RFe14B相を形成するための
必須元素であり、2原子%未満では菱面体のR−Fe系
になるため高保磁力は望めない。しかし従来の焼結法に
よる磁石のように8原子%以上も添加すると、逆に柱状
晶を作成しても、組織が微細化しなくなってしまう。従
ってBの量は2〜8原子%が範囲として適している。
B is an essential element for forming the R 2 Fe 14 B phase, and if it is less than 2 atomic%, a rhombohedral R—Fe system is formed, so that a high coercive force cannot be expected. However, when 8 atom% or more is added like a magnet obtained by the conventional sintering method, even if a columnar crystal is created, the structure will not be refined. Therefore, the amount of B is preferably in the range of 2 to 8 atomic%.

【0020】Coはキュリー点の上昇や温度特性の改良
に有用な元素であるが、添加量を増すに従って保磁力を
減ずる傾向を有する。またCoを増すと本系磁石の特徴
であるところの低コスト・加工にしやすさが失われる。
これらの点からCo量は0〜40原子%が範囲として適
している。
Co is an element useful for raising the Curie point and improving the temperature characteristics, but it tends to decrease the coercive force as the amount of addition increases. Further, if Co is increased, the low cost and easiness of processing, which are the features of this magnet, are lost.
From these points, the amount of Co is preferably in the range of 0 to 40 atomic% .

【0021】[0021]

【実施例】 実施例1 本発明による製造工程図を図1に示す。まず所望の組成
の合金を誘導炉で溶解し、鉄鋳型に鋳造し、柱状晶を形
成せしめる。本発明を焼結法へ応用する場合は、できあ
がった柱状晶インゴットをそのまま図1に示すような通
常の焼結工程で流せばよい。焼結法以外へ応用するとき
は、インゴットを磁気的に硬化させるため500〜10
50℃の温度範囲でアニール処理を施す。鋳造タイプの
場合は、この段階で切断・研削を施せば、柱状晶の異方
性を利用した面内異方性磁石となる。樹脂結合タイプの
場合は室温において18−8ステンレス鋼製、高圧容器
中、30気圧程度の水素ガス雰囲気のもとに24時間程
度保持することにより粉砕し、フェライト粉末を混合す
る場合はこの段階で混合し、表面処理を施した後、樹脂
と混練し、射出成形する。
Example 1 A manufacturing process diagram according to the present invention is shown in FIG. First, an alloy having a desired composition is melted in an induction furnace and cast in an iron mold to form columnar crystals. When the present invention is applied to a sintering method, the completed columnar crystal ingot may be flowed as it is in a normal sintering process as shown in FIG. When applied to other than sintering method
500 to 10 for magnetically hardening the ingot.
Annealing is performed in the temperature range of 50 ° C. In the case of the casting type, cutting and grinding at this stage gives an in-plane anisotropic magnet utilizing the anisotropy of columnar crystals. In the case of resin-bonded type, it is crushed by holding it in a high pressure container made of 18-8 stainless steel at room temperature in a hydrogen gas atmosphere of about 30 atm for about 24 hours at room temperature, and at this stage when ferrite powder is mixed. After mixing and surface treatment, it is kneaded with resin and injection molded.

【0022】本実施例ではまず柱状晶化の効果を示すた
めに鋳造法.樹脂ボンドタイプの代表的な組成として、
Pr14Fe82組成を取り上げて、熱処理温度・
時間・マクロ組織による保磁力iHcの変化をとらえ
た。柱状晶と等軸晶のインゴットはそれぞれ5kgの溶
湯を鋳込み温度は1600℃に固定して、 (イ)水冷銅板上に鉄製の枠をのせて鋳湯 (ロ)2枚のアルミナ板を40mmギャップで合わせ型
とし、その間に鋳湯のように鋳込み分けて作成した。第
2図に示すように、800〜1000℃まで温度・時間
が増加するにしたがってiHcも増加している。このこ
とはiHcの増加が特定相の析出によるものではなく、
拡散支配的であることを示している。さらに比較例とし
て掲げた等軸晶のサンプルは1000℃で熱処理を施し
ているにもかかわらず、保磁力は小さい。本系磁石の主
相PrFe14Bは溶湯から鉄相を初晶とする包晶反
応、 Fe+L→RFe14 で生じ、初晶サイズは冷却速度に大きく依存する。その
ため冷却速度の遅い等軸晶は初晶が大きく粗大化し、主
相中への拡散に長時間を要するものと思われる。
In this example, first, the effect of columnar crystallization was shown.
Casting method. As a typical composition of resin bond type,
Taking the Pr 14 Fe 82 B 4 composition into consideration, the heat treatment temperature
Capturing changes in coercive force iHc due to time and macrostructure
It was Columnar and equiaxed ingots each contain 5 kg of molten metal.
The pouring temperature of the hot water is fixed at 1600 ° C., (a) the iron frame is placed on the water-cooled copper plate, and the two hot-melted aluminum plates (b) are put together with a 40 mm gap.
In the meantime, it was made by casting separately like casting water. First
As shown in Fig. 2, temperature and time from 800 to 1000 ℃
IHc also increases with increasing. this child
Means that the increase of iHc is not due to the precipitation of the specific phase,
It shows that it is diffusion-dominant. Further as a comparative example
The sample of equiaxed crystal shown in
However, the coercive force is small. Main of this system magnet
The phase Pr 2 Fe 14 B is a peritectic anti-phase with the iron phase as the primary crystal from the melt
Accordingly, Fe + L → R 2 Fe 14 B occurs, and the primary crystal size largely depends on the cooling rate. That
Therefore, equiaxed crystals with a slow cooling rate have large primary crystals and become coarse.
It seems that it takes a long time to diffuse into the phase.

【0023】次に参考文献1の焼結法での柱状晶効果を
見るため、代表組成としてNd15Fe77を取り
上げた。インゴットの作成は(イ)(ロ)に加えて次の
(ハ)によるものを加え合計3種用意した。
Next, the columnar crystal effect in the sintering method of Reference 1 will be described.
In order to see it, Nd 15 Fe 77 B 8 was taken as a representative composition.
I raised it. In addition to (a) and (b), ingot creation
A total of 3 types were prepared by adding the one in (c).

【0024】(ハ) 2枚の鉄板を40mmギャップで
合わせ型とし、その間に鋳湯できあがった3種のインゴ
ットはダイヤモンドホイールで切断後、研磨を行い、組
織観察を行った。この時、切断面での柱状組織の面積占
有率で柱状晶率を定義し、各インゴットを評価した。結
果は以下の通り。
(C) Two iron plates with a 40 mm gap were used as a mating mold, and three types of ingots were produced between them.
The diamond is cut with a diamond wheel, then polished and assembled.
Weave observation was performed. At this time, the area of the columnar structure on the cut surface is occupied.
Each ingot was evaluated by defining the columnar crystal ratio by the ratio. Conclusion
The results are as follows.

【0025】(イ)下から柱状晶が一方向に成長し、柱
状晶率はほぼ100% (ロ)ほとんどが等軸晶組織で柱状晶率は5%以下 (ハ)両側の鉄板から柱状晶が成長しているが、中心部
分に等軸晶が見られ、柱状晶率は約60% 上記3種のインゴットを参考文献1と同様な方法で焼結
磁石を作成し、評価した。結果は以下の通り。磁気特性
の数値は順に保磁力(iHc)、角形性(SQ)、最大
磁気エネルギー積((BH)max)である。
(A) Columnar crystals grow in one direction from below,
The crystallite ratio is almost 100% (b) Almost all are equiaxed crystal structure and the columnar crystal ratio is 5% or less (c) The columnar crystals grow from the iron plates on both sides, but the central part
Equiaxed crystals are seen in the column, and the columnar crystal ratio is about 60%. The above three types of ingots are sintered by the same method as in Reference 1.
A magnet was created and evaluated. The results are as follows. Magnetic properties
The numerical values of are coercive force (iHc), squareness (SQ) and maximum
Magnetic energy product ((BH) max ).

【0026】(イ)13.5kOe,0.95,37.
5MGOe (ロ)7.9kOe,0.65,25.2MGOe (ハ)10.5kOe,0.90,33.9MGOe 柱状晶率と磁気特性がほぼ比例関係にあることがわか
る。これは、元来偏析の少ない柱状晶インゴットを使用
することにより、焼結性が高まった結果と考えられる。
(A) 13.5 kOe, 0.95, 37.
5MGOe (b) 7.9kOe, 0.65, 25.2MGOe (c) 10.5kOe, 0.90, 33.9MGOe It can be seen that the columnar crystal ratio and the magnetic properties are almost proportional to each other.
It This is a columnar crystal ingot that originally has little segregation
This is considered to be the result of the increased sinterability.

【0027】次なる表の組成を溶解し、図1に示す方法
で鋳造面内異方性磁石と水素粉砕後、エポキシ樹脂を4
重量%混練した樹脂結合磁石を作成した。
The compositions shown in the following table were melted, cast in-plane anisotropic magnets and hydrogen were pulverized by the method shown in FIG.
A resin-bonded magnet kneaded by weight was prepared.

【0028】[0028]

【表1】 [Table 1]

【0029】なおアニールはすべて1000℃×24時
間行なった。得られた結果を表2に示す。
All annealing was performed at 1000 ° C. for 24 hours. The obtained results are shown in Table 2.

【0030】なお比較例としてNd15Fe77
(従来技術の代表的組成)に同様の処理を施した例を
かかげた。
As a comparative example, Nd 15 Fe 77 B
8 (representative composition of the prior art) was subjected to the same treatment.

【0031】[0031]

【表2】 [Table 2]

【0032】実施例2 原子比CeNdPrFe63AlCo15
で表わされる組成の合金(本合金キュリー点約450℃
を有する)実施例1と同様な水素粉砕を施した後ストロ
ンチウムフェライト粉末60wt%と酸化を防ぐため有
機溶媒中で混合した後、以下の表面処理を施した。まず
PH4の重クロム酸カリウムで粉末を処理し、粉末の表
面にCrの被膜を形成させ、次にシランカップリ
ング剤処理を行なった。続いて該混合粉末90wt%と
ナイロン12(10wt%)を250℃で混練して、該
混合物を磁場射出成形した。
Example 2 Atomic ratio Ce 2 Nd 8 Pr 4 Fe 63 Al 4 Co 15 B 4
Alloy with composition represented by (Curie point about 450 ℃
After the same hydrogen pulverization as in Example 1 was mixed with 60 wt% of strontium ferrite powder in an organic solvent to prevent oxidation, the following surface treatment was performed. First, the powder was treated with potassium dichromate of PH4 to form a Cr 2 O 3 film on the surface of the powder, and then a silane coupling agent treatment was performed. Subsequently, 90 wt% of the mixed powder and nylon 12 (10 wt%) were kneaded at 250 ° C., and the mixture was subjected to magnetic field injection molding.

【0033】得られた性能は以下のとおりである。The obtained performance is as follows .

【0034】Br =4.3KG bHc=4.0KG (BH)max=4.2MGOe フェライト焼結磁石並みの性能が射出成形法によって達
成されたことがわかる。
Br = 4.3 KG bHc = 4.0 KG (BH) max = 4.2 MGOe It can be seen that the performance comparable to the ferrite sintered magnet was achieved by the injection molding method.

【0035】実施例3 次に、実施例2のサンプルNo.2と7の合金を用い
て、参考文献1に基づいて焼結磁石を作成しJIS R
1601に基づき長さ36mm、幅4mm、厚さ3mm
のサンプルを切り出し、曲げ強さを本発明品と比較し
た。結果を表3に示す。No.2は本発明による代表組
成、No.7は参考文献1による焼結法の最適組成の近
傍の組成、さらにNo.6は中間組成である。表3よ
り、組成にかかわらず、本発明により柱状晶を用いて鋳
造磁石を作成すると機械的強度に優れた永久磁石が得ら
れることがわかる。
Example 3 Next, the sample No. 3 of Example 2 was used. Using alloys 2 and 7
According to JIS R
Based on 1601, length 36mm, width 4mm, thickness 3mm
Samples were cut out and the bending strength was compared with the product of the present invention.
It was The results are shown in Table 3. No. 2 is a representative set according to the present invention
No. 7 is close to the optimum composition of the sintering method according to Reference 1.
The composition of the side, and further No. 6 is an intermediate composition. Table 3
And cast with columnar crystals according to the present invention, regardless of composition.
Creating a magnet makes it possible to obtain a permanent magnet with excellent mechanical strength.
You can see that

【0036】 [0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】以上、本発明によれば、焼結法、鋳造
法、樹脂ボンド法による製法に有効な希土類鉄系磁石用
合金を得ることができる。
As described above, according to the present invention, the sintering method and the casting method are used.
For rare earth iron-based magnets that are effective for manufacturing methods using the resin method and resin bonding method
An alloy can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のR−Fe−B系磁石の製造の製造工程
図。[図2]Pr14Fe82合金の熱処理による保磁
力変化図。
FIG. 1 is a manufacturing process diagram of manufacturing an R—Fe—B based magnet of the present invention. [Fig. 2] Magnetization of Pr 14 Fe 82 B 4 alloy by heat treatment
Force change diagram.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【図1】 [Figure 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22C 33/02 H H01F 1/053 1/06 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C22C 33/02 H H01F 1/053 1/06

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】原子百分率においてR8〜25%(但しR
はYを含む希土類元素の少なくとも1種)、B2〜8
%、Co0〜40%、及び残部が実質的に鉄からなり、
その鋳造マクロ組織が柱状晶であることを特徴とする永
久磁石用合金。
1. Atomic percentage of R8-25% (however, R
Is at least one rare earth element including Y), B2 to 8
%, Co 0-40%, and the balance essentially iron,
An alloy for permanent magnets, wherein the cast macrostructure is columnar crystals.
【請求項2】前記合金を粉砕したことを特徴とする永久
磁石用粉末。
2. A powder for a permanent magnet, characterized in that the alloy is pulverized.
JP5037056A 1993-02-25 1993-02-25 Manufacturing method of alloy powder for permanent magnet Expired - Lifetime JP2730441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5037056A JP2730441B2 (en) 1993-02-25 1993-02-25 Manufacturing method of alloy powder for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5037056A JP2730441B2 (en) 1993-02-25 1993-02-25 Manufacturing method of alloy powder for permanent magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61041006A Division JP2558095B2 (en) 1986-02-26 1986-02-26 Rare earth ferrous iron permanent magnet manufacturing method

Publications (2)

Publication Number Publication Date
JPH06112025A true JPH06112025A (en) 1994-04-22
JP2730441B2 JP2730441B2 (en) 1998-03-25

Family

ID=12486917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5037056A Expired - Lifetime JP2730441B2 (en) 1993-02-25 1993-02-25 Manufacturing method of alloy powder for permanent magnet

Country Status (1)

Country Link
JP (1) JP2730441B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012038A (en) * 2013-06-26 2015-01-19 ミネベア株式会社 Rare earth-iron based bond permanent magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177101A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Production of permanent magnet material
JPS62198103A (en) * 1986-02-26 1987-09-01 Seiko Epson Corp Rare earth-iron permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62177101A (en) * 1986-01-29 1987-08-04 Daido Steel Co Ltd Production of permanent magnet material
JPS62198103A (en) * 1986-02-26 1987-09-01 Seiko Epson Corp Rare earth-iron permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015012038A (en) * 2013-06-26 2015-01-19 ミネベア株式会社 Rare earth-iron based bond permanent magnet

Also Published As

Publication number Publication date
JP2730441B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
US5597425A (en) Rare earth cast alloy permanent magnets and methods of preparation
JPS62276803A (en) Rare earth-iron permanent magnet
JP2558095B2 (en) Rare earth ferrous iron permanent magnet manufacturing method
US6136099A (en) Rare earth-iron series permanent magnets and method of preparation
US5186761A (en) Magnetic alloy and method of production
US5076861A (en) Permanent magnet and method of production
US5460662A (en) Permanent magnet and method of production
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2857824B2 (en) Rare earth-iron permanent magnet manufacturing method
JP2530185B2 (en) Manufacturing method of permanent magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JPH0562815A (en) Permanent magnet and manufacturing method thereof
EP0289680B1 (en) Permanent magnet and method of producing the same
JP2992808B2 (en) permanent magnet
JPS63286515A (en) Manufacture of permanent magnet
JPH01175207A (en) Manufacture of permanent magnet
JPH08250312A (en) Rare earth-fe permanent magnet and manufacture thereof
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH01171219A (en) Manufacture of permanent magnet integral with york
EP0599815B1 (en) Magnetic alloy and method of making the same
JPS63213317A (en) Rare earth iron permanent magnet
JPH07166304A (en) Alloy for permanent magnet
JPH05114507A (en) Permanent magnet and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term