JP2015012038A - Rare earth-iron based bond permanent magnet - Google Patents

Rare earth-iron based bond permanent magnet Download PDF

Info

Publication number
JP2015012038A
JP2015012038A JP2013134260A JP2013134260A JP2015012038A JP 2015012038 A JP2015012038 A JP 2015012038A JP 2013134260 A JP2013134260 A JP 2013134260A JP 2013134260 A JP2013134260 A JP 2013134260A JP 2015012038 A JP2015012038 A JP 2015012038A
Authority
JP
Japan
Prior art keywords
permanent magnet
rare earth
magnetized
magnet
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013134260A
Other languages
Japanese (ja)
Other versions
JP6267446B2 (en
Inventor
幸村 治洋
Haruhiro Yukimura
治洋 幸村
紫保 大矢
Shiho Oya
紫保 大矢
淳詔 鈴木
Toshinori Suzuki
淳詔 鈴木
俊己 成瀬
Toshiki Naruse
俊己 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2013134260A priority Critical patent/JP6267446B2/en
Publication of JP2015012038A publication Critical patent/JP2015012038A/en
Application granted granted Critical
Publication of JP6267446B2 publication Critical patent/JP6267446B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet which allows a numerical value of the surface magnetic flux density of a permanent magnet to be adjusted in a wide range, and which is small in initial demagnetization.SOLUTION: A rare earth-iron based bond permanent magnet is magnetized by: disposing a permanent magnet for magnetization in the vicinity of a rare earth-iron based bond magnet, which is an object to be magnetized; and lowering the temperature of the object to be magnetized from a temperature equal to or higher than the Curie point of the object to be magnetized, and below the Curie point of the permanent magnet for magnetization to a temperature below the Curie point of the object to be magnetized, while applying a magnetization magnetic field to the object to be magnetized by use of the permanent magnet for magnetization. In the rare earth-iron based bond magnet, the rare earth element is Pr.

Description

本発明は、希土類元素としてPrを含有してなる多極着磁された希土類鉄系ボンド永久磁石に関し、より詳しくは、初期減磁を防止するとともに、磁気特性(表面磁束密度)を幅広い数値範囲で調整できる、多極着磁された希土類鉄系ボンド永久磁石に関する。   The present invention relates to a multipolar magnetized rare earth iron-based bond permanent magnet containing Pr as a rare earth element. More specifically, the present invention prevents initial demagnetization and provides a wide numerical range for magnetic properties (surface magnetic flux density). The present invention relates to a rare earth iron-based bond permanent magnet magnetized with a multipole magnet.

周知のように、近年の電子機器の著しい小型化に対応して、それに使用するPM型(永久磁石型)ステッピングモータ等においても小型化・小径化が進んでいる。
こうした永久磁石は、初期減磁による不可逆減磁を避けることができないため、高温環境で使用される用途においては、固有保磁力が十分に大きい磁石材料を選択したり、或いはパーミアンス係数を大きくするために磁石の磁化方向の厚みを大きくするなどの方法が行われている。また従来より、こうした初期減磁などを抑制するために、使用予想最高温度より高めの温度であらかじめ熱処理し、安定化させる“熱枯らし”処理がなされている。
しかしながら前述の小型化が進むステッピングモータなどの場合、高温環境で使用するにあたって前述したような磁石の磁化方向の厚みを大きくする方法は、モータの小型化を阻害してしまうため、小型化用途において本方法を適用することは適切とはいえない。
As is well known, in response to the recent remarkable downsizing of electronic devices, PM type (permanent magnet type) stepping motors and the like used therein are also being downsized and reduced in diameter.
Since such permanent magnets cannot avoid irreversible demagnetization due to initial demagnetization, in applications that are used in high-temperature environments, magnetic materials with sufficiently large intrinsic coercive force are selected or the permeance coefficient is increased. For example, a method of increasing the thickness of the magnet in the magnetization direction is performed. Conventionally, in order to suppress such initial demagnetization and the like, a “heat depletion” process is performed in which heat treatment is performed in advance at a temperature higher than the expected maximum temperature for use and stabilization.
However, in the case of stepping motors, etc., where the above-mentioned miniaturization is progressing, the method of increasing the thickness of the magnet magnetization direction as described above when used in a high temperature environment inhibits the miniaturization of the motor. It is not appropriate to apply this method.

固有保磁力の高い磁石材料を用いた磁石において、初期減磁を防止する一つの方法として、これまで本発明者等は、被着磁物である磁石の温度を、そのキュリー点以上の温度からキュリー点未満の温度まで降温させつつ、その間、被着磁物に着磁磁界を印加し続ける永久磁石の着磁方法(Ultra High Magnetizing process:UHM着磁と称する)を提案している(特許文献1)。この方法によれば、極小径・多極着磁構造の固有保磁力(iHc)が557kA/mを超えるNd−Fe−B系ボンド磁石であっても、着磁特性(表面磁束密度)が高く、且つ着磁品質の良好なリング状永久磁石が得られる。
更に本発明者らは、上記着磁方法を実施する際、被着磁物を着磁磁界から取り出す温度が変わると、被着磁物の表面磁束密度が変化すること、またその取出し温度を被着磁物が組み込まれる電磁デバイスの使用温度上限値あるいは保証温度よりも高い温度に設定すると、着磁と初期減磁が同時に行われ、その後に熱履歴を受けても特性変化が生じないことを見出している(特許文献2)。また特許文献2には、被着磁物としてNd−Fe−B等方性磁石(キュリー点:約350℃)を用いた際に、着磁部温度を任意の温度に調整することによって、10%程度の数値範囲内で表面磁束密度の微調整が可能であることを開示している。
As a method for preventing initial demagnetization in a magnet using a magnet material having a high intrinsic coercive force, the present inventors have heretofore determined the temperature of a magnet that is a magnetized object from a temperature above its Curie point. A permanent magnet magnetization method (ultra high magnetizing process: UHM magnetization) is proposed in which the temperature is lowered to a temperature lower than the Curie point and a magnetic field is continuously applied to the object to be magnetized (Patent Literature). 1). According to this method, even in the case of an Nd—Fe—B bond magnet having an intrinsic coercive force (iHc) of a very small diameter / multipole magnetized structure exceeding 557 kA / m, the magnetization characteristics (surface magnetic flux density) are high. In addition, a ring-shaped permanent magnet with good magnetization quality can be obtained.
Furthermore, when performing the above-mentioned magnetization method, the present inventors change the surface magnetic flux density of the magnetic object to be magnetized and change the temperature at which the magnetic material is extracted from the magnetic field. If the temperature is set higher than the upper limit of the operating temperature or guaranteed temperature of the electromagnetic device in which the magnetized material is incorporated, magnetization and initial demagnetization will be performed at the same time. (Patent Document 2). Further, in Patent Document 2, when an Nd—Fe—B isotropic magnet (Curie point: about 350 ° C.) is used as an object to be magnetized, by adjusting the magnetized portion temperature to an arbitrary temperature, 10 It is disclosed that fine adjustment of the surface magnetic flux density is possible within a numerical range of about%.

特開2006−203173号公報(特許第4697736号)JP 2006-203173 A (Patent No. 4697736) 特開2006−294936号公報(特許第4671278号)JP 2006-294936 A (Patent No. 4671278)

ところで、PM型ステッピングモータ等の永久磁石型モータは、モータの出力特性に適したステータの界磁力の数値とロータ磁石の表面磁束密度の数値とを適正に組み合わせる必要がある。
従来より一般的な多極着磁技術であるパルス着磁は、着磁時の電流値を調節することにより、永久磁石の表面磁束密度の数値を幅広く調節することが可能である。しかし前記U
HM着磁では、表面磁束密度の数値の調整幅は10%程度と狭い範囲にとどまっている。そのため、UHM着磁では要求される永久磁石の磁気特性毎に、磁気特性の異なる界磁力の着磁用永久磁石を組み込んだ着磁ヨークを用意する必要があった。
また、Pr−TM−B系等方性磁石(TMはFe又はFeの一部をCo及びNiを含む1種以上の遷移金属元素で置換したもの)は固有保磁力(iHc)が554kA/m程度であり、たとえばNd−Fe−B系等方性磁石(マグネクエンチ社製のMQP−B−20029−070)の固有保磁力780kA/mよりも小さい。そのためPr−TM−B系等方性磁石において初期減磁は特に大きな問題となり、従来パルス着磁されたPr−TM−B系等方性磁石では着磁後に初期減磁のための熱枯らしを行う必要があった。
By the way, in a permanent magnet type motor such as a PM type stepping motor, it is necessary to appropriately combine a numerical value of the field magnetic field of the stator suitable for the output characteristics of the motor and a numerical value of the surface magnetic flux density of the rotor magnet.
Pulse magnetization, which is a conventional multi-pole magnetization technique, can widely adjust the value of the surface magnetic flux density of a permanent magnet by adjusting the current value at the time of magnetization. But the U
In HM magnetization, the adjustment range of the numerical value of the surface magnetic flux density remains in a narrow range of about 10%. For this reason, it is necessary to prepare a magnetizing yoke incorporating a permanent magnet for field magnetism having different magnetic properties for each magnetic property required for UHM magnetization.
In addition, Pr-TM-B-based isotropic magnets (TM is obtained by replacing Fe or a part of Fe with one or more transition metal elements including Co and Ni) have an intrinsic coercive force (iHc) of 554 kA / m. For example, it is smaller than the intrinsic coercive force of 780 kA / m of an Nd—Fe—B based isotropic magnet (MQP-B-20029-070 manufactured by Magnequen). For this reason, initial demagnetization is a particularly serious problem in Pr-TM-B isotropic magnets. In conventional Pr-TM-B isotropic magnets, which have been pulse-magnetized, heat depletion for initial demagnetization is performed after magnetization. There was a need to do.

本発明は、上記事情に鑑みなされたものであって、その解決しようとする課題は、永久磁石の表面磁束密度を広い範囲で調整することが可能であり、しかも初期減磁の少ない希土類鉄系ボンド永久磁石を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the problem to be solved is a rare earth iron system in which the surface magnetic flux density of a permanent magnet can be adjusted in a wide range and the initial demagnetization is small. An object is to provide a bond permanent magnet.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、希土類元素としてPrを含有する希土類鉄系ボンド磁石に対してUHM着磁を施すことにより、初期減磁を抑制し、実使用温度(80〜100℃)において、着磁特性(表面磁束密度)を幅広く調整した希土類鉄系ボンド永久磁石となることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors suppressed initial demagnetization by applying UHM magnetization to a rare earth iron-based bond magnet containing Pr as a rare earth element, The present invention was completed by finding that it becomes a rare earth iron-based bond permanent magnet with widely adjusted magnetization characteristics (surface magnetic flux density) at the actual use temperature (80 to 100 ° C.).

すなわち本発明は、被着磁物である希土類鉄系ボンド磁石の近傍に着磁用永久磁石を配置し、前記被着磁物のキュリー点以上の温度且つ前記着磁用永久磁石のキュリー点未満の温度から、前記被着磁物のキュリー点未満の温度まで、前記被着磁物の温度を降下させるとともに、その間、前記着磁用永久磁石により被着磁物に着磁磁界を印加することにより着磁がなされた希土類鉄系ボンド永久磁石であって、前記希土類鉄系ボンド磁石の希土類元素がPrであることを特徴とする、希土類鉄系ボンド永久磁石に関する。   That is, in the present invention, a magnetizing permanent magnet is disposed in the vicinity of a rare earth iron-based bond magnet that is a magnetized material, and the temperature is equal to or higher than the Curie point of the magnetized material and less than the Curie point of the magnetized permanent magnet. The temperature of the magnetized object is lowered from the temperature of the magnetized object to a temperature below the Curie point of the magnetized object, and during that time, a magnetizing magnetic field is applied to the magnetized object by the magnetizing permanent magnet. The present invention relates to a rare earth iron-based bond permanent magnet magnetized by the above-mentioned rare earth iron-based bond permanent magnet, wherein the rare earth element of the rare earth iron-based bond magnet is Pr.

前記被着磁物である希土類鉄系ボンド磁石は、Pr−TM−B(TMはFe又はFeの一部をCo及びNiを含む1種以上の遷移金属元素で置換したもの)系等方性ボンド磁石であることが好ましく、また、前記被着磁物である希土類鉄系ボンド磁石は、固有保磁力(iHc)が557kA/m以下であることが好ましい。   The rare earth iron-based bonded magnet that is the adherend is Pr-TM-B (TM is Fe or a part of Fe substituted with one or more transition metal elements including Co and Ni) system isotropic It is preferable that the magnet is a bonded magnet, and the rare earth iron-based bonded magnet as the magnetized material preferably has an intrinsic coercive force (iHc) of 557 kA / m or less.

また本発明の希土類鉄系ボンド永久磁石は、着磁特性の最大値の95%の値から最大値の50%の値までの範囲で磁化することが可能であり、特に表面磁束密度を上記幅広い数値範囲で磁化することを特徴とする。   The rare earth iron-based permanent magnet of the present invention can be magnetized in a range from 95% of the maximum value of the magnetization characteristic to 50% of the maximum value, and particularly has a wide surface magnetic flux density. It is characterized by being magnetized in a numerical range.

本発明は、初期減磁が少なく、また着磁特性(表面磁束密度)をその最大値の95%の値から最大値の50%の値までの幅広い範囲で磁化された、希土類鉄系ボンド永久磁石を提供できる。
従って本発明の多極着磁された希土類鉄系ボンド永久磁石は、動作保証温度が通常80℃〜100℃である電子機器の小型モータにおいて好適に使用出来る。
The present invention has a rare earth iron-based bond permanent magnetized with a small initial demagnetization and magnetized characteristics (surface magnetic flux density) in a wide range from 95% of the maximum value to 50% of the maximum value. A magnet can be provided.
Therefore, the rare earth iron bond permanent magnet of the present invention can be suitably used in a small motor of an electronic device whose operation guarantee temperature is usually 80 ° C. to 100 ° C.

図1は、実施例1及び比較例1乃至比較例3の着磁後のボンド永久磁石における取出し温度(℃)に対する表面磁束密度(mT)の結果を示す図である。FIG. 1 is a graph showing the results of surface magnetic flux density (mT) with respect to extraction temperature (° C.) of bonded permanent magnets after magnetization in Example 1 and Comparative Examples 1 to 3. 図2は、実施例1及び比較例1乃至比較例3の着磁後のボンド永久磁石における、取出し温度50℃の際の表面磁束密度を基準とした場合の取出し温度(℃)に対する表面磁束密度の変化率(%)を示す図である。FIG. 2 shows the surface magnetic flux density with respect to the extraction temperature (° C.) with reference to the surface magnetic flux density at the extraction temperature of 50 ° C. in the bonded permanent magnets of Example 1 and Comparative Examples 1 to 3 after magnetization. It is a figure which shows the change rate (%) of. 図3は、実施例2及び比較例4の着磁後のボンド永久磁石における、着磁直後の表面磁束密度を基準値とした場合の暴露温度(℃)に対する表面磁束密度の変化率(%)を示す図である。FIG. 3 shows the change rate (%) of the surface magnetic flux density with respect to the exposure temperature (° C.) when the surface magnetic flux density immediately after magnetization in the bonded permanent magnets of Example 2 and Comparative Example 4 is used as a reference value. FIG. 図4は、実施例3の着磁後のボンド永久磁石における、暴露温度(℃)に対する表面磁束密度(mT)の結果を示す図である。FIG. 4 is a graph showing the results of surface magnetic flux density (mT) with respect to exposure temperature (° C.) in the bonded permanent magnet after magnetization in Example 3.

<被着磁物>
本発明で使用する被着磁物、すなわち希土類鉄系ボンド磁石は、希土類元素がPrであるPr−TM−B系等方性磁石(TMはFe又はFeの一部をCo及びNiを含む1種以上の遷移金属元素で置換したもの)である。
上記希土類鉄系ボンド磁石は、希土類元素の総量が11.8at%未満であることが好ましい。Pr−TM−B系等方性磁石は希土類元素の総量が11.8at%未満では硬質磁性相と軟質磁性相とが形成される。即ち粒相界は鉄リッチ相となり、ナノコンポジット磁石の構造となる。希土類元素の総量が11.8at%以上では硬質磁性相と非磁性相とが形成され、粒相界は希土類リッチ相となるため、ナノコンポジット磁石の構造を得られない。
また、上記希土類鉄系ボンド磁石の固有保磁力(iHc)は557kA/m以下であることが好ましい。
被着磁物として上記要件を備える希土類鉄系ボンド磁石を採用することにより、後述するUHM着磁法を施すと、初期減磁が抑制され、また、最大値の95%の値から最大値の50%の値までの範囲(すなわち最大値からおよそ5〜50%の減少幅)で着磁特性(表面磁束密度)を変更可能である、多極着磁されたボンド永久磁石を得ることができる。
<Magnetic material>
An adherend to be used in the present invention, that is, a rare earth iron-based bonded magnet, is a Pr-TM-B isotropic magnet in which the rare earth element is Pr (TM includes Fe or Fe partially containing Co and Ni). Substituted with a transition metal element of more than a species).
In the rare earth iron-based bonded magnet, the total amount of rare earth elements is preferably less than 11.8 at%. A Pr-TM-B isotropic magnet forms a hard magnetic phase and a soft magnetic phase when the total amount of rare earth elements is less than 11.8 at%. In other words, the grain boundary becomes an iron-rich phase and becomes a nanocomposite magnet structure. If the total amount of rare earth elements is 11.8 at% or more, a hard magnetic phase and a nonmagnetic phase are formed, and the grain boundary becomes a rare earth-rich phase, so that a nanocomposite magnet structure cannot be obtained.
In addition, the intrinsic coercive force (iHc) of the rare earth iron-based bonded magnet is preferably 557 kA / m or less.
By adopting a rare earth iron-based bonded magnet having the above requirements as the object to be magnetized, initial demagnetization is suppressed when the UHM magnetization method described later is applied, and the maximum value is reduced from 95% of the maximum value. A multi-pole magnetized bond permanent magnet can be obtained in which the magnetization characteristics (surface magnetic flux density) can be changed within a range up to a value of 50% (that is, a reduction range of about 5 to 50% from the maximum value). .

<UHM着磁法>
本発明において採用する着磁方法は、特許文献1及び特許文献2に記載される方法(これらの参照により手順の詳細について本書に組み込まれる)を採用できる。
具体的には、被着磁物である希土類鉄系ボンド磁石の近傍に着磁用永久磁石(着磁用磁界印加手段)を配置し、前記被着磁物の温度を、該被着磁物のキュリー点以上の温度で且つ着磁用永久磁石のキュリー点未満の温度から、該被着磁物のキュリー点未満の温度まで降下させるとともに、その間、前記着磁用永久磁石により被着磁物に着磁磁界を印加することにより実施される。
<UHM magnetization method>
As the magnetization method employed in the present invention, the methods described in Patent Document 1 and Patent Document 2 (the details of the procedure are incorporated in this document by referring to them) can be employed.
Specifically, a permanent magnet for magnetizing (magnetizing magnetic field applying means) is disposed in the vicinity of the rare earth iron-based bonded magnet that is the magnetized material, and the temperature of the magnetized material is determined according to the temperature of the magnetized material. The temperature of the magnetized permanent magnet is lowered from a temperature below the Curie point of the magnetizing permanent magnet to a temperature of less than the Curie point of the magnetized material, and the magnetized material is magnetized by the magnetizing permanent magnet. This is implemented by applying a magnetizing magnetic field to the magnetic field.

被着磁物である希土類鉄系ボンド磁石は、その形状が環状(円環状や多角形環状など)もしくは弧状(円弧状や多角形弧状など)をなし、その外側もしくは内側、あるいは内外両側から着磁用磁界を永久磁石により印加することで着磁される。
具体的には例えば、非磁性ブロックに、被着磁物である希土類鉄系ボンド磁石を挿入・抜出可能な被着磁物収容穴を設けると共に、該被着磁物収容穴の外側面から放射状に延びる多数本の溝及び/又は内側面から中心に向かって延びる多数本の溝を設け、各溝に被着磁物よりもキュリー点が高い棒状などブロック状の着磁用永久磁石を埋設した構造の着磁治具を用いる。そして被着磁物をそのキュリー点以上に加熱した状態で、前記被着磁物収容穴に挿入し、前記着磁治具内で冷却する。
Rare earth iron bond magnets, which are adherends, have an annular shape (such as an annular shape or a polygonal shape) or an arc shape (such as an arc shape or a polygonal arc shape), and are attached from the outside or inside, or both inside and outside. It is magnetized by applying a magnetic field with a permanent magnet.
Specifically, for example, a non-magnetic block is provided with a magnetized object accommodation hole into which a rare earth iron-based bonded magnet that is a magnetized object can be inserted and extracted, and from the outer surface of the magnetized object accommodation hole. A large number of radially extending grooves and / or a large number of grooves extending from the inner surface toward the center are provided, and each groove is embedded with a block-shaped permanent magnet for magnetizing such as a rod having a higher Curie point than the magnetic material to be magnetized. A magnetizing jig having the above structure is used. Then, in a state where the magnetized object is heated to the Curie point or higher, the magnetized object is inserted into the magnetized object accommodation hole and cooled in the magnetizing jig.

ここで多数の着磁用永久磁石を埋設した上記着磁治具は、軸方向に複数段、且つ周方向に磁極位置をずらせた状態で組み合わせ、それら複数の着磁治具により段違い着磁磁界を印加してもよい。また、被着磁物である環状もしくは弧状の希土類鉄系ボンド磁石の内外両側から永久磁石に着磁磁界を印加可能な構成とし、内側からの着磁用磁界及び/又は外側からの着磁用磁界の円周方向における位置及び/又は磁界強度の調整により、着磁波形(角度に対する表面磁束密度の変化の波形)の最適化を実現する。   The above-mentioned magnetizing jigs in which a large number of magnetizing permanent magnets are embedded are combined in a state where the magnetic pole positions are shifted in a plurality of stages in the axial direction and in a plurality of stages. May be applied. In addition, a magnetizing magnetic field can be applied to the permanent magnet from both the inner and outer sides of the annular or arc-shaped rare earth iron-based bonded magnet that is the magnetized object, and the magnetizing magnetic field from the inside and / or the magnetizing from the outside By optimizing the position of the magnetic field in the circumferential direction and / or the magnetic field strength, the magnetization waveform (the waveform of the change in the surface magnetic flux density with respect to the angle) is optimized.

前記着磁用永久磁石は、高温下で被着磁物に対して着磁できる磁界を発生できるように
、着磁用永久磁石のキュリー点が被着磁物である希土類鉄系ボンド磁石のキュリー点よりも高いものとなるものを選択する。
また被着磁物の着磁のために必要な磁界を最小限にするために、被着磁物の加熱温度を被着磁物である希土類鉄系ボンド磁石のキュリー点よりも高く設定する。尚且つ、着磁用永久磁石が被着磁物に着磁できる磁界を残存させ着磁能力をもたせるために、前記の加熱温度を着磁用永久磁石のキュリー点より低く設定する。
こうした着磁用永久磁石の選択並びに被着磁物の加熱温度の設定により、被着磁物に対する最大限の着磁が可能となる。被着磁物への着磁がなされた後、被着磁物をそのキュリー点を下回る温度まで冷却すると磁力が発生し、着磁された永久磁石を得ることができる。
The magnetizing permanent magnet has a Curie point of a rare earth iron-based bond magnet in which the Curie point of the magnetizing permanent magnet is a magnetized material so as to generate a magnetic field that can be magnetized to the magnetized material at a high temperature. Select the one that is higher than the point.
In addition, in order to minimize the magnetic field required for magnetization of the object to be magnetized, the heating temperature of the object to be magnetized is set higher than the Curie point of the rare earth iron-based bond magnet that is the object to be magnetized. In addition, the heating temperature is set lower than the Curie point of the permanent magnet for magnetizing in order to leave a magnetic field that can be magnetized by the magnetizing permanent magnet and to have a magnetizing ability.
By selecting such permanent magnets for magnetizing and setting the heating temperature of the object to be magnetized, the maximum magnetization of the object to be magnetized becomes possible. After the magnetized object is magnetized, when the object to be magnetized is cooled to a temperature below its Curie point, a magnetic force is generated, and a magnetized permanent magnet can be obtained.

本発明の多極着磁された希土類鉄系ボンド永久磁石は、着磁後に被着磁物を着磁治具より取出す際の温度を変化させることにより、着磁特性を調整可能である。具体的には、取出し温度を高めるに従って(但し、取出し温度の最高値は被着磁物である希土類鉄系ボンド磁石のキュリー点よりも低い温度である)、表面磁束密度をその最大値の95%の値から最大値の50%の値までの範囲で(すなわち最大からおよそ5〜50%の範囲で減少させた数値範囲で)調整可能である。
なお本発明の多極着磁された希土類鉄系ボンド永久磁石では、上記取出し温度を例えば100℃以上などの高い温度に設定することにより、「熱枯らし」と同様の作用が加わったものとみなせる希土類鉄系ボンド永久磁石を得ることができる。すなわち、上記取出し温度を希土類鉄系ボンド永久磁石を組み込むモータなどの電磁デバイスの通常の使用温度上限値あるいは保証温度(例えば80〜100℃)よりも高い温度、例えば100℃より高く設定すると、上記保証温度以下では、つまり組み上げた電磁デバイスとしては初期減磁の発生が抑えられる。そのため希土類鉄系ボンド永久磁石は安定した着磁磁力を発現でき、それを組み込んだ電磁デバイスは、安定した動作が保証されることとなる。
The multipolar magnetized rare earth iron-based bond permanent magnet of the present invention can adjust the magnetization characteristics by changing the temperature when the magnetized material is taken out from the magnetizing jig after magnetization. Specifically, as the extraction temperature is increased (however, the maximum value of the extraction temperature is lower than the Curie point of the rare earth iron-based bond magnet that is the adherend), the surface magnetic flux density is increased to 95, the maximum value. It can be adjusted in the range from the value of% to the value of 50% of the maximum value (that is, in the numerical range reduced from the maximum to about 5 to 50%).
In the rare earth iron-based bond permanent magnet magnetized in the present invention, the above extraction temperature is set to a high temperature such as 100 ° C. or more, so that it can be considered that the same action as “heat withering” is added. A rare earth iron bond permanent magnet can be obtained. That is, when the extraction temperature is set to a temperature higher than a normal use temperature upper limit value or guaranteed temperature (for example, 80 to 100 ° C.) of an electromagnetic device such as a motor incorporating a rare earth iron-based bond permanent magnet, Below the guaranteed temperature, that is, as an assembled electromagnetic device, the occurrence of initial demagnetization can be suppressed. For this reason, the rare earth iron-based bond permanent magnet can exhibit a stable magnetizing magnetic force, and an electromagnetic device incorporating the rare earth iron-based bond permanent magnet can guarantee a stable operation.

このように、本発明の多極着磁された希土類鉄系ボンド永久磁石は、要求される磁気特性毎に別々の着磁ヨークを用意する必要がなく、また従来のパルス着磁法で必要とされた熱枯らしを改めて実施することなく、初期減磁が抑制され、種々の着磁特性を有する(すなわち表面磁束密度が幅広い数値範囲で変更されてなる)ボンド永久磁石となる。
従って本発明の多極着磁された希土類鉄系ボンド永久磁石は、種々の出力特性が要求される各種PM型ステッピングモータ等の永久磁石型モータ用の永久磁石として、有用である。
Thus, the multi-pole magnetized rare earth iron-based permanent magnet of the present invention does not require a separate magnetized yoke for each required magnetic property, and is also required by the conventional pulse magnetizing method. Without performing the heat withering again, initial demagnetization is suppressed, and a bonded permanent magnet having various magnetization characteristics (that is, the surface magnetic flux density is changed in a wide numerical range) is obtained.
Therefore, the rare earth iron-based bond permanent magnet of the present invention is useful as a permanent magnet for permanent magnet type motors such as various PM type stepping motors that require various output characteristics.

以下、本発明を実施例により、さらに詳しく説明する。ただし、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to this.

[実施例1及び比較例1乃至3:着磁後の取出し温度変化に対する表面磁束密度の評価]
以下の手順により、実施例及び比較例のボンド磁石を製造した。
[実施例1]
希土類量11.1at%、最大エネルギー積127kJ/m、固有保磁力554kA/mのPr−Co−Fe−B磁性粉末に対して、エポキシ樹脂を2.5質量%混合し、外径2.6mm×内径1mm×高さ3mmの円筒状のボンド磁石(成形体密度5.9mg/m)を作製した(キュリー点:約345℃)。
[比較例1]
使用する磁性粉末を希土類量11.0at%、最大エネルギー積119kJ/m、固有保磁力573kA/mのNd−Co−Fe−B系磁性粉末とし、他の構成は実施例1と同一とした円筒状のボンド磁石を作製した(キュリー点:約325℃)。
[比較例2]
使用する磁性粉末を希土類量12.5at%、最大エネルギー積119kJ/m、固有保磁力780kA/mのNd−Co−Fe−B系磁性粉末とし、他の構成は実施例1と同一とした円筒状のボンド磁石を作製した(キュリー点:約330℃)。
[比較例3]
使用する磁性粉末を希土類量13.0at%、最大エネルギー積111kJ/m、固有保磁力1010kA/mのNd−Fe−B系磁性粉末とし、他の構成は実施例1と同一とした円筒状のボンド磁石を作製した(キュリー点:約305℃)。

Figure 2015012038
[Example 1 and Comparative Examples 1 to 3: Evaluation of surface magnetic flux density with respect to change in extraction temperature after magnetization]
The bonded magnets of Examples and Comparative Examples were manufactured by the following procedure.
[Example 1]
A 2.5% by mass of epoxy resin is mixed with Pr—Co—Fe—B magnetic powder having a rare earth content of 11.1 at%, a maximum energy product of 127 kJ / m 2 and an intrinsic coercive force of 554 kA / m, and an outer diameter of 2. A cylindrical bonded magnet (molded body density 5.9 mg / m 3 ) of 6 mm × inner diameter 1 mm × height 3 mm was produced (Curie point: about 345 ° C.).
[Comparative Example 1]
The magnetic powder used is an Nd—Co—Fe—B based magnetic powder having a rare earth content of 11.0 at%, a maximum energy product of 119 kJ / m 2 , and an intrinsic coercive force of 573 kA / m, and other configurations are the same as those of the first embodiment. A cylindrical bonded magnet was produced (Curie point: about 325 ° C.).
[Comparative Example 2]
The magnetic powder used is an Nd—Co—Fe—B based magnetic powder having a rare earth content of 12.5 at%, a maximum energy product of 119 kJ / m 2 , and an intrinsic coercive force of 780 kA / m, and other configurations are the same as those in Example 1. A cylindrical bonded magnet was produced (Curie point: about 330 ° C.).
[Comparative Example 3]
The magnetic powder used is a Nd—Fe—B magnetic powder having a rare earth content of 13.0 at%, a maximum energy product of 111 kJ / m 2 , and an intrinsic coercive force of 1010 kA / m, and the other configurations are the same as those in Example 1. A bonded magnet was prepared (Curie point: about 305 ° C.).
Figure 2015012038

実施例1及び比較例1乃至比較例3のボンド磁石に対して、UHM着磁方法により着磁を行った。
すなわち、被着磁物である上記各ボンド磁石を、各ボンド磁石のキュリー点+30℃の温度(実施例1:375℃、比較例1:355℃、比較例2:360℃、比較例3:335℃)に加熱し、10極のラジアル着磁を行った(着磁用SmCo焼結永久磁石のキュリー点:約850℃)。
着磁後の取出し温度を種々変化(取出し温度:50℃、80℃、120℃、150℃、180℃、210℃、240℃及び270℃)させて着磁治具よりボンド永久磁石を取出し、着磁後のボンド永久磁石の表面磁束密度を測定した。
表面磁束密度は、特許文献1に記載の着磁品質の評価に倣い、ガウスメーターを用いて10極の表面磁束密度の平均値を算出し、着磁特性とした。取出し温度(℃)に対する表面磁束密度(mT)の結果を図1に示す。
The bonded magnets of Example 1 and Comparative Examples 1 to 3 were magnetized by the UHM magnetization method.
That is, the above-mentioned bonded magnets, which are adherends, were heated at a Curie point of each bonded magnet + 30 ° C. (Example 1: 375 ° C., Comparative Example 1: 355 ° C., Comparative Example 2: 360 ° C., Comparative Example 3: 335 ° C.) and 10 poles of radial magnetization (Curie point of SmCo sintered permanent magnet for magnetization: about 850 ° C.).
Various changes in the take-out temperature after magnetization (take-out temperatures: 50 ° C., 80 ° C., 120 ° C., 150 ° C., 180 ° C., 210 ° C., 240 ° C. and 270 ° C.) and take out the bond permanent magnet from the magnetizing jig, The surface magnetic flux density of the bonded permanent magnet after magnetization was measured.
The surface magnetic flux density was measured according to the evaluation of the magnetization quality described in Patent Document 1, and the average value of the surface magnetic flux density of 10 poles was calculated using a gauss meter to obtain the magnetization characteristics. The result of the surface magnetic flux density (mT) with respect to the extraction temperature (° C.) is shown in FIG.

図1に示すように、実施例1及び比較例1は、比較例2及び比較例3に対して、取出し温度が高くなるほど、着磁後のボンド永久磁石の表面磁束密度が大きく低下したとする結果となった。また、実施例1は比較例1に対して表面磁束密度の低下が顕著であった。
一方、比較例2では表面磁束密度の変化は緩やかであった。また比較例3では、取り出し温度が50℃から250℃の範囲では、着磁後のボンド永久磁石の表面磁束密度においてそれほど大きな変化はみられなかった。しかし、250℃を超えた範囲で表面磁束密度が急激に低下した。これは比較例3のボンド永久磁石のキュリー点Tcが305℃であるため、キュリー点に近い250℃を超えた範囲で熱減磁が急激に進んだものとみられる。
As shown in FIG. 1, in Example 1 and Comparative Example 1, it is assumed that the surface magnetic flux density of the bonded permanent magnet after magnetization is greatly reduced as the extraction temperature is higher than in Comparative Example 2 and Comparative Example 3. As a result. Further, in Example 1, the decrease in the surface magnetic flux density was remarkable with respect to Comparative Example 1.
On the other hand, in Comparative Example 2, the change in the surface magnetic flux density was gradual. In Comparative Example 3, when the take-out temperature was in the range of 50 ° C. to 250 ° C., no significant change was observed in the surface magnetic flux density of the bonded permanent magnet after magnetization. However, the surface magnetic flux density rapidly decreased in the range exceeding 250 ° C. Since the Curie point Tc of the bond permanent magnet of Comparative Example 3 is 305 ° C., it is considered that the thermal demagnetization rapidly progressed in the range exceeding 250 ° C. close to the Curie point.

図2に、取出し温度50℃の際の表面磁束密度を基準として、取り出し温度を変化させた際の表面磁束密度の変化率(%)を示す。
図2に示すように、取出し温度270℃において、取出し温度50℃の表面磁束密度か
らの減少率が実施例1では50%を超え、また比較例1ではおよそ30%であるとする結果となった。
一方比較例2では、取出し温度270℃での表面磁束密度減少率がおよそ10%であった。また比較例3は、取出し温度250℃までの表面磁束密度減少率はおよそ6%と少なかったが、取出し温度が250℃を超えたところで表面磁束密度減少率が急激に大きくなるとする結果となった。
FIG. 2 shows the change rate (%) of the surface magnetic flux density when the extraction temperature is changed with the surface magnetic flux density at the extraction temperature of 50 ° C. as a reference.
As shown in FIG. 2, at the extraction temperature of 270 ° C., the decrease rate from the surface magnetic flux density at the extraction temperature of 50 ° C. exceeds 50% in Example 1, and is about 30% in Comparative Example 1. It was.
On the other hand, in Comparative Example 2, the surface magnetic flux density reduction rate at the extraction temperature of 270 ° C. was about 10%. In Comparative Example 3, the surface magnetic flux density reduction rate up to 250 ° C. was as low as about 6%, but the surface magnetic flux density reduction rate suddenly increased when the extraction temperature exceeded 250 ° C. .

[実施例2及び比較例4:着磁法の違いによる熱減磁の評価]
次に、UHM着磁とパルス着磁との熱減磁について評価を行った。
以下の実施例2及び比較例4には、実施例1で示した円筒状のボンド磁石と同一の条件で作製したボンド磁石をそれぞれ用いた。
実施例2では、取出し温度を50℃として実施例1と同様にUHM着磁を実施し、一方比較例4では、電流密度を22kA/mmとしてパルス着磁を実施した。尚、本条件の場合は着磁部に発生する最大磁界は2000kA/mである。着磁後に各ボンド永久磁石の表面磁束密度(mT)をガウスメーターを用いて前記と同様に測定した。
着磁後の実施例2のボンド永久磁石と比較例4のボンド永久磁石を、80℃、120℃、150℃、180℃、210℃、240℃又は270℃の環境下に30分間暴露した後、ガウスメーターを用いて前記と同様に表面磁束密度を測定した。着磁直後(暴露前)の表面磁束密度を基準として、暴露温度(℃)に対する表面磁束密度(mT)の変化率(%)を図3に示す。
[Example 2 and Comparative Example 4: Evaluation of thermal demagnetization due to difference in magnetization method]
Next, the thermal demagnetization between UHM magnetization and pulse magnetization was evaluated.
In the following Example 2 and Comparative Example 4, bond magnets manufactured under the same conditions as the cylindrical bond magnet shown in Example 1 were used.
In Example 2, the extraction temperature was 50 ° C., and UHM magnetization was performed in the same manner as in Example 1. On the other hand, in Comparative Example 4, pulse magnetization was performed at a current density of 22 kA / mm 2 . In the case of this condition, the maximum magnetic field generated in the magnetized portion is 2000 kA / m. After magnetization, the surface magnetic flux density (mT) of each bond permanent magnet was measured in the same manner as described above using a gauss meter.
After exposing the bond permanent magnet of Example 2 and the bond permanent magnet of Comparative Example 4 after magnetization in an environment of 80 ° C., 120 ° C., 150 ° C., 180 ° C., 210 ° C., 240 ° C. or 270 ° C. for 30 minutes. The surface magnetic flux density was measured in the same manner as described above using a gauss meter. FIG. 3 shows the change rate (%) of the surface magnetic flux density (mT) with respect to the exposure temperature (° C.) with reference to the surface magnetic flux density immediately after magnetization (before exposure).

図3に示すように、実施例2と比較例4のいずれにおいても表面磁束密度減少率はほぼ同様のカーブを示したが、比較例4では80℃環境下に暴露しただけで初期の減磁が10%発生していた。また実施例2と比較例4の減磁率の差は、80℃環境下の暴露から、270℃環境下の暴露までほぼ同じ値であった。
この結果は、パルス着磁(比較例4)では高温環境下における初期減磁が大きく、一方UHM着磁(実施例2)では熱影響による初期減磁が比較的少ないことを示すものであった。
As shown in FIG. 3, the surface magnetic flux density reduction rate in both Example 2 and Comparative Example 4 showed a substantially similar curve, but in Comparative Example 4, the initial demagnetization was performed only by exposure to an 80 ° C. environment. 10% occurred. Further, the difference in demagnetization factor between Example 2 and Comparative Example 4 was almost the same value from exposure in an 80 ° C. environment to exposure in a 270 ° C. environment.
This result shows that the initial demagnetization in the high temperature environment is large in the pulse magnetization (Comparative Example 4), while the initial demagnetization due to the heat effect is relatively small in the UHM magnetization (Example 2). .

また、図2に示す実施例1の表面磁束減少率のカーブと、図3に示す実施例2の表面磁束減少率のカーブは、殆ど同じであるとする結果となった。
この結果は、UHM着磁においては、取出し温度を調整することにより、その温度までの熱枯らしを行ったのと同等の効果が得られることを示すものであった。
Further, the result is that the surface magnetic flux reduction rate curve of Example 1 shown in FIG. 2 and the surface magnetic flux reduction rate curve of Example 2 shown in FIG. 3 are almost the same.
This result showed that, in UHM magnetization, by adjusting the take-out temperature, the same effect as that obtained when heat was exhausted to that temperature was obtained.

[実施例3:高温取り出しにおける熱減磁の評価]
次に、UHM着磁高温取り出しにおける熱減磁について評価を行った。
実施例3には、実施例1で示した円筒状のボンド磁石と同一の条件で作成したボンド磁石を用いた。
実施例3では、取り出し温度を180℃として実施例1と同様にUHM着磁を実施した。着磁後にボンド永久磁石の表面磁束密度(mT)をガウスメーターを用いて前記と同様に測定した。
着磁後の実施例3のボンド永久磁石を、80℃、120℃、150℃、210℃、240℃又は270℃の環境下に30分間暴露した後、ガウスメーターを用いて前記と同様に表面磁束密度を測定した。暴露温度(℃)に対する表面磁束密度(mT)の結果を図4に示す。
[Example 3: Evaluation of thermal demagnetization at high temperature extraction]
Next, the thermal demagnetization in UHM magnetization high temperature extraction was evaluated.
In Example 3, a bonded magnet prepared under the same conditions as the cylindrical bonded magnet shown in Example 1 was used.
In Example 3, UHM magnetization was performed in the same manner as in Example 1 with the take-out temperature being 180 ° C. After magnetization, the surface magnetic flux density (mT) of the bond permanent magnet was measured in the same manner as described above using a gauss meter.
The bonded permanent magnet of Example 3 after magnetization was exposed to an environment of 80 ° C., 120 ° C., 150 ° C., 210 ° C., 240 ° C. or 270 ° C. for 30 minutes, and then surface-treated in the same manner as described above using a gauss meter. The magnetic flux density was measured. The result of the surface magnetic flux density (mT) with respect to the exposure temperature (° C.) is shown in FIG.

図4に示すように、実施例3は、UHM着磁取出し温度(180℃)以下の温度範囲である暴露温度50℃から180℃までは表面磁束密度(mT)が低下することなく安定していた。一方、UHM着磁取出し温度(180℃)を超える暴露温度では表面磁束密度(mT)が低下し、暴露温度が高くなるほど表面磁束密度の低下量は多くなった。
この結果は、先行技術1のNd−Fe−B系ボンド磁石と同様に、Pr−Fe−B系ボンド磁石をUHM着磁する際の取出し温度をデバイスの使用温度よりも高温にすることで初期減磁を防止することが可能であることを示すものであった。
As shown in FIG. 4, Example 3 is stable without decreasing the surface magnetic flux density (mT) from the exposure temperature 50 ° C. to 180 ° C., which is the temperature range below the UHM magnetization extraction temperature (180 ° C.). It was. On the other hand, the surface magnetic flux density (mT) decreased at the exposure temperature exceeding the UHM magnetization extraction temperature (180 ° C.), and the amount of decrease in the surface magnetic flux density increased as the exposure temperature increased.
Similar to the Nd—Fe—B bond magnet of Prior Art 1, this result is obtained by setting the extraction temperature when the Pr—Fe—B bond magnet is magnetized to UHM higher than the operating temperature of the device. It was shown that demagnetization can be prevented.

前述したように、永久磁石型モータが使用される電子機器の使用温度上限値あるいは保証温度は、通常80℃乃至100℃であることから、UHM着磁の被着磁物をPr−Fe−B系磁石とすることで、着磁特性、すなわち表面磁束密度の最大値の95%の値から最大値の50%の値までの範囲で値を変化させた永久磁石を本発明により提供することが可能となる。   As described above, the upper limit of the operating temperature or the guaranteed temperature of an electronic device in which a permanent magnet type motor is used is usually 80 ° C. to 100 ° C. Therefore, the UHM magnetized object is replaced with Pr—Fe—B. The present invention provides a permanent magnet whose value is changed in the range from 95% of the maximum value of the surface magnetic flux density to 50% of the maximum value by using the system magnet. It becomes possible.

Claims (5)

被着磁物である希土類鉄系ボンド磁石の近傍に着磁用永久磁石を配置し、
前記被着磁物のキュリー点以上の温度且つ前記着磁用永久磁石のキュリー点未満の温度から、前記被着磁物のキュリー点未満の温度まで、前記被着磁物の温度を降下させるとともに、その間、前記着磁用永久磁石により被着磁物に着磁磁界を印加することにより着磁がなされた希土類鉄系ボンド永久磁石であって、
前記希土類鉄系ボンド磁石の希土類元素がPrであることを特徴とする、希土類鉄系ボンド永久磁石。
A permanent magnet for magnetizing is arranged in the vicinity of the rare earth iron-based bonded magnet that is the magnetized material,
And lowering the temperature of the magnetized object from a temperature above the Curie point of the magnetized object and a temperature below the Curie point of the magnetizing permanent magnet to a temperature below the Curie point of the magnetized object. In the meantime, a rare earth iron-based bond permanent magnet magnetized by applying a magnetizing magnetic field to an object to be magnetized by the magnetizing permanent magnet,
A rare earth iron-based bond permanent magnet, wherein the rare earth element of the rare earth iron-based bond magnet is Pr.
前記被着磁物である希土類鉄系ボンド磁石は、Pr−TM−B(TMはFe又はFeの一部をCo及びNiを含む1種以上の遷移金属元素で置換したもの)系等方性磁石であることを特徴とする、請求項1に記載の希土類鉄系ボンド永久磁石。 The rare earth iron-based bonded magnet that is the adherend is Pr-TM-B (TM is Fe or a part of Fe substituted with one or more transition metal elements including Co and Ni) system isotropic The rare earth iron-based bond permanent magnet according to claim 1, wherein the rare earth iron bond permanent magnet is a magnet. 前記被着磁物である希土類鉄系ボンド磁石は、固有保磁力(iHc)が557kA/m以下であることを特徴とする、請求項1または請求項2に記載の希土類鉄系ボンド永久磁石。 3. The rare earth iron-based bond permanent magnet according to claim 1, wherein the rare earth iron-based bond magnet as the adherend has an intrinsic coercive force (iHc) of 557 kA / m or less. 前記希土類鉄系ボンド永久磁石が、着磁特性の最大値の95%の値から最大値の50%の値までの範囲で磁化されていることを特徴とする、請求項1乃至請求項3のうち何れか一項に記載の希土類鉄系ボンド永久磁石。 4. The rare earth iron-based bond permanent magnet is magnetized in a range from a value of 95% of a maximum value of magnetization characteristics to a value of 50% of a maximum value. The rare earth iron bond permanent magnet as described in any one of them. 前記着磁特性が表面磁束密度である、請求項4に記載の希土類鉄系ボンド永久磁石。 The rare earth iron-based bond permanent magnet according to claim 4, wherein the magnetization characteristic is a surface magnetic flux density.
JP2013134260A 2013-06-26 2013-06-26 Rare earth iron bond permanent magnet Expired - Fee Related JP6267446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134260A JP6267446B2 (en) 2013-06-26 2013-06-26 Rare earth iron bond permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134260A JP6267446B2 (en) 2013-06-26 2013-06-26 Rare earth iron bond permanent magnet

Publications (2)

Publication Number Publication Date
JP2015012038A true JP2015012038A (en) 2015-01-19
JP6267446B2 JP6267446B2 (en) 2018-01-24

Family

ID=52304975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134260A Expired - Fee Related JP6267446B2 (en) 2013-06-26 2013-06-26 Rare earth iron bond permanent magnet

Country Status (1)

Country Link
JP (1) JP6267446B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021083286A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Manufacturing method of permanent magnet rotor
WO2022255065A1 (en) * 2021-05-31 2022-12-08 ミネベアミツミ株式会社 Permanent magnet manufacturing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112025A (en) * 1993-02-25 1994-04-22 Seiko Epson Corp Alloy for permanent magnet
JP2002015909A (en) * 2000-04-24 2002-01-18 Seiko Epson Corp Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet
JP2006294936A (en) * 2005-04-12 2006-10-26 Fdk Corp Method and device magnetizing of permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112025A (en) * 1993-02-25 1994-04-22 Seiko Epson Corp Alloy for permanent magnet
JP2002015909A (en) * 2000-04-24 2002-01-18 Seiko Epson Corp Method for manufacturing magnet powder and bonded magnet, and the bonded magnet
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet
JP2006294936A (en) * 2005-04-12 2006-10-26 Fdk Corp Method and device magnetizing of permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021083286A (en) * 2019-11-22 2021-05-27 大同特殊鋼株式会社 Manufacturing method of permanent magnet rotor
JP7271402B2 (en) 2019-11-22 2023-05-11 大同特殊鋼株式会社 Manufacturing method of permanent magnet rotor
WO2022255065A1 (en) * 2021-05-31 2022-12-08 ミネベアミツミ株式会社 Permanent magnet manufacturing method

Also Published As

Publication number Publication date
JP6267446B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
JP4697736B2 (en) Magnetization method of permanent magnet
US7618496B2 (en) Radial anisotropic sintered magnet and its production method, magnet rotor using sintered magnet, and motor using magnet rotor
JP5506234B2 (en) Anisotropic magnet, motor, and method for manufacturing anisotropic magnet
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
US20130192723A1 (en) Method for manufacturing bonded magnet
JP2010045068A (en) Permanent magnet and method of manufacturing the same
JP2009302262A (en) Permanent magnet and production process of the same
Chen et al. Substitution of Ce for (Nd, Pr) in Melt-Spun (Nd, Pr)–Fe–B Powders
JP6296745B2 (en) Magnetization method of rare earth magnet and rare earth magnet
JP6267446B2 (en) Rare earth iron bond permanent magnet
CN104247213B (en) Magneto
JP2006210376A (en) R-t-b-based sintered magnet
KR20170076166A (en) Method for manufacturing of rare-earth pearmanent magnet
JP2004153867A (en) Radial anisotropic sintered magnet, its manufacturing method, and magnet rotor and motor
JP6200730B2 (en) Rare earth iron bond magnet manufacturing method
JP6021096B2 (en) Method to increase demagnetization amount of bonded magnet
WO2015159882A1 (en) SmCo-BASED RARE EARTH SINTERED MAGNET
Goto et al. Nd-Fe-B sintered magnets fabrication by using atomized powders
JP6438713B2 (en) Rare earth iron-based magnet powder and bonded magnet using the same
JP5501833B2 (en) R-T-B permanent magnet
JP2017188690A (en) Manufacturing method of bond magnet
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
KR930008824B1 (en) Rhenium meterials of permanent magnet and making method thereof
KR20230068424A (en) Rare earth sintered magnet, manufacturing method of rare earth sintered magnet, rotor and rotating machine
JP6054681B2 (en) Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20161014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171213

R150 Certificate of patent or registration of utility model

Ref document number: 6267446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees