JPS63234503A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS63234503A
JPS63234503A JP62069665A JP6966587A JPS63234503A JP S63234503 A JPS63234503 A JP S63234503A JP 62069665 A JP62069665 A JP 62069665A JP 6966587 A JP6966587 A JP 6966587A JP S63234503 A JPS63234503 A JP S63234503A
Authority
JP
Japan
Prior art keywords
atomic
magnet
permanent magnet
magnetizing
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62069665A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62069665A priority Critical patent/JPS63234503A/en
Publication of JPS63234503A publication Critical patent/JPS63234503A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To make it possible to obtain sufficient quantity of magnetization by a method wherein the R-B-Fe permanent magnet, having R, B and Fe as the essential elements, is magnetized in a specific temperature region. CONSTITUTION:An R-B-Fe magnet is magnetized at the temperature region from T1=30 deg.C to T2=(Tc-40) deg.C (Tc indicates Curie temperature). This magnet has rare-earth element R(provided that R indicates at least a kind of rare-earth element containing Y), boron and iron as essential elements. Neodymium (Nd), praseodymium (Pr) or their mixture are desirable as the R, and its quantity is set at 8-30 atomic % in total. When the R is less than 8 atomic %, sufficient magnetic coercive force is not obtained, and when it exceeds 30 atomic %, the density of residual magnetic flux is reduced. The quantity of boron B is set at 28 atomic %, sufficient coercive force is not obtained less than 2 atomic %, the density of residual magnetic flux is reduced when it exceeds 28 atomic %, and excellent magnetic characteristics can not be obtained. As the element other than R and B, Fe is essential and 40-90 atomic % is contained therein.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R−B−Fe系永久磁石に係り、とくに磁石
の着磁方法を改善する製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an R-B-Fe permanent magnet, and particularly to a manufacturing method for improving the method of magnetizing the magnet.

〔従来の技術〕[Conventional technology]

近年、Nd−B−Fe系永久磁石(特開昭59−460
08号公報参照)が発明され、一部は実用化され、その
使用量は増加しつつある。
In recent years, Nd-B-Fe permanent magnets (JP-A-59-460
(see Publication No. 08) have been invented, some of which have been put into practical use, and their usage is increasing.

Nd−B−Fe系永久磁石は、核生成タイプで高保磁力
を発生すると言われており、機構的には、従来のSm1
Co、型と同類である。しかしながら、従来のSm、C
o、型磁石においては、着磁磁界強度が、15〜20K
Oeで十分てあるのに対し、N d −B −F e系
永久磁石においては、20〜25KOeの磁界が必要で
あり着磁において、多大な電気エネルギーを必要とする
Nd-B-Fe permanent magnets are said to be nucleation type and generate high coercive force, and are mechanically comparable to conventional Sm1
Similar to Co, type. However, the conventional Sm, C
o. For type magnets, the magnetizing magnetic field strength is 15 to 20K.
While Oe is sufficient, Nd-B-Fe based permanent magnets require a magnetic field of 20 to 25 KOe, which requires a large amount of electrical energy for magnetization.

〔発明が解決しようとする問題点3 以上の如く、Nd−B−Fe系磁石は、高保磁力(jH
c、 )を有する一方、着磁に大きな着磁磁界強度を必
要とするため、従って、従来の永久磁石に使われてきた
着磁機ではその着磁磁界強度が低いことおよび特に異方
性磁石の多極着磁の場合には、その磁石の極間が狭いた
め発生着磁磁界強度を十分に大きくできないなどの理由
により、着磁量が十分でないなどの問題があった。
[Problem 3 to be solved by the invention As described above, Nd-B-Fe magnets have a high coercive force (jH
c,) However, since magnetization requires a large magnetizing magnetic field strength, the magnetizing machine used for conventional permanent magnets has a low magnetizing magnetic field strength, and is particularly suitable for anisotropic magnets. In the case of multi-pole magnetization, there was a problem that the amount of magnetization was insufficient because the strength of the generated magnetizing magnetic field could not be sufficiently increased due to the narrow distance between the poles of the magnet.

この解決を図るには、磁石の有する固有保磁力i Hc
値以上の、着磁磁界強度が、必要である。
In order to solve this problem, the intrinsic coercive force i Hc of the magnet is
A magnetizing magnetic field strength greater than or equal to the value is required.

そこで、本発明の目的は、R−B−Fe系永久磁石の着
磁方法において、十分に着磁量が得られる新規な永久磁
石の製造方法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a novel method for manufacturing a permanent magnet that can obtain a sufficient amount of magnetization in a method for magnetizing an R-B-Fe-based permanent magnet.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決を図るため、発明者は磁石の保磁力(
i Hc )が、磁石の加熱に伴い低下することを応用
し、本発明を見出すに至ったのである。すなわち、R−
B −F e系磁石をT1=30℃から T2= (T
c−40) ℃の温度領域(Tcはキュリー温度)にて
着磁することを特徴とするものである。例えば、R−B
−Fe系異方性焼結磁石のi Hcの温度係数は、概略
−〇、6%/℃(20〜140℃) にあり、キュリー
温度(T c)にて、磁気が消失する。−例として、常
温磁気属性として、Br=12KG、1Hc=17.8
KOe  の特性を有すR−B−Fe系異方性焼結磁石
の測定温度(T)と、i Hcの関係を表わすと表−1
となる。
In order to solve the above problems, the inventor developed the coercive force (
The present invention was discovered by applying the fact that i Hc ) decreases as the magnet is heated. That is, R-
B -Fe magnet from T1 = 30℃ to T2 = (T
c-40) It is characterized by being magnetized in the temperature range of °C (Tc is the Curie temperature). For example, R-B
The temperature coefficient of i Hc of the -Fe-based anisotropic sintered magnet is approximately -0.6%/°C (20 to 140°C), and magnetism disappears at the Curie temperature (Tc). - As an example, as normal temperature magnetic attributes, Br=12KG, 1Hc=17.8
Table 1 shows the relationship between the measured temperature (T) of an R-B-Fe-based anisotropic sintered magnet with characteristics of KOe and iHc.
becomes.

以下余白 第1表 第1表から20℃を越えTc未滴の温度領域で、測定し
たi Hcは20℃でのi Hcに比較し、小さいこと
が分かる。すなわち、R−B−Fe系磁石を例えば20
0℃に加熱すれば、約2〜4KOeの着磁磁界強度で十
分であることが分かる。
From Table 1 below, it can be seen that the measured i Hc is smaller than the i Hc at 20° C. in the temperature range exceeding 20° C. and no Tc drops. That is, for example, 20
It can be seen that when heated to 0° C., a magnetizing magnetic field strength of about 2 to 4 KOe is sufficient.

本発明は、R−B−Fe系永久磁石の着磁方法において
、T□=30℃からT2= (Tc−40)℃の温度領
域にて着磁することを特徴とするものである。
The present invention is a method for magnetizing an R-B-Fe permanent magnet, and is characterized by magnetizing in a temperature range from T□=30°C to T2=(Tc-40)°C.

T□未満およびT2を越える温度では本発明の効果が少
ない。
At temperatures below T□ and above T2, the effect of the present invention is small.

なお、本発明の製造方法は、焼結法による等方性および
異方性磁石、さらに、プラスチックとR−B−Fe系系
合金粉の複合磁石いわゆるプラスチック磁石などの組成
的にFeを必須とするR−B−Fe系の永久磁石に適用
可能である。また、加熱に際し非酸化性雰囲気ガスを使
用することは磁石の酸化による磁気特性の低下を防止す
る意味で有効である。
The manufacturing method of the present invention is applicable to isotropic and anisotropic magnets produced by sintering, as well as composite magnets made of plastic and R-B-Fe alloy powder, so-called plastic magnets, in which Fe is essential in the composition. It is applicable to R-B-Fe-based permanent magnets. Furthermore, using a non-oxidizing atmospheric gas during heating is effective in preventing deterioration of magnetic properties due to oxidation of the magnet.

次に本発明を適用する希土類・ポロン・鉄系磁石の成分
限定理由について説明すると1本発明の磁石は希土類元
素R(但しRはYを含む希土類元素の少なくとも1種)
、ポロンおよび鉄を必須元素とする。さらに詳述すると
、Rとしてはネオジム(Nd)、プラセオジム(P r
)またはそれらの混合物(ジジム)が好ましく、他にラ
ンタン(La)、セリウム(Ce)、テルビウム(Tb
)、ジスプロシウム(Dy)。
Next, the reasons for limiting the components of the rare earth/poron/iron magnet to which the present invention is applied will be explained: 1. The magnet of the present invention contains the rare earth element R (however, R is at least one rare earth element including Y).
, poron and iron as essential elements. To explain in more detail, R is neodymium (Nd), praseodymium (P r
) or a mixture thereof (didymium) is preferred; other examples include lanthanum (La), cerium (Ce), and terbium (Tb).
), dysprosium (Dy).

ホルミウム(Ho)、エルビウム(Er)、ユウロピウ
ム(Eu)、サマリウム(Sm)、ガ1−リニウム(G
d)、プロメチウム(Pm)。
Holmium (Ho), erbium (Er), europium (Eu), samarium (Sm), gallium (G)
d), promethium (Pm).

ツリウム(Tm)、イッテルビウム(yb)。Thulium (Tm), Ytterbium (yb).

ルテチウム(Lu)及びイツトリウム(Y)などの希土
類元素を含んで良く、総量で8〜30原子%とされる。
It may contain rare earth elements such as lutetium (Lu) and yttrium (Y), and the total amount is 8 to 30 at%.

8原子%未満では十分な保磁力が得られず、30原子%
を越えると、残留磁束密度が低下するためである。ポロ
ンBは2〜28M子%とされる。2原子%未満では十分
な保磁力が得られず、28原子%を越えると残留磁束密
度が低下し優れた磁気特性が得られないためである。上
記RおよびB以外の元素としてFeは必須であり4.0
−90 H子%含有される。
If it is less than 8 at%, sufficient coercive force cannot be obtained, and if it is less than 30 at%
This is because the residual magnetic flux density decreases when the value exceeds . Poron B has a concentration of 2 to 28 M%. This is because if it is less than 2 atomic %, a sufficient coercive force cannot be obtained, and if it exceeds 28 atomic %, the residual magnetic flux density decreases and excellent magnetic properties cannot be obtained. Fe is essential as an element other than R and B mentioned above, and 4.0
Contains -90 H%.

40原子%未満では残留磁束密度(Br)が低下し、9
0原子%を越えると高い保磁力(iHc)が得られない
ためである。
If it is less than 40 at%, the residual magnetic flux density (Br) decreases, and 9
This is because if it exceeds 0 atomic %, a high coercive force (iHc) cannot be obtained.

上記R−BおよびFeを必須元素とし、希土類・ポロン
・鉄系磁石は作成されるが下記の如く、鉄の一部を他の
元素で置換することや、不純物を含んでも本発明の効果
は失われない。
Rare earth/poron/iron magnets can be created using the above R-B and Fe as essential elements, but as described below, the effects of the present invention will not be achieved even if some of the iron is replaced with other elements or if impurities are included. not lost.

すなわち、Feの代りに、50原子%以下のCo、8g
子%以下のNiで代替しても良い。
That is, in place of Fe, 50 atomic % or less of Co, 8 g
It may be replaced with Ni of less than %.

C,oは50原子%を越えると高いjHcが得られず、
Niは8%を越えると高いBrが得られないためである
。また上記以外の元素として下記所定原子%以外のへ元
素の1種以上(ただし、2種以上含む場合のへ元素の重
量は当該含有へ元素の内最大値を有するものの値以下)
をFe元素と置換しても本発明の効果は失われない。
If C, o exceeds 50 atomic %, high jHc cannot be obtained,
This is because if Ni exceeds 8%, high Br cannot be obtained. In addition, as elements other than the above, one or more of the elements other than the specified atomic percent below (however, if two or more types are included, the weight of the element is less than the value of the element with the maximum value among the contained elements)
The effect of the present invention is not lost even if the element is replaced with Fe element.

A元素を下記する。Element A is shown below.

C実施例〕 以下、本発明を実施例によって説明する。C Example] Hereinafter, the present invention will be explained by examples.

実施例1 特開昭59−2 ]、 7305号公報に記載の公知の
方法にてNd−B−Fe系異方性焼結磁石を作製した。
Example 1 An anisotropic sintered Nd-B-Fe magnet was produced by a known method described in Japanese Patent Application Laid-Open No. 59-2] and No. 7305.

すなわち組成(重量%)33Nd−IB−残Feを有し
、形状10X10X12(単位器)の磁石である。溶解
後インゴットを粉砕し、平均粒径3.3μmの微粉を公
知の配向技術にて一軸異方性化した成形体を1090℃
X2Hrで焼結後、炉中で徐冷しさらに、600℃X 
I Hrの時効処理を行う方法にて作成した。得られた
焼結体はB r=12.2KG。
That is, the magnet has a composition (weight %) of 33Nd-IB-remaining Fe and has a shape of 10x10x12 (unit size). After melting, the ingot was crushed, and the fine powder with an average particle size of 3.3 μm was made uniaxially anisotropic using a known orientation technique.
After sintering at X2Hr, it is slowly cooled in a furnace and further heated to 600℃X
It was created using a method that performs IHr aging treatment. The obtained sintered body had a weight of Br=12.2KG.

I Hc = 15 、2 K Oe  の磁気特性(
20℃。
Magnetic properties of I Hc = 15, 2 K Oe (
20℃.

20KOe着磁)を有するものであり、これを、第2表
に示す着磁温度(大気中)にて、着磁磁界強度7KOe
で着磁後、冷却し、20℃にて測定したフラックス値の
変化を第2表に示す。
It has a magnetization field strength of 7KOe at the magnetization temperature (in the atmosphere) shown in Table 2.
Table 2 shows changes in flux values measured at 20° C. after magnetization.

以下余白 第2表 第2表から20℃より、高温度にて着磁することにより
20℃で得られる値に比較し、高磁束量が得られること
が分かる。
From Table 2 in Table 2 below, it can be seen that a higher amount of magnetic flux can be obtained by magnetizing at a higher temperature than the value obtained at 20°C.

実施例2 特開昭59−217305号公報および特開昭60−1
531.09号公報に記載の公知の方法にて、Nd−B
−Fe系ラジアル異方性永久磁石を作製した。すなわち
、組成(重量%)33.5Nd−1,1B−残Feを有
し、形状420x413x18Q(単位nt11)のリ
ング状磁石である。溶解材を粉砕し平均粒径3.5μm
の微粉を公知の配向技術にてラジアル配向したリンク状
の成形体を、1080℃X 2 Hrで焼結後、炉中で
徐冷し、さらに、600℃XIHrの時効処理を行うい
わゆる粉末冶金法による製造方法である。
Example 2 JP-A-59-217305 and JP-A-60-1
Nd-B by the known method described in No. 531.09.
-Fe-based radially anisotropic permanent magnets were produced. That is, it is a ring-shaped magnet having a composition (weight %) of 33.5Nd-1,1B-remaining Fe and a shape of 420x413x18Q (unit: nt11). The melted material is crushed to an average particle size of 3.5 μm.
The so-called powder metallurgy method involves sintering a link-shaped compact made by radially orienting fine powder of This is the manufacturing method.

得られた焼結体を各温度にて24極に着磁し。The obtained sintered body was magnetized into 24 poles at each temperature.

冷却後、20℃にて表面磁束密度を測定した結果を第3
表に示す。
After cooling, the surface magnetic flux density was measured at 20°C.
Shown in the table.

通常、本合金の着磁に必要な着磁磁界強度は20〜25
KOeを要するが、前記リング磁石の着磁には7KOe
で、着磁を行った。なお、第3表には、大気中およびA
rガス気流中で加熱した結果を併記した。
Normally, the magnetizing magnetic field strength required for magnetizing this alloy is 20 to 25
KOe is required, but 7KOe is required for magnetizing the ring magnet.
So I did magnetization. In addition, Table 3 shows atmospheric and A
The results of heating in an r gas stream are also shown.

以下余白 第3表 第3表から分かるように、通常着磁に必要な20〜25
KOeより、少ない7KOeの着磁磁界強度においても
永久磁石を20℃より高い温度に加熱し、着磁すること
により、20℃着磁で得られる表面磁束密度に比較し、
高い表面磁束密度が得られることが、分かる。また、非
酸化性雰囲気ガスを使用することも効果的であると分か
る。
As you can see from Table 3 in the margin below, the 20 to 25 required for magnetization is normally
Compared to the surface magnetic flux density obtained by magnetizing at 20°C, by heating the permanent magnet to a temperature higher than 20°C and magnetizing it, even with a magnetizing magnetic field strength of 7KOe, which is less than KOe,
It can be seen that a high surface magnetic flux density can be obtained. It has also been found that it is effective to use a non-oxidizing atmospheric gas.

実施例3 公知の方法にて、実施例2と同様に、420×413×
18Q (単位mn+)の外周24極異方性磁石を作成
した。形状的には(1)式を満たすサイズである。
Example 3 In the same manner as in Example 2, 420×413×
An anisotropic magnet with a diameter of 18Q (unit: mn+) and a 24-pole outer circumference was prepared. In terms of shape, the size satisfies equation (1).

式中、Tはリング磁石の厚み、πは円周率(3,14)
、Dは外径、Pは極数であり、寸法の単位はmである6
には0.8〜2.6の範囲で、回転する界磁磁石として
、有効である。
In the formula, T is the thickness of the ring magnet, and π is pi (3, 14).
, D is the outer diameter, P is the number of poles, and the unit of dimension is m6
It is effective as a rotating field magnet in the range of 0.8 to 2.6.

(1)式は内周面を多極異方性化したリング磁石にも適
用でき、その場合には(1)式のDは内径であり、Kは
0.8〜4.0の範囲で、有効である。
Equation (1) can also be applied to a ring magnet whose inner peripheral surface is made multipolar anisotropic; in that case, D in equation (1) is the inner diameter, and K is in the range of 0.8 to 4.0. ,It is valid.

得られた焼結体を外周面に24極の多極着磁(7KOe
)を第4表に示す温度(大気中)にて行い、冷却後20
℃にて測定した表面磁束密度の結果を、第4表に示す。
The obtained sintered body was multipolarized with 24 poles (7KOe
) at the temperature shown in Table 4 (in the atmosphere), and after cooling
Table 4 shows the results of surface magnetic flux density measured at °C.

以下余白 第4表 実施例1および2と同様に、第4表からも、20℃以上
に加熱し着磁を行う本発明方法において、高い磁気特性
が得られることが分かる。
Margin Table 4 Below Table 4 As with Examples 1 and 2, it can be seen from Table 4 that high magnetic properties can be obtained in the method of the present invention in which magnetization is carried out by heating to 20° C. or higher.

実施例4 特開昭59−64739号公報および特開昭59−21
1549号公報などの公知例に基づき、液体急冷法によ
り、組成(H子%):14Nd−6B−残Feのアモル
ファスリボンを作成した。得られたリボンを粉砕し10
0〜200μmの粉砕粉を、加圧力6ton/ciにて
成形後、エポキシ樹脂(5wt%)を充てんし、150
℃X I Hrにて、加熱硬化した。得られたプラスチ
ック磁石の形状は、外径10++n+、高さ12mmの
円柱状磁石である。
Example 4 JP-A-59-64739 and JP-A-59-21
An amorphous ribbon having a composition (H%) of 14Nd-6B-remaining Fe was prepared by a liquid quenching method based on a known example such as Japanese Patent No. 1549. Crush the obtained ribbon and
After molding the pulverized powder of 0 to 200 μm at a pressure of 6 ton/ci, it was filled with epoxy resin (5 wt%) and
It was cured by heating at ℃X I Hr. The shape of the obtained plastic magnet was a cylindrical magnet with an outer diameter of 10++n+ and a height of 12 mm.

得られた磁石の高さ方向に着磁(10K Oe )を第
5表に示す温度でArガス気流中にて行い、冷却後、2
0℃にて測定した単体のオープン・フラックス値を第5
表に示す。
The obtained magnet was magnetized in the height direction (10 K Oe) in an Ar gas stream at the temperature shown in Table 5, and after cooling,
The open flux value of the single unit measured at 0℃ is the fifth
Shown in the table.

第5表 〔発明の効果〕 以上述べた如く、本発明はR−B−Fe系磁石の着磁方
法において、磁石を常温からキュリー温度近傍未満の温
度に加熱し、着磁を行うことにより低い着磁磁場強度に
おいても、高い磁気特性が得られる方法を提供するもの
で、その工業的価値は、極めて大きい。
Table 5 [Effects of the Invention] As described above, in the method of magnetizing an R-B-Fe magnet, the present invention heats the magnet from room temperature to a temperature below the vicinity of the Curie temperature and magnetizes the magnet. It provides a method that can obtain high magnetic properties even in the magnetizing magnetic field strength, and its industrial value is extremely large.

Claims (6)

【特許請求の範囲】[Claims] 1.R(但しRはNd、PrなどのYを含む希土類元素
のうち少なくとも1種)、BおよびFeを必須元素とす
るR−B−Fe系永久磁石をT_1=30℃からT_2
=(Tc−40)℃の温度領域(ここでTcはキュリー
温度)において着磁することを特徴とする永久磁石の製
造方法。
1. An R-B-Fe permanent magnet containing R (where R is at least one rare earth element containing Y such as Nd and Pr), B, and Fe is heated from T_1=30℃ to T_2
A method for producing a permanent magnet, characterized in that magnetization is carried out in a temperature range of = (Tc-40)°C (here, Tc is the Curie temperature).
2.T_1=100℃とすることを特徴とする特許請求
の範囲第1項記載の永久磁石の製造方法。
2. The method for manufacturing a permanent magnet according to claim 1, characterized in that T_1=100°C.
3.T_1=150℃とすることを特徴とする特許請求
の範囲第1項記載の永久磁石の製造方法。
3. The method for manufacturing a permanent magnet according to claim 1, characterized in that T_1=150°C.
4.T_1=200℃とすることを特徴とする特許請求
の範囲第1項記載の永久磁石の製造方法。
4. The method for manufacturing a permanent magnet according to claim 1, characterized in that T_1=200°C.
5.T_1=250℃とすることを特徴とする特許請求
の範囲第1項記載の永久磁石の製造方法。
5. The method for manufacturing a permanent magnet according to claim 1, characterized in that T_1=250°C.
6.永久磁石の加熱を非酸化性雰囲気ガス中で行うこと
を特徴とする特許請求の範囲第1項から第5項のいずれ
かの項に記載の永久磁石の製造方法。
6. 6. The method of manufacturing a permanent magnet according to claim 1, wherein the permanent magnet is heated in a non-oxidizing atmospheric gas.
JP62069665A 1987-03-24 1987-03-24 Manufacture of permanent magnet Pending JPS63234503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069665A JPS63234503A (en) 1987-03-24 1987-03-24 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069665A JPS63234503A (en) 1987-03-24 1987-03-24 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS63234503A true JPS63234503A (en) 1988-09-29

Family

ID=13409352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069665A Pending JPS63234503A (en) 1987-03-24 1987-03-24 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS63234503A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297807A (en) * 1988-05-26 1989-11-30 Daido Steel Co Ltd Manufacture of permanent magnet
JP2013157505A (en) * 2012-01-31 2013-08-15 Minebea Co Ltd Method of manufacturing bond magnet
JP2017188690A (en) * 2017-05-12 2017-10-12 ミネベアミツミ株式会社 Manufacturing method of bond magnet
CN113223803A (en) * 2021-05-22 2021-08-06 慈溪市兴发磁业科技有限公司 Low-cost N35 sintered neodymium-iron-boron permanent magnet and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01297807A (en) * 1988-05-26 1989-11-30 Daido Steel Co Ltd Manufacture of permanent magnet
JP2013157505A (en) * 2012-01-31 2013-08-15 Minebea Co Ltd Method of manufacturing bond magnet
JP2017188690A (en) * 2017-05-12 2017-10-12 ミネベアミツミ株式会社 Manufacturing method of bond magnet
CN113223803A (en) * 2021-05-22 2021-08-06 慈溪市兴发磁业科技有限公司 Low-cost N35 sintered neodymium-iron-boron permanent magnet and preparation method thereof

Similar Documents

Publication Publication Date Title
US4762574A (en) Rare earth-iron-boron premanent magnets
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
JPH07106110A (en) Powder composition for manufacturing bond magnet, and magnetic anisotropic permanent magnet, and manufacture of magnetic anisotropic permanent magnet
EP0029071B1 (en) Process for producing permanent magnet alloy
JP2791470B2 (en) RB-Fe sintered magnet
JPH0518242B2 (en)
US5403408A (en) Non-uniaxial permanent magnet material
JPS63234503A (en) Manufacture of permanent magnet
KR101878078B1 (en) MAGNETIC SUBSTANCES BASED ON Fe-Mn-Bi, FABRICATION METHOD THEREOF, SINTERED MAGNET BASED ON Fe-Mn-Bi AND ITS FABRICATION METHOD
US4952252A (en) Rare earth-iron-boron-permanent magnets
JPS62241304A (en) Rare earth permanent magnet
JPS6031208A (en) Permanent magnet
JPH0536495B2 (en)
JPH0644526B2 (en) Rare earth magnet manufacturing method
US4933009A (en) Composition for preparing rare earth-iron-boron-permanent magnets
JPH03148803A (en) Permanent magnet
JPH04143221A (en) Production of permanent magnet
JPS601808A (en) Permanent magnet
JPS63216307A (en) Alloy powder for magnet
JPH05105904A (en) Production of alloy powder for bond magnet
JPH04116102A (en) Magnetic powder for anisotropic bond magnet and its production
JPH04280403A (en) Rare-earth magnet alloy and rare-earth permanent magnet
JPS6014407A (en) Permanent magnet material
JPS62170454A (en) Permanent magnet alloy and its manufacture
JPS6230845A (en) Production of anisotropic permanent magnet material