JP2017188690A - Manufacturing method of bond magnet - Google Patents

Manufacturing method of bond magnet Download PDF

Info

Publication number
JP2017188690A
JP2017188690A JP2017095105A JP2017095105A JP2017188690A JP 2017188690 A JP2017188690 A JP 2017188690A JP 2017095105 A JP2017095105 A JP 2017095105A JP 2017095105 A JP2017095105 A JP 2017095105A JP 2017188690 A JP2017188690 A JP 2017188690A
Authority
JP
Japan
Prior art keywords
magnet
magnetization
temperature
bond magnet
curie point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017095105A
Other languages
Japanese (ja)
Inventor
幸村 治洋
Haruhiro Yukimura
治洋 幸村
昇 校條
Noboru Menjo
昇 校條
淳詔 鈴木
Toshinori Suzuki
淳詔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MinebeaMitsumi Inc
Original Assignee
MinebeaMitsumi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MinebeaMitsumi Inc filed Critical MinebeaMitsumi Inc
Priority to JP2017095105A priority Critical patent/JP2017188690A/en
Publication of JP2017188690A publication Critical patent/JP2017188690A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a bond magnet which has a high magnetization property, widens an adjustment range of a magnetization property, is simplified and reduces cost.SOLUTION: A manufacturing method of a bond magnet includes: a heating step for disposing magnetic field application means for magnetization in the vicinity of the bond magnet and making a temperature of the bond magnet rise equal to or higher than its Curie point; and a magnetization step for continuously applying a magnetization magnetic field to the bond magnet by the magnetic field application means for magnetization while making the temperature of the bond magnet that reaches a temperature equal to or higher than the Curie point, fall to a temperature lower than the Curie point. A magnet powder containing Nd and Pr as rare earth elements is used for the bond magnet. When adjusting a magnetization property of the bond magnet, a conditioning temperature that is an extraction temperature during cooling is adjusted, and the magnetic field application means for magnetization includes a permanent magnet for magnetization of which the Curie point is higher than that of the bond magnet.SELECTED DRAWING: Figure 6

Description

本発明は、多極着磁されたボンド磁石の製造方法に関する。   The present invention relates to a method for manufacturing a multi-pole magnetized bonded magnet.

近年の電子機器の著しい小型化に対応して、それに使用するステッピングモータなども小型化、小径化が進んでいる。それに伴い、ローターとして用いるリング状永久磁石も小径化が進むため、着磁ピッチ(着磁極間距離)が狭くなり、多極着磁は困難になる。   Corresponding to the recent remarkable downsizing of electronic devices, stepping motors and the like used therefor have also been reduced in size and diameter. Accordingly, the diameter of the ring-shaped permanent magnet used as the rotor is also reduced, so that the magnetization pitch (distance between the magnetic poles) is narrowed and multi-pole magnetization becomes difficult.

多極磁極の着磁方法として、パルス着磁が知られている。パルス着磁では、リング状永久磁石を着磁する際、マグネットワイヤーに大きなパルス電流を流すが、リング状永久磁石の小径化に伴い着磁ピッチが狭くなると、現状の着磁治具ではマグネットワイヤーの径が細くなり、磁石を十分に着磁可能なパルス電流が流せない問題が生じてきた。それを改善する技術として、被着磁物を被着磁物のキュリー点未満の高温にして飽和着磁磁場を減少させて着磁する方法が知られている(例えば、特許文献1および特許文献2参照)。
また、永久磁石に着磁を施す方法に関し、被着磁物を、そのキュリー点以上の温度からキュリー点未満の温度まで降温させつつ、その間、着磁磁界を印加し続ける永久磁石の着磁方法が知られている(例えば、特許文献3参照)。
As a method for magnetizing a multipole magnetic pole, pulse magnetization is known. In pulse magnetization, when a ring-shaped permanent magnet is magnetized, a large pulse current is passed through the magnet wire. However, if the magnetizing pitch becomes narrower as the diameter of the ring-shaped permanent magnet becomes smaller, As a result, the problem that the pulse current that can sufficiently magnetize the magnet cannot flow has arisen. As a technique for improving this, there is known a method of magnetizing an object to be magnetized by reducing the saturation magnetization field to a high temperature below the Curie point of the object to be magnetized (for example, Patent Document 1 and Patent Document). 2).
Further, regarding a method for magnetizing a permanent magnet, a method for magnetizing a permanent magnet that continuously applies a magnetizing magnetic field while lowering the temperature of a magnetic object from a temperature above its Curie point to a temperature below its Curie point. Is known (see, for example, Patent Document 3).

特許2940048号公報Japanese Patent No. 2940048 特開平6−140248号公報JP-A-6-140248 特開2006−203173号公報JP 2006-203173 A

しかしながら、特許文献1および特許文献2の着磁方法では、十分な着磁特性が得られない。また、着磁コイルのマグネットワイヤーへの通電は行うため、絶縁破壊の可能性は避けられない。さらに、高温にさらされることで着磁治具の構成部品,特にモールド樹脂が劣化し、着磁治具の寿命が縮まる。
特許文献3の着磁方法では、Nd−Fe−B系ボンド磁石において高着磁特性が得られるが、着磁特性の調整幅は磁粉の物性に依存するため一般的に狭くなってしまい、所望の着磁特性が得られにくい。また、希土類価格高騰を受け、より安価に高特性を示す希土類系ボンド磁石の要望も強まっている。
However, the magnetization methods of Patent Document 1 and Patent Document 2 cannot provide sufficient magnetization characteristics. Further, since energization is performed to the magnet wire of the magnetized coil, the possibility of dielectric breakdown is inevitable. Furthermore, exposure to high temperatures degrades the components of the magnetizing jig, particularly the mold resin, and shortens the life of the magnetizing jig.
In the magnetizing method of Patent Document 3, high magnetization characteristics can be obtained in an Nd—Fe—B based bonded magnet. However, since the adjustment range of the magnetization characteristics depends on the physical properties of the magnetic powder, it is generally narrow and desired. It is difficult to obtain the magnetization characteristics. In addition, in response to soaring rare earth prices, there is an increasing demand for rare earth bonded magnets that exhibit high performance at a lower cost.

本発明はこのような事情を考慮してなされたもので、その目的は、高着磁特性でありながら着磁特性の調整幅が広い、簡便でコストを低減したボンド磁石の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a simple and cost-effective method of manufacturing a bonded magnet that has a wide range of adjustment of the magnetization characteristics while having high magnetization characteristics. There is.

上述した目的を達成するべく本発明に係るボンド磁石の製造方法は、ボンド磁石の近傍に着磁用磁界印加手段を配置し、前記ボンド磁石を、そのキュリー点以上の温度に上昇させる加熱工程と、キュリー点以上の温度に達した前記ボンド磁石を、キュリー点未満の温度まで降温させつつ、その間、前記着磁用磁界印加手段により前記ボンド磁石に着磁磁界を印加し続ける着磁工程と、を含むボンド磁石の製造方法であって、前記ボンド磁石に希土類元素としてNdとPrが含まれる磁石粉体を用い、前記ボンド磁石の着磁特性の調整を行うにあたって冷却時の取り出し温度である温調温度が調整され、前記着磁用磁界印加手段が前記ボンド磁石よりもキュリー点の高い着磁用永久磁石を備えている。   In order to achieve the above-described object, the manufacturing method of the bonded magnet according to the present invention includes a heating step of disposing the magnetic field applying means for magnetization in the vicinity of the bonded magnet and raising the bonded magnet to a temperature equal to or higher than its Curie point. A magnetizing step of continuously applying a magnetizing magnetic field to the bond magnet by the magnetizing magnetic field applying means while lowering the temperature of the bond magnet that has reached a temperature above the Curie point to a temperature below the Curie point; A bonded magnet manufacturing method comprising: a magnetic powder containing Nd and Pr as rare earth elements in the bonded magnet, and adjusting a magnetization characteristic of the bonded magnet; The temperature control is adjusted, and the magnetizing magnetic field applying means includes a magnetizing permanent magnet having a Curie point higher than that of the bond magnet.

2種以上の希土類元素を含むことで、精錬コストが低減し、簡便でコストを低減したボンド磁石の製造方法が得られる。   By including two or more rare earth elements, the refining cost is reduced, and a simple and cost-effective method for producing a bonded magnet is obtained.

また、本発明に係るボンド磁石の製造方法は、前記希土類元素の総量が12at%以上であることが好ましい。
希土類元素の総量を12at%以上とすることで、静磁気特性,特に角型性と保磁力に優れ、高着磁特性のボンド磁石の製造方法が得られる。
In the method for manufacturing a bonded magnet according to the present invention, the total amount of the rare earth elements is preferably 12 at% or more.
By setting the total amount of rare earth elements to 12 at% or more, a method for producing a bonded magnet having excellent magnetostatic characteristics, particularly squareness and coercive force, and high magnetization characteristics can be obtained.

また、本発明に係るボンド磁石の製造方法は、前記磁石粉体の固有保磁力が716kA/m(9kOe)以上であることが好ましい。
固有保磁力が716kA/m(9kOe)以上の磁石粉体を用いることで、熱減磁特性が優れ、且つ初期減磁のごく小さい高着磁特性のボンド磁石の製造方法が得られる。
In the method for manufacturing a bonded magnet according to the present invention, the magnet powder preferably has an intrinsic coercive force of 716 kA / m (9 kOe) or more.
By using a magnet powder having an intrinsic coercive force of 716 kA / m (9 kOe) or more, a method for producing a bonded magnet having excellent thermal demagnetization characteristics and very low initial demagnetization characteristics can be obtained.

また、本発明に係るボンド磁石の製造方法は、前記希土類元素として、NdとPrが含まれることを特徴とする。
希土類元素として、NdとPrが含まれることで、最終精錬を極力省くことができコストが低減され、且つ高い静磁気特性を有すことができる。したがって、コストを低減した高着磁特性のボンド磁石の製造方法が得られる。また、若干熱減磁特性が低下する物性を利用して着磁特性の調整幅を広くすることができる。したがって、高着磁特性でありながら特性調整幅がより広い、簡便でコストの低減した工業的に広く利用可能なボンド磁石の製造方法が得られる。
The bonded magnet manufacturing method according to the present invention is characterized in that Nd and Pr are included as the rare earth element.
By including Nd and Pr as rare earth elements, final refining can be omitted as much as possible, the cost can be reduced, and high magnetostatic properties can be obtained. Therefore, the manufacturing method of the bonded magnet of the high magnetization characteristic which reduced the cost is obtained. In addition, the adjustment range of the magnetizing characteristics can be widened by utilizing the physical property that the thermal demagnetizing characteristics slightly decrease. Therefore, it is possible to obtain a method of manufacturing a bonded magnet that is highly magnetized and that has a wider characteristic adjustment range and that is simple and cost-effective and can be widely used industrially.

また、本発明に係るボンド磁石の製造方法は、NdとPrの配合比率が、Nd量に対するPr置換量にて、5at%〜50at%であることが好ましい。
NdとPrは磁気的に似通った物性を有すため、静磁気特性の低下は最小限に抑えられる。NdとPrの配合比率が、Nd量に対するPrの置換量として5at%〜50at%であれば、自然界で産出される比率に近く精錬の負担が軽減するため、コストの低減が図れる。5at%以上とするのは効果発現のための下限値であり、50at%を上限とするのは磁気特性の著しい低下を抑制するためである。
また、Prの混入により熱安定性が若干低下するが、特性調整手段として逆に利用できる。
さらに、キュリー点が低下するので 着磁装置の設定温度を下げることができ、装置にかかる負担が少なくなり熱容量の大きな被着磁物の着磁にも対応することができる。よって、製造工程全体としてコストの低減効果があるうえに比較的大きな磁石の着磁も可能となる。
したがって、より高着磁特性が得られ且つ特性調整幅が広い、簡便でコストを低減したボンド磁石の製造方法が得られる。
In the method for manufacturing a bonded magnet according to the present invention, the blending ratio of Nd and Pr is preferably 5 at% to 50 at% in terms of the Pr substitution amount with respect to the Nd amount.
Since Nd and Pr have magnetically similar physical properties, degradation of the magnetostatic characteristics can be minimized. If the blending ratio of Nd and Pr is 5 at% to 50 at% as the substitution amount of Pr with respect to the Nd amount, the refining burden is reduced to be close to the ratio produced in nature, and the cost can be reduced. The upper limit of 5 at% is a lower limit value for effect expression, and the upper limit of 50 at% is for suppressing a significant decrease in magnetic properties.
In addition, although the thermal stability is slightly lowered due to the mixing of Pr, it can be used as a characteristic adjusting means.
Further, since the Curie point is lowered, the set temperature of the magnetizing device can be lowered, the load on the device is reduced, and the magnetized object having a large heat capacity can be dealt with. Therefore, the manufacturing process as a whole has an effect of reducing the cost, and a relatively large magnet can be magnetized.
Therefore, it is possible to obtain a simple and cost-effective method of manufacturing a bonded magnet that can obtain higher magnetization characteristics and a wide characteristic adjustment range.

また、本発明に係るボンド磁石の製造方法は、前記希土類鉄系磁石は、Coを含まないことが好ましい。
Coを含まないことで、磁石材料価格を低減できるとともにキュリー点を下げることができ熱減磁特性も低下させられるため、コストを低減した高着磁特性のボンド磁石を得ることができ、着磁条件が比較的低い加熱温度になることで装置負担が少なくなり特性調整もしやすくなる。さらに、熱容量の大きな磁石に対しての着磁を比較的容易に行うこともできる。したがって、より高着磁特性が得られ且つ特性調整幅が広い、簡便でコストを低減したボンド磁石の製造方法が得られる。
In the bonded magnet manufacturing method according to the present invention, it is preferable that the rare earth iron-based magnet does not contain Co.
By not containing Co, the magnet material price can be reduced, the Curie point can be lowered, and the thermal demagnetization characteristics can also be lowered, so that it is possible to obtain a bonded magnet with high magnetization characteristics at a reduced cost. When the heating temperature is relatively low, the burden on the apparatus is reduced and the characteristics can be easily adjusted. Furthermore, it is possible to relatively easily magnetize a magnet having a large heat capacity. Therefore, it is possible to obtain a simple and cost-effective method of manufacturing a bonded magnet that can obtain higher magnetization characteristics and a wide characteristic adjustment range.

本発明により、キュリー温度の低下や熱減磁特性の低下などを利用し、工業的に有用なボンド磁石(高磁力特性,比較的大きな着磁特性調整幅,低コスト)の製造方法を得ることができる。   According to the present invention, an industrially useful bond magnet (high magnetic force characteristic, relatively large magnetization characteristic adjustment width, low cost) can be obtained by utilizing a decrease in Curie temperature or a decrease in thermal demagnetization characteristic. Can do.

(a)は、実施形態における着磁治具およびボンド磁石の平面図、(b)は縦断面図。(A) is a top view of the magnetization jig | tool and bond magnet in embodiment, (b) is a longitudinal cross-sectional view. ボンド磁石に施されている多極着磁の状況を示す平面図。The top view which shows the condition of the multipolar magnetization currently given to the bond magnet. 10極着磁の表面磁束密度の測定結果の一例を示す図。The figure which shows an example of the measurement result of the surface magnetic flux density of 10 pole magnetization. 実施例1、実施例2および比較例1の着磁特性を示した図。The figure which showed the magnetization characteristic of Example 1, Example 2, and the comparative example 1. FIG. 実施例1、実施例2および比較例3の着磁特性を示した図。The figure which showed the magnetization characteristic of Example 1, Example 2, and Comparative Example 3. FIG. 実施例1、実施例2、比較例3および比較例4の着磁特性を示した図。The figure which showed the magnetization characteristic of Example 1, Example 2, the comparative example 3, and the comparative example 4. FIG. 温調温度50℃での着磁特性を基準として、より高温での着磁特性減少率を示した図。The figure which showed the magnetization characteristic reduction rate in higher temperature on the basis of the magnetization characteristic in the temperature control temperature of 50 degreeC. 実施例1、実施例2、比較例3および比較例4の着磁特性を示した図。The figure which showed the magnetization characteristic of Example 1, Example 2, the comparative example 3, and the comparative example 4. FIG. 実施例1、比較例5および比較例6の着磁特性を示した図。The figure which showed the magnetization characteristic of Example 1, the comparative example 5, and the comparative example 6. FIG.

以下、本発明のボンド磁石の製造方法について、実施形態を例に挙げて詳しく述べる。
図1に、実施形態のボンド磁石の製造方法に用いる着磁治具10および被着磁物としてのボンド磁石14を示した。(a)は平面図を表し、(b)は縦断面図を表している。実施形態では、リング状のボンド磁石14を10極着磁し、多極着磁されたボンド磁石140を得る。
Hereinafter, the manufacturing method of the bonded magnet of the present invention will be described in detail by taking an embodiment as an example.
FIG. 1 shows a magnetizing jig 10 used in the method for manufacturing a bonded magnet according to the embodiment and a bonded magnet 14 as an object to be magnetized. (A) represents a plan view, and (b) represents a longitudinal sectional view. In the embodiment, the ring-shaped bond magnet 14 is magnetized by 10 poles to obtain a multi-pole magnetized bond magnet 140.

着磁治具10は、非磁性ブロック(例えば、ステンレス鋼製ブロック)12に、ボンド磁石14を挿入、抜出可能な円形の被着磁物収容穴16が設けられると共に、被着磁物収容穴16の外側面から放射状に延びる10本の断面矩形の溝18が等角度の間隔で設けられている。溝18には、ボンド磁石14よりもキュリー点が高い断面四角形の棒状の着磁用磁界印加手段としての着磁用永久磁石20がそれぞれ埋設されている。
例えば、着磁用永久磁石20として、キュリー点が約850℃のSmCo系焼結磁石を用いることができる。
The magnetizing jig 10 includes a non-magnetic block (for example, a stainless steel block) 12 provided with a circular magnetized material receiving hole 16 into which a bonded magnet 14 can be inserted and extracted, and a magnetized material stored therein. Ten grooves 18 having a rectangular section extending radially from the outer surface of the hole 16 are provided at equiangular intervals. In the grooves 18, magnetized permanent magnets 20 are embedded as rod-shaped magnetizing magnetic field applying means having a square cross section having a Curie point higher than that of the bonded magnets 14.
For example, an SmCo sintered magnet having a Curie point of about 850 ° C. can be used as the permanent magnet 20 for magnetization.

以下に、ボンド磁石14から多極着磁されたボンド磁石140を製造する方法について説明する。
ボンド磁石140の製造方法は、ボンド磁石14の近傍に着磁用永久磁石20を配置し、ボンド磁石14を、そのキュリー点以上の温度に上昇させる加熱工程と、キュリー点以上の温度に達したボンド磁石14を、キュリー点未満の温度まで降温させつつ、その間、着磁用永久磁石20によりボンド磁石14に着磁磁界を印加し続ける着磁工程とを含む。
Below, the method to manufacture the bond magnet 140 magnetized by the multipole from the bond magnet 14 will be described.
In the manufacturing method of the bond magnet 140, the permanent magnet 20 for magnetization is disposed in the vicinity of the bond magnet 14, and the heating process for raising the bond magnet 14 to a temperature above its Curie point and the temperature above the Curie point are reached. A magnetizing step in which the magnet is continuously applied to the bond magnet 14 by the magnetizing permanent magnet 20 while the temperature of the bond magnet 14 is lowered to a temperature lower than the Curie point.

ボンド磁石14として、2種以上の希土類元素を含む希土類鉄系ボンド磁石を用いる。2種以上の希土類元素を含むことで、精錬コストを低減でき、安価な希土類鉄系ボンド磁石を提供できる。
表1に、希土類鉄硼素系磁石(R2Fe14B)の磁気特性を示す。例えば、飽和磁化の最も高いNdの一部を、Y、Ce、PrなどNdに近い磁気特性を示す元素によって、磁気特性上の影響が小さい範囲で一部置換された希土類鉄系ボンド磁石を用いる。
ここで、できるだけ産出される形態に近い組み合わせがコスト上好ましく、且つ磁気特性の高い元素同士が組み合わされることが好ましい。
特に、NdとPrは磁気的に似通った物性を有すため、静磁気特性の低下は最小限に抑えられる。NdとPrの配合比率が、Nd量に対するPrの置換量として、5at%〜50at%が好ましく、10at%〜35at%であるのがより好ましく、自然界で産出される比率に近くコストが低減できる。
As the bonded magnet 14, a rare earth iron-based bonded magnet containing two or more rare earth elements is used. By including two or more kinds of rare earth elements, the refining cost can be reduced, and an inexpensive rare earth iron-based bonded magnet can be provided.
Table 1 shows the magnetic characteristics of the rare earth iron boron magnet (R2Fe14B). For example, a rare earth iron-based bond magnet in which a part of Nd having the highest saturation magnetization is partially substituted with an element exhibiting magnetic characteristics close to Nd, such as Y, Ce, and Pr, within a range where the influence on the magnetic characteristics is small is used. .
Here, a combination that is as close to the form as possible is preferable in terms of cost, and it is preferable that elements having high magnetic properties are combined.
In particular, since Nd and Pr have magnetically similar physical properties, a decrease in magnetostatic characteristics can be minimized. The blending ratio of Nd and Pr is preferably 5 at% to 50 at%, more preferably 10 at% to 35 at%, as the substitution amount of Pr with respect to the Nd amount, and the cost can be reduced close to the ratio produced in nature.

Figure 2017188690
Figure 2017188690

加熱工程では、ボンド磁石14を、そのキュリー点以上に加熱した状態で、被着磁物収容穴16に挿入する。
着磁工程では、着磁用永久磁石20により着磁磁界を印加する。そして、ボンド磁石14を着磁治具10内に設置したままボンド磁石14のキュリー点未満の温度まで冷却し、その後、着磁治具10から取り出す。例えば、ボンド磁石14のキュリー点をTcとしたとき、(Tc+30℃)以上の温度まで加熱した後、着磁磁界中で(Tc−50℃)以下の温度まで冷却するのが特に好ましい。
なお、加熱には、例えば、抵抗加熱、高周波加熱、レーザ加熱、高温ガスフロー加熱、高温液中加熱など任意の手段を用いてよいが、特に、短時間で加熱可能な高周波加熱法などが好ましい。冷却は、自然放冷の他、水冷、空冷、ガス吹き付けなどの強制放冷、加熱温度調整など任意の方法で行ってよい。不活性雰囲気中での作業が必要な場合には、不活性ガスフローを行う。ボンド磁石14および多極着磁されたボンド磁石140は、移動機構(図示せず)によって、着磁治具10の被着磁物収容穴16に容易に且つ迅速に挿入でき、且つ被着磁物収容穴16から容易に且つ迅速に取り出せるようにするのがよい。
In the heating step, the bonded magnet 14 is inserted into the magnetic object receiving hole 16 while being heated to the Curie point or higher.
In the magnetizing step, a magnetizing magnetic field is applied by the magnetizing permanent magnet 20. Then, the bonded magnet 14 is cooled to a temperature lower than the Curie point of the bonded magnet 14 while being installed in the magnetized jig 10, and then taken out from the magnetized jig 10. For example, when the Curie point of the bonded magnet 14 is Tc, it is particularly preferable to heat to a temperature of (Tc + 30 ° C.) or higher and then cool to a temperature of (Tc−50 ° C.) or lower in a magnetizing magnetic field.
For heating, for example, any means such as resistance heating, high-frequency heating, laser heating, high-temperature gas flow heating, and high-temperature liquid heating may be used, but a high-frequency heating method capable of heating in a short time is particularly preferable. . Cooling may be performed by any method such as natural cooling, forced cooling such as water cooling, air cooling, gas blowing, and heating temperature adjustment. When work in an inert atmosphere is required, an inert gas flow is performed. The bond magnet 14 and the multi-pole magnetized bond magnet 140 can be easily and quickly inserted into the magnetized object accommodation hole 16 of the magnetizing jig 10 by a moving mechanism (not shown), and magnetized. It is preferable that the object can be easily and quickly removed from the object accommodation hole 16.

以上述べた工程によって、ボンド磁石14であるリング状の永久磁石の外周面には、着磁磁極に対応した磁極が現れ、多極着磁されたボンド磁石140が得られる。図2は、多極着磁されたボンド磁石140であるリング状の永久磁石に施されている多極着磁の状況を示す平面図である。符号22は、着磁磁界の向きを表している。   Through the steps described above, magnetic poles corresponding to the magnetized magnetic poles appear on the outer peripheral surface of the ring-shaped permanent magnet that is the bonded magnet 14, and the bonded magnet 140 that is multipolarly magnetized is obtained. FIG. 2 is a plan view showing the state of multipolar magnetization applied to a ring-shaped permanent magnet, which is a bonded magnet 140 that is multipolarly magnetized. Reference numeral 22 represents the direction of the magnetizing magnetic field.

着磁特性の評価は、テスラメータにより表面磁束密度を測定することにより、定量的に行うことができる。
図3は、多極着磁したボンド磁石140の外周面を、任意の点を基準として中心角[度]に対する表面磁束密度(オープン)Bo[mT]を測定した図である。
測定は、図3に示すように、多極着磁したボンド磁石140の外周面を、任意の点を基準として中心角[度]に対する表面磁束密度(オープン)Bo[mT]の変化を連続的に求めることで行う。以降の実施例は、全極のBoピーク値(絶対値)の平均値を着磁特性として示した。
The evaluation of the magnetization characteristics can be performed quantitatively by measuring the surface magnetic flux density with a teslameter.
FIG. 3 is a diagram in which the surface magnetic flux density (open) Bo [mT] with respect to the central angle [degree] is measured on the outer peripheral surface of the bond magnet 140 magnetized with multiple poles with an arbitrary point as a reference.
As shown in FIG. 3, the outer peripheral surface of the multi-pole magnetized bond magnet 140 is continuously measured by changing the surface magnetic flux density (open) Bo [mT] with respect to the central angle [degree] with respect to an arbitrary point. To do that. In the following examples, the average value of the Bo peak values (absolute values) of all poles was shown as the magnetization characteristic.

以下に、実施例および比較例を挙げてより詳しく説明する。
以下に示す実施例および比較例に用いたボンド磁石14は、外径φ2.6mm、内径φ1.0mm,厚さ3mmの圧縮成形ボンド磁石とし、寸法、重量を統一(即ち密度は同等)とした。そして、外周からの10極着磁(極ピッチ0.8mm)を行い、着磁特性を示している。磁石粉体は急冷薄帯を粉砕し、バインダ樹脂としてエポキシ樹脂を磁石粉体に対して2.5wt%混合して成形した。
着磁は、着磁治具10を用いて、加熱温度を380℃で3secとし、温調温度まで冷却して6sec後に取り出して多極着磁されたボンド磁石140を得た。
Below, an Example and a comparative example are given and it demonstrates in detail.
The bond magnet 14 used in the following examples and comparative examples is a compression-molded bond magnet having an outer diameter of 2.6 mm, an inner diameter of 1.0 mm, and a thickness of 3 mm, and the dimensions and weight are unified (that is, the density is equal). . And 10 pole magnetization (pole pitch 0.8mm) from the outer periphery is performed, and the magnetization characteristic is shown. The magnet powder was formed by pulverizing a quenched ribbon and mixing 2.5 wt% of an epoxy resin as a binder resin with respect to the magnet powder.
Magnetization was performed using a magnetizing jig 10 at a heating temperature of 380 ° C. for 3 seconds, cooled to a temperature adjustment temperature, and taken out after 6 seconds to obtain a multi-pole magnetized bond magnet 140.

以下に示す実施例1、実施例2および比較例1は、温調温度を50℃とした。
(実施例1)
希土類元素をNd−Prとした希土類鉄硼素系のボンド磁石14を用い、希土類元素の総量を12at%とした。
(実施例2)
希土類元素をNd−Prとした希土類鉄硼素系のボンド磁石14を用い、希土類元素の総量を12.5at%とした。
(比較例1)
希土類元素をNd−Prとした希土類鉄硼素系のボンド磁石14を用い、希土類元素の総量10.0at%とした。
In Example 1, Example 2, and Comparative Example 1 shown below, the temperature adjustment temperature was set to 50 ° C.
Example 1
A rare earth iron-boron bond magnet 14 in which the rare earth element was Nd—Pr was used, and the total amount of rare earth elements was 12 at%.
(Example 2)
A rare earth iron-boron bond magnet 14 in which the rare earth element was Nd—Pr was used, and the total amount of rare earth elements was 12.5 at%.
(Comparative Example 1)
A rare earth iron-boron bond magnet 14 in which the rare earth element was Nd—Pr was used, and the total amount of rare earth elements was 10.0 at%.

図4は、実施例1、実施例2および比較例1の着磁特性を示した図である。
図4において、希土類元素の総量を12at%以上とすることで 初期減磁が抑制される作用が発現し、高着磁特性を有すボンド磁石140が得られることがわかった。
FIG. 4 is a diagram showing the magnetization characteristics of Example 1, Example 2, and Comparative Example 1.
In FIG. 4, it was found that when the total amount of rare earth elements is 12 at% or more, the effect of suppressing initial demagnetization is exhibited, and a bonded magnet 140 having high magnetization characteristics can be obtained.

以下に示す実施例1、実施例2および比較例1は、温調温度を変化させている。
(実施例1)
希土類元素をNd−Prとした希土類鉄硼素系のボンド磁石14を用い、固有保磁力が716kA/m(9kOe)の磁石粉体を用いた。
(実施例2)
希土類元素をNd−Prとした希土類鉄硼素系のボンド磁石14を用い、固有保磁力が796kA/m(10kOe)の磁石粉体を用いた。
(比較例1)
希土類元素をNd−Prとした希土類鉄硼素系のボンド磁石14を用い、固有保磁力が557kA/m(7kOe)の磁石粉体を用いた。
In Example 1, Example 2, and Comparative Example 1 shown below, the temperature control temperature is changed.
Example 1
A rare earth iron-boron bond magnet 14 having a rare earth element Nd—Pr was used, and a magnetic powder having an intrinsic coercive force of 716 kA / m (9 kOe) was used.
(Example 2)
A rare earth iron-boron bond magnet 14 having a rare earth element Nd—Pr was used, and a magnetic powder having an intrinsic coercive force of 796 kA / m (10 kOe) was used.
(Comparative Example 1)
A rare earth iron-boron bond magnet 14 having a rare earth element Nd—Pr was used, and a magnetic powder having an intrinsic coercive force of 557 kA / m (7 kOe) was used.

図5は、実施例1、実施例2および比較例1の着磁特性を示した図である。横軸は温調温度(℃)、縦軸は着磁特性(mT)を示している。
図5において、固有保磁力が716kA/m(9kOe)以上の磁石粉体を用いることで、熱減磁特性が良好で、且つ初期減磁のごく小さい高着磁特性のボンド磁石140が得られる。
FIG. 5 is a diagram showing the magnetization characteristics of Example 1, Example 2, and Comparative Example 1. In FIG. The horizontal axis indicates the temperature control temperature (° C.), and the vertical axis indicates the magnetization characteristic (mT).
In FIG. 5, by using a magnet powder having an intrinsic coercive force of 716 kA / m (9 kOe) or more, a bonded magnet 140 having excellent thermal demagnetization characteristics and very low initial demagnetization characteristics can be obtained. .

(比較例3)
希土類元素をNdとした希土類鉄硼素系のボンド磁石14を用い、固有保磁力が716kA/m(9kOe)の磁石粉体を用いた。
(比較例4)
希土類元素をNdとした希土類鉄硼素系のボンド磁石14を用い、固有保磁力が796kA/m(10kOe)の磁石粉体を用いた。
(Comparative Example 3)
A rare earth iron-boron bond magnet 14 with a rare earth element Nd was used, and a magnetic powder having an intrinsic coercive force of 716 kA / m (9 kOe) was used.
(Comparative Example 4)
A rare earth iron-boron bond magnet 14 with a rare earth element Nd was used, and a magnetic powder having an intrinsic coercive force of 796 kA / m (10 kOe) was used.

図6は、温調温度を50℃としたときの実施例1、実施例2、比較例3および比較例4の着磁特性を示した図である。また、図7は、冷却時の取り出し温度である温調温度50℃での着磁特性を基準として、より高温の温調温度での着磁特性減少率を示した図である。
図6において、希土類元素としてNdとPrが含まれることで、高磁力特性のボンド磁石140が得られることがわかった。
図7において、若干熱減磁特性が低下する現象を利用することで、着磁特性の調整幅を広げられる、具体的には、高温側の温調温度での着磁特性減少率が大きくなることがわかった。
FIG. 6 is a graph showing the magnetization characteristics of Example 1, Example 2, Comparative Example 3 and Comparative Example 4 when the temperature control temperature is 50 ° C. FIG. 7 is a graph showing a decrease rate of the magnetization characteristic at a higher temperature control temperature with reference to the magnetization characteristic at a temperature control temperature of 50 ° C., which is the extraction temperature during cooling.
In FIG. 6, it was found that a bond magnet 140 having high magnetic properties can be obtained by including Nd and Pr as rare earth elements.
In FIG. 7, by utilizing the phenomenon that the thermal demagnetization characteristic slightly decreases, the adjustment range of the magnetization characteristic can be expanded. Specifically, the decrease rate of the magnetization characteristic at the temperature adjustment temperature on the high temperature side increases. I understood it.

図8は、実施例1、実施例2、比較例3および比較例4の着磁特性を示した図である。横軸は加熱温度(℃)、縦軸は着磁特性(%)を示している。着磁特性(%)は各材料の最大値に対する比率を表している。また、温調温度は、50℃とした。
図8において、キュリー点の低下に伴い加熱温度を下げても着磁特性の低下が抑えられていることがわかる。キュリー点が低下することによって、着磁装置の設定温度を下げることができ、装置にかかる負担が少なくなり製造上有効である。さらに、加熱条件を低めの温度に設定できるため、熱容量の大きな磁石に対しての着磁も比較的容易に行うことができる。
FIG. 8 is a diagram showing the magnetization characteristics of Example 1, Example 2, Comparative Example 3, and Comparative Example 4. The horizontal axis represents the heating temperature (° C.), and the vertical axis represents the magnetization characteristics (%). The magnetization characteristic (%) represents a ratio to the maximum value of each material. Moreover, the temperature control temperature was 50 degreeC.
In FIG. 8, it can be seen that the decrease in the magnetization characteristics is suppressed even when the heating temperature is lowered as the Curie point is lowered. By lowering the Curie point, the set temperature of the magnetizing device can be lowered, and the burden on the device is reduced, which is effective in manufacturing. Furthermore, since the heating condition can be set to a lower temperature, it is possible to relatively easily magnetize a magnet having a large heat capacity.

(比較例5)
実施例1のボンド磁石14にCoを2at%加えて比較例5とした。
(比較例6)
実施例1のボンド磁石14にCoを5at%加えて比較例6とした。
ここで、比較例5および比較例6ともに、固有保磁力は716kA/m(9kOe)であった。
(Comparative Example 5)
Comparative Example 5 was obtained by adding 2 at% Co to the bonded magnet 14 of Example 1.
(Comparative Example 6)
Comparative Example 6 was obtained by adding 5 at% Co to the bonded magnet 14 of Example 1.
Here, in both Comparative Example 5 and Comparative Example 6, the intrinsic coercive force was 716 kA / m (9 kOe).

図9は、実施例1、比較例5および比較例6の着磁特性を示した図である。横軸は加熱温度(℃)、縦軸は着磁特性(%)を示している。着磁特性(%)は各材料の最大値に対する比率を表している。また、温調温度は、50℃とした。
図9において、Co含有量が少なくなるほど低い加熱温度で着磁特性が飽和していることがわかる。
Coの添加は、希土類鉄系磁石ではキュリー点を上げ、熱的に安定させるために必須であるが、Coを含まないことで、磁石材料価格を低減できるとともにキュリー点を下げることができ熱減磁特性も低下させられるため、高着磁特性の希土類鉄系ボンド磁石を安価に得ることができ、着磁条件が比較的低い加熱温度になることで装置負担が少なくなり特性調整もしやすくなる。さらに、熱容量の大きな磁石に対しての着磁を比較的容易に行うこともできる。
また、Coは、CuまたはNi生産の副産物として生産されるため、CuまたはNiの価格状況により生産量が左右されることもあり、必ずしも安定した供給体制にあるとは言えない。したがって、できればCo未使用で所望の特性、高磁力特性を達成できることが望ましい。
FIG. 9 is a diagram showing the magnetization characteristics of Example 1, Comparative Example 5, and Comparative Example 6. In FIG. The horizontal axis represents the heating temperature (° C.), and the vertical axis represents the magnetization characteristics (%). The magnetization characteristic (%) represents a ratio to the maximum value of each material. Moreover, the temperature control temperature was 50 degreeC.
In FIG. 9, it can be seen that the magnetization characteristics are saturated at lower heating temperatures as the Co content decreases.
The addition of Co is essential in order to raise the Curie point and stabilize it thermally in rare earth iron-based magnets, but by not including Co, the magnet material price can be reduced and the Curie point can be lowered. Since the magnetic characteristics are also lowered, a rare-earth iron-based bonded magnet with high magnetization characteristics can be obtained at a low cost, and the apparatus load is reduced and the characteristics can be easily adjusted by setting the magnetization conditions to a relatively low heating temperature. Furthermore, it is possible to relatively easily magnetize a magnet having a large heat capacity.
Further, since Co is produced as a by-product of Cu or Ni production, the production amount may be affected by the price situation of Cu or Ni, and it cannot be said that the supply system is necessarily stable. Therefore, it is desirable to achieve desired characteristics and high magnetic force characteristics without using Co if possible.

尚、本発明は上述した実施形態に限定されるものではない。   The present invention is not limited to the embodiment described above.

また、上記の説明は被着磁物であるリング状永久磁石を外側から着磁する例であるが、本発明は、外側からの着磁と同様に、内側から、あるいは内外両側からの着磁にも適用できる。これらの着磁方法によって、被着磁物であるリング状の永久磁石の内周面あるいは内外周両面には、着磁磁極に対応した磁極が現れる。
また、本発明では、着磁用磁界印加手段を軸方向で1段のみ設置する構成の他、上下2段に配設する構成も可能である。
また、スキュー着磁に関しては、例えば着磁用の永久磁石を傾けて配列することによって実現可能である。
The above description is an example of magnetizing a ring-shaped permanent magnet, which is a magnetized object, from the outside. However, the present invention can be magnetized from the inside or from both the inside and outside, similarly to the magnetization from the outside. It can also be applied to. With these magnetizing methods, magnetic poles corresponding to the magnetized magnetic poles appear on the inner peripheral surface or both inner and outer peripheral surfaces of the ring-shaped permanent magnet that is the magnetized object.
In the present invention, in addition to the configuration in which the magnetic field applying means for magnetizing is installed in only one stage in the axial direction, a configuration in which the magnetizing magnetic field applying means is arranged in two stages on the upper and lower sides is possible.
Further, skew magnetization can be realized, for example, by tilting and arranging permanent magnets for magnetization.

さらに、例として挙げたボンド磁石の形状、大きさ、磁石粉体の種類、ボンド磁石のキュリー点、着磁用永久磁石のキュリー点等は、実施形態以外の選択も可能である。
また、その他、本発明はその要旨を逸脱しない範囲で種々変形して実施可能である。
Further, the shape and size of the bonded magnet, the type of magnet powder, the Curie point of the bonded magnet, the Curie point of the permanent magnet for magnetization, and the like other than the embodiment can be selected.
In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

以下に、この分割出願の基礎となる出願の願書に最初に添付した特許請求の範囲に記載した発明を付記する。付記に記載した請求項の項番は、この分割出願の基礎となる出願の願書に最初に添付した特許請求の範囲のとおりである。
<請求項1>
ボンド磁石の近傍に着磁用磁界印加手段を配置し、
前記ボンド磁石を、そのキュリー点以上の温度に上昇させる加熱工程と、
キュリー点以上の温度に達した前記ボンド磁石を、キュリー点未満の温度まで降温させつつ、その間、前記着磁用磁界印加手段により前記ボンド磁石に着磁磁界を印加し続ける着磁工程とを含むボンド磁石の製造方法であって、
前記ボンド磁石に含まれる磁石粉体に2種以上の希土類元素を含む希土類鉄系ボンド磁石を用いることを特徴とするボンド磁石の製造方法。
<請求項2>
前記希土類元素の総量が12at%以上であることを特徴とする請求項1に記載のボンド磁石の製造方法。
<請求項3>
前記磁石粉体の固有保磁力が716kA/m(9kOe)以上であることを特徴とする請求項1または請求項2に記載のボンド磁石の製造方法。
<請求項4>
前記希土類元素として、NdとPrが含まれることを特徴とする請求項1〜請求項3のいずれか一項に記載のボンド磁石の製造方法。
<請求項5>
NdとPrの配合比率(at%)が、Nd量に対するPr置換量にて、5〜50であることを特徴とする請求項1〜請求項4のいずれか一項に記載のボンド磁石の製造方法。
<請求項6>
前記希土類鉄系磁石は、Coを含まないことを特徴とする請求項1〜請求項5のいずれか一項に記載のボンド磁石の製造方法。
In the following, the invention described in the scope of claims attached first to the application for the application that forms the basis of this divisional application will be added. The item numbers of the claims described in the appendix are as in the scope of the claims initially attached to the application for the application on which the divisional application is based.
<Claim 1>
Arranging magnetic field applying means for magnetizing in the vicinity of the bond magnet,
Heating the bond magnet to a temperature above its Curie point;
A magnetizing step of continuously applying a magnetizing magnetic field to the bond magnet by the magnetizing magnetic field applying means while lowering the temperature of the bond magnet that has reached a temperature equal to or higher than the Curie point to a temperature lower than the Curie point. A method for manufacturing a bonded magnet, comprising:
A method for producing a bonded magnet, comprising using a rare earth iron-based bonded magnet containing two or more rare earth elements in the magnet powder contained in the bonded magnet.
<Claim 2>
The method for manufacturing a bonded magnet according to claim 1, wherein the total amount of the rare earth elements is 12 at% or more.
<Claim 3>
The method for producing a bonded magnet according to claim 1, wherein the magnet powder has an intrinsic coercive force of 716 kA / m (9 kOe) or more.
<Claim 4>
The method for manufacturing a bonded magnet according to any one of claims 1 to 3, wherein the rare earth element includes Nd and Pr.
<Claim 5>
The blending ratio (at%) of Nd and Pr is 5 to 50 in terms of Pr substitution amount with respect to Nd amount, Production of bonded magnet according to any one of claims 1 to 4 Method.
<Claim 6>
The said rare earth iron-type magnet does not contain Co, The manufacturing method of the bonded magnet as described in any one of Claims 1-5 characterized by the above-mentioned.

以下に、この分割出願の基礎となる出願の分割直前の特許請求の範囲に記載した発明を付記する。付記に記載した請求項の項番は、この分割出願の基礎となる出願の分割直前の特許請求の範囲のとおりである。
<請求項1>
ボンド磁石の近傍に着磁用磁界印加手段を配置し、前記ボンド磁石を、そのキュリー点
以上の温度に上昇させる加熱工程と、
キュリー点以上の温度に達した前記ボンド磁石を、キュリー点未満の温度まで降温させ
つつ、その間、前記着磁用磁界印加手段により前記ボンド磁石に着磁磁界を印加し続ける
着磁工程と、を含むボンド磁石の製造方法であって、
前記ボンド磁石に希土類元素としてNdとPrが含まれる磁石粉体を用い、前記ボンド
磁石の着磁特性の調整を行うにあたって冷却時の取り出し温度である温調温度が調整され
ることを特徴とするボンド磁石の製造方法。
<請求項2>
前記磁石粉体の固有保磁力が716kA/m(9kOe)以上であることを特徴とする
請求項1に記載のボンド磁石の製造方法。
<請求項3>
前記希土類元素の総量が12at%以上であることを特徴とする請求項1又は請求項2
に記載のボンド磁石の製造方法。
<請求項4>
NdとPrの配合比率(at%)が、Nd量に対するPr置換量にて、5〜50である
ことを特徴とする請求項1〜請求項3のいずれか一項に記載のボンド磁石の製造方法。
<請求項5>
前記磁石粉体は、Coを含まないことを特徴とする請求項1〜請求項4のいずれか一項
に記載のボンド磁石の製造方法。
The invention described in the claims immediately before the division of the application serving as the basis of this divisional application will be added below. The item numbers of the claims described in the appendix are as in the claims immediately before the division of the application that is the basis of this divisional application.
<Claim 1>
A heating step of disposing a magnetic field applying means for magnetizing in the vicinity of the bond magnet and raising the bond magnet to a temperature equal to or higher than its Curie point;
A magnetizing step of continuously applying a magnetizing magnetic field to the bonded magnet by the magnetizing magnetic field applying means while lowering the temperature of the bonded magnet that has reached a temperature equal to or higher than the Curie point to a temperature lower than the Curie point. A method of manufacturing a bonded magnet including:
The bonded magnet is made of a magnet powder containing Nd and Pr as rare earth elements, and the temperature adjustment temperature, which is the extraction temperature during cooling, is adjusted when adjusting the magnetization characteristics of the bonded magnet. A method of manufacturing a bonded magnet.
<Claim 2>
The method for producing a bonded magnet according to claim 1, wherein the magnetic coercive force of the magnet powder is 716 kA / m (9 kOe) or more.
<Claim 3>
3. The total amount of the rare earth elements is 12 at% or more.
The manufacturing method of the bonded magnet of description.
<Claim 4>
The blend ratio (at%) of Nd and Pr is 5 to 50 in terms of the Pr substitution amount with respect to the Nd amount, The production of the bond magnet according to any one of claims 1 to 3. Method.
<Claim 5>
The said magnet powder does not contain Co, The manufacturing method of the bonded magnet as described in any one of Claims 1-4 characterized by the above-mentioned.

10:着磁治具、12:非磁性ブロック、14:ボンド磁石、16:被着磁物収容穴、18:溝、20:着磁用永久磁石、22:着磁磁界の向き、140:多極着磁されたボンド磁石。
10: Magnetizing jig, 12: Non-magnetic block, 14: Bond magnet, 16: Magnetized object accommodation hole, 18: Groove, 20: Permanent magnet for magnetization, 22: Direction of magnetizing magnetic field, 140: Many A pole magnetized bond magnet.

Claims (1)

ボンド磁石の近傍に着磁用磁界印加手段を配置し、前記ボンド磁石を、そのキュリー点以上の温度に上昇させる加熱工程と、
キュリー点以上の温度に達した前記ボンド磁石を、キュリー点未満の温度まで降温させつつ、その間、前記着磁用磁界印加手段により前記ボンド磁石に着磁磁界を印加し続ける着磁工程と、を含むボンド磁石の製造方法であって、
前記ボンド磁石に希土類元素としてNdとPrが含まれる磁石粉体を用い、前記ボンド磁石の着磁特性の調整を行うにあたって冷却時の取り出し温度である温調温度が調整され、
前記着磁用磁界印加手段が前記ボンド磁石よりもキュリー点の高い着磁用永久磁石を備えていることを特徴とするボンド磁石の製造方法。
A heating step of disposing a magnetic field applying means for magnetizing in the vicinity of the bond magnet and raising the bond magnet to a temperature equal to or higher than its Curie point;
A magnetizing step of continuously applying a magnetizing magnetic field to the bonded magnet by the magnetizing magnetic field applying means while lowering the temperature of the bonded magnet that has reached a temperature equal to or higher than the Curie point to a temperature lower than the Curie point. A method of manufacturing a bonded magnet including:
Using the magnetic powder containing Nd and Pr as rare earth elements in the bond magnet, the temperature adjustment temperature, which is the take-out temperature during cooling, is adjusted when adjusting the magnetization characteristics of the bond magnet,
The method for producing a bonded magnet, wherein the magnetic field applying means for magnetization includes a permanent magnet for magnetization having a Curie point higher than that of the bonded magnet.
JP2017095105A 2017-05-12 2017-05-12 Manufacturing method of bond magnet Pending JP2017188690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017095105A JP2017188690A (en) 2017-05-12 2017-05-12 Manufacturing method of bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017095105A JP2017188690A (en) 2017-05-12 2017-05-12 Manufacturing method of bond magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012017886A Division JP2013157505A (en) 2012-01-31 2012-01-31 Method of manufacturing bond magnet

Publications (1)

Publication Number Publication Date
JP2017188690A true JP2017188690A (en) 2017-10-12

Family

ID=60044255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017095105A Pending JP2017188690A (en) 2017-05-12 2017-05-12 Manufacturing method of bond magnet

Country Status (1)

Country Link
JP (1) JP2017188690A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234503A (en) * 1987-03-24 1988-09-29 Hitachi Metals Ltd Manufacture of permanent magnet
JP2005325450A (en) * 2000-07-24 2005-11-24 Kenichi Machida Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet
JP2006294936A (en) * 2005-04-12 2006-10-26 Fdk Corp Method and device magnetizing of permanent magnet
JP2006295122A (en) * 2005-03-17 2006-10-26 Fdk Corp Device of magnetizing permanent magnet
WO2011070847A1 (en) * 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234503A (en) * 1987-03-24 1988-09-29 Hitachi Metals Ltd Manufacture of permanent magnet
JP2005325450A (en) * 2000-07-24 2005-11-24 Kenichi Machida Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
JP2006203173A (en) * 2004-12-24 2006-08-03 Fdk Corp Polarizing method of permanent magnet
JP2006295122A (en) * 2005-03-17 2006-10-26 Fdk Corp Device of magnetizing permanent magnet
JP2006294936A (en) * 2005-04-12 2006-10-26 Fdk Corp Method and device magnetizing of permanent magnet
WO2011070847A1 (en) * 2009-12-09 2011-06-16 愛知製鋼株式会社 Rare-earth anisotropic magnet powder, method for producing same, and bonded magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
幸村治洋,北岡幹雄,清宮照夫,松尾良夫: "超小型モータ用Nd−Fe−Bボンド磁石に対する新着磁システムの開発", 粉体および粉末冶金, vol. 57, no. 1, JPN6016029596, January 2010 (2010-01-01), pages 19 - 26, ISSN: 0003966041 *

Similar Documents

Publication Publication Date Title
JP2013157505A (en) Method of manufacturing bond magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP4697736B2 (en) Magnetization method of permanent magnet
JP5107198B2 (en) PERMANENT MAGNET, PERMANENT MAGNET MANUFACTURING METHOD, AND MOTOR USING THE SAME
Fidler et al. Recent developments in hard magnetic bulk materials
JP6204434B2 (en) Anisotropic composite sintered magnet containing MnBi with improved magnetic properties and method for producing the same
US7626300B2 (en) Radial anisotropic cylindrical sintered magnet and permanent magnet motor
JP2010045068A (en) Permanent magnet and method of manufacturing the same
US20070151629A1 (en) Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cyclinder multi-pole magnet
EP3649659B1 (en) Method of producing a permanent magnet with inter-grain heavy-rare-earth element
CN104952575A (en) R-t-b based permanent magnet
CN108092422A (en) Permanent magnet, electric rotating machine and vehicle
JP2021125678A (en) Rare earth cobalt permanent magnet, method for manufacturing the same, and device
JP2019102583A (en) Rare earth magnet powder, rare earth bonded magnet, and method of manufacturing rare earth bonded magnet
CN104575897B (en) A kind of high-performance rare-earth permanent magnet material and preparation method thereof
JP2017188690A (en) Manufacturing method of bond magnet
JPH06302417A (en) Permanent magnet and its manufacture
JP6267446B2 (en) Rare earth iron bond permanent magnet
JP6021096B2 (en) Method to increase demagnetization amount of bonded magnet
JP6054681B2 (en) Rare earth iron-based bonded magnet, and rotor and electromagnetic device manufacturing method using the same
WO2015159882A1 (en) SmCo-BASED RARE EARTH SINTERED MAGNET
JP6438713B2 (en) Rare earth iron-based magnet powder and bonded magnet using the same
JP2020155657A (en) Method for manufacturing r-t-b based sintered magnet
US20210241948A1 (en) Rare-earth cobalt permanent magnet, manufacturing method therefor, and device
JPH04143221A (en) Production of permanent magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180822

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190205