JP2791470B2 - RB-Fe sintered magnet - Google Patents

RB-Fe sintered magnet

Info

Publication number
JP2791470B2
JP2791470B2 JP62137994A JP13799487A JP2791470B2 JP 2791470 B2 JP2791470 B2 JP 2791470B2 JP 62137994 A JP62137994 A JP 62137994A JP 13799487 A JP13799487 A JP 13799487A JP 2791470 B2 JP2791470 B2 JP 2791470B2
Authority
JP
Japan
Prior art keywords
content
magnetic properties
nitrogen
hydrogen
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62137994A
Other languages
Japanese (ja)
Other versions
JPS63301505A (en
Inventor
明男 小林
統久 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62137994A priority Critical patent/JP2791470B2/en
Publication of JPS63301505A publication Critical patent/JPS63301505A/en
Application granted granted Critical
Publication of JP2791470B2 publication Critical patent/JP2791470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R−B−Fe系焼結磁石において酸素,水素
および窒素含有量を制御することにより磁気特性を改善
した磁石に関するものである。 〔従来の技術〕 特開昭59−46008号,同60−182104号の各公報に記載
されているようにR−B−Fe系磁石は、原料を溶解,鋳
造し、さらに鋳造合金を粉末化した後成形,焼結,熱処
理することにより得られる。 異方性化し高磁気特性を得るには、成形中に磁界を印
加することで可能である。 〔発明が解決しようとする問題点〕 しかしながら、公知技術のみでは上記R−B−Fe系磁
石を安定して得ることは困難である。 すなわち製造ロット毎に磁気特性が不安定で合格歩留
の不安定を招き工業的レベルの製造が困難であった。 本発明の目的は、上記問題点を解消し、優れた磁気特
性が安定して得られるR−B−Fe系焼結磁石を提供する
ことにある。 〔問題点を解決するための手段〕 本発明者らは、先に特開昭61−208807号公報に示す如
く、酸素含有量を0.1〜1.2wt%に制御した場合、高磁気
特性が得られると提案したが、さらに水素量,および窒
素量についても特定の含有量にした場合、高磁気特性が
得られることを知見し、本発明に至ったのである。 即ち、本発明はR(但し、RはYを含む希土類元素の
内、少くとも1種),BおよびFeを必須成分とするR−B
−Fe系焼結磁石において、該磁石中の酸素量を0.1〜1.2
wt%,水素量を0.002〜0.02wt%および窒素量を0.004〜
0.08wt%としたことを特徴とするものである。 酸素,水素および窒素の各含有量について言及する
と、酸素量は0.1wt%未満にすることは工業上困難であ
り、経済的でないこととその効果が少なく、また1.2wt
%を越えると磁気特性の低下が生じるため、0.1〜1.2wt
%とされる。 水素量は、0.002wt%未満にすることは工業上困難で
また0.02wt%を越えると、磁気特性の低下と併せて磁石
そのものが、経時変化により崩壊し易くなるため、0.00
2〜0.02wt%とされる。 窒素量は、0.004wt%未満にすることは工業上困難で
また0.08wt%を越えると磁気特性が低下するため、0.00
4〜0.08wt%とされる。 なお本発明は、異方性または等方性いずれの焼結磁石
にも適用できる。 次に本発明を適用する希土類・ボロン・鉄系焼結磁石
の成分限定理由について説明すると、本発明の磁石は希
土類元素R(ただしRはYを含む希土類元素の少くとも
1種)、ボロンおよび鉄を必須元素とする。さらに詳述
すると、Rとしてはネオジム(Nb),プラセオジム(P
r)またはそれらの混合物(ジジム)が好ましく、他に
ランタン(La),セリウム(Ce),テルビウム(Tb),
ジスプロシウム(Dy),ホルミウム(Ho),エルビウム
(Er),ユウロビウム(Eu),サマリウム(Sm),カド
リニウム(Gd),プロメチウム(Pm),ツリウム(T
m),イッテルビウム(Yb),ルテチウム(Lu)及びイ
ットリウム(Y)などの希土類元素を含んで良く、総量
で8〜30原子%とされる。8原子%未満では十分な保磁
力が得られず、30原子%を越えると、残留磁束密度が低
下するためである。ボロンBは2〜28原子%とされる。
2原子%未満では十分な保磁力が得られず、28原子%を
越えると残留磁束密度が低下し優れた磁気特性が得られ
ないためである。上記RおよびB以外の元素としてFeは
必須元素であり40〜90原子%含有される。 40原子%未満では残留磁束密度(Br)が低下し、90原
子%を越えると高い保磁力(iHc)が得られないためで
ある。 上記R・BおよびFeを必須元素とし、希土類ボロン・
鉄系焼結磁石は作成されるが下記の如く、鉄の一部を他
の元素で置換することや、不純物を含んでも本発明の効
果は失なわれない。 すなわち、Feの代りに、50原子%以下のCo,8原子%以
下のNiで代替しても良い。Coは50原子%を越えると高い
iHcが得られず、Niは8%を越えると高いBrが得られな
いためである。また上記以外の元素として下記所定原子
%以下のA元素の1種以上(ただし、2種以上含む場合
のA元素の総量は当該含有A元素の内最大値を有するも
のの値以下)をFe元素と置換しても本発明の効果は失な
われない。A元素を下記する。 次に本発明の実施例について説明するが、本発明はこ
れら実施例に限定されるものではない。 〔実施例〕 (実施例1.) 第1表のNo.1で示す組成を有する焼結体が得られるよ
う原料粉(平均粒径3.0μm)を作成した。 ただし窒素量(x)wt%は、窒化鉄を使用して、所望
量となるように調整した。得られた原料粉を2.5ton/cm2
の成形圧で磁場中(8KOe)で成形し、得られた成形体を
Arガス雰囲気の気流中で1080℃,2時間の焼結後室温まで
急冷し、再度660℃,1時間の熱処理後、急冷し磁気特性
の測定に供した。 熱処理後の窒素量(x)wt%と磁気特性(固有保持力
iHc)の関係を第1図に示す。第1図から分る如く、窒
素量を0.004〜0.08wt%に制御することにより、優れた
磁気特性が得られることが分る。 (実施例2) 第1表のNo.2で示す組成を有する焼結体が得られるよ
うに原料粉(平均粒径3.4μm)を作成した。 ただし、窒素量(y)wt%は、窒素鉄を使用して所望
量となるように調整した。得られた原料粉を2.8ton/cm2
の成形圧で磁場中(8KOe)で成形し、得られた成形体を
Arガス雰囲気の気流中で1080℃,2時間の焼結後、室温ま
で急冷し再度630℃,1時間の熱処理後、急冷し磁気特性
の測定に供した。 熱処理後の窒素量(y)wt%と磁気特性(固有保持力
iHc)の関係を第2図に示す。 第2図から分るように、特定の窒素量0.004〜0.08wt
%にて、安定した磁気特性が得られることが分る。 (実施例3) 第1表のNo.3で示す組成を有する焼結体が得られるよ
うに、原料粉(平均粒径3.2μm)を作成した。 ただし、水素量(z)wt%は原料粉に水素ガスを接触
し、所望量となるように調整した。得られた原料粉を3.
0ton/cm2の成形圧で磁場中(8KOe)で成形し、得られた
成形体をArガス雰囲気の気流中で1080℃,2時間の焼結後
室温まで急冷し、再度610℃,1時間の熱処理後急冷し、
磁気特性の測定に供した。 熱処理後の水素量(z)wt%と磁気特性(固有保持力
iHc)の関係を第3図に示す。 第3図から、特定の水素量0.002〜0.02wt%の範囲に
て、安定した磁気特性が得られることが分る。 なお、水素量として0.031wt%含有する試料は、組織
的に部分的に金属光沢を示し、室温,大気中に放置した
結果、徐々に崩壊現象を示した。 〔発明の効果〕 以上述べた如く、本発明は、R−B−Fe系焼結磁石に
おいて酸素,水素および窒素量を特定の含有量に制御す
ることにより、安定した磁気特性が得られる磁石を提供
するものであり、その工業的価値は極めて大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a RB-Fe sintered magnet having improved magnetic properties by controlling the contents of oxygen, hydrogen and nitrogen. . [Prior Art] As described in JP-A-59-46008 and JP-A-60-182104, RB-Fe magnets are obtained by melting and casting raw materials and further powdering a cast alloy. After forming, sintering and heat treatment are obtained. Anisotropy and high magnetic properties can be obtained by applying a magnetic field during molding. [Problems to be Solved by the Invention] However, it is difficult to stably obtain the RB-Fe-based magnet using only known techniques. In other words, the magnetic properties are unstable for each manufacturing lot, and the acceptable yield is unstable, making it difficult to manufacture at an industrial level. An object of the present invention is to solve the above problems and to provide an RB-Fe-based sintered magnet capable of stably obtaining excellent magnetic properties. [Means for Solving the Problems] As described in JP-A-61-208807, the present inventors obtain high magnetic properties when the oxygen content is controlled to 0.1 to 1.2 wt%. However, the inventors have found that high specific magnetic properties can be obtained when the contents of hydrogen and nitrogen are set to specific contents, and have reached the present invention. That is, the present invention relates to R-B containing R (where R is at least one of rare earth elements including Y), B and Fe as essential components.
-Fe-based sintered magnet, the amount of oxygen in the magnet is 0.1 to 1.2
wt%, hydrogen content 0.002 ~ 0.02wt% and nitrogen content 0.004 ~
It is characterized by being 0.08 wt%. Regarding the contents of oxygen, hydrogen and nitrogen, it is industrially difficult to reduce the oxygen content to less than 0.1 wt%, it is not economical and its effect is small, and 1.2 wt%
% Exceeds 0.1% to 1.2%
%. It is industrially difficult to reduce the amount of hydrogen to less than 0.002 wt%, and if it exceeds 0.02 wt%, the magnet itself is liable to disintegrate over time along with deterioration in magnetic properties.
2 to 0.02 wt%. It is industrially difficult to reduce the nitrogen content to less than 0.004 wt%, and if the nitrogen content exceeds 0.08 wt%, the magnetic properties deteriorate.
It is 4 to 0.08 wt%. The present invention can be applied to either anisotropic or isotropic sintered magnets. Next, the reasons for limiting the components of the rare-earth / boron / iron-based sintered magnet to which the present invention is applied will be described. The magnet of the present invention comprises a rare-earth element R (where R is at least one of the rare-earth elements including Y), boron and Iron is an essential element. More specifically, R is neodymium (Nb), praseodymium (P
r) or a mixture thereof (didim) is preferable, and lanthanum (La), cerium (Ce), terbium (Tb),
Dysprosium (Dy), Holmium (Ho), Erbium (Er), Eurobium (Eu), Samarium (Sm), Cadolinium (Gd), Promethium (Pm), Thulium (T
m), ytterbium (Yb), lutetium (Lu), yttrium (Y), and other rare earth elements, and the total amount is 8 to 30 atomic%. If the content is less than 8 at%, a sufficient coercive force cannot be obtained, and if it exceeds 30 at%, the residual magnetic flux density decreases. Boron B is 2-28 atomic%.
If the content is less than 2 at%, a sufficient coercive force cannot be obtained, and if it exceeds 28 at%, the residual magnetic flux density decreases, and excellent magnetic properties cannot be obtained. As an element other than R and B, Fe is an essential element and is contained in an amount of 40 to 90 atomic%. If it is less than 40 at%, the residual magnetic flux density (Br) decreases, and if it exceeds 90 at%, a high coercive force (iHc) cannot be obtained. R and B and Fe are essential elements, and rare earth boron
Although an iron-based sintered magnet is produced, the effect of the present invention is not lost even if part of iron is replaced with another element or impurities are contained as described below. That is, instead of Fe, 50 atomic% or less of Co and 8 atomic% or less of Ni may be substituted. High when Co exceeds 50 atomic%
This is because iHc cannot be obtained, and high Br cannot be obtained if Ni exceeds 8%. In addition, one or more of the following A elements having a predetermined atomic% or less as elements other than the above (however, the total amount of the A element when including two or more elements is not more than the value of the element having the maximum value among the contained A elements) is referred to as the Fe element. Even if it is replaced, the effect of the present invention is not lost. Element A is described below. Next, examples of the present invention will be described, but the present invention is not limited to these examples. Example (Example 1) Raw material powder (average particle size: 3.0 μm) was prepared so as to obtain a sintered body having the composition shown in No. 1 in Table 1. However, the nitrogen amount (x) wt% was adjusted to a desired amount using iron nitride. 2.5 ton / cm 2 of the obtained raw material powder
Molding in a magnetic field (8KOe) at a molding pressure of
After sintering at 1080 ° C. for 2 hours in a stream of Ar gas, the mixture was rapidly cooled to room temperature, heat-treated again at 660 ° C. for 1 hour, and then rapidly cooled to be subjected to measurement of magnetic properties. Nitrogen content (x) wt% after heat treatment and magnetic properties (specific coercive force
FIG. 1 shows the relationship of iHc). As can be seen from FIG. 1, by controlling the amount of nitrogen to 0.004 to 0.08 wt%, excellent magnetic characteristics can be obtained. (Example 2) Raw material powder (average particle size: 3.4 µm) was prepared so as to obtain a sintered body having a composition indicated by No. 2 in Table 1. However, the amount of nitrogen (y) wt% was adjusted to a desired amount using iron nitrogen. 2.8ton / cm 2 of the obtained raw material powder
Molding in a magnetic field (8KOe) at a molding pressure of
After sintering at 1080 ° C. for 2 hours in a stream of Ar gas, it was quenched to room temperature, heat-treated again at 630 ° C. for 1 hour, quenched, and subjected to measurement of magnetic properties. Nitrogen content (y) wt% after heat treatment and magnetic properties (specific coercive force
FIG. 2 shows the relationship of iHc). As can be seen from FIG. 2, a specific nitrogen content of 0.004 to 0.08 wt
%, Stable magnetic properties can be obtained. (Example 3) Raw material powder (average particle size of 3.2 µm) was prepared so as to obtain a sintered body having the composition shown in No. 3 of Table 1. However, the amount of hydrogen (z) wt% was adjusted to a desired amount by contacting the raw material powder with hydrogen gas. The obtained raw material powder is 3.
It is molded in a magnetic field (8KOe) at a molding pressure of 0 ton / cm 2 , sintered at 1080 ° C for 2 hours in a stream of Ar gas, rapidly cooled to room temperature, and again at 610 ° C for 1 hour. Quench after heat treatment
The magnetic properties were measured. Hydrogen content (z) wt% after heat treatment and magnetic properties (specific coercive force
FIG. 3 shows the relationship of iHc). From FIG. 3, it can be seen that stable magnetic characteristics can be obtained in the specific hydrogen content range of 0.002 to 0.02 wt%. The sample containing 0.031% by weight of hydrogen showed metallic luster in a systematic manner, and as a result of being left in the air at room temperature, gradually exhibited a collapse phenomenon. [Effects of the Invention] As described above, the present invention provides a magnet in which stable magnetic properties can be obtained by controlling the oxygen, hydrogen and nitrogen contents to specific contents in an RB-Fe based sintered magnet. It has a great industrial value.

【図面の簡単な説明】 第1図,第2図は、窒素含有量の磁気特性への影響を表
わす図で、第3図は水素含有量の磁気特性への影響を表
わす図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are diagrams showing the effect of nitrogen content on magnetic characteristics, and FIG. 3 is a diagram showing the effect of hydrogen content on magnetic characteristics.

Claims (1)

(57)【特許請求の範囲】 1.R(但しRはYを含む希土類元素の内、少なくとも
1種),BおよびFeを必須成分とするR−B−Fe系磁石に
おいて、該磁石中の酸素含有量を0.1〜1.2wt%,水素含
有量を0.002〜0.02wt%および窒素含有量を0.004〜0.08
wt%としたことを特徴とするR−B−Fe系焼結磁石。
(57) [Claims] R (where R is at least one of the rare earth elements including Y), an R—B—Fe-based magnet containing B and Fe as essential components, wherein the oxygen content in the magnet is 0.1 to 1.2 wt%, hydrogen is The content is 0.002-0.02wt% and the nitrogen content is 0.004-0.08
An RB-Fe-based sintered magnet characterized in that the content is wt%.
JP62137994A 1987-06-01 1987-06-01 RB-Fe sintered magnet Expired - Lifetime JP2791470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62137994A JP2791470B2 (en) 1987-06-01 1987-06-01 RB-Fe sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137994A JP2791470B2 (en) 1987-06-01 1987-06-01 RB-Fe sintered magnet

Publications (2)

Publication Number Publication Date
JPS63301505A JPS63301505A (en) 1988-12-08
JP2791470B2 true JP2791470B2 (en) 1998-08-27

Family

ID=15211580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137994A Expired - Lifetime JP2791470B2 (en) 1987-06-01 1987-06-01 RB-Fe sintered magnet

Country Status (1)

Country Link
JP (1) JP2791470B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129964A (en) * 1989-09-06 1992-07-14 Sps Technologies, Inc. Process for making nd-b-fe type magnets utilizing a hydrogen and oxygen treatment
US5162064A (en) * 1990-04-10 1992-11-10 Crucible Materials Corporation Permanent magnet having improved corrosion resistance and method for producing the same
JP3171558B2 (en) * 1995-06-30 2001-05-28 株式会社東芝 Magnetic materials and bonded magnets
KR100562681B1 (en) 2000-05-24 2006-03-23 가부시키가이샤 네오맥스 Permanent magnet including multiple ferromagnetic phases and method for producing the magnet
JP3294841B2 (en) * 2000-09-19 2002-06-24 住友特殊金属株式会社 Rare earth magnet and manufacturing method thereof
US7217328B2 (en) 2000-11-13 2007-05-15 Neomax Co., Ltd. Compound for rare-earth bonded magnet and bonded magnet using the compound
US7364628B2 (en) * 2001-04-24 2008-04-29 Asahi Kasei Kabushiki Kaisha Solid material for magnet
KR100535943B1 (en) 2001-05-15 2005-12-12 가부시키가이샤 네오맥스 Iron-based rare earth alloy nanocomposite magnet and method for producing the same
EP1414050B1 (en) 2001-07-31 2006-10-25 Neomax Co., Ltd. Method for producing nanocomposite magnet using atomizing method
WO2003044812A1 (en) 2001-11-22 2003-05-30 Sumitomo Special Metals Co., Ltd. Nanocomposite magnet
CN102214508B (en) * 2010-04-02 2014-03-12 烟台首钢磁性材料股份有限公司 R-T-B-M-A rare earth permanent magnet and manufacturing method thereof
JP7183626B2 (en) * 2018-08-23 2022-12-06 大同特殊鋼株式会社 RFeB-based sintered magnet and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778269B2 (en) * 1983-05-31 1995-08-23 住友特殊金属株式会社 Rare earth / iron / boron tetragonal compound for permanent magnet
JPS60119701A (en) * 1983-12-01 1985-06-27 Sumitomo Special Metals Co Ltd Preparation of powdered alloy of rare earth, boron and iron for permanent magnet
JPH07107882B2 (en) * 1985-09-12 1995-11-15 日立金属株式会社 permanent magnet

Also Published As

Publication number Publication date
JPS63301505A (en) 1988-12-08

Similar Documents

Publication Publication Date Title
JPWO2002103719A1 (en) Rare earth permanent magnet material
JP2001189206A (en) Permanent magnet
JP2791470B2 (en) RB-Fe sintered magnet
JP2002064010A (en) High-resistivity rare earth magnet and its manufacturing method
JP3121824B2 (en) Sintered permanent magnet
JP3540438B2 (en) Magnet and manufacturing method thereof
JPH01219143A (en) Sintered permanent magnet material and its production
JP3143396B2 (en) Manufacturing method of sintered rare earth magnet
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JPH0146575B2 (en)
JPH04338604A (en) Metallic bonding magnet and manufacture thereof
JPH0146574B2 (en)
JPH0445573B2 (en)
JP2005159053A (en) Method for manufacturing r-t-b-based permanent magnet
JPS63234503A (en) Manufacture of permanent magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPS62134907A (en) R-b-fe system sintered magnet and manufacture thereof
JP3357381B2 (en) Magnet material, method of manufacturing the same, and bonded magnet
JP2581161B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JPH0475303B2 (en)
JPS62181402A (en) R-b-fe sintered magnet and manufacture thereof
JPS6012707A (en) Permanent magnet material
JP3652752B2 (en) Anisotropic bonded magnet
JPH0517853A (en) Pare earth-iron-boron base nitrogen interstitial rermanent magnet material

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term