JPH05114507A - Permanent magnet and its manufacture - Google Patents

Permanent magnet and its manufacture

Info

Publication number
JPH05114507A
JPH05114507A JP3273638A JP27363891A JPH05114507A JP H05114507 A JPH05114507 A JP H05114507A JP 3273638 A JP3273638 A JP 3273638A JP 27363891 A JP27363891 A JP 27363891A JP H05114507 A JPH05114507 A JP H05114507A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
thmn
crystal structure
type crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273638A
Other languages
Japanese (ja)
Inventor
Minoru Endou
実 遠籘
Akimasa Sakuma
昭正 佐久間
Masao Iwata
雅夫 岩田
Keisuke Nakamura
啓介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3273638A priority Critical patent/JPH05114507A/en
Publication of JPH05114507A publication Critical patent/JPH05114507A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain new magnetic material having high magnetic characteristics. CONSTITUTION:A permanent magnet composed of RaTMbMcADdCe and its manufacture (where R is at least one kind out of rare earth elements containing Y, TM is at least one kind out of Fe, Co and Ni, M is at least one kind out of Si, Ti, V, Cr, Mo and W, AD is at least one kind out of Al, Mn, Zn, Cu, Ga, Ge, Zr, Nb, Sn, Sb, Hf and Ta, 5<=a<=18at%, 65<=b<=85at%, 3<=c<=20at%, 0<d<=8at%, and 2<=e<=15at%).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、VCM(ボイスコイル
モータ)、回転機器等に使用される高性能希土類永久磁
石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-performance rare earth permanent magnet used for VCM (voice coil motor), rotating equipment and the like.

【0002】[0002]

【従来の技術】ThMn12型結晶構造を有するR−(F
e,Co)−(Si,Ti,V,Cr,Mo,W)系は
すでに永久磁石材料として報告されている。例えば、特
開昭62−241302では、結晶構造が正方晶系結晶
構造であるSm−Fe−Ti系合金の永久磁石材料を報
告している。このSmFe11Ti化合物は飽和磁化12
kG,異方性磁界87kOe,キュリー温度310℃の
高い磁気特性を有している。また、特開平2−1758
3では同様な正方晶ThMn12型結晶構造を有するSm
−Fe−V系材料を報告している。R−Fe−Ti系材
料はほとんどの希土類元素の組合わせでThMn12型結
晶構造を生成するが、一軸異方性を示すのはRがSmの
場合だけである。Sm2Fe17にC,Nを侵入させる
と、面内異方性であったSm2Fe17化合物を一軸異方
性に変化させ、高い飽和磁化とキュリー温度が得られる
ことはCoey等(J.Magn.Magn.Mat.87(1990)L251)により報
告されている。これはC,NがFeのサブレイヤーに入
り、Fe−Fe原子間距離を広げることで飽和磁化とキ
ュリー温度が増大し、更にRがSmの場合に高い異方性
磁界が得られる。RがSmの場合、異方性磁界はNの方
がCを侵入させるより高い飽和磁化と異方性磁界を得ら
れる。これと同様に、ThMn12型結晶構造を有するR
−Fe−(Si,Ti,V,Cr,Mo,W)系化合物
にNを侵入させることにより、高い飽和磁化が得られる
ことがYang等(J.Less-Common Met.170('91)37)により報
告されている。
R- (F having a ThMn 12 type crystal structure
The (e, Co)-(Si, Ti, V, Cr, Mo, W) system has already been reported as a permanent magnet material. For example, Japanese Patent Application Laid-Open No. 62-241302 reports a permanent magnet material of Sm-Fe-Ti alloy having a tetragonal crystal structure. This SmFe 11 Ti compound has a saturation magnetization of 12
It has high magnetic properties of kG, an anisotropic magnetic field of 87 kOe, and a Curie temperature of 310 ° C. In addition, JP-A-2-1758
In Sm, Sm having a similar tetragonal ThMn 12 type crystal structure
-Fe-V based materials are reported. The R—Fe—Ti-based material produces a ThMn 12 type crystal structure with most combinations of rare earth elements, but exhibits uniaxial anisotropy only when R is Sm. When C, to penetrate the N to Sm 2 Fe 17, the Sm 2 Fe 17 compound was plane anisotropy is changed to the uniaxial anisotropy, high saturation magnetization and the Curie temperature is obtained Coey like (J .Magn.Magn.Mat.87 (1990) L251). This is because C and N enter the Fe sublayer, and the saturation magnetization and the Curie temperature are increased by increasing the Fe-Fe interatomic distance, and when R is Sm, a high anisotropic magnetic field is obtained. When R is Sm, an anisotropic magnetic field of N is higher than that of C invading C and an anisotropic magnetic field can be obtained. Similarly to this, R having a ThMn 12 type crystal structure
High saturation magnetization can be obtained by injecting N into a -Fe- (Si, Ti, V, Cr, Mo, W) -based compound. Yang et al. (J. Less-Common Met. 170 ('91) 37 ).

【0003】[0003]

【発明が解決しようとする課題】上記ThMn12型結晶
構造を有するSmFe11Ti系材料は永久磁石として好
ましい特性を有しているものの、飽和磁化がNd2Fe
14B系より低く、SmがNdより高価であり、焼結法に
より高特性が得られないといった欠点を有している。S
2Fe17x系材料は飽和磁化はNd2Fe14Bと同程
度のものが得られるもののSmを用いるため高価であ
る。またR−Fe−(Si,Ti,V,Cr,Mo,
W)−N系化合物も特性的に充分でない。このため、R
として安価なCe,Pr,Ndで、Nd2Fe14Bと同
等もしくはそれ以上の飽和磁化・異方性磁界・キュリー
温度を有する材料が必要とされる。
The SmFe 11 Ti-based material having the above-mentioned ThMn 12 type crystal structure has preferable characteristics as a permanent magnet, but the saturation magnetization is Nd 2 Fe.
It has a drawback that it is lower than 14 B type, Sm is more expensive than Nd, and high characteristics cannot be obtained by the sintering method. S
The m 2 Fe 17 N x- based material has a saturation magnetization similar to that of Nd 2 Fe 14 B, but is expensive because Sm is used. In addition, R-Fe- (Si, Ti, V, Cr, Mo,
Characteristically, W) -N compounds are not sufficient. Therefore, R
As the material, inexpensive materials such as Ce, Pr, and Nd having a saturation magnetization, an anisotropic magnetic field, and a Curie temperature equal to or higher than Nd 2 Fe 14 B are required.

【0004】[0004]

【課題を解決するための手段】本発明者等は、ThMn
12型結晶構造においてN,C,B等の効果を検討した結
果、Cを侵入させた場合、飽和磁化・異方性磁界・キュ
リー温度が最も高くなることを発見した。即ち、本発明
は、RaTMbcADde(ここで、RはYをふくむ希
土類元素のうち少なくとも1種、TMはFe,Co,N
iのうち少なくとも1種、MはSi,Ti,V,Cr,
Mo,Wのうち少なくとも1種、ADはAl,Mn,Z
n,Cu,Ga,Ge,Zr,Nb,Sn,Sb,H
f,Taのうち少なくとも1種で、5≦a≦18at%,65
≦b≦85at%,3≦c≦20at%,0<d≦8at%,2≦
e≦15at%)の組成からなる永久磁石とその製造方法
である。本発明は特に、RaFebTicADde(ここ
で、RはCe,Pr,Ndのうち少なくとも1種、AD
はAl,Mn,Zn,Cu,Ga,Ge,Zr,Nb,
Sn,Sb,Hf,Taのうち少なくとも1種で、5≦
a≦18at%,65≦b≦85at%,3≦c≦20at%,0<d
≦8at%,2≦e≦15at%)の組成が最も望ましい。本
発明に係る磁石は、正方晶ThMn12型結晶構造を有す
る。また、本発明に係る永久磁石において、CはThM
12型結晶構造に侵入型として入っていることを特徴と
する。なお、本発明において、希土類元素R中のCeも
しくは重希土類元素の含有量が1at%以上が望まし
い。また、本発明の永久磁石において、結晶の結晶場パ
ラメータA2 0が正であることを特徴とする。本発明に係
る永久磁石の製造方法は、例えば、所定の組成となるよ
うR,TM,M,AD,Cを溶解し、鋳造し、粉砕し、
成形し、焼結して作製するところのいわゆる粉末冶金法
によるか、所定の組成となるようR,TM,M,AD,
Cを溶解し鋳造し、溶湯急冷し、熱処理を施し、樹脂を
バインダーとして成形する、いわゆるボンド磁石として
製造できる。以下、本発明を結晶場理論によって詳細に
説明してゆく。NdFe1011(Si,Ti,V,C
r,Mo,W)1 m〜2化合物はTnMn12型結晶構造を
有するが、磁気異方性は面内で、永久磁石には適さな
い。これはThMn12型結晶構造の結晶場パラメ−タA
2 0が負であり、更にNdの場合Stevens因子αJも負であ
るため、 K1=−3J(J−1/2)<r2J2 0 (ここで、 <r2>:Ndの4f電子の軌道半径の2乗平
均であり、正である。J:トータル角運動量であり、N
dの場合 9/2)で与えられる1次の異方性定数が負と
なることで理解される。逆にRがSmの場合はαJ>0
であるのでK1>0となり一軸異方性となる。しかし、
Nd(αJ<0)でも何らかの元素の添加によりA2 0
正になればK1>0となり一軸異方性が得られることが
期待される。そこで本発明者等はNdFe11TiにC元
素の添加を試みた。その結果この元素は図1の2bサイ
トに負イオンとなって侵入し、これがA2 0を正にしRが
Ndでも高い一軸異方性を示すことが判明した。更にC
原子の侵入による結晶格子の広がりに起因して飽和磁化
とキュリー温度が共に大きくなるという結果が得られ
た。即ち、本発明に関わる永久磁石はRaTMbcADd
e(ここで、RはYを含む希土類元素のうち少なくと
も1種、TMはFe,Co,Niのうち少なくとも1
種、MはSi,Ti,V,CrMo,Wのうち少なくと
も1種、ADはAl,Zn,Cu,Ga,Ge,Zr,
Nb,Sn,Sb,Hf,Taのうち少なくとも1種
で、5≦a≦18at%,65≦b≦85at%,3≦c≦20at
%,0≦d≦8at%,2≦e≦15at%)の組成からなる永
久磁石である。本発明において希土類元素Rは5at%
以上、18at%以下で、好ましくは8at%以上、16
at%以下である。RはY,Ce,Pr,Nd,Gb,
Tb,Dy,Hoの場合に大きな異方性磁界が得られ、
Ce,Pr,Ndの場合に高い飽和磁化が得られる。T
MはFe,Co,Niのうち少なくとも1種で、65a
t%以上、85at%以下である。ThMn12型の結晶構
造はFeとCoの全組成域で形成されるが、Feが多い
方が飽和磁化・異方性磁界が高い。好ましくはFe:C
o=3:1近傍である。MはThMn12型結晶構造を安
定化させるのに必要な元素で、3at%以下ではその効
果はなく、20at%以上添加すると飽和磁化が減少
し、好ましくない。ADは保磁力を増加するのに必要な
元素で、8at%以下が好ましい。これ以上の添加は飽
和磁化の低下を来す。C(炭素)は飽和磁化・異方性磁
界およびキュリー温度を増加するのに必要な元素で、2
at%以下ではその効果は小さく、15at%以上では飽
和磁化を低下させ、好ましくない。本発明に関わる磁石
は、焼結法および溶湯急冷法により生成される。まず、
Fe,Co,Niなどと一緒にC,V,Cr,Mo,W
などの高融点元素を溶解し、次にR,Ti,Al,S
i,Cu,Gaなどの元素と一緒に溶解する。得られた
インゴットをディスクミル・ジョークラッシャーなどで
粗粉砕し、ジェットミル・ボールミル等で微粉砕したあ
と、磁場中成形し、焼結する。得られた焼結体を500
−900℃で熱処理することにより、保磁力の高い磁石
が得られる。溶湯急冷法により磁石を作成する場合は、
焼結法と同様に溶解合金を作成し、溶湯急冷する。得ら
れたフレーク状試料は必要に応じて、熱処理等を行うこ
とにより磁石特性が得られる。
The present inventors have found that ThMn
As a result of examining the effects of N, C, B, etc. in the 12- type crystal structure, it was found that the saturation magnetization, anisotropic magnetic field, and Curie temperature were highest when C was infiltrated. That is, the present invention relates to R a TM b M c AD d C e (where R is at least one of rare earth elements including Y, TM is Fe, Co, N).
At least one of i, M is Si, Ti, V, Cr,
At least one of Mo and W, AD is Al, Mn, and Z
n, Cu, Ga, Ge, Zr, Nb, Sn, Sb, H
At least one of f and Ta, 5 ≦ a ≦ 18 at%, 65
≦ b ≦ 85 at%, 3 ≦ c ≦ 20 at%, 0 <d ≦ 8 at%, 2 ≦
e ≦ 15 at%) and a manufacturing method thereof. The present invention is particularly applicable to R a Fe b Ti c AD d C e (wherein R is at least one of Ce, Pr and Nd, AD
Is Al, Mn, Zn, Cu, Ga, Ge, Zr, Nb,
At least one of Sn, Sb, Hf, and Ta, 5 ≦
a ≦ 18 at%, 65 ≦ b ≦ 85 at%, 3 ≦ c ≦ 20 at%, 0 <d
The composition of ≦ 8 at% and 2 ≦ e ≦ 15 at%) is most desirable. The magnet according to the present invention has a tetragonal ThMn 12 type crystal structure. In the permanent magnet according to the present invention, C is ThM.
It is characterized in that it is included in the n 12 type crystal structure as an interstitial type. In the present invention, the content of Ce or heavy rare earth element in the rare earth element R is preferably 1 at% or more. Further, the permanent magnet of the present invention is characterized in that the crystal field parameter A 2 0 of the crystal is positive. The manufacturing method of the permanent magnet according to the present invention is, for example, melting R, TM, M, AD, C so as to have a predetermined composition, casting, crushing,
The so-called powder metallurgy method of forming and sintering is used, or R, TM, M, AD,
It can be manufactured as a so-called bond magnet in which C is melted and cast, the melt is rapidly cooled, a heat treatment is applied, and a resin is used as a binder to mold. Hereinafter, the present invention will be described in detail by the crystal field theory. NdFe 10 to 11 (Si, Ti, V, C
The r, Mo, W) 1 m to 2 compound has a TnMn 12 type crystal structure, but the magnetic anisotropy is in-plane and is not suitable for a permanent magnet. This is a crystal field parameter A of ThMn 12 type crystal structure.
2 0 is negative, further because the negative also Stevens factor alpha J For Nd, K 1 = -3J (J -1/2) <r 2> α J A 2 0 ( where, <r 2> : Nd is the square mean of the orbital radii of 4f electrons and is positive J: Total angular momentum, N
In the case of d, it is understood that the first-order anisotropy constant given by 9/2) becomes negative. Conversely, when R is Sm, α J > 0
Therefore, K 1 > 0 and uniaxial anisotropy occurs. But,
Nd (alpha J 0 next to the uniaxial anisotropy <0) even K 1 if A 2 0 is exactly the addition of some elements> is expected to be obtained. Therefore, the present inventors tried adding C element to NdFe 11 Ti. As a result, it was found that this element entered the 2b site in FIG. 1 as a negative ion, which made A 2 0 positive and showed high uniaxial anisotropy even when R was Nd. Further C
The saturation magnetization and the Curie temperature are both increased due to the expansion of the crystal lattice due to the penetration of atoms. That is, the permanent magnet according to the present invention is R a TM b M c AD d
C e (where R is at least one of rare earth elements including Y, TM is at least 1 of Fe, Co and Ni)
Seed, M is at least one of Si, Ti, V, CrMo, W, and AD is Al, Zn, Cu, Ga, Ge, Zr,
At least one of Nb, Sn, Sb, Hf, and Ta, 5 ≦ a ≦ 18 at%, 65 ≦ b ≦ 85 at%, 3 ≦ c ≦ 20 at
%, 0≤d≤8at%, 2≤e≤15at%). In the present invention, the rare earth element R is 5 at%
Or more and 18 at% or less, preferably 8 at% or more, 16
It is at% or less. R is Y, Ce, Pr, Nd, Gb,
In the case of Tb, Dy, Ho, a large anisotropic magnetic field is obtained,
High saturation magnetization is obtained in the case of Ce, Pr, and Nd. T
M is at least one of Fe, Co and Ni, and is 65a.
It is t% or more and 85 at% or less. The ThMn 12 type crystal structure is formed in the entire composition range of Fe and Co, but the larger the amount of Fe, the higher the saturation magnetization / anisotropic magnetic field. Preferably Fe: C
It is near o = 3: 1. M is an element necessary for stabilizing the ThMn 12 type crystal structure, and if 3 at% or less, there is no effect, and if it is added at 20 at% or more, the saturation magnetization decreases, which is not preferable. AD is an element necessary for increasing the coercive force, and is preferably 8 at% or less. Addition over this amount causes a decrease in saturation magnetization. C (carbon) is an element necessary to increase the saturation magnetization, anisotropic magnetic field and Curie temperature.
If it is at% or less, the effect is small, and if it is 15% or more, the saturation magnetization is lowered, which is not preferable. The magnet according to the present invention is produced by a sintering method and a molten metal quenching method. First,
C, V, Cr, Mo, W together with Fe, Co, Ni, etc.
Melts refractory elements such as R, Ti, Al, S
It dissolves together with elements such as i, Cu, and Ga. The obtained ingot is roughly crushed with a disc mill, a jaw crusher, etc., finely crushed with a jet mill, a ball mill, etc., then molded in a magnetic field and sintered. 500 of the obtained sintered body
By heat treatment at -900 ° C, a magnet with high coercive force can be obtained. When creating a magnet by the molten metal quench method,
Similar to the sintering method, a molten alloy is prepared and the molten metal is quenched. The obtained flaky sample is subjected to heat treatment or the like, if necessary, to obtain magnet characteristics.

【0005】[0005]

【作用】本発明で重要なポイントは炭素(C)を添加す
ることにある。本発明者等は、ThMn12型結晶構造に
おいてN,C,B等の効果を検討した結果、Cを侵入さ
せた場合、飽和磁化・異方性磁界・キュリー温度が最も
高くなることを発見した。このことは従来のR2Fe17
化合物とは逆の傾向を示している。R−(Fe,Co)
−(Si,Ti,V,Cr,Mo,W)系において、R
がPr,Ndの場合、ThMn12型化合物は安定には生
成しにくく、RがCeおよび重希土類元素の場合に安定
に生成される。しかし高い飽和磁化はRがPr,Ndの
場合に得られる。そこで、ThMn12型結晶構造を安定
化し、高い飽和磁化を得るために、RとしてNdをベー
スとしてCeもしくは重希土類を1at%以上含有させ
ることにより、ThMn12型結晶構造を安定化させ、高
い飽和磁化が得られることがわかった。
The important point in the present invention is to add carbon (C). As a result of examining the effects of N, C, B and the like in the ThMn 12 type crystal structure, the present inventors have found that the saturation magnetization, anisotropic magnetic field, and Curie temperature are highest when C is infiltrated. .. This is because the conventional R 2 Fe 17
It shows the opposite trend to the compound. R- (Fe, Co)
-(Si, Ti, V, Cr, Mo, W) system, R
When Pr is Pr and Nd, the ThMn 12 type compound is difficult to stably generate, and when R is Ce and a heavy rare earth element, it is stably generated. However, high saturation magnetization is obtained when R is Pr and Nd. Therefore, in order to stabilize the ThMn 12 type crystal structure and obtain high saturation magnetization, by containing 1 at% or more of Ce or heavy rare earth based on Nd as R, the ThMn 12 type crystal structure is stabilized and high saturation is achieved. It was found that magnetization could be obtained.

【0006】[0006]

【実施例】(実施例 1)表1に示す希土類元素、遷移
金属、(Si,Ti,V,Cr,Mo,W)およびAD
元素からなる組成の合金をアーク溶解により作製した。
得られたインゴットを、溶湯急冷法により超急冷した。
得られたフレーク状試料をエポキシ樹脂に浸し、磁場中
成形後に固化した。得られた磁気特性を表1に示す。
EXAMPLES (Example 1) Rare earth elements, transition metals, (Si, Ti, V, Cr, Mo, W) and AD shown in Table 1
An alloy having a composition of elements was prepared by arc melting.
The obtained ingot was ultraquenched by the molten metal quenching method.
The obtained flaky sample was dipped in an epoxy resin and solidified after molding in a magnetic field. The magnetic properties obtained are shown in Table 1.

【表1】 (実施例 2)表2に示す希土類元素、遷移金属、(S
i,Ti,V,Cr,Mo,W)およびAD元素からな
る組成の合金をアーク溶解により作製した。得られたイ
ンゴットをディスクミルで粗粉砕したあと、ジェットミ
ルで微粉砕した。得られた微粉を磁場中成形し、焼結し
た。試料は650℃×1時間熱処理した。得られた磁気
特性を表2に示す。
[Table 1] (Example 2) Rare earth elements, transition metals, (S
An alloy having a composition consisting of i, Ti, V, Cr, Mo, W) and an AD element was produced by arc melting. The obtained ingot was roughly pulverized with a disc mill and then finely pulverized with a jet mill. The obtained fine powder was molded in a magnetic field and sintered. The sample was heat-treated at 650 ° C. for 1 hour. The magnetic properties obtained are shown in Table 2.

【表2】 [Table 2]

【0007】[0007]

【発明の効果】以上のように、ThMn12型結晶構造を
有するR−(Fe,Co,Ni)−(Si,Ti,V,
Cr,Mo,W)系にCを侵入させることにより高い磁
気特性を有する磁石材料が得られた。
As described above, R- (Fe, Co, Ni)-(Si, Ti, V, which has a ThMn 12 type crystal structure,
A magnet material having high magnetic properties was obtained by infiltrating C into the (Cr, Mo, W) system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るThMn12型体心正方晶構造であ
る。
FIG. 1 is a ThMn 12 type body-centered tetragonal structure according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 啓介 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Keisuke Nakamura 5200 Mikashiri, Kumagaya-shi, Saitama Hitachi Metals Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 RaTMbcADde(ここで、RはY
をふくむ希土類元素のうち少なくとも1種、TMはF
e,Co,Niのうち少なくとも1種、MはSi,T
i,V,Cr,Mo,Wのうち少なくとも1種、ADは
Al,Mn,Zn,Cu,Ga,Ge,Zr,Nb,S
n,Sb,Hf,Taのうち少なくとも1種で、5≦a
≦18at%,65≦b≦85at%,3≦c≦20at%,0<d
≦8at%,2≦e≦15at%)の組成からなる永久磁石。
1. R a TM b M c AD d C e (where R is Y
At least one of the rare earth elements, including TM, is F
At least one of e, Co and Ni, M is Si and T
At least one of i, V, Cr, Mo and W, AD is Al, Mn, Zn, Cu, Ga, Ge, Zr, Nb, S
At least one of n, Sb, Hf, and Ta, 5 ≦ a
≦ 18at%, 65 ≦ b ≦ 85at%, 3 ≦ c ≦ 20at%, 0 <d
A permanent magnet having a composition of ≤8 at% and 2 ≤e≤15 at%).
【請求項2】 請求項1記載の磁石は正方晶ThMn12
型結晶構造を有することを特徴とする永久磁石。
2. The magnet according to claim 1, wherein the magnet is tetragonal ThMn 12
A permanent magnet having a type crystal structure.
【請求項3】 請求項1記載の永久磁石において、Cは
ThMn12型結晶構造に侵入型として入っていることを
特徴とする永久磁石。
3. The permanent magnet according to claim 1, wherein C is included in the ThMn 12 type crystal structure as an interstitial type.
【請求項4】 請求項1記載の永久磁石において、希土
類元素R中のCeもしくは重希土類元素の含有量が1a
t%以上であることを特徴とする永久磁石。
4. The permanent magnet according to claim 1, wherein the content of Ce or heavy rare earth element in the rare earth element R is 1a.
Permanent magnet characterized by being t% or more.
【請求項5】 請求項1記載の永久磁石において、結晶
の結晶場パラメータA2 0が正であることを特徴とする永
久磁石。
5. The permanent magnet according to claim 1, wherein the crystal field parameter A 2 0 of the crystal is positive.
【請求項6】 RaTMbcADde(ここで、RはY
をふくむ希土類元素のうち少なくとも1種、TMはF
e,Co,Niのうち少なくとも1種、MはSi,T
i,V,Cr,Mo,Wのうち少なくとも1種、ADは
Al,Mn,Zn,Cu,Ga,Ge,Zr,Nb,S
n,Sb,Hf,Taのうち少なくとも1種で、5≦a
≦18at%,65≦b≦85at%,3≦c≦20at%,0<d
≦8at%,2≦e≦15at%)で表される組成となるよう
R,TM,M,AD,Cを溶解し、鋳造し、粉砕し、成
形し、焼結して作製する永久磁石の製造方法。
6. R a TM b M c AD d C e (where R is Y
At least one of the rare earth elements, including TM, is F
At least one of e, Co and Ni, M is Si and T
At least one of i, V, Cr, Mo and W, AD is Al, Mn, Zn, Cu, Ga, Ge, Zr, Nb, S
At least one of n, Sb, Hf, and Ta, 5 ≦ a
≦ 18at%, 65 ≦ b ≦ 85at%, 3 ≦ c ≦ 20at%, 0 <d
≤8 at%, 2 ≤e ≤15 at%) of the permanent magnet prepared by melting, casting, crushing, shaping, and sintering R, TM, M, AD, C so that the composition is represented by Production method.
【請求項7】 RaTMbcADde(ここで、RはY
をふくむ希土類元素のうち少なくとも1種、TMはF
e,Co,Niのうち少なくとも1種、MはSi,T
i,V,Cr,Mo,Wのうち少なくとも1種、ADは
Al,Mn,Zn,Cu,Ga,Ge,Zr,Nb,S
n,Sb,Hf,Taのうち少なくとも1種で、5≦a
≦18at%,65≦b≦85at%,3≦c≦20at%,0<d
≦8at%,2≦e≦15at%)で表される組成となる
ようR,TM,M,AD,Cを溶解し鋳造し、溶湯急冷
し、熱処理を施し、樹脂をバインダーとして成形する永
久磁石の製造方法。
7. R a TM b M c AD d C e (where R is Y
At least one of the rare earth elements, including TM, is F
At least one of e, Co and Ni, M is Si and T
At least one of i, V, Cr, Mo and W, AD is Al, Mn, Zn, Cu, Ga, Ge, Zr, Nb, S
At least one of n, Sb, Hf, and Ta, 5 ≦ a
≦ 18at%, 65 ≦ b ≦ 85at%, 3 ≦ c ≦ 20at%, 0 <d
≤8 at%, 2 ≤e≤15 at%) R, TM, M, AD, C are melted and cast, molten metal is rapidly cooled, heat treatment is applied, and a permanent magnet is formed by using a resin as a binder. Manufacturing method.
【請求項8】 RaFebTicADde(ここで、Rは
Ce,Pr,Ndのうち少なくとも1種、ADはAl,
Mn,Zn,Cu,Ga,Ge,Zr,Nb,Sn,S
b,Hf,Taのうち少なくとも1種で、5≦a≦18a
t%,65≦b≦85at%,3≦c≦20at%,0<d≦8at
%,2≦e≦15at%)の組成からなる永久磁石。
8. R a Fe b Ti c AD d C e (wherein R is at least one of Ce, Pr and Nd, AD is Al,
Mn, Zn, Cu, Ga, Ge, Zr, Nb, Sn, S
At least one of b, Hf, and Ta, 5 ≦ a ≦ 18a
t%, 65 ≦ b ≦ 85at%, 3 ≦ c ≦ 20at%, 0 <d ≦ 8at
%, 2 ≦ e ≦ 15 at%) of a permanent magnet.
JP3273638A 1991-10-22 1991-10-22 Permanent magnet and its manufacture Pending JPH05114507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273638A JPH05114507A (en) 1991-10-22 1991-10-22 Permanent magnet and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273638A JPH05114507A (en) 1991-10-22 1991-10-22 Permanent magnet and its manufacture

Publications (1)

Publication Number Publication Date
JPH05114507A true JPH05114507A (en) 1993-05-07

Family

ID=17530484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273638A Pending JPH05114507A (en) 1991-10-22 1991-10-22 Permanent magnet and its manufacture

Country Status (1)

Country Link
JP (1) JPH05114507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047628A (en) * 2018-09-14 2020-03-26 株式会社東芝 Magnet material, permanent magnet, rotary electric machine and vehicle
EP4092693A1 (en) 2021-05-17 2022-11-23 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020047628A (en) * 2018-09-14 2020-03-26 株式会社東芝 Magnet material, permanent magnet, rotary electric machine and vehicle
US11404187B2 (en) 2018-09-14 2022-08-02 Kabushiki Kaisha Toshiba Magnetic material, permanent magnet, rotary electric machine, and vehicle
EP4092693A1 (en) 2021-05-17 2022-11-23 Shin-Etsu Chemical Co., Ltd. Anisotropic rare earth sintered magnet and method for producing the same

Similar Documents

Publication Publication Date Title
EP0242187B1 (en) Permanent magnet and method of producing same
JP4743211B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP2727505B2 (en) Permanent magnet and manufacturing method thereof
EP1127358B1 (en) Sm (Co, Fe, Cu, Zr, C) COMPOSITIONS AND METHODS OF PRODUCING SAME
JPH0685369B2 (en) Permanent magnet manufacturing method
JPS62198103A (en) Rare earth-iron permanent magnet
US5186761A (en) Magnetic alloy and method of production
EP0288637B1 (en) Permanent magnet and method of making the same
JPH05114507A (en) Permanent magnet and its manufacture
JPH0562815A (en) Permanent magnet and manufacturing method thereof
US5460662A (en) Permanent magnet and method of production
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JPH0521216A (en) Permanent magnet alloy and its production
JP2730441B2 (en) Manufacturing method of alloy powder for permanent magnet
JP2951006B2 (en) Permanent magnet material, manufacturing method thereof, and bonded magnet
JPH07123083B2 (en) Cast rare earth-method for manufacturing iron-based permanent magnets
JP2609106B2 (en) Permanent magnet and manufacturing method thereof
JP2631380B2 (en) Rare earth-iron permanent magnet manufacturing method
JPH0477066B2 (en)
JPH0533095A (en) Permanent magnet alloy and its production
JPH09115711A (en) Anisotropic bond magnet
JPH048923B2 (en)
JPH0613212A (en) Rare earth magnetic particle, manufacturing method thereof and rare earth bond magnet
JPS59217305A (en) Permanent magnet material and manufacture thereof