JPS59217305A - Permanent magnet material and manufacture thereof - Google Patents

Permanent magnet material and manufacture thereof

Info

Publication number
JPS59217305A
JPS59217305A JP58090802A JP9080283A JPS59217305A JP S59217305 A JPS59217305 A JP S59217305A JP 58090802 A JP58090802 A JP 58090802A JP 9080283 A JP9080283 A JP 9080283A JP S59217305 A JPS59217305 A JP S59217305A
Authority
JP
Japan
Prior art keywords
sintering
temperature
permanent magnet
less
aging treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58090802A
Other languages
Japanese (ja)
Other versions
JPH0320047B2 (en
Inventor
Hitoshi Yamamoto
日登志 山本
Masato Sagawa
眞人 佐川
Setsuo Fujimura
藤村 節夫
Yutaka Matsuura
裕 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58090802A priority Critical patent/JPS59217305A/en
Priority to US06/532,471 priority patent/US4601875A/en
Priority to CA000436891A priority patent/CA1287509C/en
Priority to EP83109508A priority patent/EP0126802B2/en
Priority to DE8383109508T priority patent/DE3378707D1/en
Publication of JPS59217305A publication Critical patent/JPS59217305A/en
Priority to SG594/90A priority patent/SG59490G/en
Priority to HK753/90A priority patent/HK75390A/en
Publication of JPH0320047B2 publication Critical patent/JPH0320047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered

Abstract

PURPOSE:To elevate a Curie point of a magnet material, and to improve temperature characteristics by replacing one part of Fe as the principal ingredient of a Fe.B.R group magnet with Co. CONSTITUTION:Alloy powder of 0.3-80mum mean grain size consisting of R (where R is rare-earth elements containing Y) of 8-30% as an atomic percent, B of 2-28%, Co of 50% or less and the remainder and inevitable impurities is molded, sintered at a temperature of 900-1,200 deg.C under a reducing or a nonoxidizable atmosphere, and thermally treated at a temperature from 350 deg.C to said sintering temperature after sintering. When one part of Fe.B.R group Fe is replaced with Co, a Curie point rises, and not only excellent temperature characteristics are given but also corrosion resistance can be improved.

Description

【発明の詳細な説明】 本発明はFe −B・R系永久磁石の温度特性を改良し
た永久磁石材料およびその製造方法に関する8永久磁石
材料は一般家庭の各種電気製品から大型コンピューター
の周辺機器捷で巾広い分野で使用される極めて重要な電
気・電子材料の一つである。近年の電気・電子機器の小
型化・高効率化の要求に伴ない永久磁石材料は増々高性
能化が求められている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a permanent magnet material with improved temperature characteristics of Fe-B/R permanent magnets and a manufacturing method thereof. It is one of the extremely important electrical and electronic materials used in a wide range of fields. With the recent demands for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have increasingly higher performance.

現在の代表的な永久磁石材料はアルニコ、・・−ドフエ
ライト、および希土類コバルト磁石である。
Current representative permanent magnet materials are alnico, . . . -doferrite, and rare earth cobalt magnets.

最近のコバルトの原料事情の不安定化に伴ないコバルト
全20〜30重量係含むアルニ“コ磁石の需要は減少し
安価なノ・−ドフエライトが磁石材料の主流を占めるよ
うになった。一方希土類コバルト磁石はコバルト全50
〜65重t%も含むうえ希土類鉱石中に余り含1れてい
ないSmを使用するため非常に高価である。しかし他の
鉱石に比べて磁気特性が格段に高いため主として小型で
付加価値の高い磁気回路に使用されている。希土類鉱石
がもつと広い分野で安価にかつ多量に使用されるには高
価なコバルト全多゛権に含捷ずかっ希土類金属として鉱
石中に多量に含まれて込る軽希土類を主成分とすること
が必要である。このような永久磁石材料への試みがなさ
れている。例えばクラーク(A −E・C1ark )
はス・モツタリングにより作つた非晶質’I1.” b
Fe2は4.2°にで29.5 MGOeのエネルギー
積全もち、これ全300〜500℃で熱処理すると室温
で保磁力11イCが3.4](Oe最犬エネルギー槓(
Bi−f)、ηaxは7 MOOe全示すことを見い出
した。
With the recent instability of the raw material situation for cobalt, the demand for alnico magnets containing 20 to 30% cobalt by weight has decreased, and inexpensive nord ferrite has become the mainstream magnet material.On the other hand, rare earth Cobalt magnets are all cobalt 50
It is very expensive because it contains up to 65% by weight and Sm, which is not very present in rare earth ores. However, because it has much higher magnetic properties than other ores, it is mainly used in small, high-value-added magnetic circuits. Rare earth ores are mainly composed of light rare earths, which are contained in large amounts in ores as rare earth metals, which cannot be used cheaply and in large quantities in a wide range of fields because they do not contain all the expensive cobalt. It is necessary. Attempts have been made to develop such permanent magnet materials. For example, Clark (A-E・C1ark)
is an amorphous 'I1. ”b
Fe2 has a total energy product of 29.5 MGOe at 4.2°, and when it is heat-treated at 300 to 500°C, the coercive force 11C at room temperature becomes 3.4] (Oe most dog energy product (
Bi-f), ηax was found to be 7 MOOe.

同様な研究はSmFe2についても行なわれ77°にで
9.2MGOeのエネルギー撰全示すことが報告されて
いる。しかしこれらの材料(−Iどれ:もスパッタリン
グにより作製された4嘆であり実用できる磁石とはなら
ない。又PrFe系合金の庵急冷により作ったリボンは
保磁力iHcが2.8 KOe f示すことが報告され
た。更にクーン等は(Fe 13 )0.9 Tbo、
os Lao、asの超急冷による非晶質リボンを62
7℃で焼鈍すると保磁力IHCは9 KOeにも達し残
留磁束密度Brは5KGであることを見い出した。しか
しこの部分磁化曲線の角形性が悪いため、その(131
−1,) may  は低い(N 、 C、Koon他
、 Appl 、 1.’hys 、 Left39(
1’0)1981.840〜842頁)。又カバコツ(
L。
A similar study was conducted on SmFe2, and it was reported that SmFe2 exhibited an energy concentration of 9.2 MGOe at 77°. However, these materials (-I) are all fabricated by sputtering and cannot be used as practical magnets. Also, ribbons made by rapid cooling of PrFe alloys have a coercive force iHc of 2.8 KOe f. Furthermore, Kuhn et al. reported that (Fe 13 )0.9 Tbo,
os Lao, amorphous ribbon by ultra-quenching of 62
It was found that when annealed at 7°C, the coercive force IHC reached as high as 9 KOe and the residual magnetic flux density Br was 5 KG. However, due to the poor squareness of this partial magnetization curve, the (131
-1,) may be low (N, C, Koon et al., Appl, 1.'hys, Left39(
1'0) 1981. pp. 840-842). Matakabakotsu (
L.

1ぐabacoff )等は(F”eB)、−xPrx
 (x==0.〜(L3原子比)の組成を超急冷により
リボンを作製しlζ’e−Pr二成分系が室温でKOe
レベルの保磁力全もつものがあると報告している。しか
しこれらの超急冷リボン又はス・ぐツタ薄膜はそれ自体
として使用可能な実用永久磁石(体)ではないのでリボ
ンや薄膜から実用永久磁石を得ることはできない。即ち
従来のFe −B −R系超急冷リボン又はRFe系ス
パッタ薄膜からは任意の形状1寸法を有するバルク磁石
(2)を得ることが出来な−。これまでに報告されたF
e −B −R系IJ 、yンの磁化曲線は角形性が悪
〈従来慣用の磁石に対抗できる英用水久磁石材刺とはな
り得ない。父上記スパッタ薄膜及び超急冷リボンはいず
れも本質上等方性でありこれらから固気異方性の実用永
久磁石を得ることは事実上不可能である。
1gabacoff) etc. is (F”eB), -xPrx
A ribbon was prepared by ultra-quenching with a composition of
It has been reported that there are some that have a coercive force of almost the same level. However, these ultra-quenched ribbons or suction thin films are not practical permanent magnets that can be used as such, so it is not possible to obtain practical permanent magnets from ribbons or thin films. That is, it is not possible to obtain a bulk magnet (2) having an arbitrary shape and dimension from the conventional ultra-quenched Fe-B-R ribbon or RFe-based sputtered thin film. F reported so far
The magnetization curve of the e-B-R system IJ and yen has poor squareness (it cannot be used as a British water magnet material that can compete with conventional magnets). Both the above-mentioned sputtered thin film and ultra-quenched ribbon are isotropic in nature, and it is virtually impossible to obtain a practical permanent magnet with solid-state anisotropy from them.

また本発明者等(グ先に高価々Sm 、 Coを含まな
い新しい高性能永久磁石であるFe −B −R系磁石
を見い出し出願したがそのキュリ一点Tcは300℃か
ら最高370℃である。
In addition, the inventors of the present invention discovered and applied for a Fe-B-R magnet, which is a new high-performance permanent magnet that does not contain expensive Sm or Co, but its Curie point Tc is from 300°C to a maximum of 370°C.

一本発明はこのFe・13・l(系磁石の温度特性を改
良すると共に従来法で得られ女い新規な英用永久磁石材
利を得ることを目的とする。また本発明は室温以上の温
度で良好な磁気特性を有し任意の形状実用寸法に成形で
き磁化曲線の角形性が高くしかも1(として資源的に豊
富な軽希土類元素全有効((使用できるものを得ること
全目的とするものである。
One object of the present invention is to improve the temperature characteristics of this Fe.13.l (Fe.13.l) system magnet and to obtain a new permanent magnet material advantageous to that which cannot be obtained by conventional methods. It has good magnetic properties at high temperatures, can be molded into any shape and practical size, has a high squareness of magnetization curve, and is made of light rare earth elements that are abundant in resources. It is something.

これらの目的を満たすため本発明者等の鋭意の研究の結
果まずFe −B −R系磁石の主成分たるFeの一部
fcoで置換することによ!ll磁石材料のキュリ一点
全上昇せしめ温度特性全改善することが出来ると共に、
更に一足の組成の合金の磁気特性の向土のため一定の粉
末を成形し焼結し焼結後特定の条件下での熱処理いわゆ
る時効処理をすることにより保磁力、減磁曲線の角形性
が著るしく改善されることを見い出しだものである、即
ち本発明は原子百分率として8〜30%のR(但しRは
Yを包含する希土類元素の少なくとも一種)、2〜28
%のB、50%以下のCo(但LCOO%を除く)およ
び残部および不可避の不純物からなる平均粒度0.3〜
80μmの合金粉末を成形し、焼結し熱処理して得られ
る永久磁石材料を提供する。
In order to meet these objectives, as a result of intensive research by the present inventors, we first replaced a portion of Fe, which is the main component of Fe-B-R magnets, with fco! It is possible to raise the temperature of the magnetic material by one point and completely improve the temperature characteristics.
Furthermore, in order to improve the magnetic properties of an alloy with a certain composition, a certain amount of powder is molded and sintered, and after sintering, heat treatment under specific conditions (so-called aging treatment) is performed to improve the coercive force and the squareness of the demagnetization curve. It has been found that the invention is significantly improved, that is, the present invention has an atomic percentage of 8 to 30% R (wherein R is at least one kind of rare earth element including Y), 2 to 28
% B, 50% or less Co (excluding LCOO%), and the balance and unavoidable impurities, with an average particle size of 0.3~
A permanent magnet material obtained by molding 80 μm alloy powder, sintering and heat-treating it is provided.

本発明はまだ、上記一連の工程において、還元性又は非
酸化性雰囲気下にて900〜1200 ℃の温度で焼結
し、焼結後350℃〜当該・焼結温度で熱処理すること
を特徴とする永久磁石の製造方法を提供する。この熱処
理は、時効処理である。
The present invention is still characterized in that in the above series of steps, sintering is performed at a temperature of 900 to 1200 °C in a reducing or non-oxidizing atmosphere, and after sintering, heat treatment is performed at a temperature of 350 °C to the sintering temperature. A method of manufacturing a permanent magnet is provided. This heat treatment is an aging treatment.

一般にFe合金へのCoの添加でその添加量の増加に伴
ないキュリ一点Tcが上昇するもの、下降するものなど
があり結果を予測することは困離である。
Generally, when Co is added to an Fe alloy, as the amount of Co added increases, the Curie point Tc increases in some cases and decreases in others, and it is difficult to predict the result.

本発明ではFe −B −u系のl’leの一部ヲco
で置換す、ると第1図に示すようにCoの置換量の増大
に伴いTcが徐々に増大する。Fe −B −R系合金
VC′s?いては凡の種類によらず同様な傾向が確認さ
れる。C。
In the present invention, a part of l'le of the Fe-B-u system is
As shown in FIG. 1, as the amount of Co replaced increases, Tc gradually increases. Fe-B-R alloy VC's? A similar trend is confirmed regardless of the type. C.

の置換量はわずかでもTcの増大には有効であり第1図
に例示するように(77−x)Fe−xCo−88−L
5NdのXの量により約300〜約800℃の任意のT
cfもつ合金が得られる。
Even if the amount of substitution is small, it is effective for increasing Tc, and as illustrated in Fig. 1, (77-x)Fe-xCo-88-L
Any T of about 300 to about 800°C depending on the amount of X in 5Nd
An alloy with cf is obtained.

本発明のFe−Co−B−’fL系永久磁石のB−Rお
よび(Fe+Co)の各組成分量はFe −B、 −R
系の場合と基本的に同じである。即ちBは永久磁石材料
としての保磁力HCがI KOe以上を満たすために2
%(以下チは成分中の原子百分率全示す)以上とし又ハ
ードフェライトの残留磁束密度Br約4 KG以上とす
るために28%以下である。Rは保磁力I KOe以上
とするだめに8φ以上必要である。しかし々がら1(、
は燃え易く工業的取扱、製造上の困難から且つ又高価で
もあるため30%以下とする。
The respective compositional amounts of BR and (Fe+Co) of the Fe-Co-B-'fL permanent magnet of the present invention are Fe -B, -R
It is basically the same as the case of the system. In other words, B is 2 in order to satisfy the coercive force HC as a permanent magnet material of IKOe or more.
% (hereinafter, ``chi'' indicates the total atomic percentage in the components) or more, and in order to make the residual magnetic flux density of the hard ferrite Br about 4 KG or more, it is 28% or less. R needs to be 8φ or more in order to make the coercive force IKOe or more. However, 1(,
Because it is easily flammable, difficult to handle and manufacture industrially, and is also expensive, it should be kept at 30% or less.

CoのFe置換量はTCの改善と高価である点から50
%以下とする。Rとしては資源的に豊富な軽希土類を用
いることができ必らずしもSmk必要とせず或いはSm
ヲ主体とする必要もないので原料が1  安価であり極
めて有用である。
The amount of Fe substitution for Co is 50% due to the improvement of TC and the cost.
% or less. As R, light rare earths, which are abundant in resources, can be used, and Smk is not necessarily required, or Sm
Since there is no need to use wo as the main ingredient, the raw material is inexpensive and extremely useful.

本発明で用いる希土類元素RはYi包含し、軽希土類及
び重希土類を包含する希土類元素でありそのうち一種以
上全用いる。RとしてU Nd 、 Pr 。
The rare earth elements R used in the present invention include Yi, light rare earths, and heavy rare earths, and one or more of them are all used. R as U Nd, Pr.

La 、 Ce 、 Tb 、 Dy 、 Ho 、 
Er 、 Eu−、Sm 、 Gd 、 Pm 、 T
m 。
La, Ce, Tb, Dy, Ho,
Er, Eu-, Sm, Gd, Pm, T
m.

Yb 、 Lu及びYが包含される。又1tとしては軽
希土類をもって足り特にNd 、 Prが好ましい。通
常l(のうち1種をもって足りるが実用上は2種以上の
混合物(ミツシュメタル、ノノム等)全入手上の便宜等
の理山により用いることができ、Sm 、 Y 、 L
a 。
Yb, Lu and Y are included. Further, as 1t, a light rare earth metal is sufficient, and Nd and Pr are particularly preferable. Normally, one type of L is sufficient, but in practice, a mixture of two or more types (Mitushmetal, Nonom, etc.) can be used depending on the convenience of obtaining all of them, Sm, Y, L.
a.

Ce 、 Gd等は他のR特にNd 、 Pr等との混
合物として用いることができる。なおこのRは純希土類
元素でなくとも良く工業上入手可能な範囲で製造上不可
避な不純物を含有するものでも用いることが出来る。
Ce, Gd, etc. can be used as a mixture with other R, especially Nd, Pr, etc. Note that this R does not have to be a pure rare earth element, and it is also possible to use an element containing impurities that are unavoidable in manufacturing as long as it is industrially available.

ホウ素B illボロン又はフェロyt’07 i用い
ることが出来、不純物としてAt、Si、C等を含むも
のも用いることができる。
Boron or ferro yt'07i can be used, and materials containing At, Si, C, etc. as impurities can also be used.

本発明の永久磁石材料は8〜30係のR、2〜28%の
B、50%以下のCO残部実質的にFeでは保磁力はI
 KOe以上、残留磁束密度13rは4 KG以上の磁
気特性全示し最大エネルギー積(BH)   はノ・m
ax −ドアエライトと同等以上である。
The permanent magnet material of the present invention has an R of 8 to 30, a B of 2 to 28%, a CO balance of 50% or less, and a coercive force of I
KOe or higher, the residual magnetic flux density 13r is 4 KG or higher, and the maximum energy product (BH) is no m
It is equal to or better than ax-door elite.

軽希土類2 Rの主成分とし全R中の軽希土類50%以
上で11〜24多の1t、3〜27係のB。
Light rare earth 2 The main component of R is 50% or more of light rare earth in the total R, and it is 1t of 11 to 24 and B of 3 to 27.

50%以下のco、残部実質的にFeでは(BH)ma
xが7Iシ印e以上を示し好ましい組成範囲である。更
には軽希土類全全1(中の50係以上を含有しかつ12
〜20チの1も、4〜24係のB、50%以下のCo。
Less than 50% co, the remainder substantially Fe (BH)ma
x is 7I mark e or more, which is a preferable composition range. In addition, all light rare earths 1 (containing 50 or more of them and 12
-1 of 20 Chi, B of 4-24, Co of 50% or less.

残部は実質的KFeでBrの温度係数(ロ)は帆1%/
℃以下であり温度特性が良好であると共に(BH)ma
xは1、0 M30e以上、最高33 MGOeにも達
する磁気特性全発現する極めて好ましい組成である。
The remainder is essentially KFe, and the temperature coefficient (b) of Br is 1%/
℃ or less, the temperature characteristics are good, and (BH)ma
x is an extremely preferable composition that exhibits full magnetic properties of 1.0 M30e or more, reaching a maximum of 33 MGOe.

本発明のFe −、Co −B −R系磁石体はCo 
f含有しないFe−B−L3r系に比較して良好な温度
特性全有するのみならずCo添力旧でより減磁曲線の角
形性が改善されるため最大エネルギー積の向上がはかれ
る。
The Fe-, Co-B-R magnet of the present invention is a Co
Not only does it have better temperature characteristics than the Fe-B-L3r system which does not contain f, but also the squareness of the demagnetization curve is improved even before Co addition, so the maximum energy product is improved.

更にはCOはFeに比べて耐食性を有するのでCOの添
加により耐食性全伺与することが出来る。
Furthermore, since CO has higher corrosion resistance than Fe, the addition of CO can provide the entire corrosion resistance.

本発明の優れた磁気特性を有する永久磁石材料1は上記
組成合金を粉砕し、成形し、焼結し更に熱処理する一連
の工程を経る製造方法によって得られるものである。以
下本発明の製造方法を磁気異方性永久磁石材料の゛場合
について述べる。
The permanent magnet material 1 having excellent magnetic properties of the present invention is obtained by a manufacturing method that involves a series of steps of pulverizing the above composition alloy, molding it, sintering it, and further heat treating it. The manufacturing method of the present invention will be described below with reference to the case of a magnetically anisotropic permanent magnet material.

出発原料としてFeは純度99.0 %以上の電解鉄。As a starting material, Fe is electrolytic iron with a purity of 99.0% or more.

Bは純度99.0%以上の純ボロンおよび純度90−O
係以上のフェロボロン、Rは純度95襲以上のものを使
用した。これらの原料を上記の組成分範囲内で配合調整
して真空ないし不活性ガス雰囲気中で高周波溶解、アー
ク溶解などで溶解し合金化する。
B is pure boron with a purity of 99.0% or more and a purity of 90-O
Ferroboron with a purity of 95 or higher was used for R. These raw materials are blended within the above composition range and melted and alloyed by high frequency melting, arc melting, etc. in vacuum or an inert gas atmosphere.

これを冷却して得られた合金をスタンプミル、ショーク
ラッシャなどで粗粉砕後側にノエットミル。
The alloy obtained by cooling this is coarsely crushed using a stamp mill, a show crusher, etc., and then the Noet mill is applied to the side.

ボールミル等によジ微粉砕する。微粉砕は不活性ガス雰
囲気中で行なう乾式粉砕あるい(グアセトン。
Finely grind using a ball mill, etc. Fine pulverization is done by dry pulverization in an inert gas atmosphere or by pulverization (guacetone).

トルエン等ヲ用いる゛肩機溶媒中で行なう湿式粉砕のい
ずれも用いることが出来る。微粉砕によって得られる合
金粉末は、平均粒度が0.9〜80μmのものを用いる
。平均粒度が0.311mより小さいと微粉砕中もしく
はその後の工程で粉末の酸化が著るしくなり焼結後の密
度が上らず得られる磁石特性も低い。又平均粒度80μ
mfこえるとすぐれた磁気特性とりわけ高い保磁力が得
られなめ。優れた磁気苛性を発現させるためには微粉末
の平均粒度(・ユ]〜40μmが好ましく特[2〜2o
μtnが号も好捷し鴎 平均粒度0.3〜80μmの粉末を磁界中(例えば5 
KOe以上)で加圧、成形する。磁界中での加圧成形(
では粉末全そのまま成形する方法、アセトン。
Any wet grinding in a shoulder solvent such as toluene can be used. The alloy powder obtained by pulverization has an average particle size of 0.9 to 80 μm. If the average particle size is smaller than 0.311 m, the oxidation of the powder becomes significant during the pulverization or subsequent steps, and the density after sintering does not increase, resulting in poor magnetic properties. Also, the average particle size is 80μ
If the mf is exceeded, excellent magnetic properties, especially high coercive force, cannot be obtained. In order to exhibit excellent magnetic causticity, the average particle size of the fine powder is preferably from 2 to 40 μm.
μtn is also suitable for powders with an average particle size of 0.3 to 80 μm in a magnetic field (for example, 5 μm).
KOe or higher) and pressurize and mold. Pressure forming in a magnetic field (
Now let's look at acetone, a method of molding the entire powder as it is.

トルエン等の有機溶媒中で成形する方法、成力はその他
の粉末成形方法(〕やラフイン、ステアIJ 7峨等の
yjy形助剤全用いる方法)等を用いることができる。
A method of molding in an organic solvent such as toluene, and other powder molding methods (a method using all yjy type auxiliary agents such as Rough-in and Stair IJ 7A) can be used.

得られた成形体を例えば、10〜2Torr以下の真空
中あるい(衝]〜760 ’J、’orrの圧力下等の
少くとも非酸化性ないし99.9 %以上不活性ないし
還元性のガスの雰囲気中で900〜1200℃の温度で
焼結する。焼結温度が900℃未満では十分な・焼結密
度が得られず、4冒い残留磁束密度も得られない。捷た
1200’Ckこえると焼結体が変形し結晶粒の配向が
くずれるため残留磁束密度の低下と減磁曲線の角形性が
低下する。焼結時間は5分以上あれば良−が余り長時間
では量産性の点で問題であるので磁石特性の発現性等か
ら0.5〜4時間が好ましい。な2焼結時の雰囲気は組
成分中のRが高温で極めて酸化されやす−ので非酸化性
雰囲気である高真空中、不活性ガス下還元性ガス下など
を高度に確保することが望ましい。不活性ガスを用いる
場合に高い焼結密度を得るだめ1〜760 Torr未
満の減圧雰囲気下で行なうことも出来る。
The obtained molded body is heated with at least a non-oxidizing or 99.9% or more inert or reducing gas, for example, in a vacuum of 10 to 2 Torr or under a pressure of 760'J,'orr. It is sintered at a temperature of 900 to 1200°C in an atmosphere of If the sintering time exceeds 5 minutes, the sintered body will be deformed and the orientation of the crystal grains will be disrupted, resulting in a decrease in the residual magnetic flux density and the squareness of the demagnetization curve.If the sintering time is 5 minutes or more, it is good, but if the sintering time is too long, it may be difficult to mass-produce. Since this is a problem, 0.5 to 4 hours is preferable from the viewpoint of development of magnetic properties, etc. 2. The atmosphere during sintering is a non-oxidizing atmosphere as R in the composition is extremely easily oxidized at high temperatures. It is desirable to secure a high degree of sintering in a high vacuum, under an inert gas, under a reducing gas, etc. If an inert gas is used, it is also possible to conduct the sintering under a reduced pressure atmosphere of less than 1 to 760 Torr in order to obtain a high sintering density. .

焼結時の昇温速度は特に規定する必要ぼないが湿式成形
方式を用いた場合は有機溶媒の溶媒除去のため40℃/
分以下で昇温全行々うがあるい(は昇温途中200〜8
oo℃の温度範囲で帆5時間以上保持することが好まし
い。焼結後冷却する場合の冷却速度は20℃/分以上が
製品のバラツキを少くするために好ましく、その後の熱
処理いわゆる時効処理にょる′磁気特性を高めるために
(σ冷却速度は100℃/分以上が好ましい(但し、焼
結に続いて直ちに熱処理工程に入ることもできる。)焼
結体は非酸化性雰囲気の真空、不活性ガス、還元性ガス
の雰囲気下で350℃以上当該成形体の焼結温度以下の
温度で所定時間時効処理される。
There is no need to specify the temperature increase rate during sintering, but if a wet molding method is used, the rate of temperature increase during sintering is 40℃/
It takes less than 20 minutes to raise the temperature (200~800℃ during heating).
Preferably, the sail is maintained in a temperature range of 0.00°C for 5 hours or more. When cooling after sintering, a cooling rate of 20°C/min or higher is preferable in order to reduce product variation, and in order to improve the magnetic properties of the subsequent heat treatment, so-called aging treatment (σ cooling rate is 100°C/min). The above is preferable (however, it is also possible to immediately enter the heat treatment step following sintering). Aging treatment is performed for a predetermined period of time at a temperature below the sintering temperature.

時効処理の雰囲気は合金組成中のRが高温て酸素又は水
分と急激に反応するので真空の場合は真空10”””l
l”o汀以下不活性ガス還元性ガスの雰囲気の場合は雰
囲気の純度99.99%以上が好捷し層。
Since R in the alloy composition reacts rapidly with oxygen or moisture at high temperatures, the atmosphere for aging treatment is vacuum 10"""l.
In the case of an atmosphere of inert gas or reducing gas, the purity of the atmosphere is 99.99% or more.

焼結温度は永久磁石材料の組成分により前記範囲内で選
択され、時効処理温度は当該焼結温度以下で対応して選
択する。例えば50FelOCo20B2ONd合金+
 65 Fe 2″’0Co5  B10Nd合金では
、時効処理上限温度は各950℃、1050℃である。
The sintering temperature is selected within the above range depending on the composition of the permanent magnet material, and the aging temperature is correspondingly selected below the sintering temperature. For example, 50FelOCo20B2ONd alloy +
For the 65 Fe 2'''0Co5 B10Nd alloy, the upper limit temperatures for aging treatment are 950°C and 1050°C, respectively.

通常Fe成分が多い、あるーa B成分が少ない、ある
いi”J R成分が少ない組成合金はど時効処理温度の
」二限ヲ冒<出来る。しかし時効処理温度が高すぎると
本発明磁石体の結晶粒が過剰成長し磁石特性特に保磁力
の低下をもたらすと共に最適時効処理時間が極めて短時
間となり製造条件の制御が困・記となる恐れがある。丑
だ350℃以下では時効処理に長時間を要することにな
りしかも減磁曲線の角形性が低下し良好な永久磁石が得
られない。
Generally, alloys with a high Fe content, a low B content, or a low R content can exceed the aging temperature limits. However, if the aging treatment temperature is too high, the crystal grains of the magnet body of the present invention will grow excessively, leading to a decrease in the magnetic properties, especially the coercive force, and the optimum aging treatment time will be extremely short, which may make it difficult to control the manufacturing conditions. be. If it is below 350°C, the aging treatment will take a long time and the squareness of the demagnetization curve will deteriorate, making it impossible to obtain a good permanent magnet.

本発明の礎石体の結晶粒の過剰成長をおこさず、イ憂れ
た磁石特性全発現させるために時効処理温度は450〜
800℃の温度範囲が好ましい。又時効処理時間は5分
ないし40時間が好ましい。時効処理時間は時効処理温
度とも関連するが5分以下では時効処理の効果が少く、
寸だ得られる磁石体の磁石特性のバラツキも大きくなる
。一方40時間以上では工業的に長時間を要しすぎるの
で実用的でな−。磁石特性の好捷しい発現と実用的な点
から時効処理時間は30分な旨し8時間が好ましい。
In order to fully develop the excellent magnetic properties without causing excessive growth of the crystal grains of the cornerstone body of the present invention, the aging treatment temperature is set at 450~450°C.
A temperature range of 800°C is preferred. Further, the aging treatment time is preferably 5 minutes to 40 hours. The aging treatment time is also related to the aging treatment temperature, but if it is less than 5 minutes, the effect of aging treatment is small;
The variation in the magnetic properties of the obtained magnet body also increases. On the other hand, 40 hours or more is not practical because it requires too much time industrially. From the viewpoint of good development of magnetic properties and practical aspects, the aging treatment time is 30 minutes, preferably 8 hours.

また時効処理には2段以上の多段時効処理の方法も有効
であり本発明方法で用いることも出来る。
Furthermore, a multi-stage aging treatment method of two or more stages is also effective and can be used in the method of the present invention.

例えば65Fel 5Co7B 13Ndの組成合金’
に1060℃で焼結し冷却した後1段目として800〜
900℃で30分ないし6時間の初段時効処理をし更に
2段目以降400〜750℃で2〜30時間の1段以上
の時効処理を行なうことにより残留磁束密度、保磁力、
減磁曲線の角形性のいずれもに極めて優れた磁石特性を
有する磁石体が得られる。多段時効処理では2段目以降
の時効処理が保磁力の著るしい向上に効果がある。また
時効処理の他の方法として多段時効処理に代わって3.
50℃がら900℃の時効処理温度から室温までを空冷
もしくは水冷などの冷却方法によ、!l) 0.2〜b
冷却速度で冷却しても同様の磁気特性を有する磁石体が
得られる。々おこれらの一連の処理方法を含む時効処理
は焼結に引き続いて行なうことも又は焼結後一旦室温ま
で冷却後頁ひ昇温して行なうことも出来る。
For example, a composition alloy of 65Fel 5Co7B 13Nd'
After sintering at 1060℃ and cooling, the first stage is 800~
The first stage aging treatment is carried out at 900℃ for 30 minutes to 6 hours, and the second and subsequent stages are then subjected to one or more stages of aging treatment at 400 to 750℃ for 2 to 30 hours to improve the residual magnetic flux density, coercive force,
A magnet body having extremely excellent magnetic properties in all of the squareness of the demagnetization curve can be obtained. In multi-stage aging treatment, the second and subsequent aging treatments are effective in significantly improving coercive force. In addition, as another method of aging treatment, 3.
From the aging treatment temperature of 50℃ to 900℃ to room temperature by cooling methods such as air cooling or water cooling! l) 0.2~b
A magnet body having similar magnetic properties can be obtained even if the magnet body is cooled at the same cooling rate. The aging treatment including a series of these treatment methods can be performed subsequent to sintering, or can be performed after sintering by cooling to room temperature and then raising the temperature.

本発明は磁気異方性永久磁石の鴇合に限らず、磁気等方
性永久磁石の場合にも工程中成形全磁界をかけずに行な
うことにより全く同様方法全採用することが出来、すぐ
れた磁石特性全発現させることが出来る。な2等方性の
鳴合K trs、R10〜25%、83〜23%、Co
50%以下(000%を除り)、残部Fe及び不可避の
不純物から成る組成に2いて、(BH)may 2 M
30e以上が得られる。等方性磁石は元来異方性磁石の
磁気特性の凶〜稀の低い特性のものであるが、本発明に
よれば、それ’   Ktla17、ゎIff、。□い
。1、□い特性が得られる。R量が増加するに従ってi
Hcは増加するが、Brは最大値を経た後減少する(第
1図参照)。かくて(BH)n、ax2MGOe以上を
満足するR量は10係以上でかつ25%以下である。
The present invention is not limited to the welding of magnetically anisotropic permanent magnets, but also in the case of magnetically isotropic permanent magnets, by performing the molding process without applying a total magnetic field during the forming process, the same method can be adopted, which is excellent. All magnetic properties can be expressed. Biisotropic ringing K trs, R10-25%, 83-23%, Co
(BH) may 2 M
30e or more can be obtained. Isotropic magnets originally have magnetic properties that are poor to rare compared to anisotropic magnets, but according to the present invention, they can be improved. □Yes. 1. Good characteristics can be obtained. As the amount of R increases, i
Hc increases, but Br decreases after reaching its maximum value (see Figure 1). Thus, the R amount that satisfies (BH)n, ax2MGOe or more is a factor of 10 or more and 25% or less.

またB量が増大するに従いiHcは増大するがBrは最
大値を経た後減少する(第2図参照)。かくて(Bl(
)max 2 ’MGOe以上を得るには83〜23%
の範囲でなければならない。
Further, as the amount of B increases, iHc increases, but Br decreases after reaching its maximum value (see FIG. 2). Thus (Bl(
) 83-23% to obtain max 2' MGOe or higher
must be within the range.

好ましくは軽希土類iRの主成分(全R中軽希土類が5
0原子チ以上)とし12〜20%のR15〜18%のB
、残部Feの組成で(1−’H)max 4瓜e以上の
高い磁気特性を示す。最も好ましい範囲としてNd 、
 Pr等の軽希土類i L(の主成分とし12〜16係
のR16〜18%のB残部Feの組成では(BH)ma
xが7以上で等方性永久磁石ではかつて無い高い特性が
得られる。
Preferably, the main component of light rare earth iR (total R medium light rare earth is 5
0 atoms or more) and 12-20% R15-18% B
, the balance is Fe, and exhibits high magnetic properties of (1-'H)max 4 or more. The most preferred range is Nd,
In the composition of light rare earths such as Pr, i L (as the main component of R16-18%, B balance Fe, (BH) ma
When x is 7 or more, high characteristics never seen before in an isotropic permanent magnet can be obtained.

結合剤、滑剤は、異方性の場合には、成形の際の配向を
妨げるため一般には用いられないが、等方性磁石の場合
には、結合剤、滑剤等を含むことによりプレス効率の改
善、成形体の強度増大等が可能である。
Binders and lubricants are generally not used in the case of anisotropic magnets because they interfere with orientation during molding, but in the case of isotropic magnets, binders and lubricants are included to improve press efficiency. It is possible to improve the strength of the molded product, etc.

本発明永久磁石は工業的製造上不可避な不純物の存在を
許容できるがさらに以下の展開も可能であり一層実用性
を高めることができる。即ちRlB 、 Feの他に所
定範囲内でC、P 、 S 、 Cuが含有されること
もでき製造上の便宜、低価格化に資する。
Although the permanent magnet of the present invention can tolerate the presence of impurities that are inevitable in industrial production, the following developments are also possible and the practicality can be further improved. That is, in addition to RlB and Fe, C, P, S, and Cu may be contained within a predetermined range, contributing to manufacturing convenience and cost reduction.

Cは有機結合剤からS 、 P 、 Cu等は原料、製
造工程からも含有されることがある。C4,0%以下、
P3.3%以下、82.5%以下、Cu3.3%以下、
但しこれらの合計は、各成分のうち最大値以下では実用
可能である。
C is an organic binder, and S, P, Cu, etc. may be contained from raw materials and manufacturing processes. C4.0% or less,
P3.3% or less, 82.5% or less, Cu3.3% or less,
However, these sums are practical if they are less than the maximum value of each component.

実施例 1 原子百分率組成66Fe6B 14NdL4Coなる合
金iA+−ガス中高中高周波溶解水冷銅鋳型に鋳造して
得た。本合金をスタンプ・ミルにより 35 mesh
以下に粗粉砕後、Ar雰囲気中で平均粒度5μmにボー
ル・ミルで微粉砕した。得られた粉末11o1ぐOe磁
界中で2.Q ton/crlの圧力で加圧成型した後
、99.99 qb線純度760 ’l’orrAr中
で1120℃、2時間II;m結し、焼結後は冷却速度
500℃/minで室温まで冷却した。さらに時効処理
上650℃で表1に示す各時間について行ない、本発明
に係る磁石を得た。磁石特性結果、および本合金磁石の
残留磁束密度(Br)の温度係数α(%/’C)t−比
較例(焼結後)とともに表1に示す。また第2図に、6
6Fe14C。
Example 1 An alloy iA+ having an atomic percentage composition of 66Fe6B 14NdL4Co was obtained by casting in a water-cooled copper mold by high-medium-high frequency melting in a gas. This alloy is made into 35 mesh by stamp mill.
After coarsely pulverizing, the material was finely pulverized in an Ar atmosphere to an average particle size of 5 μm using a ball mill. 2. The obtained powder was heated in an Oe magnetic field. After pressure molding at a pressure of Q ton/crl, it was sintered at 1120°C for 2 hours in 99.99 qb linear purity 760'l'orrAr, and after sintering it was cooled to room temperature at a cooling rate of 500°C/min. Cooled. Further, aging treatment was carried out at 650° C. for each time shown in Table 1 to obtain a magnet according to the present invention. The results of the magnet properties and the temperature coefficient α (%/'C) t of the residual magnetic flux density (Br) of this alloy magnet are shown in Table 1 together with a comparative example (after sintering). Also, in Figure 2, 6
6Fe14C.

6B14Nd合金の焼結後(曲線A)及び時効処理65
0℃X12Qmin後(曲線B)の夫々の減磁曲線金示
す。
Post-sintering (curve A) and aging treatment of 6B14Nd alloy 65
The respective demagnetization curves after 0°C x 12Qmin (curve B) are shown.

表  1 実施例 2 原子百分率組成54Fe 15B 16Nd 2Y 1
3Coなる合金f Arガスアーク中溶解後、水冷銅鋳
型に鋳造して得た。本合金をスタンプ・ミルにより50
meshll下に粗粉砕後、有機溶媒中で平均粒度3μ
mにボール・ミルで微粉砕した。得られた粉末を15 
KOe磁界中で1.5 ton/−dの圧力で加圧成型
した後、99.999%純度の250 TorrAr中
で1175℃、4時間焼結し、焼結後は冷却速度180
 ’C/fninで室温まで冷却した。さらに3 X 
10−5Torr真空中−にて時効処理を表2に示す各
温度にて2時間行ない、本発明に係る磁石を得た。磁石
特性結果および残留磁束密度(Br)の温度係数α(%
/℃)t−比較例(焼結後)とともに表2に示す。
Table 1 Example 2 Atomic percentage composition 54Fe 15B 16Nd 2Y 1
An alloy f of 3Co was melted in an Ar gas arc and then cast in a water-cooled copper mold. This alloy is stamped and milled to 50%
After coarse grinding under mesh, the average particle size is 3μ in an organic solvent.
The mixture was finely ground in a ball mill. 15% of the obtained powder
After pressure molding in a KOe magnetic field at a pressure of 1.5 ton/-d, it was sintered at 1175°C for 4 hours in 99.999% pure 250 TorrAr, and after sintering, the cooling rate was 180 ton/-d.
'C/fnin to cool to room temperature. 3 more X
Aging treatment was performed in a vacuum of 10-5 Torr at each temperature shown in Table 2 for 2 hours to obtain magnets according to the present invention. Magnet property results and temperature coefficient α (%) of residual magnetic flux density (Br)
/°C) t-shown in Table 2 together with a comparative example (after sintering).

実施例 3 表3に示す原子百分率組成を有するFe −B −kL
・CO合金iArガスアーク中溶解後、水冷銅鋳型に鋳
造して得た。本合金をスタンプ・ミルにより40mes
h以下に粗粉砕後、有機溶媒中で平均粒度7μmにゴー
ル・ミルで微粉砕した。得られた粉末全15KOe磁界
中でl、Q ton/cJの圧力で加圧成型した後、9
9.999%純度の180 TorrAr中で1060
℃、2時間焼結し、焼結後は冷却速度350℃/m i
 nで室温まで急速冷却した。さらに600 Torr
Ar中にて時効処理全725℃で2時間行ない、本発明
に係る磁石を得た。磁石特性2よびBrの温度係数α(
%/℃)の値f Co f含有しない比較例とともに表
3に示す。
Example 3 Fe-B-kL having the atomic percentage composition shown in Table 3
・CO alloy obtained by melting in an iAr gas arc and then casting into a water-cooled copper mold. This alloy is stamped and milled to produce 40 mes
After coarsely pulverizing the powder to a particle size of 7 μm or less, it was pulverized in an organic solvent using a gall mill to an average particle size of 7 μm. The obtained powder was press-molded in a magnetic field of 15 KOe at a pressure of 1, Q ton/cJ, and then 9
1060 in 180 TorrAr with 9.999% purity
℃ for 2 hours, and after sintering the cooling rate was 350℃/m i
It was rapidly cooled to room temperature at n. Another 600 Torr
Aging treatment was performed in Ar at a temperature of 725° C. for 2 hours to obtain a magnet according to the present invention. Magnet property 2 and temperature coefficient α of Br (
%/°C) is shown in Table 3 together with a comparative example that does not contain f.

表  3 実施例4 下記原子百分率組成を有するFe −B −kL−C。Table 3 Example 4 Fe-B-kL-C having the following atomic percentage composition.

合金iArガスアーク中滓解後、水冷銅鋳型に鋳造して
得た。本合金をスタンプ・ミルにより25 mesh以
下に粗粉砕後、有機溶媒中で平均粒度4μmにボール・
ミルで微粉砕した。得られた粉末を無磁界中で1.5 
ton/ctAの圧力で加圧成型した後、99.999
チ純度の380 TorrAr中で1025℃、2時間
焼結し、焼結後は冷却速度250℃/minで室温まで
急速冷却した。さらに650 TorrAr中にて時効
処理を700℃で4時間行ない、本発明に係る磁石全書
た。磁石特性の結果全時効処理なしの試料(比較例)と
ともに表4に示す。
The alloy was melted in an iAr gas arc and then cast into a water-cooled copper mold. After coarsely pulverizing this alloy to 25 mesh or less using a stamp mill, it was ball-milled in an organic solvent to an average particle size of 4 μm.
Finely ground in a mill. The obtained powder was heated to 1.5
After pressure molding at a pressure of ton/ctA, 99.999
It was sintered at 1025° C. for 2 hours in 380 TorrAr with a high purity, and after sintering, it was rapidly cooled to room temperature at a cooling rate of 250° C./min. Furthermore, aging treatment was performed at 700° C. for 4 hours in 650 TorrAr to complete the magnet according to the present invention. The results of the magnet properties are shown in Table 4 along with a sample without any aging treatment (comparative example).

表4Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はFe −Co −B・lt系合金におけるCo
の含有敞とキュリ一点Tc(6)との関係を示すグラフ
である。 第2図は、本発明の一実施例(66Fe 14 Co 
6 B14、Nd)における減磁曲線のグラフである。 出願人  住友特殊金属株式会社 代理人    弁理士 加  藤  朝  道第1図 (77−x)Fe−xCo・8B−15NdCO原手百
弁率×(%) 第2図 66Fe14Co6B14Nd (KOe) 手続補正書(自発) 昭和59年2月28日 特許庁長官 若杉和夫 殿 1 事件の表示 昭和58年特許願第90802号 (昭和58年5月25日出願) 2 発明の名称 永久磁石材料およびその製造方法 3 補正をする者 事件との関係  出願人 5 補正命令の日付   自発 6 補止の対象 明細書の発明の詳細な説明の欄 7 補正の内容 別紙の通り 1、明細書の発明の詳細な説明の欄を次の通り補正する
。 (1)第8頁11行、「不純物」の後に「(他の希土類
元素、Ca、Mg、Fe、Ti、C,0等)」を加入す
る。 (2)第11頁9行、「10〜2TOrr」とあるをr
lo   TorrJに補正実る。 (3)第15頁末行から第16頁1行にある「(第1図
参照)」を削除する。 (4)第16頁4行にある「(第2図参照)」を削除す
る。 (5)第17頁3行rCuJ(7)次にr、Ca。 Mg、O,Si等」を加入する。 (6)同頁5行、「等」の前にr 、 Ca 、 M 
g 。 0、SiJを加入する。 (7)同頁7行、「但し」の前にrCa、Mg各4%以
下、02%以下、Si  5%以下」を加入する。 以  上 手続補正書印発) 昭和59年5月23日 特許庁長官 若杉和夫 殿 1 $件の表示 昭和58年特許願第90802号 (昭和58年5月25日出願) 2 発明の名称 永久磁石材料およびその製造方法 3 補正をする者 事件との関係  出願人 氏名  住友特殊金属株式会社 5 補正命令の日付   自発 6 補正により増加する発明の数  なし7 補正の対
象 明細書の発明の詳細な説明の欄 8 補止の内容 別紙の通り 明細書の発明の詳細な説明の欄を次のようをこ補正する
。 、1)第15頁第2行目の「0.2〜206C/分」を
「0.2°C/min〜20℃、/ s e CJに補
正する。 2)第15頁第20行目から第16頁第1行目の「(第
1図参照)」を削除する。 3)第16頁第4行目の「(第2図参照)」を削除する
。 、4)第21頁表3第5実施例(,38Fe6B9Nd
2Ho45Co)の数値r6.9Jを「8゜9」にr2
0.3Jをr24.3Jに補正し、第6実施例(75F
elOB1ONd5Ce)欄の「(比較例)」を「比較
例(焼結後)」に補正する。 以  上
Figure 1 shows Co in Fe-Co-B-lt alloy.
It is a graph showing the relationship between the content of sulfur and Curie single point Tc (6). FIG. 2 shows an example of the present invention (66Fe 14 Co
6 B14, Nd) is a graph of the demagnetization curve. Applicant Sumitomo Special Metals Co., Ltd. Agent Patent Attorney Asahi Kato Figure 1 (77-x) Fe-xCo・8B-15NdCO 100% x (%) Figure 2 66Fe14Co6B14Nd (KOe) Procedural amendment ( (Spontaneous) February 28, 1980 Commissioner of the Japan Patent Office Kazuo Wakasugi 1 Description of the case Patent Application No. 90802 of 1988 (filed on May 25, 1988) 2 Name of the invention Permanent magnet material and its manufacturing method 3 Amendment Applicant 5 Date of amendment order Voluntary action 6 Column for detailed explanation of the invention in the specification subject to amendment 7 Contents of the amendment As shown in Appendix 1, the column for detailed explanation of the invention in the specification Correct as follows. (1) On page 8, line 11, add "(other rare earth elements, Ca, Mg, Fe, Ti, C, 0, etc.)" after "impurities". (2) Page 11, line 9, "10-2 TOrr"
Corrected to lo TorrJ. (3) Delete "(See Figure 1)" from the last line of page 15 to the first line of page 16. (4) Delete "(See Figure 2)" on page 16, line 4. (5) Page 17, line 3 rCuJ (7) Next r, Ca. Add Mg, O, Si, etc. (6) Line 5 on the same page, r, Ca, M before "etc."
g. 0. Add SiJ. (7) In line 7 of the same page, add "rCa, Mg each 4% or less, 0.2% or less, Si 5% or less" before "However". May 23, 1980 Commissioner of the Patent Office Kazuo Wakasugi 1 Indication of $ 1980 Patent Application No. 90802 (filed on May 25, 1980) 2 Name of the invention Permanent magnet Materials and manufacturing methods thereof 3 Relationship with the person making the amendment Name of applicant Sumitomo Special Metals Co., Ltd. 5 Date of amendment order Voluntary 6 Number of inventions increased by the amendment None 7 Detailed description of the invention in the specification subject to amendment Column 8: Contents of the amendment As shown in the attached sheet, the column for detailed explanation of the invention in the specification is amended as follows. , 1) Correct “0.2 to 206 C/min” in the second line of page 15 to “0.2°C/min to 20°C, /se CJ.” 2) Correct the 20th line of page 15 ``(See Figure 1)'' in the first line of page 16 is deleted from . 3) Delete "(See Figure 2)" on the 4th line of page 16. , 4) Page 21 Table 3 Fifth Example (, 38Fe6B9Nd
2Ho45Co) value r6.9J to "8°9" r2
0.3J was corrected to r24.3J, and the sixth embodiment (75F
elOB1ONd5Ce) column, "(Comparative example)" is corrected to "Comparative example (after sintering)". that's all

Claims (2)

【特許請求の範囲】[Claims] (1)原子百分率として8〜30%のit (但しRは
)′全包含する希土類元素の少くとも一種)。 2〜28%のB、50%以下のCo (但しC。 0%を除く)、および残部Fe2よび不可避の不純物か
らなる平均粒度0.3〜80μmの合金粉末を成形し9
00〜1200℃で′焼結し、焼結後350℃〜当該焼
結温度で熱処理してなる永久磁石材料。
(1) It is 8 to 30% as an atomic percentage (where R is at least one of the rare earth elements). An alloy powder with an average particle size of 0.3 to 80 μm consisting of 2 to 28% B, 50% or less Co (excluding C. 0%), and the balance Fe2 and unavoidable impurities is molded.9
A permanent magnet material which is sintered at 00 to 1200°C and heat treated at 350°C to the sintering temperature after sintering.
(2)原子百分率として8〜30%のR(但しRは)′
全包含する希土類元素の少くとも一種)。 2〜28優の8.50%以下のco(但しC0O%全除
く)2よび残部Fe>よび不可避の不純物からなる平均
粒度0.3〜80μmの合金粉末を成形する工程、還元
性又は非酸化性雰囲気下にて900〜1200℃で焼結
する工程、焼結後350℃〜当該焼結温度で熱処理する
工程から々る永久磁石材料の製造方法。
(2) 8 to 30% R as an atomic percentage (however, R is)'
at least one type of rare earth element). A process of forming an alloy powder with an average particle size of 0.3 to 80 μm consisting of 8.50% or less of Co (excluding all COO%) of 2 to 28% and the balance Fe and unavoidable impurities, reducing or non-oxidizing A method for producing a permanent magnet material, comprising the steps of sintering at 900 to 1200°C in a neutral atmosphere, and heat treating at 350°C to the sintering temperature after sintering.
JP58090802A 1983-05-25 1983-05-25 Permanent magnet material and manufacture thereof Granted JPS59217305A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP58090802A JPS59217305A (en) 1983-05-25 1983-05-25 Permanent magnet material and manufacture thereof
US06/532,471 US4601875A (en) 1983-05-25 1983-09-15 Process for producing magnetic materials
CA000436891A CA1287509C (en) 1983-05-25 1983-09-16 Process for producing magnetic materials
EP83109508A EP0126802B2 (en) 1983-05-25 1983-09-23 Process for producing of a permanent magnet
DE8383109508T DE3378707D1 (en) 1983-05-25 1983-09-23 Process for producing of a permanent magnet
SG594/90A SG59490G (en) 1983-05-25 1990-07-18 Process for producing of a permanent magnet
HK753/90A HK75390A (en) 1983-05-25 1990-09-20 Process for producing of a permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58090802A JPS59217305A (en) 1983-05-25 1983-05-25 Permanent magnet material and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS59217305A true JPS59217305A (en) 1984-12-07
JPH0320047B2 JPH0320047B2 (en) 1991-03-18

Family

ID=14008716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58090802A Granted JPS59217305A (en) 1983-05-25 1983-05-25 Permanent magnet material and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59217305A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122106A (en) * 1985-11-21 1987-06-03 Tdk Corp Sintered permanent magnet
JPS6316603A (en) * 1986-06-04 1988-01-23 Tohoku Metal Ind Ltd Manufacture of sintered rare-earth magnet
JPS6379939A (en) * 1986-09-24 1988-04-09 Seiko Instr & Electronics Ltd Rare earth-type composite magnet material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122106A (en) * 1985-11-21 1987-06-03 Tdk Corp Sintered permanent magnet
JPS6316603A (en) * 1986-06-04 1988-01-23 Tohoku Metal Ind Ltd Manufacture of sintered rare-earth magnet
JPS6379939A (en) * 1986-09-24 1988-04-09 Seiko Instr & Electronics Ltd Rare earth-type composite magnet material

Also Published As

Publication number Publication date
JPH0320047B2 (en) 1991-03-18

Similar Documents

Publication Publication Date Title
CN106710766B (en) R- (Fe, Co) -B sintered magnet and method for producing same
US5041172A (en) Permanent magnet having good thermal stability and method for manufacturing same
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JP2720040B2 (en) Sintered permanent magnet material and its manufacturing method
JPH0320046B2 (en)
JPH0685369B2 (en) Permanent magnet manufacturing method
JPH045740B2 (en)
JPS59217305A (en) Permanent magnet material and manufacture thereof
JPH045739B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPS61264133A (en) Permanent magnet alloy and its manufacture
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH0320048B2 (en)
JPH0535211B2 (en)
JPH0316763B2 (en)
JPH045738B2 (en)
JPH0475303B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture
JPH0477066B2 (en)
JPH04214804A (en) Method for molding alloy powder for rare earth-iron-boron based permanent magnet
JPH045737B2 (en)
JPH044384B2 (en)
JPS60182105A (en) Permanent magnet material and manufacture thereof
JPH0527241B2 (en)
JPH04246803A (en) Rare earth-fe-b anisotropic magnet