JP2006210376A - R-t-b-based sintered magnet - Google Patents

R-t-b-based sintered magnet Download PDF

Info

Publication number
JP2006210376A
JP2006210376A JP2005016364A JP2005016364A JP2006210376A JP 2006210376 A JP2006210376 A JP 2006210376A JP 2005016364 A JP2005016364 A JP 2005016364A JP 2005016364 A JP2005016364 A JP 2005016364A JP 2006210376 A JP2006210376 A JP 2006210376A
Authority
JP
Japan
Prior art keywords
magnetization
sintered magnet
rtb
magnetic field
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005016364A
Other languages
Japanese (ja)
Other versions
JP4274480B2 (en
Inventor
Naoto Oji
直人 王子
Eiji Kato
英治 加藤
Makoto Iwasaki
信 岩崎
Tsutomu Ishizaka
力 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2005016364A priority Critical patent/JP4274480B2/en
Publication of JP2006210376A publication Critical patent/JP2006210376A/en
Application granted granted Critical
Publication of JP4274480B2 publication Critical patent/JP4274480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an R-T-B-based sintered magnet that obtains a high magnetization rate at a low magnetization magnetic field and has a fast rise in the magnetization rate until a magnetization rate of almost 100%, for example approximately 85%, is reached. <P>SOLUTION: The R-T-B-based sintered magnet is made of a sintered body having a main phase comprising R<SB>2</SB>T<SB>14</SB>B crystal grains (however, for example R is one type or at least two types of rare earth elements;T is one type or at least two types of transition metal elements with Fe or Fe and Co as requisites), the average grain diameter of the R<SB>2</SB>T<SB>14</SB>B crystal grains is 10 μm or smaller, and the presence ratio in the sintered body of the R<SB>2</SB>T<SB>14</SB>B crystal grains having a particle diameter of 15 μm or higher is 1-8%, and the amount of oxygen in the sintered body is 4,500-6,000 ppm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、R−T−B(ただし、Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素)系焼結磁石に関し、特に着磁特性の高いR−T−B系焼結磁石に関する。   The present invention relates to an R-T-B (wherein R is one or more rare earth elements, T is one or more transition metal elements in which Fe, Fe and Co are essential) based sintered magnets. In particular, the present invention relates to an RTB-based sintered magnet having high magnetization characteristics.

希土類磁石の中でもR−T−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であることから、各種電気機器に採用されている。
これまで、R−T−B系焼結磁石の磁気特性、具体的には残留磁束密度、保磁力あるいは最大エネルギー積の向上のための研究、開発が主になされてきた。しかし、近時、着磁特性に着目した研究、開発が行なわれている。R−T−B系焼結磁石は、フェライト磁石に比べて高い着磁磁界を必要とする。例えば、リング状のR−T−B系焼結磁石をモータの回転子として用いる場合に、モータにR−T−B系焼結磁石を組み込んだ後にリング状のR−T−B系焼結磁石に捲き回したモータ用コイルを用いて着磁させることがある。モータが小型の場合には所定の捲き回し数を得るためにコイルの線径が細くなり、大電流を流すことができず、そのためにR−T−B系焼結磁石に対して十分な着磁磁界を印加することができない。したがって、以上のような用途に用いられるR−T−B系焼結磁石としては、低い着磁磁界で可能な限り高い着磁特性を有することが要求される。
Among rare earth magnets, RTB-based sintered magnets are used in various electrical devices because they are excellent in magnetic properties and Nd as a main component is abundant and relatively inexpensive. .
Until now, research and development have been mainly conducted for improving the magnetic characteristics of the RTB-based sintered magnet, specifically, the residual magnetic flux density, the coercive force, or the maximum energy product. However, recently, research and development focusing on magnetizing characteristics have been carried out. The RTB-based sintered magnet requires a higher magnetizing magnetic field than the ferrite magnet. For example, when a ring-shaped RTB-based sintered magnet is used as a rotor of a motor, the ring-shaped RTB-based sintered magnet is incorporated after the RTB-based sintered magnet is incorporated into the motor. Magnetization may be performed using a motor coil wound around a magnet. When the motor is small, the coil wire diameter becomes thin to obtain a predetermined number of turns, and a large current cannot be passed. Therefore, sufficient attachment to the R-T-B system sintered magnet is possible. A magnetic field cannot be applied. Accordingly, the RTB-based sintered magnet used for the above-described applications is required to have as high a magnetization characteristic as possible with a low magnetization magnetic field.

例えば、特開2002−356701号公報(特許文献1)には、着磁特性の優れるR−T−B系焼結磁石として、主相の平均組成が、(LR1-xHRx214A(Tは、Fe、又はFeとFe以外の遷移金属元素の少なくとも1種との混合物、Aはボロン又はボロンと炭素との混合物、LRは軽希土類元素の少なくとも1種、HRは重希土類元素の少なくとも1種、0<x<1)で表される希土類合金焼結体であって、(LR1-pHRp214A(0≦p<x)で表される組成の第1の主相と、(LR1-qHRq214A(x<q≦1)で表される組成の第2の主相との少なくとも一方を複数有する結晶粒を含んでいる希土類合金焼結体が開示されている。 For example, in Japanese Patent Laid-Open No. 2002-356701 (Patent Document 1), the average composition of the main phase is (LR 1-x HR x ) 2 T as an RTB-based sintered magnet having excellent magnetization characteristics. 14 A (T is Fe or a mixture of Fe and at least one transition metal element other than Fe, A is boron or a mixture of boron and carbon, LR is at least one light rare earth element, and HR is heavy rare earth A rare earth alloy sintered body represented by at least one element, 0 <x <1, and having a composition represented by (LR 1-p HR p ) 2 T 14 A (0 ≦ p <x) It includes crystal grains having a plurality of at least one of the first main phase and the second main phase having a composition represented by (LR 1-q HR q ) 2 T 14 A (x <q ≦ 1). A rare earth alloy sintered body is disclosed.

また、特開2003−217918号公報(特許文献2)には、着磁特性の向上を目的として、重量%で、R(RはYを含む希土類元素の少なくとも1種であり、Rに占めるNdが50原子%以上である):25〜35%、B:0.8〜1.5%、必要によりM(Ti、Cr、Ga、Mn、Co、Ni、Cu、Zn、Nb、Alから選ばれる少なくとも1種):8%以下、及び残部T(Fe又はFe及びCo)、ならびに不可避的不純物を含有し、80at%以上をFeACo1-AとするFe相が0.01〜300μmの大きさで焼結体中に残存している結晶組織を有する希土類焼結磁石において、残留磁束密度で評価される着磁率Br(0.2MA/m)/Br(2.0MA/m)が59%以上、フラックスで評価される着磁率Φ(0.3MA/m)/Φ(4.0MA/m)が4%以上であることが開示されている。 Japanese Patent Laid-Open No. 2003-217918 (Patent Document 2) describes, for the purpose of improving the magnetizing characteristics, in weight%, R (R is at least one kind of rare earth element including Y, and Nd occupies R). Is 25-35%, B: 0.8-1.5%, M (Ti, Cr, Ga, Mn, Co, Ni, Cu, Zn, Nb, Al if necessary) At least one selected from the group consisting of 8% or less and the balance T (Fe or Fe and Co) and unavoidable impurities, and Fe phase having an Fe A Co 1-A content of 80 at% or more is 0.01 to 300 μm. In a rare earth sintered magnet having a size and a crystal structure remaining in the sintered body, the magnetization rate Br (0.2 MA / m) / Br (2.0 MA / m) evaluated by the residual magnetic flux density is 59. % Or more, magnetization rate Φ (0.3M Discloses that /M)/fai(4.0MA/m) is 4% or more.

特開2002−356701号公報JP 2002-356701 A 特開2003−217918号公報JP 2003-217918 A

特許文献1に開示された技術によれば、磁気特性を低下させることなく着磁特性を改善することができる。しかし、50%程度の着磁率を得るために0.8MA/m(10kOe)程度の着磁磁界が必要であり、さらに低い着磁磁界で50%程度の着磁率を得ることが望まれる。また、特許文献2における残留磁束密度で評価される着磁率Br(0.2MA/m)/Br(2.0MA/m)が59%以上、フラックスで評価される着磁率Φ(0.3MA/m)/Φ(4.0MA/m)が4%以上という値は、着磁特性が良いとはいえない。
一方で、本発明者等の検討によると、低い磁界でより高い着磁率が得られるR−T−B系焼結磁石は、着磁率の着磁磁界による変動を表す着磁特性曲線がなだらかな傾斜を示す傾向にある。つまり、着磁率特性曲線が緩やかなため100%近傍の着磁率に到達するまでに、より大きな着磁磁界が必要であった。
本発明は、このような技術的課題に基づいてなされたもので、低い着磁磁界でより高い着磁率を得るとともに、100%近傍、例えば85%程度の着磁率に到達するまで、より着磁率の立ち上がりが早いR−T−B系焼結磁石を提供することを目的とする。
According to the technique disclosed in Patent Document 1, the magnetization characteristics can be improved without deteriorating the magnetic characteristics. However, a magnetizing magnetic field of about 0.8 MA / m (10 kOe) is necessary to obtain a magnetizing ratio of about 50%, and it is desirable to obtain a magnetizing ratio of about 50% with a lower magnetizing field. In addition, the magnetization rate Br (0.2 MA / m) / Br (2.0 MA / m) evaluated by the residual magnetic flux density in Patent Document 2 is 59% or more, and the magnetization rate Φ (0.3 MA / m) evaluated by the flux. When the value of m) / Φ (4.0 MA / m) is 4% or more, it cannot be said that the magnetization characteristics are good.
On the other hand, according to the study by the present inventors, the R-T-B type sintered magnet that can obtain a higher magnetization rate with a low magnetic field has a gentle magnetization characteristic curve that represents the fluctuation of the magnetization rate due to the magnetization magnetic field. It tends to show an inclination. That is, since the magnetization characteristic curve is gentle, a larger magnetizing magnetic field is required to reach a magnetization rate near 100%.
The present invention has been made on the basis of such a technical problem, and obtains a higher magnetization rate with a low magnetization magnetic field, and further increases the magnetization rate until reaching a magnetization rate of around 100%, for example, about 85%. An object of the present invention is to provide an R-T-B based sintered magnet having a quick rise of.

かかる目的のもと、本発明者が、R214B結晶粒からなる主相を備える焼結体からなる磁石について検討を行なったところ、焼結体中に比較的粗大なR214B結晶粒を所定量存在させることにより着磁特性の高いR−T−B系焼結磁石が得られた。
すなわち本発明のR−T−B系焼結磁石は、R214B結晶粒(ただし、Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素。以下同じ。)からなる主相を備えた焼結体からなり、R214B結晶粒の平均粒径が10μm以下であり、かつ15μm以上の粒径を有するR214B結晶粒の焼結体における存在比率が1〜8%であり、焼結体の酸素量が4500〜6000ppmであることを特徴とする。
For this purpose, the present inventor examined a magnet made of a sintered body having a main phase composed of R 2 T 14 B crystal grains, and found that a relatively coarse R 2 T 14 in the sintered body. By allowing a predetermined amount of B crystal grains to be present, an RTB-based sintered magnet having high magnetization characteristics was obtained.
That is, the RTB-based sintered magnet of the present invention has R 2 T 14 B crystal grains (where R is one or more of rare earth elements, and T is one of the essential elements Fe, Fe and Co). Or a sintered body having a main phase composed of two or more transition metal elements, the same shall apply hereinafter), the R 2 T 14 B crystal grains have an average grain size of 10 μm or less and a grain size of 15 μm or more. The R 2 T 14 B crystal grains having an existing ratio in the sintered body is 1 to 8%, and the oxygen content of the sintered body is 4500 to 6000 ppm.

本発明のR−T−B系焼結磁石は、Pc(パーミアンス係数)が2において、400kA/mの有効磁場(ただし、有効磁場=印加磁場−反磁場)を印加したときのトータルフラックスをf1、600kA/mの有効磁場を印加したときのトータルフラックスをf2、2000kA/mの有効磁場を印加したときのトータルフラックスをf3とすると、着磁率a(=f1/f3×100)が35%以上、かつ、着磁率b(=f2/f3×100)が85%以上という優れた着磁特性を得ることができる。   The RTB-based sintered magnet of the present invention has a total flux of f1 when an effective magnetic field of 400 kA / m (where effective magnetic field = applied magnetic field-demagnetizing field) is applied at a Pc (permeance coefficient) of 2. When the total flux when an effective magnetic field of 600 kA / m is applied is f2, and the total flux when an effective magnetic field of 2000 kA / m is applied is f3, the magnetization rate a (= f1 / f3 × 100) is 35% or more. In addition, it is possible to obtain an excellent magnetization characteristic that the magnetization rate b (= f2 / f3 × 100) is 85% or more.

ところで従来から、R−T−B系焼結磁石は、高い保磁力を得ようとする場合には残留磁束密度が低くなり、逆に高い残留磁束密度を得ようとする場合には保磁力が低くなることが知られている。例えば、希土類元素として含有される重希土類元素(典型的には、Dy及び/又はTb)の量を調整すること、具体的には高保磁力を得たいときには重希土類元素の量を増やし、高残留磁束密度を得たいときには重希土類元素の量を減らすことにより、所望する特性を得ていた。そして、保磁力の低いタイプのR−T−B系焼結磁石は、着磁特性が低いことが概念的には知られていた。ところが、従来、着磁特性を向上させる有効な手段は見出されていなかった。   Conventionally, an RTB-based sintered magnet has a low residual magnetic flux density when trying to obtain a high coercive force, and conversely, when an attempt is made to obtain a high residual magnetic flux density, the coercive force is low. It is known to be lower. For example, adjusting the amount of heavy rare earth elements (typically Dy and / or Tb) contained as rare earth elements, specifically increasing the amount of heavy rare earth elements to obtain a high coercive force, When obtaining the magnetic flux density, the desired characteristics were obtained by reducing the amount of heavy rare earth elements. And it was conceptually known that the RTB-based sintered magnet with a low coercive force has low magnetization characteristics. However, no effective means for improving the magnetization characteristics has been found so far.

ところが、本発明によると、保磁力(HcJ)が1600kA/m(20kOe)以下の低保磁力タイプのR−T−B系焼結磁石においても低い着磁磁界における着磁特性を向上させることができるという利点がある。このR−T−B系焼結磁石は、残留磁束密度(Br)が1.3T以上の特性を確保することができる。
本発明のR−T−B系焼結磁石において、焼結体中の酸素量が4500〜6000ppmの範囲にあることが、以上の優れた着磁特性に寄与する。さらに、焼結体中にZr、Nb、Hfが分散していることが、本発明にとって好ましい。
However, according to the present invention, even in a low coercive force type R-T-B sintered magnet having a coercive force (HcJ) of 1600 kA / m (20 kOe) or less, it is possible to improve the magnetization characteristics in a low magnetization field. There is an advantage that you can. This RTB-based sintered magnet can ensure the characteristic that the residual magnetic flux density (Br) is 1.3 T or more.
In the RTB-based sintered magnet of the present invention, the amount of oxygen in the sintered body is in the range of 4500 to 6000 ppm contributes to the excellent magnetization characteristics described above. Furthermore, it is preferable for the present invention that Zr, Nb, and Hf are dispersed in the sintered body.

R−T−B系焼結磁石としては、R:25〜35wt%、B:0.5〜4wt%、Al及びCuの1種又は2種を0.02〜0.6wt%、Zr、Nb及びHfの1種又は2種以上を0.02〜1.5wt%、Co:0.5〜5wt%以下、残部実質的にFeからなる組成を有することが好ましく、さらに上記組成にBi及びGaの1種又は2種を0.01〜0.2wt%含有する組成が好ましい。   As an RTB-based sintered magnet, R: 25 to 35 wt%, B: 0.5 to 4 wt%, one or two of Al and Cu are 0.02 to 0.6 wt%, Zr, Nb It is preferable that one or two or more of Hf has a composition of 0.02 to 1.5 wt%, Co: 0.5 to 5 wt% or less, and the balance substantially consisting of Fe. A composition containing 0.01 to 0.2 wt% of one or two of these is preferred.

本発明によるR−T−B系焼結磁石は、Rとして0.5〜12wt%の重希土類元素を含むことができる。重希土類元素としては、Dy及び/又はTbを含むことが好ましい。
また、本発明によるR−T−B系焼結磁石は、種々の形態の磁石に用いることができるが、多極着磁される磁石に用いた場合にその効果を顕著に発揮することができる。
本発明によるR−T−B系焼結磁石は、高い磁気特性を有するためには、焼結体中の窒素量を20〜600ppm、炭素量を1500ppm以下に規制することが好ましい。
The RTB-based sintered magnet according to the present invention may contain 0.5 to 12 wt% heavy rare earth element as R. The heavy rare earth element preferably contains Dy and / or Tb.
In addition, the RTB-based sintered magnet according to the present invention can be used for various types of magnets, but the effect can be remarkably exhibited when used for magnets that are multipolarly magnetized. .
In order for the RTB-based sintered magnet according to the present invention to have high magnetic properties, it is preferable to regulate the amount of nitrogen in the sintered body to 20 to 600 ppm and the amount of carbon to 1500 ppm or less.

本発明によれば、400kA/m(5.1kOe)程度の低い着磁磁界での着磁率が向上されるとともに、600kA/m(7.6kOe)以上の着磁磁界における着磁率も向上されたR−T−B系焼結磁石を提供する。このような着磁特性に優れたR−T−B系焼結磁石は、多極着磁磁石に用いた場合には、ニュートラルゾーンの幅を狭くすることができる。このようなリング磁石を用いたモータは、高い回転性能を保持することができる。また、着磁率の高い磁石は、材質的に高コストで高磁気特性であるが着磁率の低い磁石に比べて、実際に発生するトータルフラックスが多い場合がある。したがって、本発明は、所定のトータルフラックスを低コストの磁石で実現することができる。または磁石のサイズを小型化することができる。   According to the present invention, the magnetization rate in a magnetization field as low as about 400 kA / m (5.1 kOe) is improved, and the magnetization rate in a magnetization field of 600 kA / m (7.6 kOe) or more is also improved. An RTB-based sintered magnet is provided. Such an RTB-based sintered magnet having excellent magnetization characteristics can reduce the width of the neutral zone when used in a multipolar magnetized magnet. A motor using such a ring magnet can maintain high rotational performance. In addition, a magnet with a high magnetization rate has a high cost and high magnetic properties as a material, but there are cases where a total flux actually generated is larger than a magnet with a low magnetization rate. Therefore, the present invention can realize a predetermined total flux with a low-cost magnet. Alternatively, the size of the magnet can be reduced.

以下、本発明によるR−T−B系焼結磁石及びその製造方法について詳細に説明する。
<焼結体組織>
本発明によるR−T−B系焼結磁石は、よく知られているように、R214B結晶粒(Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを主体とする遷移金属元素の1種以上)からなる主相を含む。またこの主相の他に粒界相を含む。この粒界相は、Rの含有量が主相よりも多い。
また、本発明のR−T−B系焼結磁石は、焼結体中に15μm以上の粒径を有するR214B結晶粒(以下、単に結晶粒ということがある)が1〜8%存在することが重要である。後述する第1実施例で説明するように、焼結体中に15μm以上の粒径を有する結晶粒が1%未満では着磁率向上を図ることができない。また、焼結体中に15μm以上の粒径を有する結晶粒が8%を超えて存在すると、高い着磁率を得ることができるものの、保磁力の低下が顕著となる。したがって本発明では、15μm以上の粒径を有する結晶粒を1〜8%、好ましくは2〜7%、さらに好ましくは3〜6%存在させる。
Hereinafter, the RTB-based sintered magnet and the manufacturing method thereof according to the present invention will be described in detail.
<Sintered body structure>
As is well known, the RTB-based sintered magnet according to the present invention has R 2 T 14 B crystal grains (R is one or more rare earth elements, and T is Fe or Fe and Co. A main phase composed of one or more transition metal elements as a main component. In addition to this main phase, a grain boundary phase is included. This grain boundary phase has a larger R content than the main phase.
In addition, the RTB-based sintered magnet of the present invention has 1 to 8 R 2 T 14 B crystal grains (hereinafter sometimes simply referred to as crystal grains) having a grain size of 15 μm or more in the sintered body. % Is important. As will be described in a first example to be described later, the magnetization rate cannot be improved if the sintered body has less than 1% of crystal grains having a grain size of 15 μm or more. Further, when the crystal grains having a grain size of 15 μm or more exist in the sintered body in excess of 8%, a high magnetization can be obtained, but the coercive force is significantly lowered. Therefore, in the present invention, 1 to 8%, preferably 2 to 7%, more preferably 3 to 6% of crystal grains having a grain size of 15 μm or more are present.

本発明において、15μm以上の粒径を有する比較的に粗大な結晶粒が存在することにより優れた着磁特性が得られる理由は明らかでない。しかし、このような粗大な結晶粒ほど磁区の回転が容易であり、この粗大粒の磁区の回転が周囲の微小粒の磁区の回転を誘起したために着磁特性が向上したものと解される。
15μm以上の粒径を有する結晶粒が1〜8%存在する焼結体を得る方法を本発明は問わない。なお、磁場中成形に供される微粉砕粉の粒度分布、焼結条件を操作することにより、15μm以上の粒径を有する結晶粒が1〜8%存在する焼結体を得ることが可能である。
In the present invention, the reason why excellent magnetization characteristics can be obtained by the presence of relatively coarse crystal grains having a grain size of 15 μm or more is not clear. However, it can be understood that such a coarse crystal grain is easier to rotate the magnetic domain, and the rotation of the magnetic domain of the coarse grain induces the rotation of the magnetic domain of the surrounding fine grains, so that the magnetization characteristics are improved.
This invention does not ask | require the method of obtaining the sintered compact in which the crystal grain which has a particle size of 15 micrometers or more exists 1-8%. It is possible to obtain a sintered body in which 1 to 8% of crystal grains having a particle size of 15 μm or more exist by manipulating the particle size distribution and sintering conditions of the finely pulverized powder subjected to molding in a magnetic field. is there.

また、本発明のR−T−B系焼結磁石は、R214B結晶粒の平均粒径を10μm以下とする。平均粒径が10μmを超えると保磁力の低下が顕著となるためである。ただし、本発明は15μm以上の粒径を有する結晶粒を意識的に存在させるため、結晶粒の平均粒径を10μm以下の範囲内では大きめに設定することが有利である。そのため本発明では、結晶粒の平均粒径は6〜9μmの範囲とすることが好ましい。 In the RTB-based sintered magnet of the present invention, the average particle size of the R 2 T 14 B crystal grains is 10 μm or less. This is because when the average particle size exceeds 10 μm, the coercive force is significantly reduced. However, in the present invention, since crystal grains having a grain size of 15 μm or more are intentionally present, it is advantageous to set a larger average grain size within a range of 10 μm or less. Therefore, in this invention, it is preferable to make the average particle diameter of a crystal grain into the range of 6-9 micrometers.

<着磁特性>
本発明は、Pc(パーミアンス係数)が2において、400kA/mの有効磁場(ただし、有効磁場=印加磁場−反磁場)を印加したときのトータルフラックスをf1、600kA/mの有効磁場を印加したときのトータルフラックスをf2、2000kA/mの有効磁場を印加したときのトータルフラックスをf3とすると、着磁率a(=f1/f3×100)が35%以上、かつ、着磁率b(=f2/f3×100)が85%以上である。さらに、本発明のR−T−B系焼結磁石は、790kA/mの有効磁場を印加したときのトータルフラックスをf4とすると、着磁率c(=f4/f3×100)が95%以上となり、極めて着磁率が高い。なお、本発明におけるPcは、「焼結磁石」俵好夫、大橋健共著(森北出版)第146頁の図5−4に基づいて定めている。また、着磁率は以下によって測定した。評価する磁石をポールピースに挟み込んで閉磁路を形成した後、電磁石に電流を流し着磁を行なった。この場合、印加磁場=有効磁場となる。着磁後、フラックスメータによりトータルフラックスを測定した。
<Magnetic properties>
In the present invention, when Pc (permeance coefficient) is 2, an effective magnetic field of 400 kA / m (however, effective magnetic field = applied magnetic field-demagnetizing field) is applied, the total flux is f1, and an effective magnetic field of 600 kA / m is applied. If the total flux when f2 and an effective magnetic field of 2000 kA / m are applied is f3, the magnetization a (= f1 / f3 × 100) is 35% or more and the magnetization b (= f2 / f) f3 × 100) is 85% or more. Further, the RTB-based sintered magnet of the present invention has a magnetization rate c (= f4 / f3 × 100) of 95% or more when the total flux when an effective magnetic field of 790 kA / m is applied is f4. The magnetization rate is extremely high. Note that Pc in the present invention is determined based on FIG. 5-4 on page 146 of “sintered magnet” by Yoshio Tsuji and Kenji Ohashi (Morikita Publishing). The magnetization rate was measured as follows. A magnet to be evaluated was sandwiched between pole pieces to form a closed magnetic circuit, and then an electric current was passed through the electromagnet for magnetization. In this case, the applied magnetic field = effective magnetic field. After magnetization, the total flux was measured with a flux meter.

ここで着磁特性についていえば、前述したように、低磁界でより大きな着磁率を有し、かつ着磁率の立ち上がり急峻であることが理想的である。ところが、従来、保磁力(HcJ)が1600kA/m以下の低保磁力タイプのR−T−B系焼結磁石は、この両者を満足することは容易ではなかった。しかるに、本発明は、着磁率a(=f1/f3×100)が35%以上、かつ、着磁率b(=f2/f3×100)が85%以上、さらには着磁率c(=f4/f3×100)が95%以上という、従来にはない低磁界において高着磁率を有し、かつ着磁率の立ち上がりの早いR−T−B系焼結磁石を提供する。   Here, regarding the magnetization characteristics, as described above, it is ideal that the magnetic field has a larger magnetization rate in a low magnetic field and that the magnetization rate rises steeply. However, conventionally, a low coercive force type R-T-B type sintered magnet having a coercive force (HcJ) of 1600 kA / m or less has not been easy to satisfy both. However, according to the present invention, the magnetization a (= f1 / f3 × 100) is 35% or more, the magnetization b (= f2 / f3 × 100) is 85% or more, and the magnetization c (= f4 / f3). The present invention provides an RTB-based sintered magnet having a high magnetization rate in an unprecedented low magnetic field of × 100) of 95% or more and a rapid rise in magnetization rate.

次に、本発明のR−T−B系焼結磁石の好ましい化学組成について説明する。この化学組成は、主相及び粒界相全体としてのものである。
本発明のR−T−B系焼結磁石は、Rを25〜35wt%含むことが好ましい。Rの量が25wt%未満だと、R−T−B系焼結磁石の主相となるR214B結晶粒の生成が十分ではない。このため、軟磁性を持つα−Feなどが析出し、保磁力が著しく低下する。一方、Rの量が35wt%を超えると主相を構成するR214B結晶粒の体積比率が低下し、残留磁束密度が低下する。またRの量が35wt%を超えるとRが酸素と反応し、含有する酸素量が増え、これに伴い保磁力発生に有効なR−リッチ相が減少し、保磁力の低下を招く。したがって、Rの量は25〜35wt%とする。望ましいRの量は26〜33wt%、さらに望ましいRの量は27〜32wt%である。
Next, a preferable chemical composition of the RTB-based sintered magnet of the present invention will be described. This chemical composition is that of the main phase and the whole grain boundary phase.
The RTB-based sintered magnet of the present invention preferably contains 25 to 35 wt% of R. When the amount of R is less than 25 wt%, the generation of R 2 T 14 B crystal grains that are the main phase of the R-T-B sintered magnet is not sufficient. For this reason, α-Fe or the like having soft magnetism is precipitated, and the coercive force is remarkably lowered. On the other hand, when the amount of R exceeds 35 wt%, the volume ratio of R 2 T 14 B crystal grains constituting the main phase is lowered, and the residual magnetic flux density is lowered. On the other hand, when the amount of R exceeds 35 wt%, R reacts with oxygen, and the amount of oxygen contained increases, and as a result, the R-rich phase effective for the generation of coercive force decreases and the coercive force decreases. Therefore, the amount of R is set to 25 to 35 wt%. A desirable amount of R is 26 to 33 wt%, and a more desirable amount of R is 27 to 32 wt%.

RとしてDy及び/又はTbを含む場合には、Dy及び/又はTbと他のRとの合計を25〜35wt%とする。そして、この範囲において、Dy及び/又はTbの量は0.1〜8wt%とすることが好ましい。Dy及び/又はTbは、残留磁束密度及び保磁力のいずれを重視するかによって上記範囲内においてその量を定めることが望ましい。つまり、高い残留磁束密度を得たい場合にはDy及び/又はTbの量を0.1〜3.5wt%とし、高い保磁力を得たい場合にはDy及び/又はTbの量を3.5〜8wt%とすることが望ましい。   When Dy and / or Tb is included as R, the sum of Dy and / or Tb and other R is set to 25 to 35 wt%. And in this range, it is preferable that the quantity of Dy and / or Tb shall be 0.1-8 wt%. The amount of Dy and / or Tb is desirably determined within the above range depending on which of the residual magnetic flux density and the coercive force is important. That is, when it is desired to obtain a high residual magnetic flux density, the amount of Dy and / or Tb is set to 0.1 to 3.5 wt%. When a high coercive force is desired to be obtained, the amount of Dy and / or Tb is set to 3.5. It is desirable to set it to -8 wt%.

本発明のR−T−B系焼結磁石は、ホウ素(B)を0.5〜4wt%含有する。Bが0.5wt%未満の場合には高い保磁力を得ることができない。但し、Bが4wt%を超えると残留磁束密度が低下する傾向がある。したがって、上限を4wt%とする。望ましいBの量は0.5〜1.5wt%、さらに望ましいBの量は0.8〜1.2wt%である。   The RTB-based sintered magnet of the present invention contains 0.5 to 4 wt% of boron (B). When B is less than 0.5 wt%, a high coercive force cannot be obtained. However, when B exceeds 4 wt%, the residual magnetic flux density tends to decrease. Therefore, the upper limit is 4 wt%. A desirable amount of B is 0.5 to 1.5 wt%, and a more desirable amount of B is 0.8 to 1.2 wt%.

本発明のR−T−B系焼結磁石は、Coを必須元素とするが、その量は0.5〜5wt%とすることが好ましい。Coはキュリー温度の向上及び耐食性の向上に効果があり、この効果を得るために0.5wt%以上とすることが好ましい。また、Cuと複合添加することにより、高い保磁力が得られる時効処理温度範囲が拡大するという効果をも有する。しかし、過剰の添加は保磁力の低下を招くとともに、コストを上昇させるため上限を5wt%とする。望ましいCoの含有量は0.5〜3wt%、さらに望ましいCoの含有量は0.8〜2.5wt%である。   The RTB-based sintered magnet of the present invention uses Co as an essential element, but the amount is preferably 0.5 to 5 wt%. Co is effective in improving the Curie temperature and the corrosion resistance. In order to obtain this effect, it is preferably 0.5 wt% or more. Moreover, it has the effect that the aging treatment temperature range from which a high coercive force is obtained is expanded by adding together with Cu. However, excessive addition causes a decrease in coercive force and increases the cost, so the upper limit is made 5 wt%. The desirable Co content is 0.5-3 wt%, and the more desirable Co content is 0.8-2.5 wt%.

本発明のR−T−B系焼結磁石は、Al及びCuの1種又は2種を0.02〜0.6wt%の範囲で含有することができる。この範囲でAl及びCuの1種又は2種を含有させることにより、得られるR−T−B系焼結磁石の高保磁力化、高耐食性化、温度特性の改善が可能となる。Alを添加する場合において、望ましいAlの量は0.03〜0.3wt%、さらに望ましいAlの量は0.05〜0.25wt%である。また、Cuを添加する場合において、Cuの量は0.3wt%以下(ただし、0を含まず)、望ましくは0.2wt%以下(ただし、0を含まず)、さらに望ましいCuの量は0.03〜0.15wt%である。Al及びCuの1種又は2種は、主相及び粒界相のいずれに含有されていても本発明の効果に悪影響を与えることはない。   The RTB-based sintered magnet of the present invention can contain one or two of Al and Cu in the range of 0.02 to 0.6 wt%. By including one or two of Al and Cu in this range, it is possible to increase the coercive force, increase the corrosion resistance, and improve the temperature characteristics of the obtained RTB-based sintered magnet. In the case of adding Al, a desirable amount of Al is 0.03 to 0.3 wt%, and a more desirable amount of Al is 0.05 to 0.25 wt%. When Cu is added, the amount of Cu is 0.3 wt% or less (excluding 0), desirably 0.2 wt% or less (excluding 0), and the more desirable amount of Cu is 0 0.03 to 0.15 wt%. One or two kinds of Al and Cu do not adversely affect the effect of the present invention even if they are contained in either the main phase or the grain boundary phase.

本発明のR−T−B系焼結磁石は、Zr、Nb及びHfの1種又は2種以上を0.02〜1.5wt%含有することができる。R−T−B系焼結磁石の磁気特性向上を図るために酸素含有量を低減する際に、Zr、Nb及びHfは焼結過程での結晶粒の異常成長を抑制する効果を発揮し、焼結体の組織を均一かつ微細にする。したがって、Zr、Nb及びHfは酸素量が低い場合にその効果が顕著になる。Zr、Nb及びHfの1種又は2種以上の望ましい量は0.05〜1.3wt%、さらに望ましい量は0.08〜1.0wt%である。   The RTB-based sintered magnet of the present invention can contain 0.02 to 1.5 wt% of one or more of Zr, Nb, and Hf. When reducing the oxygen content in order to improve the magnetic properties of the RTB-based sintered magnet, Zr, Nb and Hf exhibit the effect of suppressing abnormal growth of crystal grains during the sintering process, Make the structure of the sintered body uniform and fine. Therefore, Zr, Nb, and Hf have a remarkable effect when the amount of oxygen is low. A desirable amount of one or more of Zr, Nb and Hf is 0.05 to 1.3 wt%, and a more desirable amount is 0.08 to 1.0 wt%.

本発明のR−T−B系焼結磁石は、他の元素の含有を許容する。例えば、保磁力向上のためにBi及びGaの1種または2種を含有することが有効である。Bi及びGaの1種または2種は0.01〜0.2wt%の範囲で含有することが好ましい。Bi及びGaの1種または2種のさらに好ましい範囲は0.03〜0.15wt%、より好ましい範囲は0.05〜0.12wt%である。Bi及びGaは、主相及び粒界相のいずれに含有されていても本発明の効果に悪影響を与えることはない。   The RTB-based sintered magnet of the present invention allows the inclusion of other elements. For example, it is effective to contain one or two of Bi and Ga in order to improve the coercive force. One or two of Bi and Ga are preferably contained in the range of 0.01 to 0.2 wt%. A more preferable range of one or two of Bi and Ga is 0.03 to 0.15 wt%, and a more preferable range is 0.05 to 0.12 wt%. Even if Bi and Ga are contained in either the main phase or the grain boundary phase, they do not adversely affect the effects of the present invention.

本発明のR−T−B系焼結磁石は、その酸素量を4500〜6000ppmとすることが好ましい。酸素量が多いと非磁性成分である酸化物相が増大して、磁気特性を低下させる。一方、酸素量を低くすると焼結過程で結晶粒の成長を抑制する働きを有する酸化物相の量が減る。本発明は上述したように、比較的粗大な結晶粒を生成させることによる着磁特性向上効果を期待するものであり、酸化物相の増大をも考慮して、焼結体に含まれる酸素量を4500〜6000ppmとする。   The RTB-based sintered magnet of the present invention preferably has an oxygen content of 4500 to 6000 ppm. When the amount of oxygen is large, the oxide phase, which is a nonmagnetic component, increases and the magnetic properties are deteriorated. On the other hand, when the amount of oxygen is lowered, the amount of the oxide phase having the function of suppressing the growth of crystal grains during the sintering process is reduced. As described above, the present invention expects the effect of improving the magnetization characteristics by generating relatively coarse crystal grains, and the amount of oxygen contained in the sintered body in consideration of the increase in the oxide phase. Is 4500 to 6000 ppm.

<多極着磁磁石>
本発明は、多極着磁が施される磁石に適用することが好ましい。
多極着磁される磁石としては、モータ用に用いられるラジアル異方性又は極異方性リング状磁石、CD、DVD等の機器のピックアップ駆動用に用いられる直方体状磁石、VCM(Voice Coil Motor)用の扇状磁石がある。これらの多極着磁磁石は、N・Sの極性を複数有している。
以上の多極着磁磁石に本発明のR−T−B系焼結磁石を適用すると、ニュートラルゾーンの幅を狭くすることができる。そのために、トータルフラックス量が増加し、例えばモータに用いるものであればモータの特性を向上させることができる。ここで、ニュートラルゾーンとは、磁石を着磁した際に、極性(N・S)が反転する境界においてN又はSのどちらにも着磁されない領域をいう。特に、サイズの小さな磁石や極数の多い磁石においては、ニュートラルゾーンの占める割合が増大する。したがって、本発明による着磁特性の優れるR−T−B系焼結磁石を多極着磁に供することにより、ニュートラルゾーンの幅を狭くすることができ、ひいては当該磁石が用いられるモータの特性を向上することができる。
<Multipolar magnetized magnet>
The present invention is preferably applied to a magnet subjected to multipolar magnetization.
The magnets magnetized with multiple poles include radial or polar anisotropic ring magnets used for motors, rectangular parallelepiped magnets used for driving pickups of devices such as CDs and DVDs, and VCM (Voice Coil Motors). ) Fan-shaped magnet. These multipolar magnets have a plurality of N · S polarities.
When the RTB-based sintered magnet of the present invention is applied to the above multipolar magnetized magnet, the width of the neutral zone can be reduced. Therefore, the total flux amount is increased. For example, if used for a motor, the characteristics of the motor can be improved. Here, the neutral zone refers to a region that is not magnetized by either N or S at the boundary where the polarity (N · S) is reversed when the magnet is magnetized. In particular, in a small-sized magnet or a magnet having a large number of poles, the ratio of the neutral zone increases. Therefore, the width of the neutral zone can be narrowed by using the R-T-B sintered magnet having excellent magnetization characteristics according to the present invention for multipolar magnetization, and thus the characteristics of the motor in which the magnet is used can be reduced. Can be improved.

<製造方法>
次に、本発明によるR−T−B系焼結磁石の好適な製造方法について説明する。
本実施の形態では、単一の原料合金を用いて製造する方法について示す。ただし、本発明によるR−T−B系焼結磁石は、R214B結晶粒を主体とする合金と、この合金よりRを多く含む合金とを用いる混合法により製造することができることはいうまでもない。
<Manufacturing method>
Next, the suitable manufacturing method of the RTB system sintered magnet by this invention is demonstrated.
In this embodiment mode, a method of manufacturing using a single raw material alloy is described. However, the RTB-based sintered magnet according to the present invention can be manufactured by a mixing method using an alloy mainly composed of R 2 T 14 B crystal grains and an alloy containing more R than this alloy. Needless to say.

はじめに、真空又は不活性ガス、好ましくはAr雰囲気中でストリップキャスティングすることにより、所定組成の原料合金を得る。
原料合金が作製された後、原料合金は粉砕される。粉砕工程には、粗粉砕工程と微粉砕工程とがある。まず、原料合金を、それぞれ粒径数百μm程度になるまで粗粉砕する。粗粉砕は、スタンプミル、ジョークラッシャー、ブラウンミル等を用い、不活性ガス雰囲気中にて行なうことが好ましい。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行なうことが効果的である。また、水素吸蔵自体を粗粉砕として位置づけることもできる。
粗粉砕工程後、微粉砕工程に移る。微粉砕は、主にジェットミルが用いられる。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粗粉砕粉末を加速し、粗粉砕粉末同士の衝突やターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。微粉砕時に、ステアリン酸亜鉛等の粉砕助剤を0.01〜0.3wt%程度添加することにより、成形時に配向性の高い微粉を得ることができる。
First, a raw material alloy having a predetermined composition is obtained by strip casting in a vacuum or an inert gas, preferably in an Ar atmosphere.
After the raw material alloy is produced, the raw material alloy is pulverized. The pulverization process includes a coarse pulverization process and a fine pulverization process. First, the raw material alloys are coarsely pulverized until each particle size becomes about several hundred μm. The coarse pulverization is preferably performed in an inert gas atmosphere using a stamp mill, a jaw crusher, a brown mill or the like. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen. Moreover, hydrogen occlusion itself can also be positioned as coarse pulverization.
After the coarse pulverization process, the process proceeds to the fine pulverization process. For pulverization, a jet mill is mainly used. The jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, and the high-speed gas flow accelerates the coarsely pulverized powder. Or it is the method of generating and colliding with a container wall. By adding about 0.01 to 0.3 wt% of a grinding aid such as zinc stearate at the time of fine grinding, a fine powder with high orientation can be obtained at the time of molding.

次いで、微粉末を磁場印加によってその結晶軸を配向させた状態で磁場中成形する。この磁場中成形は、12〜20kOe(960〜1600kA/m)前後の磁場中で、0.3〜3.0ton/cm2(30〜300MPa)前後の圧力で行なえばよい。また、印加する磁場は静磁場の他に、パルス状の磁場でもよい。 Next, the fine powder is molded in a magnetic field with its crystal axis oriented by applying a magnetic field. The forming in the magnetic field may be performed at a pressure of about 0.3 to 3.0 ton / cm 2 (30 to 300 MPa) in a magnetic field of about 12 to 20 kOe (960 to 1600 kA / m). The applied magnetic field may be a pulsed magnetic field in addition to the static magnetic field.

磁場中成形後、その成形体を真空又は不活性ガス雰囲気中で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、1000〜1100℃で1〜5時間程度焼結すればよい。焼結工程の前に成形体に含まれている粉砕助剤、ガスなどを除去する処理を行なってもよい。焼結後、得られた焼結体に時効処理を施すことができる。この工程は、保磁力を制御する重要な工程である。時効処理を2段に分けて行なう場合には、800℃近傍、500℃近傍での所定時間の保持が有効である。800℃近傍での熱処理を焼結後に行なうと、保磁力が増大するため、混合法においては特に有効である。また、500℃近傍の熱処理で保磁力が大きく増加するため、時効処理を1段で行なう場合には、500℃近傍の時効処理を施すとよい。   After molding in a magnetic field, the compact is sintered in a vacuum or an inert gas atmosphere. Although it is necessary to adjust sintering temperature by various conditions, such as a composition, a grinding | pulverization method, a particle size, and a particle size distribution difference, what is necessary is just to sinter at 1000-1100 degreeC for about 1 to 5 hours. You may perform the process which removes the grinding | pulverization adjuvant, gas, etc. which are contained in the molded object before a sintering process. After sintering, the obtained sintered body can be subjected to an aging treatment. This process is an important process for controlling the coercive force. In the case where the aging treatment is performed in two stages, holding for a predetermined time at around 800 ° C. and around 500 ° C. is effective. When the heat treatment at around 800 ° C. is performed after sintering, the coercive force increases, which is particularly effective in the mixing method. In addition, since the coercive force is greatly increased by the heat treatment at around 500 ° C., when the aging treatment is performed in one stage, the aging treatment at around 500 ° C. is preferably performed.

以下本発明を具体的な実施例に基づいて説明する。
<第1実施例>
ストリップキャスト法により、表1に示す組成(wt%)の原料合金を作製した。
得られた原料合金に対して室温にて水素を吸蔵させた後、Ar雰囲気中で600℃×1時間の脱水素を行なう、水素粉砕処理を行なった。
高磁気特性を得るべく、本実験では焼結体酸素量を4500〜6000ppmに制御するため、水素粉砕(粉砕処理後の回収)から焼結(焼結炉に投入する)までの各工程の酸素濃度を200〜500ppmの範囲に制御している。
Hereinafter, the present invention will be described based on specific examples.
<First embodiment>
Raw material alloys having the composition (wt%) shown in Table 1 were produced by the strip casting method.
The obtained raw material alloy was occluded with hydrogen at room temperature and then subjected to hydrogen pulverization treatment in which dehydrogenation was performed at 600 ° C. for 1 hour in an Ar atmosphere.
In order to obtain high magnetic properties, oxygen in each step from hydrogen crushing (recovered after crushing) to sintering (put into the sintering furnace) is controlled in this experiment to control the oxygen content of the sintered body to 4500-6000 ppm. The concentration is controlled in the range of 200 to 500 ppm.

水素粉砕された合金に粉砕助剤としてステアリン酸を0.1%添加し、ジェットミルにて微粉砕を行なって、5種類の微粉末を得た。なお、5種類の微粉末は、ジェットミルによる粉砕時間を変えることにより得た。   0.1% of stearic acid was added as a grinding aid to the hydrogen-pulverized alloy and finely pulverized with a jet mill to obtain five types of fine powders. The five fine powders were obtained by changing the pulverization time by a jet mill.

得られた微粉末を1320kA/m(16.5kOe)の磁場中で加圧成形を行って成形体を得た。成形体の密度は4.2Mg/m3である。
得られた成形体を真空中において1040℃で4時間焼結した後、急冷した。次いで得られた焼結体に800℃×1時間と530℃×2.5時間(ともにAr雰囲気中)の2段時効処理を施した。
The obtained fine powder was subjected to pressure molding in a magnetic field of 1320 kA / m (16.5 kOe) to obtain a molded body. The density of the molded body is 4.2 Mg / m 3 .
The obtained molded body was sintered in vacuum at 1040 ° C. for 4 hours and then rapidly cooled. Next, the obtained sintered body was subjected to a two-stage aging treatment of 800 ° C. × 1 hour and 530 ° C. × 2.5 hours (both in an Ar atmosphere).

Figure 2006210376
Figure 2006210376

得られたR−T−B系焼結磁石についてB−Hトレーサにより磁気特性を測定するとともに、焼結体の平均結晶粒径、粒径が15μm以上の結晶粒の比率、密度、酸素量、窒素量及び炭素量を測定した。その結果を表2に示す。表2において、dは焼結体の平均結晶粒径、A1は粒径が15μm以上の結晶粒の比率(粗大粒比)、ρは焼結体の密度、Brは残留磁束密度、HcJは保磁力を示す。焼結体の平均結晶粒径dは、焼結体の研磨面を簡易偏光顕微鏡(オリンパス光学工業(株)製BX60M)で観察し、それを画像処理装置(旭化成工業(株)製IP−1000)にて評価した。この評価により、各結晶粒の面積が得られるので、それを円相当径に換算して結晶粒径とした。粗大粒比A1を求める基準となる15μmという粒径は簡易偏光顕微鏡にて観察した1視野480μm×540μmの焼結体組織の破断面写真から長径が15μm以上の粗大粒の面積比率を求め、5視野の粗大粒子の面積比率を平均して求めた値を用いた。   The magnetic properties of the obtained RTB-based sintered magnet were measured with a BH tracer, and the average crystal grain size of the sintered body, the ratio of crystal grains having a grain size of 15 μm or more, density, oxygen content, The amount of nitrogen and the amount of carbon were measured. The results are shown in Table 2. In Table 2, d is the average crystal grain size of the sintered body, A1 is the ratio of crystal grains having a grain size of 15 μm or larger (rough grain ratio), ρ is the density of the sintered body, Br is the residual magnetic flux density, and HcJ is the retention rate. Showing magnetic force. The average crystal grain size d of the sintered body was determined by observing the polished surface of the sintered body with a simple polarizing microscope (BX60M manufactured by Olympus Optical Co., Ltd.), and using the image processing apparatus (IP-1000 manufactured by Asahi Kasei Kogyo Co., Ltd.). ). Since the area of each crystal grain is obtained by this evaluation, it is converted to the equivalent circle diameter to obtain the crystal grain size. The particle size of 15 μm, which is a reference for obtaining the coarse particle ratio A1, is obtained by determining the area ratio of coarse particles having a major axis of 15 μm or more from a fractured surface photograph of a sintered body structure of 480 μm × 540 μm observed with a simple polarizing microscope. A value obtained by averaging the area ratio of coarse particles in the visual field was used.

表2に示すように、試料No.5を除くいずれのR−T−B系焼結磁石も1.3T以上の残留磁束密度(Br)、1300kA/m以上の保磁力(HcJ)を有していることがわかる。
また、R−T−B系焼結磁石の酸素量が、5300〜5700ppmの範囲、窒素量が100ppm以下、炭素量が800ppm以下であり、窒素量、炭素量が低いレベルにあることがわかる。
As shown in Table 2, sample no. It can be seen that all the R-T-B sintered magnets except 5 have a residual magnetic flux density (Br) of 1.3 T or more and a coercive force (HcJ) of 1300 kA / m or more.
Further, it can be seen that the oxygen content of the R-T-B system sintered magnet is in the range of 5300-5700 ppm, the nitrogen content is 100 ppm or less, the carbon content is 800 ppm or less, and the nitrogen content and the carbon content are low.

Figure 2006210376
Figure 2006210376

次に、試料No.1〜5のR−T−B系焼結磁石について、着磁率(Pc=2)を測定した。その結果を表3に示す。表3に示すように、粗大粒比A1が0.83%と最も小さい試料1のR−T−B系焼結磁石は、400kA/mの着磁磁界で35%未満の着磁率しか得られないことがわかる。一方で、粗大粒比A1が大きくなると着磁率が向上することがわかる。ただし、表2に示したように、粗大粒比A1が8.66%に達すると保磁力(HcJ)の低下が無視できなくなる。   Next, sample No. The magnetizability (Pc = 2) was measured for 1 to 5 RTB-based sintered magnets. The results are shown in Table 3. As shown in Table 3, the RTB-based sintered magnet of Sample 1 having the smallest coarse grain ratio A1 of 0.83% can obtain only a magnetization rate of less than 35% with a magnetizing magnetic field of 400 kA / m. I understand that there is no. On the other hand, it can be seen that when the coarse grain ratio A1 increases, the magnetization rate improves. However, as shown in Table 2, when the coarse particle ratio A1 reaches 8.66%, the decrease in coercive force (HcJ) cannot be ignored.

Figure 2006210376
Figure 2006210376

以上より、焼結体の粗大粒比A1(15μm以上の結晶粒の存在比率)を1〜8%とすることにより、400kA/mという低い着磁磁界で35%以上の着磁率を得ることができるとともに、600kA/mの着磁磁界で85%以上、さらには790kA/mの着磁磁界で95%以上の着磁率を得ることができる。このように本発明によるR−T−B系焼結磁石は、着磁率の立ち上がりが早い。   From the above, by setting the coarse grain ratio A1 (abundance ratio of crystal grains of 15 μm or more) of the sintered body to 1 to 8%, it is possible to obtain a magnetization rate of 35% or more with a low magnetization field of 400 kA / m. In addition, it is possible to obtain a magnetization rate of 85% or more with a magnetizing magnetic field of 600 kA / m, and more than 95% with a magnetizing magnetic field of 790 kA / m. As described above, the RTB-based sintered magnet according to the present invention has a rapid rise in magnetization rate.

<第2実施例>
微粉末を作製する際のジェットミル中の粉砕ガス(窒素)の酸素含有量を制御することによって最終の焼結体の酸素含有量を変動させた以外は第1実施例と同様にして4種類のR−T−B系希土類永久磁石(試料No.6〜9)を得た。得られたR−T−B系焼結磁石について、第1実施例と同様に磁気特性等を測定した。その結果を表4に示す。なお、表4中の記号は表2と同様である。
表4に示すように、酸素量(O2)が低いほど焼結体の平均結晶粒径d及び粗大粒比A1が大きくなることがわかる。このように粗大粒比A1が大きいと、第1実施例で示したように、着磁率向上を望めない。また、酸素量が本発明の範囲を超えると、残留磁束密度(Br)、保磁力(HcJ)ともに低下してしまう。以上より、本発明では酸素量を4500〜6000ppmとする。
<Second embodiment>
Four types were performed in the same manner as in the first example except that the oxygen content of the final sintered body was varied by controlling the oxygen content of the pulverized gas (nitrogen) in the jet mill when producing the fine powder. R-T-B rare earth permanent magnets (Sample Nos. 6 to 9) were obtained. About the obtained RTB-based sintered magnet, the magnetic properties and the like were measured in the same manner as in the first example. The results are shown in Table 4. The symbols in Table 4 are the same as those in Table 2.
As shown in Table 4, it can be seen that the lower the amount of oxygen (O 2 ), the larger the average crystal grain size d and coarse grain ratio A1 of the sintered body. When the coarse particle ratio A1 is thus large, as shown in the first embodiment, an improvement in the magnetization rate cannot be expected. Further, when the oxygen amount exceeds the range of the present invention, both the residual magnetic flux density (Br) and the coercive force (HcJ) are lowered. From the above, in the present invention, the amount of oxygen is set to 4500 to 6000 ppm.

Figure 2006210376
Figure 2006210376

次に、以上の焼結体について、着磁率(Pc=0.5、1.0、2.0)を測定した。その結果を表5に示すが、Pcが小さくなるにつれて着磁率は低下する傾向にある。400kA/mの着磁磁界において、Pc=0.5の着磁率が29%以上、Pc=1.0の着磁率が35%以上と低磁界で高い着磁率を示している。また、790kA/mの着磁磁界において、Pc=0.5の着磁率が85%以上、Pc=1.0の着磁率が95%以上の着磁率を示していることがわかる。   Next, the magnetization rate (Pc = 0.5, 1.0, 2.0) was measured for the above sintered body. The results are shown in Table 5. The magnetization rate tends to decrease as Pc decreases. In a magnetized magnetic field of 400 kA / m, the magnetization rate of Pc = 0.5 is 29% or more, and the magnetization rate of Pc = 1.0 is 35% or more, indicating a high magnetization rate in a low magnetic field. Further, it can be seen that in a magnetization field of 790 kA / m, the magnetization rate of Pc = 0.5 is 85% or more, and the magnetization rate of Pc = 1.0 is 95% or more.

Figure 2006210376
Figure 2006210376

Claims (5)

214B結晶粒(ただし、Rは希土類元素の1種又は2種以上、TはFe又はFe及びCoを必須とする1種又は2種以上の遷移金属元素。以下同じ。)からなる主相を備えた焼結体からなり、
前記R214B結晶粒の平均粒径が10μm以下であり、かつ15μm以上の粒径を有する前記R214B結晶粒の前記焼結体における存在比率が1〜8%であり、
前記焼結体の酸素量が4500〜6000ppmであることを特徴とするR−T−B系焼結磁石。
R 2 T 14 B crystal grains (wherein R is one or more rare earth elements, T is one or more transition metal elements essential for Fe, Fe and Co, and the same shall apply hereinafter). It consists of a sintered body with a main phase,
The R 2 T 14 B crystal grains have an average grain size of 10 μm or less, and the abundance ratio of the R 2 T 14 B crystal grains having a grain size of 15 μm or more in the sintered body is 1 to 8%;
An RTB-based sintered magnet, wherein the sintered body has an oxygen content of 4500 to 6000 ppm.
Pc(パーミアンス係数)が2において、400kA/mの有効磁場(ただし、有効磁場=印加磁場−反磁場)を印加したときのトータルフラックスをf1、600kA/mの有効磁場を印加したときのトータルフラックスをf2、2000kA/mの有効磁場を印加したときのトータルフラックスをf3とすると、着磁率a(=f1/f3×100)が35%以上、かつ、着磁率b(=f2/f3×100)が85%以上であることを特徴とする請求項1に記載のR−T−B系焼結磁石。   When Pc (permeance coefficient) is 2, the total flux when an effective magnetic field of 400 kA / m (however, effective magnetic field = applied magnetic field−demagnetizing field) is applied is f1, and the total flux when an effective magnetic field of 600 kA / m is applied F2 and a total flux when an effective magnetic field of 2000 kA / m is applied is f3, the magnetization a (= f1 / f3 × 100) is 35% or more and the magnetization b (= f2 / f3 × 100) The RTB-based sintered magnet according to claim 1, wherein the ratio is 85% or more. 前記R214B結晶粒の平均粒径が6〜9μmであることを特徴とする請求項1又は2に記載のR−T−B系焼結磁石。 3. The RTB-based sintered magnet according to claim 1, wherein an average particle diameter of the R 2 T 14 B crystal grains is 6 to 9 μm. 前記焼結体は、R:25〜35wt%、B:0.5〜4wt%、Al及びCuの1種又は2種を0.02〜0.6wt%、Zr、Nb及びHfの1種又は2種以上を0.02〜1.5wt%、Co:0.5〜5wt%以下、残部実質的にFeからなる組成を有することを特徴とする請求項1〜3のいずれかに記載のR−T−B系焼結磁石。   The sintered body is R: 25 to 35 wt%, B: 0.5 to 4 wt%, one or two of Al and Cu, 0.02 to 0.6 wt%, one of Zr, Nb and Hf, or The R according to any one of claims 1 to 3, which has a composition of 0.02 to 1.5 wt%, Co: 0.5 to 5 wt% or less, and the balance substantially consisting of Fe. -TB sintered magnet. 前記焼結体は、R:25〜35wt%、B:0.5〜4wt%、Al及びCuの1種又は2種を0.02〜0.6wt%、Zr、Nb及びHfの1種又は2種以上を0.02〜1.5wt%、Bi及びGaの1種又は2種を0.01〜0.2wt%、Co:0.5〜5wt%以下、残部実質的にFeからなる組成を有することを特徴とする請求項1〜3のいずれかに記載のR−T−B系焼結磁石。   The sintered body is R: 25 to 35 wt%, B: 0.5 to 4 wt%, one or two of Al and Cu, 0.02 to 0.6 wt%, one of Zr, Nb and Hf, or Two or more kinds are composed of 0.02 to 1.5 wt%, one or two kinds of Bi and Ga are 0.01 to 0.2 wt%, Co: 0.5 to 5 wt% or less, and the balance is substantially composed of Fe. The RTB-based sintered magnet according to any one of claims 1 to 3, wherein:
JP2005016364A 2005-01-25 2005-01-25 R-T-B sintered magnet Active JP4274480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005016364A JP4274480B2 (en) 2005-01-25 2005-01-25 R-T-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005016364A JP4274480B2 (en) 2005-01-25 2005-01-25 R-T-B sintered magnet

Publications (2)

Publication Number Publication Date
JP2006210376A true JP2006210376A (en) 2006-08-10
JP4274480B2 JP4274480B2 (en) 2009-06-10

Family

ID=36966923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005016364A Active JP4274480B2 (en) 2005-01-25 2005-01-25 R-T-B sintered magnet

Country Status (1)

Country Link
JP (1) JP4274480B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216726A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp R-t-b based permanent magnet
CN110491616A (en) * 2019-07-19 2019-11-22 宁波可可磁业股份有限公司 A kind of neodymium-iron-boron magnetic material and preparation method thereof
WO2019230457A1 (en) * 2018-05-29 2019-12-05 Tdk株式会社 R-t-b-based magnet, motor, and generator
EP3594975A1 (en) 2018-07-09 2020-01-15 Daido Steel Co.,Ltd. Rfeb-based sintered magnet
CN110706875A (en) * 2018-07-09 2020-01-17 大同特殊钢株式会社 RFeB sintered magnet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011216726A (en) * 2010-03-31 2011-10-27 Nitto Denko Corp R-t-b based permanent magnet
WO2019230457A1 (en) * 2018-05-29 2019-12-05 Tdk株式会社 R-t-b-based magnet, motor, and generator
JPWO2019230457A1 (en) * 2018-05-29 2021-07-26 Tdk株式会社 RTB magnets, motors and generators
JP7359140B2 (en) 2018-05-29 2023-10-11 Tdk株式会社 RTB magnets, motors and generators
EP3594975A1 (en) 2018-07-09 2020-01-15 Daido Steel Co.,Ltd. Rfeb-based sintered magnet
CN110706875A (en) * 2018-07-09 2020-01-17 大同特殊钢株式会社 RFeB sintered magnet
JP2020013975A (en) * 2018-07-09 2020-01-23 大同特殊鋼株式会社 RFeB BASED SINTERED MAGNET
CN110706875B (en) * 2018-07-09 2021-04-13 大同特殊钢株式会社 RFeB sintered magnet
US11527340B2 (en) 2018-07-09 2022-12-13 Daido Steel Co., Ltd. RFeB-based sintered magnet
JP7314513B2 (en) 2018-07-09 2023-07-26 大同特殊鋼株式会社 RFeB sintered magnet
CN110491616A (en) * 2019-07-19 2019-11-22 宁波可可磁业股份有限公司 A kind of neodymium-iron-boron magnetic material and preparation method thereof
CN110491616B (en) * 2019-07-19 2022-04-19 宁波可可磁业股份有限公司 Neodymium-iron-boron magnetic material and preparation method thereof

Also Published As

Publication number Publication date
JP4274480B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
US7199690B2 (en) R-T-B system rare earth permanent magnet
JP6380652B2 (en) Method for producing RTB-based sintered magnet
JP4648192B2 (en) R-T-B rare earth permanent magnet
JP4645855B2 (en) R-T-B sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JPH0510806B2 (en)
JP4076175B2 (en) R-T-B rare earth permanent magnet
JP6094612B2 (en) Method for producing RTB-based sintered magnet
JPWO2004029998A1 (en) Method for producing RTB-based rare earth permanent magnet
JP2006100847A (en) R-t-b based rare earth permanent magnet
JP3728316B2 (en) R-T-B rare earth permanent magnet
JP4274480B2 (en) R-T-B sintered magnet
JP3762912B2 (en) R-T-B rare earth permanent magnet
JP7035683B2 (en) RTB-based sintered magnet
JP2006295139A (en) Rare earth permanent magnet
JP2015135935A (en) Rare earth based magnet
JPWO2018101409A1 (en) Rare earth sintered magnet
JP3995677B2 (en) Method for producing RTB-based rare earth permanent magnet
JP4529180B2 (en) Rare earth permanent magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JP4534553B2 (en) R-T-B system sintered magnet and manufacturing method thereof
JP2011210838A (en) Rare-earth sintered magnet, method of manufacturing the same, and rotary machine
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JP5501833B2 (en) R-T-B permanent magnet
JP2577373B2 (en) Sintered permanent magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

R150 Certificate of patent or registration of utility model

Ref document number: 4274480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5