JP7183626B2 - RFeB-based sintered magnet and its manufacturing method - Google Patents

RFeB-based sintered magnet and its manufacturing method Download PDF

Info

Publication number
JP7183626B2
JP7183626B2 JP2018156085A JP2018156085A JP7183626B2 JP 7183626 B2 JP7183626 B2 JP 7183626B2 JP 2018156085 A JP2018156085 A JP 2018156085A JP 2018156085 A JP2018156085 A JP 2018156085A JP 7183626 B2 JP7183626 B2 JP 7183626B2
Authority
JP
Japan
Prior art keywords
raw material
rfeb
material powder
sintered magnet
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018156085A
Other languages
Japanese (ja)
Other versions
JP2020031145A (en
Inventor
通秀 中村
徹彦 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2018156085A priority Critical patent/JP7183626B2/en
Publication of JP2020031145A publication Critical patent/JP2020031145A/en
Application granted granted Critical
Publication of JP7183626B2 publication Critical patent/JP7183626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類元素(以下、「R」とする)、鉄(Fe)及び硼素(B)を主な構成元素とするRFeB系焼結磁石、並びにその製造方法に関する。 The present invention relates to an RFeB-based sintered magnet containing a rare earth element (hereinafter referred to as "R"), iron (Fe) and boron (B) as main constituent elements, and a method for producing the same.

RFeB系焼結磁石は、1982年に佐川眞人らによって見出されたものであり、残留磁束密度等の多くの磁気特性がそれまでの永久磁石よりもはるかに高いという特長を有する。そのため、RFeB系焼結磁石は、ハイブリッド自動車や電気自動車等の自動車用モータや産業機械用モータ等の各種モータ、スピーカー、ヘッドホン、永久磁石式磁気共鳴診断装置等、様々な製品に使用されている。 RFeB-based sintered magnets were discovered by Masato Sagawa et al. Therefore, RFeB sintered magnets are used in various products such as motors for automobiles such as hybrid and electric vehicles, motors for industrial machinery, speakers, headphones, and permanent magnet magnetic resonance diagnostic equipment. .

一般に、焼結磁石は、原料となる合金粉末(原料粉末)を準備し、磁界を印加することによって原料粉末を配向させた後、その状態で原料粉末を加熱して焼結することにより製造される。 In general, sintered magnets are manufactured by preparing alloy powder (raw material powder) as a raw material, orienting the raw material powder by applying a magnetic field, and then heating and sintering the raw material powder in that state. be.

RFeB系焼結磁石の最も重要な磁気特性の一つである残留磁束密度を高くするためには、RFeB系焼結磁石を構成する各結晶粒の磁化容易軸(磁化しやすい方向の結晶軸)をできるだけ同じ方向に揃えることが望ましい。結晶粒の磁化容易軸がどの程度揃っているのかを示す指標として、配向度がある。配向度は、得られた磁石の残留磁束密度Brを飽和磁化Isで除した値Br/Isで定義される。 In order to increase the residual magnetic flux density, which is one of the most important magnetic properties of RFeB sintered magnets, the easy magnetization axis (crystal axis in the direction of easy magnetization) of each crystal grain that constitutes the RFeB sintered magnet should be aligned in the same direction as much as possible. The degree of orientation is an index that indicates to what extent the axes of easy magnetization of crystal grains are aligned. The degree of orientation is defined as a value B r /I s obtained by dividing the residual magnetic flux density B r of the obtained magnet by the saturation magnetization I s .

特許文献1には、平均粒径が3μmであるRFeB系の原料粉末にカプリル酸メチルやミリスチン酸メチル等から成る有機潤滑剤を添加したうえで磁界を印加することにより該原料粉末を配向させたうえで、該原料粉末を焼結することにより、最大で配向度が96.5%であるRFeB系焼結磁石が得られることが記載されている。このように原料粉末の平均粒径を3μmという小さい値とすることにより、原料粉末の粒子のうち単独の結晶粒から成る粒子の割合が多くなり、結晶粒も1方向に揃い易くなる。また、原料粉末に有機潤滑剤を添加することによって粒子間の動摩擦係数が小さくなるため、原料粉末に磁界を印加した際に個々の粒子が回動し易くなる。これらの作用により、特許文献1に記載のRFeB系焼結磁石では配向度が高くなる。 In Patent Document 1, an RFeB-based raw material powder having an average particle size of 3 μm is added with an organic lubricant such as methyl caprylate or methyl myristate, and the raw material powder is oriented by applying a magnetic field. In addition, it is described that an RFeB system sintered magnet having a maximum degree of orientation of 96.5% can be obtained by sintering the raw material powder. By setting the average particle diameter of the raw material powder to a small value of 3 μm in this way, the ratio of particles composed of single crystal grains among the particles of the raw material powder increases, and the crystal grains are also easily aligned in one direction. Further, by adding an organic lubricant to the raw material powder, the coefficient of dynamic friction between particles is reduced, so that individual particles are easily rotated when a magnetic field is applied to the raw material powder. These effects increase the degree of orientation in the RFeB-based sintered magnet described in Patent Document 1.

国際公開第2013/146781号WO2013/146781 特開2006-019521号公報Japanese Patent Application Laid-Open No. 2006-019521

前述のように特許文献1に記載のRFeB系焼結磁石では配向度が最大で96.5%であるが、残留磁束密度をさらに高くするためには、配向度をより高くする必要がある。本発明が解決しようとする課題は、配向度が従来よりも高い、RFeB系焼結磁石及びその製造方法を提供することである。 As described above, the RFeB-based sintered magnet described in Patent Document 1 has a maximum degree of orientation of 96.5%, but in order to further increase the residual magnetic flux density, it is necessary to increase the degree of orientation. The problem to be solved by the present invention is to provide an RFeB-based sintered magnet having a higher degree of orientation than conventional magnets, and a method for producing the same.

上記課題を解決するために成された本発明に係るRFeB系焼結磁石は、
a) 配向度が97%以上であり、
b) 最大磁化方向垂直面における結晶粒の平均アスペクト比を、最大磁化方向平行面における結晶粒の平均アスペクト比で除した値であるアスペクト比指標値が0.96以上1.5以下であり、
c) 窒素含有量が400ppm以上1000ppm以下であり、
d) 最大磁化方向垂直面において円相当径で求めた結晶粒径の中央値であるD50値が3.5μm以下である
ことを特徴とする。
The RFeB-based sintered magnet according to the present invention, which has been made to solve the above problems,
a) the degree of orientation is 97% or more,
b) The aspect ratio index value, which is the value obtained by dividing the average aspect ratio of the crystal grains on the plane perpendicular to the maximum magnetization direction by the average aspect ratio of the crystal grains on the plane parallel to the maximum magnetization direction, is 0.96 or more and 1.5 or less,
c) have a nitrogen content of 400 ppm or more and 1000 ppm or less;
d) The D50 value, which is the median value of the crystal grain size determined by the equivalent circle diameter on the plane perpendicular to the maximum magnetization direction, is 3.5 μm or less.

本発明において「最大磁化方向垂直面」とは、RFeB系焼結磁石において磁化が最大となる方向である最大磁化方向に対して垂直な面をいい、「最大磁化方向平行面」とは、最大磁化方向に平行な面をいう。最大磁化方向は通常、RFeB系焼結磁石の製造時に原料粉末を配向させる際に印加する磁界に平行な方向となる。得られたRFeB系焼結磁石において、仮に全ての結晶粒が同じ方向に揃っているとすれば、磁極(N極及びS極)の面が平坦であるRFeB系焼結磁石では通常、最大磁化方向垂直面は磁極の面に平行な面、最大磁化方向平行面は磁極の面に垂直な面となる。最大磁化方向平行面は最大磁化方向の軸の周りに回転させた様々な方向を向き得るが、その方向は任意に定めてよい。 In the present invention, the term "perpendicular to the maximum magnetization direction" refers to a plane perpendicular to the maximum magnetization direction, which is the direction in which magnetization is maximized in an RFeB sintered magnet. A plane parallel to the direction of magnetization. The maximum magnetization direction is usually parallel to the magnetic field applied when orienting the raw material powder during the production of RFeB based sintered magnets. In the obtained RFeB system sintered magnet, if all the crystal grains are aligned in the same direction, the RFeB system sintered magnet whose magnetic pole (N pole and S pole) surface is flat usually has the maximum magnetization The direction perpendicular plane is a plane parallel to the magnetic pole plane, and the maximum magnetization direction parallel plane is a plane perpendicular to the magnetic pole plane. The planes parallel to the direction of maximum magnetization may be oriented in various directions rotated about the axis of maximum magnetization, but may be arbitrarily determined.

「平均アスペクト比」は以下のように求められる。まず、観察する面(最大磁化方向垂直面又は最大磁化方向平行面)において700個以上の結晶粒のアスペクト比をそれぞれ求め、その平均値を求めることにより平均アスペクト比が得られる。個々の結晶粒のアスペクト比は、観察する面において結晶粒が最長となる方向の長さを、該方向に垂直な方向の長さで除することにより求められる。従って、個々の結晶粒のアスペクト比及び平均アスペクト比の値は、1以上となる。 The "average aspect ratio" is obtained as follows. First, the aspect ratios of 700 or more crystal grains are obtained in the observed plane (the plane perpendicular to the maximum magnetization direction or the plane parallel to the maximum magnetization direction), and the average value is obtained to obtain the average aspect ratio. The aspect ratio of individual crystal grains can be obtained by dividing the length of the direction in which the crystal grains are longest on the observation surface by the length of the direction perpendicular to that direction. Therefore, the aspect ratio and average aspect ratio of individual crystal grains are 1 or more.

本発明に係るRFeB系焼結磁石製造方法は、
レーザ回折法で測定された粒径の中央値であるD50値が3.0μm以下であるRFeB系焼結磁石の原料粉末を、窒素ガス中に分散させた状態で30~300分間維持することにより、粒子の表面が窒化した表面窒化原料粉末を作製する表面窒化原料粉末作製工程と、
前記表面窒化原料粉末を容器に収容し、該表面窒化原料粉末を圧縮成形することなく磁界を印加することにより、該表面窒化原料粉末を配向させる配向工程と、
前記配向工程で配向させた表面窒化原料粉末を圧縮成形することなく焼結する焼結工程と
を有することを特徴とする。
The method for producing an RFeB-based sintered magnet according to the present invention includes:
Raw material powder for RFeB-based sintered magnets having a median D50 value of 3.0 μm or less as measured by laser diffraction is dispersed in nitrogen gas for 30 to 300 minutes. a surface-nitrided raw material powder producing step of producing a surface-nitrided raw material powder in which the surfaces of the particles are nitrided;
an orienting step of placing the surface-nitriding raw material powder in a container and applying a magnetic field to orient the surface-nitriding raw material powder without compression molding the surface-nitriding raw material powder;
and a sintering step of sintering the surface-nitriding raw material powder oriented in the orientation step without compression molding.

本発明に係るRFeB系焼結磁石及びRFeB系焼結磁石製造方法では、RFeB系焼結磁石の原料粉末(作製しようとするRFeB系焼結磁石と同じ組成を有する原料の粉末)を窒素ガス中に分散させた状態で、ある程度長い時間(30~300分間)維持することにより、表面が窒化した表面窒化原料粉末を作製する。ここで、原料粉末を作製する際に、ジェットミルを用いて窒素ガス中で原料を粉砕することにより、原料粉末を窒素ガス中に分散させた状態を形成することができる。このように作製した表面窒化原料粉末を、圧縮成形することなく磁界で配向させたうえで焼結することにより、以下の2つの理由により、97%以上という高い配向度を有するRFeB系焼結磁石を得ることができると考えられる。 In the RFeB-based sintered magnet and the method for producing the RFeB-based sintered magnet according to the present invention, the raw material powder of the RFeB-based sintered magnet (raw material powder having the same composition as the RFeB-based sintered magnet to be produced) is placed in nitrogen gas. A surface-nitrided raw material powder having a nitrided surface is prepared by maintaining the dispersed state for a certain length of time (30 to 300 minutes). Here, when the raw material powder is produced, by pulverizing the raw material in nitrogen gas using a jet mill, it is possible to form a state in which the raw material powder is dispersed in nitrogen gas. By sintering the surface-nitrided raw material powder prepared in this way in a magnetic field without compression molding, an RFeB sintered magnet with a high degree of orientation of 97% or more can be obtained for the following two reasons. can be obtained.

第1の理由は、原料粉末の粒子の表面が窒化していることによって、個々の粒子の表面の動摩擦係数が小さくなり、配向時に磁界を印加した際に粒子が回動し易くなることにあると考えられる。また、配向の際に表面窒化原料粉末を圧縮成形しないプレスレスプロセス(Press-less Process:PLP)法(特許文献2参照)を用いることも、磁界を印加した際に粒子が回動し易くなることに寄与する。 The first reason is that the surfaces of the particles of the raw material powder are nitrided, so that the coefficient of dynamic friction of the surfaces of the individual particles is reduced, and the particles become easier to rotate when a magnetic field is applied during orientation. it is conceivable that. In addition, using a press-less process (PLP) method (see Patent Document 2) that does not compress and mold the surface-nitriding raw material powder during orientation also makes it easier for the particles to rotate when a magnetic field is applied. contribute to

第2の理由は、原料粉末の粒子の表面が窒化していることによって、焼結時に生じる配向の乱れが抑制されることにあると考えられる。RFeB系焼結磁石では一般に、焼結時に全体の体積が小さくなる焼結収縮という現象が生じる。一方、焼結時には、RFeB系焼結磁石を構成する個々の結晶粒は、磁化容易軸に平行な方向(RFeB系ではc軸方向)にも若干成長するものの、該軸に垂直な方向に、より成長する(このように他の方向よりも結晶粒が成長し易い方向を「優先成長方向」という)。そのため、焼結収縮は、結晶粒が相対的に成長し難いc軸方向に大きく生じる。このように焼結収縮が大きく生じると、個々の結晶粒が焼結時に動いてその向きが変化し、配向度が低下することがある(なお、焼結時には結晶粒の周囲の粒界が溶融するため、個々の結晶粒が動き得る)。それに対して本発明に係るRFeB系焼結磁石では、原料粉末の粒子の表面が窒化していることによって、焼結時に結晶粒が磁化容易軸(c軸)に垂直な方向に成長することが抑制され、それにより焼結収縮が磁化容易軸方向に生じることが抑制されるため、配向度の低下も抑制される。そのため、本発明に係るRFeB系焼結磁石は、従来のRFeB系焼結磁石よりも配向度が向上すると考えられる。 The second reason is thought to be that the surface of the particles of the raw material powder is nitrided, thereby suppressing the disturbance of orientation that occurs during sintering. RFeB sintered magnets generally undergo a phenomenon called sintering shrinkage in which the overall volume becomes smaller during sintering. On the other hand, during sintering, the individual crystal grains that make up the RFeB system sintered magnet grow slightly in the direction parallel to the axis of easy magnetization (the c-axis direction in the RFeB system), but in the direction perpendicular to the axis, (A direction in which crystal grains grow more easily than other directions is called a "preferred growth direction."). Therefore, sintering shrinkage occurs largely in the c-axis direction where crystal grains are relatively difficult to grow. If sintering shrinkage occurs significantly in this way, individual crystal grains may move during sintering, changing their orientation and lowering the degree of orientation. (so that individual grains can move). On the other hand, in the RFeB-based sintered magnet according to the present invention, since the surfaces of the particles of the raw material powder are nitrided, the crystal grains grow in the direction perpendicular to the axis of easy magnetization (c-axis) during sintering. This suppresses the occurrence of sintering shrinkage in the direction of the axis of easy magnetization, thereby suppressing a decrease in the degree of orientation. Therefore, it is considered that the RFeB-based sintered magnet according to the present invention has a higher degree of orientation than the conventional RFeB-based sintered magnet.

本発明に係るRFeB系焼結磁石において焼結時に結晶粒が磁化容易軸に垂直な方向に成長することが抑制されていることは、前記アスペクト比指標値によって確認される。従来の結晶粒が磁化容易軸に垂直な方向に成長したRFeB系焼結磁石では、結晶粒の平均アスペクト比は、最大磁化方向垂直面における値よりも最大磁化方向平行面における値の方が大きくなり、それによってアスペクト比指標値は小さく(通常、0.96未満に)なる。それに対して本発明に係るRFeB系焼結磁石では、結晶粒が磁化容易軸に垂直な方向に成長することが抑制されていることにより、最大磁化方向平行面における結晶粒の平均アスペクト比の値が抑えられ、それによってアスペクト比指標値が0.96以上となる。なお、RFeB系では磁化容易軸に垂直な方向が優先成長方向であるため、たとえ磁化容易軸に垂直な方向に結晶粒が成長することが抑制されていても、該方向の1.5倍を超えるほど、磁化容易軸に平行な方向に結晶粒が成長することはない。そのため、アスペクト比指標値の最大値は1.5となる。 It is confirmed by the aspect ratio index value that the growth of crystal grains in the direction perpendicular to the axis of easy magnetization is suppressed during sintering in the RFeB-based sintered magnet according to the present invention. In conventional RFeB sintered magnets in which crystal grains grow in the direction perpendicular to the axis of easy magnetization, the average aspect ratio of crystal grains is larger in the plane parallel to the maximum magnetization direction than in the plane perpendicular to the maximum magnetization direction. resulting in a small aspect ratio index value (typically less than 0.96). On the other hand, in the RFeB-based sintered magnet according to the present invention, the growth of crystal grains in the direction perpendicular to the axis of easy magnetization is suppressed, so that the average aspect ratio of the crystal grains in the plane parallel to the maximum magnetization direction is is suppressed, resulting in an aspect ratio index value of 0.96 or more. In the RFeB system, the direction perpendicular to the easy axis of magnetization is the preferential growth direction, so even if the growth of crystal grains in the direction perpendicular to the easy axis of magnetization is suppressed, the , the crystal grains do not grow in the direction parallel to the easy axis of magnetization. Therefore, the maximum aspect ratio index value is 1.5.

本発明に係るRFeB系焼結磁石では、上述のように作製時に原料粉末の粒子の表面を窒化させることから、RFeB系焼結磁石も窒素を含有している。RFeB系焼結磁石が含有している窒素の量が400ppmを下回ると作製時の窒化が不十分であるため、発明に係るRFeB系焼結磁石における窒素の含有量は400ppm以上とする。 In the RFeB-based sintered magnet according to the present invention, the surfaces of the particles of the raw material powder are nitrided during production as described above, so the RFeB-based sintered magnet also contains nitrogen. If the amount of nitrogen contained in the RFeB-based sintered magnet is less than 400 ppm, the nitriding during fabrication is insufficient.

一方、窒素の含有量が多くなると、保磁力が低下してしまう。そのため、本発明に係るRFeB系焼結磁石では、窒素の含有量を1000ppm以下とする。なお、窒素の含有量が1000ppm以下であれば、窒素が残留磁束密度の値に影響を及ぼすことはほとんどない。 On the other hand, when the nitrogen content increases, the coercive force decreases. Therefore, in the RFeB system sintered magnet according to the present invention, the nitrogen content is set to 1000 ppm or less. If the nitrogen content is 1000 ppm or less, nitrogen hardly affects the value of residual magnetic flux density.

それと共に、RFeB系焼結磁石中の結晶粒径が小さくなるほど保磁力が高くなることから、本発明に係るRFeB系焼結磁石では、最大磁化方向垂直面における結晶粒径の中央値であるD50値が3.5μm以下となるようにする。ここで個々の結晶粒の結晶粒径は、画像解析等によって最大磁化方向垂直面における結晶粒の面積を求め、その面積と同じ面積を有する円の直径で定義する。このような結晶粒径の中央値を有するRFeB系焼結磁石を得るためには、本発明に係るRFeB系焼結磁石製造方法では、レーザ回折法で測定された粒径の中央値(D50値)が3.0μm以下である原料粉末を用いる。ここで「レーザ回折法」は、粒子にレーザビームを照射することで生じる回折光・散乱光の強度分布に基づいて、粒子の粒径を求める方法をいう。 In addition, since the smaller the crystal grain size in the RFeB sintered magnet, the higher the coercive force, the RFeB sintered magnet according to the present invention has D50, which is the median value of the crystal grain size in the plane perpendicular to the maximum magnetization direction. Make sure the value is 3.5 μm or less. Here, the crystal grain size of each crystal grain is defined by the diameter of a circle having the same area as the area of the crystal grain in the plane perpendicular to the maximum magnetization direction obtained by image analysis or the like. In order to obtain an RFeB-based sintered magnet having such a median grain size, in the method for producing a RFeB-based sintered magnet according to the present invention, the median grain size (D50 value ) is 3.0 μm or less. Here, the “laser diffraction method” refers to a method of obtaining the particle size of particles based on the intensity distribution of diffracted light/scattered light generated by irradiating the particles with a laser beam.

本発明により、配向度が97%以上という従来よりも高い値を有するRFeB系焼結磁石を得ることができる。 According to the present invention, it is possible to obtain an RFeB system sintered magnet having a degree of orientation of 97% or more, which is higher than conventional ones.

本発明に係るRFeB系焼結磁石の製造方法の一実施形態の工程を示す概略図。FIG. 1 is a schematic diagram showing steps of an embodiment of a method for producing a RFeB-based sintered magnet according to the present invention; 本実施形態のRFeB系焼結磁石の製造方法において用いるジェットミルを示す概略図。Schematic diagram showing a jet mill used in the method for producing a RFeB-based sintered magnet according to the present embodiment. 本実施形態のRFeB系焼結磁石の、最大磁化方向垂直面(a)及び最大磁化方向平行面(b)における光学顕微鏡写真。Optical micrographs of the RFeB-based sintered magnet of the present embodiment in a plane perpendicular to the maximum magnetization direction (a) and a plane parallel to the maximum magnetization direction (b). 比較例のRFeB系焼結磁石の、最大磁化方向垂直面(a)及び最大磁化方向平行面(b)における光学顕微鏡写真。Optical micrographs of an RFeB-based sintered magnet of a comparative example in a plane perpendicular to the maximum magnetization direction (a) and a plane parallel to the maximum magnetization direction (b). 本実施形態のRFeB系焼結磁石が有する個々の結晶粒について、最大磁化方向垂直面(a)及び最大磁化方向平行面(b)における結晶粒径とアスペクト比を求めた結果を示すグラフ。4 is a graph showing the results of obtaining the crystal grain size and the aspect ratio in the plane perpendicular to the maximum magnetization direction (a) and the plane parallel to the maximum magnetization direction (b) for individual crystal grains of the RFeB-based sintered magnet of the present embodiment. 比較例のRFeB系焼結磁石が有する個々の結晶粒について、最大磁化方向垂直面(a)及び最大磁化方向平行面(b)における結晶粒径とアスペクト比を求めた結果を示すグラフ。7 is a graph showing the results of obtaining the crystal grain size and aspect ratio in a plane perpendicular to the maximum magnetization direction (a) and a plane parallel to the maximum magnetization direction (b) for individual crystal grains of an RFeB-based sintered magnet of a comparative example.

図1~図6を用いて、本発明に係るRFeB系焼結磁石及びその製造方法の実施形態を説明する。 An embodiment of an RFeB based sintered magnet and a method for producing the same according to the present invention will be described with reference to FIGS. 1 to 6. FIG.

(1) 本発明に係るRFeB系焼結磁石の製造方法の一実施形態
図1及び図2を用いて、本発明に係るRFeB系焼結磁石の製造方法の一実施形態を説明する。まず、作製しようとするRFeB系焼結磁石の組成に対応した組成(但し、後述の粒界拡散処理を行う場合には、その際にRFeB系焼結磁石内に拡散する元素の分を除く)を有する原料合金塊11を用意する。原料合金塊11は、ストリップキャスト法等、従来のRFeB系焼結磁石の原料合金塊と同様の方法により作製することができる。次に、原料合金塊11に水素ガスを吸蔵させることにより該原料合金塊11を脆化させ(図1(a))たうえで機械的に粉砕する(粗粉砕)ことにより、原料合金の粗粉12(同図(b))を作製する。
(1) One embodiment of the method for producing a sintered RFeB magnet according to the present invention An embodiment of the method for producing a sintered RFeB magnet according to the present invention will be described with reference to FIGS. 1 and 2. FIG. First, a composition corresponding to the composition of the RFeB system sintered magnet to be produced (however, when the grain boundary diffusion treatment described later is performed, the elements that diffuse into the RFeB system sintered magnet at that time are excluded) A raw material alloy ingot 11 having The raw material alloy ingot 11 can be produced by a method such as strip casting, which is the same as that for the raw material alloy ingot for conventional RFeB sintered magnets. Next, the raw material alloy ingot 11 is made to absorb hydrogen gas to embrittle the raw material alloy ingot 11 (FIG. 1(a)) and then mechanically pulverized (coarse pulverization) to obtain a coarse raw material alloy. A powder 12 ((b) in the figure) is prepared.

次に、原料合金の粗粉12を、図2に示すジェットミル20により、粉砕ガスGとして窒素ガスを用いて、レーザ回折法で測定される粒径の中央値(D50値)が3.0μm以下になるように粉砕することにより、表面窒化原料粉末13を作製する(微粉砕:図1(c))。ジェットミル20は、粉砕槽21と、粉砕槽21に粗粉12を導入する粗粉導入口22と、粉砕槽21に下方から粉砕ガスGを導入する粉砕ガス導入口231と、粉砕槽21に側方から流動ガスG’を導入する流動ガス導入口232と、粉砕槽21内の粉砕ガス導入口231の上方に設けられた衝突板24と、粉砕槽21内の衝突板24の上方に設けられた分級ロータ25と、粉砕された表面窒化原料粉末13を粉砕槽21から排出する排出口26とを有する。 Next, the coarse powder 12 of the raw material alloy is measured by the jet mill 20 shown in FIG. By pulverizing so that the surface-nitriding raw material powder 13 is produced (fine pulverization: FIG. 1(c)). The jet mill 20 includes a pulverizing tank 21, a coarse powder inlet 22 for introducing coarse powder 12 into the pulverizing tank 21, a pulverizing gas inlet 231 for introducing pulverizing gas G into the pulverizing tank 21 from below, and A fluidizing gas introduction port 232 for introducing the fluidizing gas G′ from the side, a collision plate 24 provided above the crushing gas introduction port 231 in the crushing tank 21, and a collision plate 24 provided above the crushing tank 21. and a discharge port 26 for discharging the crushed surface-nitriding raw material powder 13 from the crushing tank 21 .

流動ガスG’は、粗粉導入口22から導入される粗粉12を粉砕槽21内に吸引して加速させるためのガスであり、粉砕ガスGは粉砕槽21内の粒子を衝突板24に衝突させる役割を有するガスである。本実施形態では、粉砕ガスG及び流動ガスG’にはいずれも窒素ガスを用いる。衝突板24は、それに粉砕槽21内の粒子を衝突させることにより粉砕する役割を有する。分級ロータ25は図2の縦方向の軸を中心として高速で回転(1分間あたり最大で6000回転)する回転体であり、所定の粒径以下まで粉砕された粒子を分級して排出口26に導入する役割を有する。この所定の粒径よりも大きい粒径を有する粒子は、分級ロータ25で分級されずに粉砕槽21内を降下し、粉砕ガスGにより再度衝突板24に衝突する。これらの操作により、レーザ回折法で測定される粒径の中央値であるD50値が3.0μm以下であって、原料粉末の粒子の表面が窒化した表面窒化原料粉末13が得られる(表面窒化原料粉末作製工程)。 The fluidizing gas G′ is a gas for sucking and accelerating the coarse powder 12 introduced from the coarse powder inlet 22 into the crushing tank 21 . It is a gas that has a role of collision. In this embodiment, nitrogen gas is used for both the pulverizing gas G and the fluidizing gas G'. The collision plate 24 has a role of crushing the particles in the crushing tank 21 by making them collide with it. The classifying rotor 25 is a rotary body that rotates at high speed (up to 6000 revolutions per minute) around the vertical axis in FIG. It has a role to introduce. Particles having a particle size larger than this predetermined particle size descend inside the pulverizing tank 21 without being classified by the classifying rotor 25, and collide with the collision plate 24 again by the pulverizing gas G. As shown in FIG. Through these operations, a surface-nitrided raw material powder 13 having a D50 value, which is the median value of particle diameters measured by a laser diffraction method, of 3.0 μm or less and having nitrided surfaces of the raw material powder particles is obtained (surface-nitrided raw material powder production process).

本実施形態では、粉砕槽21内の粉砕ガスGの圧力は0.45~0.60MPaとする。また、分級ロータ25の回転数を調整することにより、粉砕槽21内で粉砕された表面窒化原料粉末13が30~300分間、粉砕槽21内に留まるようにした。なお、後述の比較例では、従来よりRFeB系焼結磁石を作製する際に用いられていた条件である、粉砕ガスGの圧力が0.45~0.60MPa、粉砕槽21内に留まる時間が5分間以上30分間未満となるように作製した、表面窒化原料粉末13よりも表面の窒化が進行していない原料粉末を用いる。 In this embodiment, the pressure of the pulverizing gas G in the pulverizing tank 21 is set to 0.45-0.60 MPa. Further, by adjusting the rotational speed of the classifying rotor 25, the surface-nitriding raw material powder 13 pulverized in the pulverizing tank 21 was kept in the pulverizing tank 21 for 30 to 300 minutes. In the comparative example described later, the pressure of the pulverizing gas G is 0.45 to 0.60 MPa, and the time of staying in the pulverizing tank 21 is 5 minutes or more, which are the conditions conventionally used when producing RFeB sintered magnets. A raw material powder whose surface is less nitrided than the surface-nitrided raw material powder 13 is used, which is produced for less than 30 minutes.

次に、表面窒化原料粉末13を、作製しようとするRFeB系焼結磁石に対応した形状を有する容器14内に収容し、容器14内の表面窒化原料粉末13に機械的圧力を印加することなく(すなわち圧縮成形することなく)磁界を印加することにより表面窒化原料粉末13を配向させる(図1(d):配向工程)。なお、本実施形態では、内部の形状が直方体である容器14を用いたが、容器14内の形状はこの例に限定されない。また、図1(d)では表面窒化原料粉末13を充填する空間が1個のみのものを示したが、1個の容器に表面窒化原料粉末13を充填する空間を複数設けてもよい。 Next, the surface-nitriding raw material powder 13 is placed in a container 14 having a shape corresponding to the RFeB system sintered magnet to be produced, and the surface-nitriding raw material powder 13 in the container 14 is not subjected to mechanical pressure. A magnetic field is applied (that is, without compression molding) to orient the surface-nitriding raw material powder 13 (FIG. 1(d): orientation step). In this embodiment, the container 14 having a rectangular parallelepiped interior shape is used, but the shape inside the container 14 is not limited to this example. In addition, although FIG. 1(d) shows only one space for filling the surface-nitriding raw material powder 13, a plurality of spaces for filling the surface-nitriding raw material powder 13 may be provided in one container.

配向工程の後、表面窒化原料粉末13を容器14内に収容したまま、圧縮成形を行うことなく加熱することにより、表面窒化原料粉末13を焼結する(図1(e):焼結工程)。焼結工程における加熱温度は、900~1100℃とすることが好ましい。容器14には、この加熱温度に対する耐熱性を有する材料から成るものを用いる。ここまでの工程により、RFeB系磁石の焼結体15が得られる。ここまでで述べた各工程では、前述のPLP法を用いている。 After the orientation step, the surface-nitriding raw material powder 13 is sintered by heating without performing compression molding while being housed in the container 14 (FIG. 1(e): sintering step). . The heating temperature in the sintering step is preferably 900-1100°C. The container 14 is made of a material having heat resistance to this heating temperature. Through the steps up to this point, the sintered body 15 of the RFeB magnet is obtained. The above-described PLP method is used in each step described so far.

こうして得られた焼結体15をそのままRFeB系焼結磁石の完成品としてもよいが、保磁力を高くするために、以下に述べる粒界拡散処理を行うことが望ましい。粒界拡散処理では、焼結体15の表面にDy(ジスプロシウム)及び/又はTb(テルビウム)を含有する付着物16を付着させたうえで、850~930℃に加熱する(図1(f))。これにより、付着物16中のDy及び/又はTbを、焼結体15の粒界を介して結晶粒の表面付近に供給する。RFeB系焼結磁石の結晶粒の表面付近にDy及び/又はTbが存在することにより、RFeB系焼結磁石に逆磁界が印加されたときに磁化の反転が生じ難くなり、保磁力が向上する。また、Dy及び/又はTbが存在することはRFeB系焼結磁石の残留磁束密度を低下させる要因となるものの、粒界拡散処理で導入されるDy及び/又はTbは微量であるため、残留磁束密度の低下を抑えることができる。 The sintered body 15 thus obtained may be used as a finished product of the RFeB system sintered magnet as it is, but it is desirable to perform the grain boundary diffusion treatment described below in order to increase the coercive force. In the grain boundary diffusion treatment, a deposit 16 containing Dy (dysprosium) and/or Tb (terbium) is attached to the surface of the sintered body 15, and then heated to 850 to 930 ° C. (Fig. 1 (f) ). As a result, Dy and/or Tb in the deposit 16 are supplied to the vicinity of the surface of the crystal grain through the grain boundary of the sintered body 15 . The presence of Dy and/or Tb near the surface of the crystal grains of the RFeB sintered magnet makes it difficult for magnetization reversal to occur when a reverse magnetic field is applied to the RFeB sintered magnet, improving coercive force. . In addition, although the presence of Dy and/or Tb is a factor that reduces the residual magnetic flux density of the RFeB sintered magnet, the amount of Dy and/or Tb introduced by the grain boundary diffusion treatment is very small, so the residual magnetic flux A decrease in density can be suppressed.

以上の各工程により、本実施形態のRFeB系焼結磁石17が作製される(図1(g))。 Through the above steps, the RFeB system sintered magnet 17 of the present embodiment is produced (FIG. 1(g)).

(2) 本発明に係るRFeB系焼結磁石の一実施形態
次に、上記実施形態の製造方法で作製した、本発明に係るRFeB系焼結磁石の一実施形態について説明する。併せて、表面窒化原料粉末13の代わりに、従来の方法で粗粉12を微粉砕することにより作製した前述の原料粉末を用い、それ以外は本実施形態と同じ条件で作製した比較例のRFeB系焼結磁石を説明し、上記実施形態のRFeB系焼結磁石と対比する。
(2) One embodiment of RFeB based sintered magnet according to the present invention Next, an embodiment of the RFeB based sintered magnet according to the present invention produced by the manufacturing method of the above embodiment will be described. In addition, instead of the surface-nitriding raw material powder 13, the aforementioned raw material powder prepared by finely pulverizing the coarse powder 12 by a conventional method was used, and the other conditions were the same as those of the present embodiment. A system sintered magnet will be described and compared with the RFeB system sintered magnet of the above embodiment.

本実施形態と比較例のRFeB系焼結磁石を作製したときの具体的な条件を説明する(以下、特記した点を除いて、本実施形態と比較例の作製条件は同じである)。原料合金塊11には、規格値としてNd(ネオジム)を25.65質量%、Pr(プラセオジム)を4.55質量%、Co(コバルト)を0.9質量%、Bを0.99質量%、Al(アルミニウム)を0.2質量%、Cu(銅)を0.1質量%、Zr(ジルコニウム)を0.1質量%、Feを残部、それぞれ含有するものを用いた。なお、実際の原料合金塊11の組成は、上記の規格値からわずかにずれることがある他、微量のDy, Tb, Ni, Ga等の元素が混入することがある。また、原料合金塊11は不純物としてO(酸素)、C(炭素)、N(窒素)及びH(水素)を含有し得るが、それらの含有率は、Oでは600ppm未満、Cでは500ppm未満、Nでは300ppm未満、Hでは10ppm未満となるようにした。 Specific conditions for producing the RFeB based sintered magnets of the present embodiment and the comparative example will be described (below, the producing conditions of the present embodiment and the comparative example are the same except as noted). The raw material alloy ingot 11 contains, as standard values, 25.65% by mass of Nd (neodymium), 4.55% by mass of Pr (praseodymium), 0.9% by mass of Co (cobalt), 0.99% by mass of B, and 0.2% by mass of Al (aluminum). %, 0.1% by mass of Cu (copper), 0.1% by mass of Zr (zirconium), and the balance of Fe. The actual composition of the raw material alloy ingot 11 may slightly deviate from the above standard values, and may contain trace amounts of elements such as Dy, Tb, Ni, and Ga. In addition, the raw material alloy ingot 11 may contain O (oxygen), C (carbon), N (nitrogen), and H (hydrogen) as impurities. N was less than 300 ppm, and H was less than 10 ppm.

微粉砕時の条件は以下の通りである。本実施形態では、分級ロータ25の回転数は4700回/分、粉砕ガスGの圧力は0.45MPa、表面窒化原料粉末13が粉砕槽21(粉砕ガスG)内に留まる時間は30~300分間とした。比較例では、分級ロータ25の回転数は3700回/分、粉砕ガスGの圧力は0.45MPa、表面窒化原料粉末13が粉砕槽21(粉砕ガスG)内に留まる時間は5分間以上30分間未満とした。 The conditions for fine pulverization are as follows. In this embodiment, the rotation speed of the classifying rotor 25 is 4700 times/min, the pressure of the pulverizing gas G is 0.45 MPa, and the surface-nitriding raw powder 13 stays in the pulverizing tank 21 (pulverizing gas G) for 30 to 300 minutes. did. In the comparative example, the number of revolutions of the classifying rotor 25 was 3700 times/min, the pressure of the pulverizing gas G was 0.45 MPa, and the surface-nitriding raw powder 13 remained in the pulverizing tank 21 (pulverizing gas G) for 5 minutes or more and less than 30 minutes. and

焼結工程における加熱温度は980℃とした。粒界拡散処理における付着物16には、Tbを75.3質量%、Cuを18.8質量%、Alを5.9質量%含有するTbCuAl合金の粉末とシリコーングリースを混合したものを用いた。粒界拡散処理における加熱温度は885℃とした。 The heating temperature in the sintering process was 980°C. A mixture of TbCuAl alloy powder containing 75.3% by mass of Tb, 18.8% by mass of Cu and 5.9% by mass of Al and silicone grease was used as the deposit 16 in the grain boundary diffusion treatment. The heating temperature in the grain boundary diffusion treatment was 885°C.

得られた本実施形態及び比較例のRFeB系焼結磁石につき、室温で磁気特性を測定した結果を表1に示す。表1中の角型比SQは、磁化曲線の第2象限(減磁曲線)において磁化が残留磁束密度Brの90%となるときの逆磁界Hk90と保磁力Hcjの比Hk90/Hcjで定義される。

Figure 0007183626000001
Table 1 shows the results of measuring the magnetic properties of the obtained RFeB system sintered magnets of this embodiment and the comparative example at room temperature. The squareness ratio SQ in Table 1 is the ratio H k90 / Defined by H cj .
Figure 0007183626000001

表1に示すように、ほぼ同じ組成を有する原料(原料合金塊11及び付着物16)を用いているにも関わらず、本実施形態のRFeB系焼結磁石は比較例のものよりも、残留磁束密度及び配向度が高い。特に、配向度は97%以上という、従来は困難であった高い値が得られている。本実施形態における保磁力及び角型比は、比較例よりも低いものの、自動車用モータ等における実用上許容される範囲内である。 As shown in Table 1, the RFeB-based sintered magnet of the present embodiment has a higher residual content than the comparative example, although the raw materials (the raw material alloy ingot 11 and the deposit 16) having almost the same composition are used. High magnetic flux density and orientation. In particular, a high degree of orientation of 97% or more, which has been difficult in the past, has been obtained. Although the coercive force and the squareness ratio in this embodiment are lower than those in the comparative example, they are within the practically permissible range for automobile motors and the like.

次に、本実施形態及び比較例のRFeB系焼結磁石につき、断面の光学顕微鏡写真を撮影し、微細構造の観察を行った。光学顕微鏡写真を撮影する断面は、最大磁化方向垂直面と、最大磁化方向平行面の2つを対象とした。ここで最大磁化方向垂直面は、前述のように磁化が最大となる方向である最大磁化方向に対して垂直な面をいうが、ここでは配向工程の際に印加した磁界に垂直な面を最大磁化方向垂直面とみなした。また、配向工程の際に印加した磁界に平行な面(そのような面は多数取り得る)のうちの任意の1つを最大磁化方向平行面とみなした。 Next, for the RFeB-based sintered magnets of the present embodiment and the comparative example, cross-sectional optical micrographs were taken to observe the microstructure. The cross-sections for taking optical micrographs were the plane perpendicular to the maximum magnetization direction and the plane parallel to the maximum magnetization direction. Here, the plane perpendicular to the maximum magnetization direction refers to the plane perpendicular to the maximum magnetization direction, which is the direction in which the magnetization is maximized, as described above. It was regarded as the plane perpendicular to the magnetization direction. Also, any one of the planes parallel to the magnetic field applied during the orientation process (there can be many such planes) was regarded as the plane parallel to the maximum magnetization direction.

本実施形態のRFeB系焼結磁石における断面の光学顕微鏡写真を、最大磁化方向垂直面について図3(a)に、最大磁化方向平行面について図3(b)に、それぞれ示す。また、比較例のRFeB系焼結磁石における断面の光学顕微鏡写真を、最大磁化方向垂直面について図4(a)に、最大磁化方向平行面について図4(b)に、それぞれ示す。 Optical microscope photographs of the cross section of the RFeB-based sintered magnet of this embodiment are shown in FIG. 3(a) for the plane perpendicular to the maximum magnetization direction and in FIG. 3(b) for the plane parallel to the maximum magnetization direction. Optical microscope photographs of the cross section of the RFeB-based sintered magnet of the comparative example are shown in FIG. 4(a) for the plane perpendicular to the maximum magnetization direction and in FIG. 4(b) for the plane parallel to the maximum magnetization direction.

これらの各光学顕微鏡写真についてそれぞれ、約850個の結晶粒を対象とし、画像解析によって、個々の結晶粒の結晶粒径(円相当径)及びアスペクト比を求めた。そして、個々の結晶粒でそれぞれ得られたそれらの値を、横軸を結晶粒径、縦軸をアスペクト比とするグラフ上にプロットすることにより表した。そのグラフを、本実施形態における最大磁化方向垂直面について図5(a)に、本実施形態における最大磁化方向平行面について図5(b)に、比較例における最大磁化方向垂直面について図6(a)に、比較例における最大磁化方向平行面について図6(b)に、それぞれ示す。 About 850 crystal grains were targeted for each of these optical micrographs, and the crystal grain size (equivalent circle diameter) and aspect ratio of each crystal grain were determined by image analysis. These values obtained for individual crystal grains are plotted on a graph in which the horizontal axis is the crystal grain size and the vertical axis is the aspect ratio. The graphs are shown in FIG. 5(a) for the plane perpendicular to the maximum magnetization direction in this embodiment, in FIG. 5(b) for the plane parallel to the maximum magnetization direction in this embodiment, and in FIG. 6 ( FIG. 6(b) shows a plane parallel to the maximum magnetization direction in the comparative example.

この結果より、本実施形態の最大磁化方向垂直面における結晶粒径の中央値(D50値)は3.25μmであり、3.5μm以下であった。その他の結晶粒径のD50値は、本実施形態の最大磁化方向平行面では2.93μm、比較例の最大磁化方向垂直面では3.30μm、比較例の最大磁化方向平行面では3.05μmであった。 From this result, the median value (D50 value) of the crystal grain size in the plane perpendicular to the maximum magnetization direction of this embodiment was 3.25 μm, which was 3.5 μm or less. The D50 values of the other crystal grains were 2.93 μm in the plane parallel to the maximum magnetization direction in this embodiment, 3.30 μm in the plane perpendicular to the maximum magnetization direction in the comparative example, and 3.05 μm in the plane parallel to the maximum magnetization direction in the comparative example.

また、図5の結果より求めた本実施形態の最大磁化方向垂直面における平均アスペクト比は1.49、最大磁化方向平行面における平均アスペクト比は1.47であり、アスペクト比指標値は1.49/1.47=1.01であった。それに対して、図6の結果より求めた比較例の最大磁化方向垂直面における平均アスペクト比は1.43、最大磁化方向平行面における平均アスペクト比は1.50であり、アスペクト比指標値は1.43/1.50=0.953であった。このように、平均アスペクト比は、比較例では0.96を下回ったのに対して、本実施形態では0.96以上という、比較例よりも高い値が得られた。 Further, the average aspect ratio in the plane perpendicular to the maximum magnetization direction of this embodiment obtained from the results of FIG. there were. On the other hand, the average aspect ratio in the plane perpendicular to the maximum magnetization direction of the comparative example obtained from the results of FIG. Met. As described above, the average aspect ratio was less than 0.96 in the comparative example, whereas the present embodiment obtained a value of 0.96 or more, which is higher than that in the comparative example.

さらに、容器14内の直方体の縦、横及び高さ(高さ方向は磁界に平行な方向)の寸法(焼結前の表面窒化原料粉末13が占める部分の寸法)をそれぞれ、焼結後の焼結体15の縦、横及び高さの寸法で除した収縮率を求めた。本実施形態では、縦及び横方向の収縮率はいずれも16.2%、高さ方向の収縮率は32.2%であったのに対して、比較例では、縦及び横方向の収縮率はいずれも15.4%、高さ方向の収縮率は36.4%であった。このように、本実施形態は比較例よりも高さ方向の収縮率が低く、該方向への収縮が抑えられている。 Furthermore, the length, width, and height (the height direction is the direction parallel to the magnetic field) of the rectangular parallelepiped in the container 14 (dimensions of the portion occupied by the surface-nitriding raw material powder 13 before sintering) are The shrinkage ratio divided by the length, width and height of the sintered body 15 was obtained. In this embodiment, the shrinkage rate in both the vertical and horizontal directions was 16.2%, and the shrinkage rate in the height direction was 32.2%. In the comparative example, the shrinkage rate in both the vertical and horizontal directions was 15.4%. %, and the shrinkage in the height direction was 36.4%. Thus, this embodiment has a lower shrinkage rate in the height direction than the comparative example, and shrinkage in this direction is suppressed.

本実施形態のRFeB系焼結磁石につき窒素の含有率を測定したところ、460ppmであり、上述の400ppm以上1000ppm以下の範囲内であった。それに対して比較例のRFeB系焼結磁石における窒素の含有率の測定値は225ppmであり、上記範囲内よりも低かった。 When the nitrogen content of the RFeB based sintered magnet of this embodiment was measured, it was 460 ppm, which was within the aforementioned range of 400 ppm to 1000 ppm. On the other hand, the measured value of the nitrogen content in the RFeB system sintered magnet of the comparative example was 225 ppm, which was lower than the above range.

ここまでに述べた本実施形態及び比較例における配向度、アスペクト比指標値、収縮率、及び窒素含有率から、以下のことが考えられる。配向度が比較例よりも本実施形態の方が高くなる理由の1つとして、本実施形態の表面窒化原料粉末13の方が比較例の原料粉末よりも粒子の表面がより窒化していることにより、配向時に個々の粒子の表面の動摩擦係数が小さくなり、粒子が回動し易くなることが考えられる。また、他の理由として、本実施形態の表面窒化原料粉末13の方が比較例の原料粉末よりも粒子の表面がより窒化していることにより、焼結時に結晶粒が磁化容易軸(c軸)に垂直な方向に成長することが抑制され、それにより焼結収縮が磁化容易軸方向に生じることが抑制されることにより、配向度の低下が抑制されたことが考えられる。窒素含有率は、これら2つの理由のいずれにも関連するものである。また、アスペクト比指標値及び収縮率は、後者の理由を裏付けている。 Based on the degree of orientation, the aspect ratio index value, the shrinkage rate, and the nitrogen content in the present embodiment and the comparative example described so far, the following can be considered. One of the reasons why the degree of orientation is higher in the present embodiment than in the comparative example is that the surface of the particles of the surface-nitrided raw material powder 13 of the present embodiment is more nitrided than the raw material powder of the comparative example. Therefore, it is considered that the dynamic friction coefficient of the surface of each particle becomes small during orientation, and the particles become easier to rotate. Another reason is that the surfaces of the particles of the surface-nitrided raw material powder 13 of the present embodiment are more nitrided than the raw material powder of the comparative example, so that the crystal grains have an easy magnetization axis (c-axis) during sintering. ), which suppresses the sintering shrinkage in the direction of the easy axis of magnetization, thereby suppressing the decrease in the degree of orientation. Nitrogen content is relevant for both of these reasons. Aspect ratio index values and shrinkage also support the latter reason.

以上、本実施形態のRFeB系焼結磁石につき、比較例と対比しつつ説明したが、本発明は、言うまでもなく上記実施形態には限定されず、種々の変形が可能である。 The RFeB based sintered magnet of the present embodiment has been described above in comparison with the comparative example, but the present invention is of course not limited to the above embodiment, and various modifications are possible.

11…原料合金塊
12…粗粉
13…表面窒化原料粉末
14…容器
15…焼結体
16…付着物
17…RFeB系焼結磁石
20…ジェットミル
21…粉砕槽
22…粗粉導入口
231…粉砕ガス導入口
232…流動ガス導入口
24…衝突板
25…分級ロータ
26…排出口
G…粉砕ガス(窒素ガス)
G’…流動ガス(窒素ガス)
REFERENCE SIGNS LIST 11 Raw alloy lump 12 Coarse powder 13 Surface nitriding raw powder 14 Container 15 Sintered body 16 Deposits 17 RFeB sintered magnet 20 Jet mill 21 Crushing tank 22 Coarse powder inlet 231 Pulverization gas introduction port 232 Fluid gas introduction port 24 Collision plate 25 Classifying rotor 26 Discharge port G Pulverization gas (nitrogen gas)
G'... Fluid gas (nitrogen gas)

Claims (3)

a) 配向度が97%以上であり、
b) 最大磁化方向垂直面における結晶粒の平均アスペクト比を、最大磁化方向平行面における結晶粒の平均アスペクト比で除した値であるアスペクト比指標値が0.96以上1.5以下であり、
c) 窒素含有量が400ppm以上1000ppm以下であり、
d) 最大磁化方向垂直面において円相当径で求めた結晶粒径の中央値であるD50値が3.5μm以下である
ことを特徴とするRFeB系焼結磁石。
a) the degree of orientation is 97% or more,
b) The aspect ratio index value, which is the value obtained by dividing the average aspect ratio of the crystal grains on the plane perpendicular to the maximum magnetization direction by the average aspect ratio of the crystal grains on the plane parallel to the maximum magnetization direction, is 0.96 or more and 1.5 or less,
c) have a nitrogen content of 400 ppm or more and 1000 ppm or less;
d) An RFeB-based sintered magnet characterized by having a D50 value, which is the median value of the crystal grain size determined by the equivalent circle diameter in the plane perpendicular to the maximum magnetization direction, of 3.5 μm or less.
レーザ回折法で測定された粒径の中央値であるD50値が3.0μm以下であるRFeB系焼結磁石の原料粉末を、窒素ガス中に分散させた状態で30~300分間維持することにより、粒子の表面が窒化した表面窒化原料粉末を作製する表面窒化原料粉末作製工程と、
前記表面窒化原料粉末を容器に収容し、該表面窒化原料粉末を圧縮成形することなく磁界を印加することにより、該表面窒化原料粉末を配向させる配向工程と、
前記配向工程で配向させた表面窒化原料粉末を圧縮成形することなく焼結する焼結工程と
を有することを特徴とするRFeB系焼結磁石製造方法。
Raw material powder for RFeB-based sintered magnets having a median D50 value of 3.0 μm or less as measured by laser diffraction is dispersed in nitrogen gas for 30 to 300 minutes. a surface-nitrided raw material powder producing step of producing a surface-nitrided raw material powder in which the surfaces of the particles are nitrided;
an orienting step of placing the surface-nitriding raw material powder in a container and applying a magnetic field to orient the surface-nitriding raw material powder without compression molding the surface-nitriding raw material powder;
and a sintering step of sintering the surface-nitrided raw material powder oriented in the orientation step without compression molding.
前記表面窒化原料粉末作製工程において、ジェットミルを用いて窒素ガス中で原料を粉砕することにより前記表面窒化原料粉末を作製することを特徴とする請求項2に記載のRFeB系焼結磁石製造方法。 3. The method for producing a RFeB-based sintered magnet according to claim 2, wherein in the surface-nitriding raw material powder producing step, the surface-nitriding raw material powder is produced by pulverizing the raw material in nitrogen gas using a jet mill. .
JP2018156085A 2018-08-23 2018-08-23 RFeB-based sintered magnet and its manufacturing method Active JP7183626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018156085A JP7183626B2 (en) 2018-08-23 2018-08-23 RFeB-based sintered magnet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156085A JP7183626B2 (en) 2018-08-23 2018-08-23 RFeB-based sintered magnet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020031145A JP2020031145A (en) 2020-02-27
JP7183626B2 true JP7183626B2 (en) 2022-12-06

Family

ID=69624388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156085A Active JP7183626B2 (en) 2018-08-23 2018-08-23 RFeB-based sintered magnet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7183626B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021229965A1 (en) * 2020-05-13 2021-11-18 株式会社大阪チタニウムテクノロジーズ Active metal particle surface modification method, and titanium particles or titanium alloy particles
JP2022174820A (en) 2021-05-12 2022-11-25 信越化学工業株式会社 Rare earth sintered magnet and method for producing rare earth sintered magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170728A (en) 2000-09-19 2002-06-14 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2006019521A (en) 2004-07-01 2006-01-19 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2791470B2 (en) * 1987-06-01 1998-08-27 日立金属 株式会社 RB-Fe sintered magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002170728A (en) 2000-09-19 2002-06-14 Sumitomo Special Metals Co Ltd Rare earth magnet and its manufacturing method
JP2006019521A (en) 2004-07-01 2006-01-19 Inter Metallics Kk Method and apparatus for manufacturing magnetically anisotropic rare earth sintered magnet

Also Published As

Publication number Publication date
JP2020031145A (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP7412484B2 (en) Grain boundary engineering of sintered magnetic alloys and compositions derived therefrom
JP6488976B2 (en) R-T-B sintered magnet
JP6177877B2 (en) Method for manufacturing RFeB-based sintered magnet and RFeB-based sintered magnet manufactured thereby
JP7251916B2 (en) RTB system permanent magnet
CN104916382A (en) Rare earth-cobalt permanent magnet
JP2018505540A (en) Hot pressure deformed magnet containing non-magnetic alloy and method for producing the same
KR102215818B1 (en) Hot-deformed magnet comprising nonmagnetic alloys and fabricating method thereof
CN108701517A (en) The manufacturing method of R-T-B based sintered magnets
JP6613730B2 (en) Rare earth magnet manufacturing method
JP7183626B2 (en) RFeB-based sintered magnet and its manufacturing method
JP2018174314A (en) R-T-B based sintered magnet
WO1989012113A1 (en) SINTERED RARE EARTH ELEMENT-B-Fe-MAGNET AND PROCESS FOR ITS PRODUCTION
WO2017086268A1 (en) Method for producing rare earth magnet and rare earth magnet
JP2020155634A (en) R-t-b based permanent magnet
JP2012199423A (en) Production method of anisotropic magnetic powder and anisotropic bond magnet
JPWO2018101408A1 (en) Permanent magnet and permanent magnet powder
JP6919788B2 (en) Rare earth sintered magnet
US11232890B2 (en) RFeB sintered magnet and method for producing same
WO2017090635A1 (en) Rare earth magnet, and method of producing rare earth magnet
JP6471594B2 (en) Rare earth magnet material and method for producing rare earth magnet material
EP3185252A1 (en) RFeB-BASED SINTERED MAGNET
JP2014192460A (en) Method of manufacturing r-t-x based powder-compacted magnet, and r-t-x based powder-compacted magnet
JP7379935B2 (en) RFeB sintered magnet
JP2017216298A (en) Rare earth magnet material and method for manufacturing rare earth magnet material
WO2019182039A1 (en) Rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221107

R150 Certificate of patent or registration of utility model

Ref document number: 7183626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150