JP4710424B2 - Manufacturing method of radial magnetic anisotropic magnet motor - Google Patents

Manufacturing method of radial magnetic anisotropic magnet motor Download PDF

Info

Publication number
JP4710424B2
JP4710424B2 JP2005167985A JP2005167985A JP4710424B2 JP 4710424 B2 JP4710424 B2 JP 4710424B2 JP 2005167985 A JP2005167985 A JP 2005167985A JP 2005167985 A JP2005167985 A JP 2005167985A JP 4710424 B2 JP4710424 B2 JP 4710424B2
Authority
JP
Japan
Prior art keywords
magnet
mmax
magnetic
radial
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005167985A
Other languages
Japanese (ja)
Other versions
JP2006345619A (en
Inventor
文敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005167985A priority Critical patent/JP4710424B2/en
Publication of JP2006345619A publication Critical patent/JP2006345619A/en
Application granted granted Critical
Publication of JP4710424B2 publication Critical patent/JP4710424B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はラジアル異方性磁石モータの製造方法に関し、更に詳しくは、モータの高出力化、或いは出力特性を保ちながら薄型化などを図るとともに回転に伴うトルク脈動を低減する製造技術に関する。   The present invention relates to a method for manufacturing a radial anisotropic magnet motor, and more particularly to a manufacturing technique for reducing the torque pulsation associated with rotation while increasing the motor output or reducing the thickness while maintaining output characteristics.

メルトスパンで得られるNd2Fe14B、αFe/Nd2Fe14B、Fe3B/Nd2Fe14B磁石材料の形態はリボンなどの薄帯や、それを粉砕したフレーク状の粉末に制限される。このため、一般に使用されるバルク状永久磁石とするには材料形態の変換、つまり何らかの方法で薄帯や粉末を特定のバルクに固定化する技術が必要となる。粉末冶金学における基本的な粉末固定手段は常圧焼結であるが、当該リボンは準安定状態に基づく磁気特性を維持する必要があるため常圧焼結の適用は困難である。そのため、もっぱらエポキシ樹脂のような結合剤で特定形状のバルクに固定化することが行われた。例えば、R.W.Leeらは(BH)max111kJ/m3のリボンを樹脂で固定すると(BH)max72kJ/m3の等方性Nd2Fe14B系ボンド磁石ができるとした[R.W.Lee,E.G.Brewer,N.A.Schaffel,“Hot−pressed Neodymium−Iron−Boron magnets”IEEE Trans.Magn.,Vol.21,1958(1985)](非特許文献1参照)。 The form of Nd 2 Fe 14 B, αFe / Nd 2 Fe 14 B, Fe 3 B / Nd 2 Fe 14 B magnet material obtained by melt span is limited to ribbons and other flake powders. The For this reason, in order to obtain a generally used bulk permanent magnet, it is necessary to change the material form, that is, a technique for fixing a ribbon or powder to a specific bulk by some method. Although the basic powder fixing means in powder metallurgy is atmospheric pressure sintering, it is difficult to apply atmospheric pressure sintering because the ribbon needs to maintain magnetic properties based on a metastable state. For this reason, fixing to a bulk of a specific shape was performed exclusively with a binder such as an epoxy resin. For example, R.A. W. Lee et al. (B. H) max 111 kJ / m 3 ribbon fixed with resin (BH) max 72 kJ / m 3 isotropic Nd 2 Fe 14 B-based bond magnet [R. W. Lee, E .; G. Brewer, N.M. A. Schaffel, “Hot-pressed Neodymium-Iron-Boron magnets” IEEE Trans. Magn. , Vol. 21, 1958 (1985)] (see Non-Patent Document 1).

1986年、本発明者らは特願昭61−38830号公報によって上記メルトスパンリボンを粉砕したNd2Fe14B磁石粉末をエポキシ樹脂で固定した(BH)max〜72kJ/m3の小口径環状等方性Nd2Fe14Bボンド磁石が小型モータに有用であることを明らかにした(特許文献1参照)。その後、T.Shimodaも前記小口径環状等方性Nd2Fe14B系ボンド磁石の小型モータ特性をSm−Co系ラジアル異方性ボンド磁石の小型モータ特性と比較し、前者が有用であるとした[T.Shimoda,“Compression molding magnet made from rapid−quenched powder”,PERMANENT MAGNETS 1988 UPDATE”,Wheeler Associate INC (1988)](非特許文献2参照)。 In 1986, the present inventors fixed an Nd 2 Fe 14 B magnet powder obtained by pulverizing the above melt spun ribbon with an epoxy resin according to Japanese Patent Application No. 61-38830 (BH), a small-diameter annular with a maximum of 72 kJ / m 3. It has been clarified that an isotropic Nd 2 Fe 14 B bonded magnet is useful for a small motor (see Patent Document 1). Thereafter, T.W. Shimoda also compared the small motor characteristics of the small-diameter annular isotropic Nd 2 Fe 14 B bond magnet with the small motor characteristics of the Sm—Co radial anisotropic bond magnet, and the former was useful [T. Shimoda, “Compression molding magnet made rapid-quenched powder”, PERMANENT MAGNETS 1988 UPDATE ”, Wheeler Associate INC (1988)] (Non-Patent Document 2).

さらに、小型モータに有用であるという報告がW.Baran[“Case histories of NdFeB in the European community”,The European Business and Technical Outlook for NdFeB Magnets,Nov.(1989)]、G.X.Huang,W.M.Gao,S.F.Yu[“Application of melt−spun Nd−Fe−B bonded magnet to the micro−motor”,Proc.of the 11th International Rare−Earth Magnets and Their Applications,Pittsburgh,USA,pp.583−595(1990)]、Kasai[“MQ1,2&3 magnets applied to motors and actuators”,Polymer Bonded Magnets’92,Embassy Suite O’Hare−Rosemont,Illinois,USA,(1992)]などによってなされ、1990年代から、主にOA、AV、PCおよびその周辺機器、情報通信機器の永久磁石型モータ用途の環状磁石として、広く普及した経緯がある(非特許文献3、4、5参照)。 Furthermore, a report that it is useful for a small motor is disclosed in W.W. Baran ["Case history of NdFeB in the European community", The European Business and Technical Outlook for NdFeB Magnets, Nov. (1989)], G.M. X. Huang, W.H. M.M. Gao, S .; F. Yu ["Application of melt-spun Nd-Fe-B bonded magnet to the micro-motor", Proc. of the 11 th International Rare-Earth Magnets and Their Applications, Pittsburgh, USA, pp. 583-595 (1990)], Kasai [“MQ1, 2 & 3 magnets applied to motors and actuators”, Polymer Bonded Magnets '92, Embassiy Suite O'Hale 90, 19 Therefore, it has been widely used as an annular magnet for permanent magnet type motors mainly for OA, AV, PC and its peripheral devices and information communication devices (see Non-Patent Documents 3, 4, and 5).

他方では、1980年代からメルトスピニングによる磁石材料の研究が活発に行われ、
Nd2Fe14B系、Sm2Fe173系、或いはそれらとαFe、Fe3B系などとの微細組織に基づく交換結合を利用したナノコンポジット材料を含め、多彩な合金組成をミクロ組織制御した材料に加え、近年ではメルトスピニング以外の急冷凝固法により、粉末形状の異なる等方性希土類磁石粉末も工業的に利用可能になっているKasai[“MQ1,2&3 magnets applied to motors and actuators”,Polymer Bonded Magnets’92,Embassy Suite O’Hare−Rosemont,Illinois,USA,(1992)]、B.H.Rabin,B.M.Ma,“Recent developments in Nd−Fe−B powder”,120th Topical Symposium
of the Magnetic Society of Japan,pp.23−28(2001)、B.M.Ma,“Recent powder development at magnequench”,Polymer Bonded Magnets 2002,Chicago(2002)、S.Hirasawa,H.Kanekiyo,T.Miyoshi,K.Murakami,Y.Shigemoto,T.Nishiuchi,“Structure and magnetic properties of Nd2Fe14B/FexB−type nanocomposite permanent magnets prepared by strip casting”,9th Joint MMM/INTERMAG,CA(2004)FG−05]。また、等方性でありながら(BH)maxが220kJ/m3に達するというDaviesらの報告もある[H.A.Davies,J.I.Betancourt,C.L.Harland,“Nanophase Pr and Nd/Pr based rare−earth−iron−boron alloys”,Proc.of 16th Int.Workshop on Rare−Earth Magnets and Their Applications,Sendai,pp.485−495(2000)](非特許文献6、7、8、9、10参照)。
On the other hand, research on magnet materials by melt spinning has been actively conducted since the 1980s,
Microstructure control of various alloy compositions including Nd 2 Fe 14 B system, Sm 2 Fe 17 N 3 system, or nanocomposite materials using exchange coupling based on the microstructure of them with αFe, Fe 3 B system, etc. In recent years, isai rare earth magnet powders with different powder shapes have become industrially available by rapid solidification methods other than melt spinning, and Kasai [“MQ1, 2 & 3 magnets applied to motors and actors”, Polymer Bonded Magnets '92, Embassiy Suite O'Hare-Rosemont, Illinois, USA, (1992)], B.C. H. Rabin, B.M. M.M. Ma, “Recent developments in Nd—Fe—B powder”, 120 th Topical Symposium
of the Magnetic Society of Japan, pp. 23-28 (2001), B.I. M.M. Ma, “Recent powder development at magneque”, Polymer Bonded Magnets 2002, Chicago (2002), S.A. Hirazawa, H .; Kanekiyo, T .; Miyoshi, K .; Murakami, Y .; Shigemoto, T .; Nishiuchi, "Structure and magnetic properties of Nd 2 Fe 14 B / FexB-type nanocomposite permanent magnets prepared by strip casting", 9 th Joint MMM / INTERMAG, CA (2004) FG-05]. There is also a report by Davies et al. That (BH) max reaches 220 kJ / m 3 while being isotropic [H. A. Davies, J .; I. Betancourt, C.I. L. Harland, “Nanophase Pr and Nd / Pr based rare-earth-iron-boron alloys”, Proc. of 16 th Int. Works on Rare-Earth Magnets and Their Applications, Sendai, pp. 485-495 (2000)] (see Non-Patent Documents 6, 7, 8, 9, and 10).

しかし、工業的に利用可能な急冷凝固粉末の(BH)maxは〜134kJ/m3、等方性Nd2Fe14Bボンド磁石の(BH)maxは、ほぼ80kJ/m3と見積もられる。 However, (BH) max of commercially available rapid solidification powder (BH) max is ~134kJ / m 3, isotropic Nd 2 Fe 14 B bond magnet is estimated to approximately 80 kJ / m 3.

上記に拘らず、本発明が対象とする永久磁石型モータは電気電子機器の高性能化のもと、更なる薄型化、小型化、高出力化、低振動騒音化、或いは位置制御の高精度化などの要求が絶えない。したがって、等方性希土類ボンド磁石の磁石粉末の(BH)maxに代表される磁気特性の改良では、もはや当該モータの高性能化に有用と言い切れなくなりつつある。よって、このような、等方性希土類ボンド磁石モータの分野では異方性希土類ボンド磁石の永久磁石型モータへの応用の必要性が高まっている[山下文敏,“希土類磁石の電子機器への応用と展望”,文部科学省イノベ−ション創出事業/希土類資源の有効利用と先端材料シンポジウム,東京,(2002)](非特許文献11参照)。 Regardless of the above, the permanent magnet type motors targeted by the present invention are further reduced in thickness, size, output, vibration and noise, or high accuracy in position control under the performance of electric and electronic equipment. There is a constant demand for conversion. Therefore, the improvement of the magnetic characteristics represented by (BH) max of the magnet powder of the isotropic rare earth bonded magnet is no longer useful for improving the performance of the motor. Therefore, in the field of isotropic rare earth bonded magnet motors, there is an increasing need for application of anisotropic rare earth bonded magnets to permanent magnet motors [Fumitoshi Yamashita, “Application of rare earth magnets to electronic devices. And prospects ”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Utilization of Rare Earth Resources and Advanced Materials Symposium, Tokyo, (2002)] (see Non-Patent Document 11)

ところで、異方性希土類ボンド磁石に用いるSm−Co系磁石粉末はインゴットを粉砕しても大きな保磁力HCJが得られる。しかし、SmやCoは資源バランスの課題が大きく、工業材料としての汎用化には馴染まない。これに対し、NdやFeは資源バランスの観点で有利である。しかし、Nd2Fe14B系合金のインゴットや焼結磁石を粉砕してもHCJは小さい。このため、異方性Nd2Fe14B磁石粉末の作製に関しては、メルトスピニング材料を出発原料とする研究が先行した。 By the way, the Sm—Co based magnet powder used for the anisotropic rare earth bonded magnet can obtain a large coercive force H CJ even if the ingot is pulverized. However, Sm and Co have a great resource balance problem, and are not suitable for general use as industrial materials. On the other hand, Nd and Fe are advantageous from the viewpoint of resource balance. However, even if the Nd 2 Fe 14 B alloy ingot or sintered magnet is pulverized, HCJ is small. For this reason, with respect to the production of anisotropic Nd 2 Fe 14 B magnet powder, research using a melt spinning material as a starting material has preceded.

1989年、徳永はNd14Fe80-X6GaX(X=0.4〜0.5)を熱間据込加工(Die−upset)したバルクを粉砕しHCJ=1.52MA/mの異方性Nd2Fe14B粉末とし、樹脂で固めて(BH)max127kJ/m3の異方性ボンド磁石を得た[徳永雅亮,“希土類ボンド磁石の磁気特性”,粉体および粉末冶金,Vol.35,pp.3−7,(1988)]。また、1991年、H.SakamotoらはNd14Fe79.8
5.2Cu1を熱間圧延し、HCJ1.30MA/mの異方性Nd2Fe14B粉末を作製した[H.Sakamoto, M. Fujikura and T. Mukai,“Fully−dense Nd−Fe−B magnets prepared from hot−rolled anisotropic powders”,Proc.11th
Int.Workshop on Rare−earth Magnets and Their Applications,Pittsburg,pp.72−84(1990)]。このように、GaやCuの添加で熱間加工性を向上させ、Nd2Fe14B結晶粒径を制御して高HCJ化した粉末が知られた(非特許文献12、13参照)。
In 1989, Tokunaga pulverized a hot upset (Die-upset) bulk of Nd 14 Fe 80-X B 6 Ga X (X = 0.4 to 0.5) and HC J = 1.52 MA / m Anisotropy Nd 2 Fe 14 B powder and solidified with resin to obtain an anisotropic bonded magnet with (BH) max 127 kJ / m 3 [Masaaki Tokunaga, “Magnetic properties of rare earth bonded magnet”, powder and powder Metallurgy, Vol. 35, pp. 3-7, (1988)]. In 1991, H.C. Sakamoto et al. Nd 14 Fe 79.8 B
5.2 Cu 1 was hot-rolled to produce anisotropic Nd 2 Fe 14 B powder of H CJ 1.30 MA / m [H. Sakamoto, M .; Fujikura and T. Mukai, “Fully-dense Nd-Fe-B magnets prepared from hot-rolled anisotropic powders”, Proc. 11 th
Int. Workshop on Rare-earth Magnets and Ther Applications, Pittsburg, pp. 72-84 (1990)]. Thus, to improve the hot workability by the addition of Ga and Cu, the high H CJ phased powder is known to control the Nd 2 Fe 14 B crystal grain size (see Non-Patent Document 12).

1991年、V.Panchanathanらは熱間加工バルクの粉砕法とし、粒界から水素を侵入させNd2Fe14BHXとして崩壊させ、真空加熱で脱水素したHD(Hydrogen Decrepitation)−Nd2Fe14B粒子とし、(BH)max150kJ/m3の異方性ボンド磁石とした[M.Doser,V.Panchanacthan,and R.K.Mishra,“Pulverizing anisotropic rapidly solidified Nd−Fe−B materials for bonded magnets”,J.Appl.Phys.,Vol.70,pp.6603−6805(1991)](非特許文献14参照)。 1991, V.C. Panchanathan et al. Used a hot-working bulk pulverization method to make HD (Hydrogen Depreciation) -Nd 2 Fe 14 B particles, which were dehydrogenated by vacuum heating by intruding hydrogen from the grain boundaries to collapse into Nd 2 Fe 14 BH X , ( BH) An anisotropic bonded magnet with a maximum of 150 kJ / m 3 [M. Doser, V.M. Panchanthan, and R.A. K. Misra, “Pulverizing anisotropy rapidly solidified Nd—Fe—B materials for bonded magnets”, J. Am. Appl. Phys. , Vol. 70, pp. 6603-6805 (1991)] (see Non-Patent Document 14).

2001年、IriyamaはNd0.137Fe0.735Co0.0670.055Ga0.006を同法で310kJ/m3の粒子とし、(BH)max177kJ/m3の異方性ボンド磁石に改良した[T.Iriyama,“Anisotropic bonded NdFeB magnets made from hot−upset powders”,Polymer Bonded Magnet 2002,Chicago(2002)](非特許文献15参照)。 In 2001, Iriyama modified Nd 0.137 Fe 0.735 Co 0.067 B 0.055 Ga 0.006 into particles of 310 kJ / m 3 by the same method, and improved it to an anisotropic bonded magnet of (BH) max 177 kJ / m 3 [T. Iriyama, “Anisotropic bonded NdFeB magnets made from hot-up powders”, Polymer Bonded Magnet 2002, Chicago (2002)] (see Non-Patent Document 15).

一方、TakeshitaらはNd−Fe(Co)−Bインゴットを水素中熱処理し、Nd2(Fe,Co)14B相の水素化(Hydrogenation,Nd2[Fe,Co]14BHx)、650〜1000℃で相分解(De composition,NdH2+Fe+Fe2B)、脱水素(Desorpsion)、再結合(Recombination)するHDDR法を提案し[T.Takeshita,and R.Nakayama,“Magnetic properties and micro− structure of the Nd−Fe−B magnet powders produced by hydrogen treatment”,Proc.10th Int.Workshop on Rare−earth Magnets and Their
Applications,Kyoto,pp.551−562(1989)]、1999年にはHDDR−Nd2Fe14B粒子から(BH)max193kJ/m3の異方性ボンド磁石を作製した(非特許文献16、17参照)。
Meanwhile, Takeshita et al. Nd—Fe (Co) —B ingot is heat-treated in hydrogen to hydrogenate Nd 2 (Fe, Co) 14 B phase (Hydrogenation, Nd 2 [Fe, Co] 14 BHx), 650-1000. The HDDR method is proposed in which phase decomposition (De composition, NdH 2 + Fe + Fe 2 B), dehydrogenation, and recombination are performed at ℃ [T. Takeshita, and R.A. Nakayama, "Magnetic properties and micro-structure of the Nd-Fe-B magnet powders produced by hydrogen treatment", Proc. 10 th Int. Works on Rare-earth Magnets and Their
Applications, Kyoto, pp. 551-562 (1989)], in 1999, an anisotropic bonded magnet having a (BH) max of 193 kJ / m 3 was produced from HDDR-Nd 2 Fe 14 B particles (see Non-Patent Documents 16 and 17).

2001年には、MishimaらによってCo−freeのd−HDDR Nd2Fe14B粒子が報告され[C.Mishima,N.Hamada,H.Mitarai,and Y.Honkura,“Development of a Co−free NdFeB anisotropic magnet produced d−HDDR
processes powder”,IEEE.Trans.Magn.Vol.37,pp.2467−2470(2001)]、N.Hamadaらは(BH)max358kJ/m3の同d−HDDR異方性Nd2Fe14B粒子を150℃、2.5Tの配向磁界中、0.9GPaで圧縮し、密度6.51Mg/m3、(BH)max213kJ/m3の立方体(7mm×7mm×7mm)異方性ボンド磁石を作製している[N.Hamada,C.Mishima,H.Mitarai and Y.Honkura,“Development of anisotropic bonded magnet with
27MGOe”IEEE.Trans.Magn.,Vol.39,pp.2953−
2956(2003)](非特許文献18、19参照)。しかし、立方体磁石は、一般の永久磁石型モータには適合しない。例えば、肉厚1mm程度の環状、或いは円弧状のラジアル異方性磁石として永久磁石型モータへの形状対応力を高める必要がある。
In 2001, Misima et al. Reported Co-free d-HDDR Nd 2 Fe 14 B particles [C. Misima, N .; Hamada, H .; Mitarai, and Y.M. Honkura, “Development of a Co-free NdFeB anisotropy magnet produced d-HDDR
processes powder ", IEEE Trans. Magn. Vol. 37, pp. 2467-2470 (2001)], N. Hamada et al. (BH) max 358 kJ / m 3 of the same d-HDDR anisotropic Nd 2 Fe 14 B Cubic (7 mm x 7 mm x 7 mm) anisotropic bonded magnet with particles compressed at 0.9 GPa in an orientation magnetic field of 150 ° C and 2.5 T at a density of 6.51 Mg / m 3 and (BH) max 213 kJ / m 3 [N. Hamada, C. Misima, H. Mitarai and Y. Honkura, “Development of anisotrophic bonded magnet with.]
27MGOe "IEEE.Trans.Magn., Vol.39, pp.2953-
2956 (2003)] (see Non-Patent Documents 18 and 19). However, the cubic magnet is not compatible with a general permanent magnet type motor. For example, it is necessary to increase the shape-corresponding force to the permanent magnet type motor as an annular or arc-shaped radial anisotropic magnet having a thickness of about 1 mm.

一方、2001年、RD(Reduction&Diffusion)−Sm2Fe173微粉末を用いた(BH)max〜119kJ/m3の射出成形ボンド磁石が報告された[川本淳,白石佳代,石坂和俊,保田晋一,“15MGOe級SmFeN射出成形コンパウンド”,電気学会マグネティックス研究会,(2001)MAG−01−173]。2002年、Ohmoriにより(BH)max323kJ/m3の耐候性付与RD−Sm2Fe173微粉末を使用した(BH)max136kJ/m3の射出成形による異方性磁石も報告された[K.Ohmori,“New era of anisotropic bonded SmFeN magnets”,Polymer Bonded Magnet 2002,Chicago(2002)]。このような射出成形ラジアル異方性による(BH)max80kJ/m3の異方性Sm2Fe173ボンド磁石を応用した表面磁石(SPM)ロータを用いることで、フェライト焼結磁石モータに対して高効率化を実現した報告もある[松岡篤,山崎東吾,川口仁,“送風機用ブラシレスDCモータの高性能化検討”,電気学会回転機研究会,(2001)RM−01−161]。(非特許文献20、21、22参照)。 On the other hand, in 2001, RD (Reduction & Diffusion)-(BH) max ~ 119 kJ / m 3 injection-molded bonded magnet using fine powder of Sm 2 Fe 17 N 3 was reported [Satoshi Kawamoto, Kayo Shiraishi, Kazutoshi Ishizaka, Yasuda. Junichi, “15MGOe-class SmFeN injection molding compound”, Institute of Electrical Engineers of Magnetics, (2001) MAG-01-173]. In 2002, Ohmori reported (BH) max 323 kJ / m 3 of weathered RD-Sm 2 Fe 17 N 3 fine powder (BH) max 136 kJ / m 3 injection-molded anisotropic magnets. [K. Ohmori, “New era of anisotropic bonded SmFeN magnets”, Polymer Bonded Magnet 2002, Chicago (2002)]. By using a surface magnet (SPM) rotor to which such an anisotropic Sm 2 Fe 17 N 3 bonded magnet with an injection molding radial anisotropy (BH) max of 80 kJ / m 3 is used, a ferrite sintered magnet motor is used. There is also a report that achieved high efficiency [Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi, “Examination of high performance brushless DC motor for blower”, IEEJ rotating machine workshop, (2001) RM-01-161] . (Refer nonpatent literature 20, 21, and 22).

しかし、ラジアル配向磁界は成形型リングキャビティが小口径化(或いは、長尺化)すると、起磁力の多くが漏洩磁束として消費されるため配向磁界が減少する。したがって、配向度の低下に伴って、ボンド磁石や焼結磁石に拘らず小口径化に伴って(BH)maxが減少する[例えば、清水元治,平井伸之,“Nd−Fe−B系焼結型異方性リング磁石”,日立金属技報,Vol.6,pp.33−36(1990)]。また、均質なラジアル磁界の発生は困難で等方性ボンド磁石に比べて生産性が低い課題もある(非特許文献23参照)。 However, in the radial orientation magnetic field, when the mold ring cavity is reduced in diameter (or lengthened), most of the magnetomotive force is consumed as the leakage magnetic flux, so that the orientation magnetic field is reduced. Therefore, as the degree of orientation decreases, the (BH) max decreases as the diameter decreases regardless of the bond magnet or sintered magnet [for example, Motoharu Shimizu, Nobuyuki Hirai, “Nd—Fe—B based sintering” Type anisotropic ring magnet ", Hitachi Metals Technical Report, Vol. 6, pp. 33-36 (1990)]. In addition, it is difficult to generate a homogeneous radial magnetic field, and there is a problem that productivity is low compared to isotropic bonded magnets (see Non-Patent Document 23).

しかし、仮に半径方向の磁気特性が形状に依存せず、均質配向が可能で、且つ高い生産性が実現できれば永久磁石型モータの高性能化に有用な高(BH)maxラジアル磁気異方性磁石の普及が期待される。そこで、本発明者らは、結合剤と磁石粉末とのコンパウンドを圧縮成形し、自己組織化後に形成した結合剤の架橋間巨大分子を機械的に延伸し、面垂直磁気異方性薄板磁石の可撓性を制御し、その可撓性を利用して、磁気異方性の方向をラジアル方向に転換するラジアル磁気異方性磁石の作製技術、並びにその磁気特性を開示した[F.Yamashita,S.Tsutsumi,H.Fukunaga,”Radially Anisotropic Ring− or Arc−Shaped Rare−Earth Bonded Magnets Using Self−Organization Technique”,IEEE Trans.Magn.,Vol.40,No.4 pp.2059−2064(2004)]。これにより、小口径化(或いは、長尺化)してもラジアル方向の磁気特性が、殆ど低下しないラジアル磁気異方性磁石が製造できるようになった。(非特許文献24参照)。
特開昭62−196057号公報 R.W.Lee,E.G.Brewer,N.A.Schaffel,“Hot−pressed Neodymium−Iron−Boron magnets”IEEE Trans.Magn.,Vol.21,1958(1985) T.Shimoda,“Compression molding magnet made from rapid−quenched powder”,PERMANENT MAGNETS 1988 UPDATE”,Wheeler Associate INC (1988) W.Baran“Case histories of NdFeB in the European community”,The European Business and Technical Outlook for NdFeB Magnets,Nov.(1989) G.X.Huang,W.M.Gao,S.F.Yu“Application of melt−spun Nd−Fe−B bonded magnet to the micro−motor”,Proc.of the 11th International Rare−Earth Magnets and Their Applications,Pittsburgh,USA,pp.583−595(1990) Kasai“MQ1,2&3 magnets applied to motors and actuators”,Polymer Bonded Magnets’92,Embassy Suite O’Hare−Rosemont,Illinois,USA,(1992) Kasai“MQ1,2&3 magnets applied to motors and actuators”,Polymer Bonded Magnets’92,Embassy Suite O’Hare−Rosemont,Illinois,USA,(1992) B.H.Rabin,B.M.Ma,“Recent developments in Nd−Fe−B powder”,120th Topical Symposium of the Magnetic Society of Japan,pp.23−28(2001) B.M.Ma,“Recent powder development at magnequench”,Polymer Bonded Magnets 2002,Chicago(2002) S.Hirasawa,H.Kanekiyo,T.Miyoshi,K.Murakami,Y.Shigemoto,T.Nishiuchi,“Structure and magnetic properties of Nd2Fe14B/FexB−type nanocomposite permanent magnets prepared by strip casting”,9th Joint MMM/INTERMAG,CA(2004)FG−05 H.A.Davies,J.I.Betancourt,C.L.Harland,“Nanophase Pr and Nd/Pr based rare−earth−iron−boron alloys”,Proc.of 16th Int.Workshop on Rare−Earth Magnets and Their Applications,Sendai,pp.485−495(2000) 山下文敏,“希土類磁石の電子機器への応用と展望”,文部科学省イノベ−ション創出事業/希土類資源の有効利用と先端材料シンポジウム,東京,(2002) 徳永雅亮,“希土類ボンド磁石の磁気特性”,粉体および粉末冶金,Vol.35,pp.3−7,(1988) H.Sakamoto, M. Fujikura and T. Mukai,“Fully−dense Nd−Fe−B magnets prepared from hot−rolled anisotropic powders”,Proc.11th Int.Workshop on Rare−earth Magnets and Their Applications,Pittsburg,pp.72−84(1990) M.Doser,V.Panchanacthan,and R.K.Mishra,“Pulverizing anisotropic rapidly solidified Nd−Fe−B materials for bonded magnets”,J.Appl.Phys.,Vol.70,pp.6603−6805(1991) T.Iriyama,“Anisotropic bonded NdFeB magnets made from hot−upset powders”,Polymer Bonded Magnet 2002,Chicago(2002) T.Takeshita,and R.Nakayama,“Magnetic properties and micro− structure of the Nd−Fe−B magnet powders produced by hydrogen treatment”,Proc.10th Int.Workshop on Rare−earth Magnets and Their Applications,Kyoto,pp.551−562(1989) K.Morimoto,R.Nakayama,K.Mori,K.Igarashi,Y.Ishii,M.Itakura,N.Kuwano,K.Oki,“Nd2Fe14B−based magnetic powder with high remanence produced by modified HDDR process”,IEEE.Trans.Magn.,Vol.35,pp.3253−3255(1999) C.Mishima,N.Hamada,H.Mitarai,and Y.Honkura,“Development of a Co−free NdFeB anisotropic magnet produced d−HDDR processes powder”,IEEE.Trans.Magn.Vol.37,pp.2467−2470(2001) N.Hamada,C.Mishima,H.Mitarai and Y.Honkura,“Development of anisotropic bonded magnet with 27MGOe”IEEE.Trans.Magn.,Vol.39,pp.2953−2956(2003) 川本淳,白石佳代,石坂和俊,保田晋一,“15MGOe級SmFeN射出成形コンパウンド”,電気学会マグネティックス研究会,(2001)MAG−01−173 K.Ohmori,“New era of anisotropic bonded SmFeN magnets”,Polymer Bonded Magnet 2002,Chicago(2002) 松岡篤,山崎東吾,川口仁,“送風機用ブラシレスDCモータの高性能化検討”,電気学会回転機研究会,(2001)RM−01−161 清水元治,平井伸之,“Nd−Fe−B系焼結型異方性リング磁石”,日立金属技報,Vol.6,pp.33−36(1990) F.Yamashita,S.Tsutsumi,H.Fukunaga,”Radially Anisotropic Ring− or Arc−Shaped Rare−Earth Bonded Magnets Using Self−Organization Technique”,IEEE Trans.Magn.,Vol.40,No.4 pp.2059−2064(2004)
However, if the magnetic properties in the radial direction do not depend on the shape, uniform orientation is possible, and high productivity can be realized, a high (BH) max radial magnetic anisotropic magnet useful for improving the performance of permanent magnet motors. Is expected to spread. Therefore, the present inventors compression-molded a compound of a binder and magnet powder, mechanically stretched the macromolecules between crosslinks of the binder formed after self-assembly, Disclosed is a technique for producing a radial magnetic anisotropy magnet that controls flexibility and uses the flexibility to change the direction of magnetic anisotropy to the radial direction [F. Yamashita, S .; Tsusumumi, H .; Fukunaga, “Radially Anisotropic Ring-or Arc-Shaped Rare-Earth Bonded Magnets Using Self-Organization Technique”, IEEE Trans. Magn. , Vol. 40, no. 4 pp. 2059-2064 (2004)]. This makes it possible to manufacture a radial magnetic anisotropic magnet in which the radial magnetic characteristics hardly deteriorate even when the diameter is reduced (or lengthened). (Refer nonpatent literature 24).
JP-A-62-196057 R. W. Lee, E .; G. Brewer, N.M. A. Schaffel, “Hot-pressed Neodymium-Iron-Boron magnets” IEEE Trans. Magn. , Vol. 21, 1958 (1985) T.A. Shimoda, “Compression molding magnet made rapid-quenched powder”, PERMANENT MAGNETS 1988 UPDATE ”, Wheeler Associate INC (1988) W. Baran “Case history of NdFeB in the European community”, The European Business and Technical Outlook for NdFeB Magnets, Nov. (1989) G. X. Huang, W.H. M.M. Gao, S .; F. Yu "Application of melt-spun Nd-Fe-B bonded magnet to the micro-motor", Proc. of the 11th International Rare-Earth Magnets and Their Applications, Pittsburgh, USA, pp. 583-595 (1990) Kasai “MQ1, 2 & 3 magnets applied to motors and actors”, Polymer Bonded Magnets '92, Embassiy Suite O'Hare-Rosemont, Illinois, USA (USA), 19 Kasai “MQ1, 2 & 3 magnets applied to motors and actors”, Polymer Bonded Magnets '92, Embassiy Suite O'Hare-Rosemont, Illinois, USA (USA), 19 B. H. Rabin, B.M. M.M. Ma, “Recent developments in Nd—Fe—B powder”, 120th Topical Symposium of the Magnetic Society of Japan, pp. 23-28 (2001) B. M.M. Ma, “Recent powder development at magneque”, Polymer Bonded Magnets 2002, Chicago (2002) S. Hirazawa, H .; Kanekiyo, T .; Miyoshi, K .; Murakami, Y .; Shigemoto, T .; Nishiuchi, “Structure and magnetic properties of Nd2Fe14B / FexB-type nanocomposite permanent magnets pre-prepared by MMM” 5G H. A. Davies, J .; I. Betancourt, C.I. L. Harland, “Nanophase Pr and Nd / Pr based rare-earth-iron-boron alloys”, Proc. of 16th Int. Works on Rare-Earth Magnets and Their Applications, Sendai, pp. 485-495 (2000) Fumitoshi Yamashita, “Application and Prospect of Rare Earth Magnets for Electronic Equipment”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Utilization of Rare Earth Resources and Advanced Materials Symposium, Tokyo, (2002) Masaaki Tokunaga, “Magnetic Properties of Rare Earth Bond Magnets”, Powder and Powder Metallurgy, Vol. 35, pp. 3-7, (1988) H. Sakamoto, M .; Fujikura and T. Mukai, “Fully-dense Nd-Fe-B magnets prepared from hot-rolled anisotropic powders”, Proc. 11th Int. Workshop on Rare-earth Magnets and Ther Applications, Pittsburg, pp. 72-84 (1990) M.M. Doser, V.M. Panchanthan, and R.A. K. Misra, “Pulverizing anisotropy rapidly solidified Nd—Fe—B materials for bonded magnets”, J. Am. Appl. Phys. , Vol. 70, pp. 6603-6805 (1991) T.A. Iriyama, “Anisotropic bonded NdFeB magnets made from hot-upset powders”, Polymer Bonded Magnet 2002, Chicago (2002) T.A. Takeshita, and R.A. Nakayama, "Magnetic properties and micro-structure of the Nd-Fe-B magnet powders produced by hydrogen treatment", Proc. 10th Int. Works on Rare-earth Magnets and Ther Applications, Kyoto, pp. 551-562 (1989) K. Morimoto, R.A. Nakayama, K .; Mori, K .; Igarashi, Y. et al. Ishii, M .; Itakura, N .; Kuwano, K .; Oki, “Nd 2 Fe 14 B-based magnetic powder with high remanufactured produced by modified HDDR process”, IEEE. Trans. Magn. , Vol. 35, pp. 3253-3255 (1999) C. Misima, N .; Hamada, H .; Mitarai, and Y.M. Honkura, “Development of a Co-free NdFeB anisotropy magnet produced produced d-HDDR processes powder”, IEEE. Trans. Magn. Vol. 37, pp. 2467-2470 (2001) N. Hamada, C.I. Misima, H .; Mitarai and Y.M. Honkura, “Development of anisotrophic bonded with 27 MGOe” IEEE. Trans. Magn. , Vol. 39, pp. 2953-2956 (2003) Satoshi Kawamoto, Kayo Shiraishi, Kazutoshi Ishizaka, Junichi Yasuda, “15MGOe-class SmFeN injection molding compound”, The Institute of Electrical Engineers of Japan, (2001) MAG-01-173 K. Ohmori, “New era of anisotropic bonded SmFeN magnets”, Polymer Bonded Magnet 2002, Chicago (2002) Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi, “Examination of high performance brushless DC motor for blower”, The Institute of Electrical Engineers of Japan, (2001) RM-01-161 Motoharu Shimizu, Nobuyuki Hirai, “Nd—Fe—B sintered anisotropic ring magnet”, Hitachi Metals, Vol. 6, pp. 33-36 (1990) F. Yamashita, S .; Tsusumumi, H .; Fukunaga, “Radially Anisotropic Ring-or Arc-Shaped Rare-Earth Bonded Magnets Using Self-Organization Technique”, IEEE Trans. Magn. , Vol. 40, no. 4 pp. 2059-2064 (2004)

例えば、自己組織化した結合剤を含む(BH)max=162kJ/m3、厚さ0.97mmの薄板状の異方性希土類ボンド磁石を非等方的に延伸し、内半径3.55mm、外半径3.65mm、最大肉厚0.88mm、長さ10mmの円弧状とする。この磁石を4MA/mのパルス磁界で磁化したときの磁束は(BH)max72kJ/m3の等方性Nd2Fe14Bボンド磁石の磁束量に対して1.53倍となり、永久磁石型モータの起動トルクを1.4倍以上高める。しかしながら、モータの回転に伴うトルク脈動も15倍以上に増大す
る欠点がある。
For example, a thin plate-like anisotropic rare earth bonded magnet having a self-organized binder (BH) max = 162 kJ / m 3 and a thickness of 0.97 mm is anisotropically stretched to have an inner radius of 3.55 mm, The outer radius is 3.65 mm, the maximum thickness is 0.88 mm, and the length is 10 mm. When this magnet is magnetized with a pulse magnetic field of 4 MA / m, the magnetic flux is 1.53 times the amount of magnetic flux of an isotropic Nd 2 Fe 14 B bond magnet of (BH) max 72 kJ / m 3 , which is a permanent magnet type. Increase the starting torque of the motor by 1.4 times or more. However, there is a drawback that the torque pulsation accompanying the rotation of the motor increases 15 times or more.

仮に、磁石形状と鉄心を含む磁気回路の構成が同じであれば、鉄心と磁石との空隙磁束密度は概ね磁石の(BH)maxの比の平方根に比例するから、等方性Nd2Fe14Bボンド磁石を使用した永久磁石型モータの高出力化、或いは、薄型軽量化が可能となる。しかしながら、反面、高(BH)maxのラジアル磁気異方性磁石モータは多極着磁した磁極間で略180度の磁化反転が起こる。従って、鉄心と磁石との空隙磁束密度分布は矩形波状となる。 If the magnet shape and the configuration of the magnetic circuit including the iron core are the same, the gap magnetic flux density between the iron core and the magnet is approximately proportional to the square root of the ratio of (BH) max of the magnet, so isotropic Nd 2 Fe 14. It is possible to increase the output of a permanent magnet type motor using a B bond magnet, or to reduce the thickness and weight. However, a high (BH) max radial magnetic anisotropic magnet motor undergoes a magnetization reversal of approximately 180 degrees between multipole magnetized magnetic poles. Therefore, the air gap magnetic flux density distribution between the iron core and the magnet is rectangular.

一方、本発明で比較対象とする等方性Nd2Fe14Bボンド磁石は多極着磁の際、多極着磁した環状磁石の各磁極中心に磁化が集中するような磁化パターンとなり、磁極間ではラジアル方向磁化ではなく、面内方向の磁化成分が増す。このため、鉄心と磁石との空隙磁束密度分布は擬似正弦波状となる。 On the other hand, the isotropic Nd 2 Fe 14 B bond magnet to be compared in the present invention has a magnetization pattern in which magnetization is concentrated at the center of each magnetic pole of the multipolar magnetized ring magnet when multipolar magnetization is performed. In between, the magnetization component in the in-plane direction is increased instead of the radial magnetization. For this reason, the gap magnetic flux density distribution between the iron core and the magnet has a pseudo sine wave shape.

上記のように、ラジアル磁気異方性磁石モータは等方性Nd2Fe14Bボンド磁石モータに比べて略1.4倍の高出力化や30%程度の薄型軽量化が期待できるものの、強い静磁界と矩形波状の空隙磁束密度分布はモータの回転に伴うトルク脈動を必然的に増加させる。トルク脈動とは磁石と対向する鉄心外周表面に、電磁巻線を配置する固定子と組み合わせるモータの構造上、磁石との対向面の鉄心にはティ−スとスロットが必須となる。このため、モータの回転に伴ってパ−ミアンス係数Pcが必然的に変化するためのトルク脈動である。加えて、上記のような円弧状磁石では、1)磁石の内外周曲率半径を偏心させて磁極中心と磁極間とを不等肉厚とする。2)磁石の磁極間に相当する周方向両端面の角を落して不等肉厚とするなど、磁石の形状(パーミアンス)を変えることで鉄心と円弧状磁石の空隙磁束密度分布を正弦波状に近づけることが可能である。(例えば、中省吾「小型モータにおける永久磁石の応用」、小型モータ技術シンポジウム予稿集,p7,昭58年)。 As described above, the radial magnetic anisotropic magnet motor is expected to be about 1.4 times higher in output and 30% thinner and lighter than the isotropic Nd 2 Fe 14 B bonded magnet motor, but strong. The static magnetic field and the rectangular wave-shaped gap magnetic flux density distribution inevitably increase the torque pulsation accompanying the rotation of the motor. Torque pulsation requires a tooth and a slot in the iron core on the surface facing the magnet because of the structure of the motor combined with the stator on which the electromagnetic winding is arranged on the outer peripheral surface of the iron core facing the magnet. For this reason, it is a torque pulsation for the permeance coefficient Pc to inevitably change as the motor rotates. In addition, in the arc-shaped magnet as described above, 1) the radius of curvature of the inner and outer circumferences of the magnet is decentered so that the thickness between the magnetic pole center and the magnetic pole is unequal. 2) By changing the shape of the magnet (permeance), for example, by reducing the corners of the circumferential end corresponding to the gap between the magnetic poles of the magnet, the gap magnetic flux density distribution between the iron core and the arc-shaped magnet is made sinusoidal. It is possible to approach. (For example, Shun Zhong, “Application of permanent magnets in small motors”, Proceedings of Small Motor Technology Symposium, p7, 1983).

しかしながら、環状磁石に多極着磁を施す場合には円弧状磁石のような研削加工などの手段で磁石形状(パーミアンス)を正確に変えることは困難な場合が多い。したがって、軸方向基準で鉄心、または磁石の磁極の何れかをスキューするのが普通である。しかし、鉄心、或いは磁石の軸方向距離が例えば約1mmまで薄型化するとなると軸方向基準としたスキューが困難となる。すなわち、高(BH)maxのラジアル磁気異方性磁石モータは出力的には薄型化が可能であるが、磁石の偏肉化や磁極スキューなど従来技術の組み合わせによって鉄心と磁石との空隙磁束密度を正弦波状に近づけることが実質的に困難となる。
本発明は高い(BH)maxを維持し、垂直磁気異方性薄板磁石の異方性の方向をラジアル方向に転換する技術、並びに磁極間配向制御の具体的条件の開示により、磁極中心部分で発生する鉄心との空隙部分の静磁界の強さを保つことでモータの出力特性の低下を抑制する。加えて、鉄心と磁石との空隙磁束密度分布を正弦波状に近づけてトルク脈動を低減し、低振動騒音、或いは位置制御精度の低下を抑制し得るラジアル磁気異方性磁石モータの提供を目的とする。とくに、出力特性を維持しつつ薄型化が望まれる各種記録媒体のスピンドルモータのように、磁石の偏肉化や磁極のスキュー付与など従来技術の組み合わせでは困難なものであっても、鉄心と磁石との空隙磁束密度を正弦波状に近づけることを可能とする。
However, when multipolar magnetization is applied to an annular magnet, it is often difficult to accurately change the magnet shape (permeance) by means of grinding such as an arc magnet. Therefore, it is common to skew either the iron core or the magnetic pole of the magnet on an axial basis. However, when the axial distance of the iron core or magnet is reduced to, for example, about 1 mm, the skew based on the axial direction becomes difficult. That is, a high (BH) max radial magnetic anisotropic magnet motor can be thinned in terms of output, but the gap magnetic flux density between the iron core and the magnet can be reduced by combining conventional techniques such as magnet thinning and magnetic pole skew. It becomes substantially difficult to approximate the sine wave.
The present invention maintains a high (BH) max, discloses a technique for changing the direction of anisotropy of a perpendicular magnetic anisotropic thin plate magnet to a radial direction, and a specific condition for controlling the orientation between magnetic poles. By maintaining the strength of the static magnetic field in the gap between the generated iron core and the motor, the deterioration of the output characteristics of the motor is suppressed. In addition, the object is to provide a radial magnetic anisotropic magnet motor that can reduce the torque pulsation by reducing the gap magnetic flux density distribution between the iron core and the magnet to a sinusoidal shape and suppress the low vibration noise or the decrease in position control accuracy. To do. In particular, iron cores and magnets are difficult to achieve by combining conventional techniques, such as making magnets thinner and providing magnetic pole skew, such as spindle motors for various recording media that are desired to be thin while maintaining output characteristics. It is possible to make the gap magnetic flux density close to a sine wave shape.

本発明は垂直方向の最大磁化をMmax⊥、面内方向の最大磁化をMmax//としたとき、95%の確率で圧延前後のMmax⊥/Mmax//の母分散、母平均に差がない垂直磁気異方性薄板磁石とする。とくに、Mmax⊥/Mmax//が1.45以上、並びに垂直方向の保磁力をHcJ⊥、面内方向の保磁力をHcJ//としたとき、HcJ⊥
/HcJ//が0.90±0.01の条件で圧延した垂直磁気異方性薄板磁石とし、その異方性の方向をラジアル方向に転換するラジアル磁気異方性磁石モータの製造方法である。
In the present invention, assuming that the maximum magnetization in the vertical direction is Mmax⊥ and the maximum magnetization in the in-plane direction is Mmax //, there is no difference in the mother dispersion and the population mean of Mmax⊥ / Mmax // before and after rolling with a probability of 95%. A perpendicular magnetic anisotropic thin plate magnet is used. In particular, when Mmax⊥ / Mmax // is 1.45 or more, the coercivity in the vertical direction is HcJ⊥, and the coercivity in the in-plane direction is HcJ //, HcJ⊥.
This is a method for manufacturing a radial magnetic anisotropic magnet motor, in which a perpendicular magnetic anisotropic thin plate magnet rolled under the condition of / HcJ // is 0.90 ± 0.01 and the direction of the anisotropy is changed to the radial direction. .

更に好ましい形態は磁極中心のMmax⊥/Mmax//よりも、磁極間のMmax⊥/Mmax//を小さくした垂直磁気異方性薄板磁石の異方性の方向をラジアル方向に転換するラジアル磁気異方性磁石モータの製造方法である。   A more preferable form is a radial magnetic anisotropy that changes the anisotropy direction of the perpendicular magnetic anisotropic thin plate magnet in which Mmax / Mmax // between the magnetic poles is smaller than Mmax / Mmax // between the magnetic pole centers. It is a manufacturing method of a direction magnet motor.

より好ましくは磁極中心の磁石の厚さが1.35mm以下で磁石粉末が単磁区粒子型Sm2Fe173微粉末と多結晶集合型Nd2Fe14B粒子との混合によって磁極部分の(BH)maxを140kJ/m3以上とするラジアル磁気異方性磁石モータの製造方法である。これにより、高(BH)maxで薄型化、小型化、高出力化とともにモータのトルク脈動を抑制し、モータの薄型化、小型化、高出力化、低振動騒音化、並びに位置制御性の向上に対応できる。 More preferably, the thickness of the magnet at the center of the magnetic pole is 1.35 mm or less, and the magnetic powder is mixed with the single domain particle type Sm 2 Fe 17 N 3 fine powder and the polycrystalline aggregated Nd 2 Fe 14 B particles ( BH) A radial magnetic anisotropic magnet motor manufacturing method in which max is 140 kJ / m 3 or more. As a result, motor torque pulsation is suppressed along with high (BH) max, making it thinner, smaller, and higher output, reducing motor thickness, size, higher output, lower vibration noise, and improving position controllability. It can correspond to.

本発明は、結合剤と磁石粉末とのコンパウンドを圧縮成形して作製した垂直磁気異方性薄板磁石を自己組織化し、架橋間巨大分子鎖を形成する。そして、垂直方向の最大磁化をMmax⊥、面内方向の最大磁化をMmax//としたとき、95%の確率で圧延前後のMmax⊥/Mmax//の母分散、母平均に差がない垂直磁気異方性薄板磁石とする。更に、Mmax⊥/Mmax//が1.45以上、並びに垂直方向の保磁力をHcJ⊥、面内方向の保磁力をHcJ//としたとき、HcJ⊥/HcJ//が0.90±0.01で圧延した垂直磁気異方性薄板磁石とし、その異方性の方向をラジアル方向に転換して多極着磁するラジアル磁気異方性磁石モータの製造方法である。   In the present invention, a perpendicular magnetic anisotropic thin plate magnet produced by compression molding a compound of a binder and magnet powder is self-assembled to form a macromolecular chain between crosslinks. When the maximum magnetization in the vertical direction is Mmax⊥ and the maximum magnetization in the in-plane direction is Mmax //, there is a 95% probability that there is no difference in the mother dispersion of Mmax 母 / Mmax // before and after rolling and the population average. A magnetic anisotropic thin plate magnet is used. Further, when Mmax⊥ / Mmax // is 1.45 or more, the coercive force in the vertical direction is HcJ⊥, and the coercivity in the in-plane direction is HcJ //, HcJ⊥ / HcJ // is 0.90 ± 0. This is a method of manufacturing a radial magnetic anisotropic magnet motor which is a perpendicular magnetic anisotropic thin plate magnet rolled at .01 and multi-pole magnetization is performed by changing the direction of anisotropy to the radial direction.

更に好ましい形態は磁極中心のMmax⊥/Mmax//よりもと磁極間のMmax⊥/Mmax//を小さくした垂直磁気異方性薄板磁石の異方性の方向をラジアル方向に転換し、多極着磁したラジアル磁気異方性磁石モータの製造方法である。   In a more preferred embodiment, the direction of anisotropy of a perpendicular magnetic anisotropic thin plate magnet in which Mmax / Mmax // between magnetic poles is smaller than Mmax / Mmax // at the magnetic pole center is changed to a radial direction. This is a method of manufacturing a magnetized radial magnetic anisotropic magnet motor.

より好ましくは磁極中心の磁石の厚さが1.35mm以下で磁石粉末が単磁区粒子型Sm2Fe173微粉末と多結晶集合型Nd2Fe14B粒子との混合で、架橋間巨大分子を含む磁石の磁極部分の(BH)maxが140kJ/m3以上であるラジアル磁気異方性磁石モータである。これにより、高(BH)maxで薄型化、小型化、高出力化が可能なラジアル磁気異方性磁石モータのトルク脈動を抑制し、モータの薄型化、小型化、高出力化、低振動騒音化、並びに位置制御性の向上にも対応できる。 More preferably, the thickness of the magnet at the center of the magnetic pole is 1.35 mm or less, and the magnet powder is a mixture of single domain particle type Sm 2 Fe 17 N 3 fine powder and polycrystalline aggregated Nd 2 Fe 14 B particles. This is a radial magnetic anisotropic magnet motor in which (BH) max of a magnetic pole portion of a magnet including molecules is 140 kJ / m 3 or more. This suppresses the torque pulsation of a radial magnetic anisotropic magnet motor that can be thinned, miniaturized and increased in output at a high (BH) max , making the motor thinner, smaller, higher output, and less vibration noise. And improved position controllability.

先ず、本発明にかかる磁石に好適な異方性希土類磁石粉末について説明する。   First, the anisotropic rare earth magnet powder suitable for the magnet according to the present invention will be described.

本発明で言う多結晶集合型Nd2Fe14B粒子とはHDDR処理(水素分解/再結合)、すなわち、希土類−鉄系合金(R2[Fe,Co]14B)相の水素化(Hydrogenation,R2[Fe,Co]14BHx)、650〜1000℃での相分解(Decomposition,RH2+Fe+Fe2B)、脱水素(Desorpsion)、再結合(Recombination)する、所謂HDDR処理などで作製した磁石粉末を言う。 The polycrystalline aggregated Nd 2 Fe 14 B particles referred to in the present invention are HDDR treatment (hydrogen decomposition / recombination), that is, hydrogenation of a rare earth-iron alloy (R 2 [Fe, Co] 14 B) phase. , R 2 [Fe, Co] 14 BHx), phase decomposition at 650 to 1000 ° C. (Decomposition, RH 2 + Fe + Fe 2 B), dehydrogenation (desorption), recombination (recombination), and so-called HDDR treatment. Say magnet powder.

ここで必須元素Rは、10原子%未満では結晶構造がα−Feと同一構造の立方晶組織となるため、高磁気特性、特に高保磁力HCJが得られず、30原子%を超えるとRリッチな非磁性相が多くなり、飽和磁化Jsが低下する。よって、Rは10〜30原子%の範囲が望ましい。加えて必須元素Bは、2原子%未満では菱面体構造が主相となり、高い保磁
力HCJは得られず、28原子%を超えるとBリッチな非磁性相が多くなり、飽和磁化Jsが低下する。よって、Bは2〜28原子%の範囲が望ましい。
If the essential element R is less than 10 atomic%, the crystal structure has the same cubic structure as that of α-Fe. Therefore, high magnetic properties, particularly high coercive force H CJ cannot be obtained. The rich nonmagnetic phase increases and the saturation magnetization Js decreases. Therefore, R is preferably in the range of 10 to 30 atomic%. In addition, when the essential element B is less than 2 atomic%, the rhombohedral structure becomes the main phase, and a high coercive force H CJ cannot be obtained, and when it exceeds 28 atomic%, the B-rich nonmagnetic phase increases and the saturation magnetization Js is increased. descend. Therefore, B is preferably in the range of 2 to 28 atomic%.

一方、必須元素Feは、65原子%未満では飽和磁化Jsが低下し、80原子%を超えると高い保磁力HCJが得られない。よって、Feは65〜80原子%が望ましい。また、Feの一部をCoで置換することは、磁石粉末の磁気特性を損なうことなく、キュリー温度Tcの上昇によって実使用温度範囲の残留磁化Jrの温度係数を改善できる。しかしながら、CoのFe置換量が20原子%を超えると飽和磁化Jsが減少する。すなわち、Co置換量が5〜15原子%の範囲では、残留磁化Jrが一般に増加するため、高(BH)maxを得るには好ましい。 On the other hand, if the essential element Fe is less than 65 atomic%, the saturation magnetization Js decreases, and if it exceeds 80 atomic%, a high coercive force H CJ cannot be obtained. Therefore, the Fe content is desirably 65 to 80 atomic%. Further, replacing part of Fe with Co can improve the temperature coefficient of the residual magnetization Jr in the actual operating temperature range by increasing the Curie temperature Tc without impairing the magnetic properties of the magnet powder. However, the saturation magnetization Js decreases when the Fe substitution amount of Co exceeds 20 atomic%. That is, when the Co substitution amount is in the range of 5 to 15 atomic%, the residual magnetization Jr generally increases, which is preferable for obtaining a high (BH) max .

他方では、R、B、Feのほか、工業的生産上不可避な不純物の存在は許容できる。例えば、Bの一部を4重量%以下のC、或いはP、S、Cuの中、少なくとも1種、合計量で2重量%以下の存在は一般的な許容範囲である。   On the other hand, in addition to R, B and Fe, the presence of impurities unavoidable for industrial production is acceptable. For example, it is a general allowable range that a part of B is 4 wt% or less of C, or at least one of P, S, and Cu, and the total amount is 2 wt% or less.

更に、Al、Ti、V、Cr、Mn、Bi、Nb、Ta、Mo、W、Sb、Ge、Ga、Sn、Zr、Ni、Si、Zn、Hfのうち少なくとも1種は、当該粉末の保磁力HCJ、減磁曲線の角型性Hk/HCJなどの改善のために適宜添加することができる。また、組成の10原子%〜30原子%を占める希土類元素Rは、Nd、Pr、Dy、Ho、Tbの中、少なくとも1種、或いは、La、Ce、Sm、Gd、Er、Eu、Tm、Yb、Lu、Yの中、少なくとも1種を含む。通常Rのうち1種をもって足りるが、実用上は2種以上の混合物(ミッシュメタル、シジム等)を使用することもできる。なお、このRは工業上入手可能な範囲で製造上不可避な不純物を含有できる。 Furthermore, at least one of Al, Ti, V, Cr, Mn, Bi, Nb, Ta, Mo, W, Sb, Ge, Ga, Sn, Zr, Ni, Si, Zn, and Hf is a powder holding agent. It can be added as appropriate in order to improve the magnetic force H CJ and the squareness Hk / H CJ of the demagnetization curve. The rare earth element R occupying 10 atomic% to 30 atomic% of the composition is at least one of Nd, Pr, Dy, Ho, and Tb, or La, Ce, Sm, Gd, Er, Eu, Tm, At least one of Yb, Lu, and Y is included. Usually, one kind of R is sufficient, but in practice, a mixture of two or more kinds (Misch metal, shijim, etc.) can also be used. In addition, this R can contain impurities unavoidable in production within a commercially available range.

次に、本発明で言う単磁区粒子型Sm2Fe173微粉末とは、例えば、特開平2−57663号公報に記載される溶解鋳造法、特許第17025441号や特開平9−157803号公報などに開示される還元拡散法より、R−Fe系合金、又はR−(Fe、Co)系合金を製造し、これを窒化した後、微粉砕して得られる。微粉砕はジェットミル、振動ボールミル、回転ボールミルなど、公知の技術を適用でき、フィッシャー平均粒径で1.5μm以下、好ましくは1.2μm以下となるように微粉砕したものを言う。なお、微粉末は発火防止などハンドリング性を向上させるため、例えば特開昭52−54998号公報、特開昭59−170201号公報、特開昭60−128202号公報、特開平3−211203号公報、特開昭46−7153号公報、特開昭56−55503号公報、特開昭61−154112号公報、特開平3−126801号公報等に開示されているような、湿式ないし乾式処理による徐酸化皮膜を表面に形成したものが望ましい。また、特開平5−230501号公報、特開平5−234729号公報、特開平8−143913号公報、特開平7−268632号公報や、日本金属学会講演概要(1996年春期大会、No.446、p184)等に開示されている金属皮膜を形成する方法や、特公平6−17015号公報、特開平1−234502号公報、特開平4−217024号公報、特開平5−213601号公報、特開平7−326508号公報、特開平8−153613号公報、特開平8−183601号公報等による無機皮膜を形成する方法など、1種以上の表面処理Sm2Fe173微粉末であっても差支えない。 Next, the single domain particle type Sm 2 Fe 17 N 3 fine powder referred to in the present invention is, for example, a melt casting method described in JP-A-2-57663, Japanese Patent No. 17025441 or JP-A-9-157803. An R—Fe-based alloy or an R— (Fe, Co) -based alloy is produced by a reduction diffusion method disclosed in a gazette or the like, nitrided, and finely pulverized. The fine pulverization refers to a finely pulverized product such as a jet mill, a vibrating ball mill, a rotating ball mill, etc., which is finely pulverized so as to have a Fisher average particle size of 1.5 μm or less, preferably 1.2 μm or less. In order to improve handling properties such as prevention of ignition, fine powders are disclosed in, for example, JP-A-52-54998, JP-A-59-170201, JP-A-60-128202, JP-A-3-211203. As described in JP-A-46-7153, JP-A-56-55503, JP-A-61-154112, JP-A-3-126801, etc. What formed the oxide film on the surface is desirable. In addition, JP-A-5-230501, JP-A-5-234729, JP-A-8-143913, JP-A-7-268632, and the outline of the presentation of the Japan Institute of Metals (Spring convention 1996, No. 446, p184) and the like, a method of forming a metal film, JP-B-6-17015, JP-A-1-234502, JP-A-4-217024, JP-A-5-213601, One or more kinds of surface-treated Sm 2 Fe 17 N 3 fine powder may be used, such as a method of forming an inorganic film according to 7-326508, JP-A-8-153613, JP-A-8-183601, or the like. Absent.

次に、架橋間巨大分子の形成を図1の分子構造の概念図を用いて説明する。ただし、図において、Aは磁石粉末固定成分としてのオリゴマーで、例えば、エポキシ当量205〜220g/eq,融点70−76℃のノボラック型エポキシ。Bは架橋間巨大分子Dを形成する線状高分子で、例えば、融点80℃,分子量4000〜12000のポリアミド。Cはケミカルコンタクトで、例えば、融点80〜100℃のイミダゾール誘導体である。   Next, formation of a macromolecule between crosslinks will be described with reference to the conceptual diagram of the molecular structure in FIG. In the figure, A is an oligomer as a magnet powder fixing component, for example, a novolak type epoxy having an epoxy equivalent of 205 to 220 g / eq and a melting point of 70 to 76 ° C. B is a linear polymer forming the macromolecule D between crosslinks, for example, a polyamide having a melting point of 80 ° C. and a molecular weight of 4000 to 12000. C is a chemical contact, for example, an imidazole derivative having a melting point of 80 to 100 ° C.

本発明では、例えば、単磁区粒子型Sm2Fe173微粉末38.20重量部、多結晶集
合型Nd2Fe14B粒子57.44重量部にオリゴマーAを1重量部表面被覆し、120〜130℃でポリマーBと溶融混練したのち、室温に冷却して粗粉砕し、ケミカルコンタクトCを0.28重量部混合したコンパウンドを160℃の成形型キャビティに充填し、1.5MA/m以上の平行磁界中、50MPaで圧縮成形し、150℃で20min程度の熱処理によって架橋間巨大分子Dを含む厚さ1.35mm以下の垂直磁気異方性薄板磁石を作製する。
In the present invention, for example, 38 parts by weight of single domain particle type Sm 2 Fe 17 N 3 fine powder and 57 parts by weight of polycrystalline aggregated Nd 2 Fe 14 B particles are coated with 1 part by weight of oligomer A. After melt-kneading with polymer B at 120-130 ° C., cooling to room temperature and coarsely pulverizing, filling compound mixed with 0.28 parts by weight of chemical contact C into a mold cavity at 160 ° C., 1.5 MA / m In the above parallel magnetic field, compression-molding is performed at 50 MPa, and a perpendicular magnetic anisotropic thin plate magnet having a thickness of 1.35 mm or less including the inter-crosslinking macromolecule D is produced by heat treatment at 150 ° C. for about 20 minutes.

圧縮成形した厚さ1.15mm×幅6mm×長さ60mmの熱処理前の20℃での引張強度は約1.8MPaであるが、20min熱処理したとき,加熱温度が120℃を越えるとケミカルコカタクトCを中心に,オリゴマーA,ポリマーB間で架橋反応が起こって室温での引張強度が増加し始める。そして、150℃で9MPaを越え、160−200℃では約9.5MPaで飽和する。このように、最適化した熱処理によって磁石の引張強度は熱処理前の5倍以上に達する。この例では、オリゴマーAのエポキシ基とポリマーBのアミノ活性水素(−NHCO−)の直接反応もあるが、主反応はケミカルコンタクトC(イミダゾール誘導体)のアミノ活性水素と思われる。   The tensile strength at 20 ° C before heat treatment of compression molded thickness 1.15mm x width 6mm x length 60mm is about 1.8MPa, but when the heat temperature exceeds 120 ° C when heat treated for 20min, A crosslinking reaction occurs between oligomer A and polymer B centering on C, and the tensile strength at room temperature starts to increase. And it exceeds 9 MPa at 150 ° C., and saturates at about 9.5 MPa at 160-200 ° C. Thus, the tensile strength of the magnet reaches 5 times or more of that before the heat treatment by the optimized heat treatment. In this example, there is also a direct reaction between the epoxy group of oligomer A and the amino active hydrogen (-NHCO-) of polymer B, but the main reaction appears to be the amino active hydrogen of chemical contact C (imidazole derivative).

上記架橋反応によって、結合剤は3次元網目構造となる。とくに、オリゴマーAは,その極性と高い架橋密度で磁石粉末を強固に接着固定する。また、一方のポリマーBは架橋間巨大分子Dを形成する。そして、この架橋間巨大分子Dが薄板磁石に含まれることによって薄板磁石の圧延が可能となる。また、圧延による架橋間巨大分子Dの延伸が薄板磁石の可撓性の担い手となり、異方性の方向をラジアル方向に転換できる。   By the crosslinking reaction, the binder has a three-dimensional network structure. In particular, the oligomer A firmly adheres and fixes the magnet powder with its polarity and high crosslink density. Also, one polymer B forms a macromolecule D between crosslinks. The thin plate magnet can be rolled by including the inter-crosslinking macromolecule D in the thin plate magnet. In addition, the stretching of the inter-crosslinking macromolecules D by rolling becomes a flexible carrier of the thin plate magnet, and the anisotropic direction can be changed to the radial direction.

上記磁石において、本発明では垂直方向の最大磁化をMmax⊥、面内方向の最大磁化をMmax//としたとき、圧延前後のMmax⊥/Mmax//の母分散、母平均に確率95%で差がなく、それらのMmax⊥/Mmax//が1.45以上、並びに垂直方向の保磁力をHcJ⊥、面内方向の保磁力をHcJ//としたとき、圧延前後のHcJ⊥/HcJ//が0.90±0.01とする。   In the above magnet, in the present invention, when the maximum magnetization in the vertical direction is Mmax 内 and the maximum magnetization in the in-plane direction is Mmax //, the mother dispersion of Mmax⊥ / Mmax // before and after rolling and the probability of 95% in the mother average When there is no difference and their Mmax / Mmax // is 1.45 or more, the coercivity in the vertical direction is HcJc, and the coercivity in the in-plane direction is HcJ //, HcJ⊥ / HcJ / before and after rolling / Is 0.90 ± 0.01.

本発明は、上記のように圧延した垂直磁気異方性薄板磁石の異方性の方向をラジアル方向に転換するラジアル磁気異方性磁石モータの製造方法である。   The present invention is a method of manufacturing a radial magnetic anisotropic magnet motor that changes the direction of anisotropy of a perpendicular magnetic anisotropic thin plate magnet rolled as described above to a radial direction.

本発明で更に好ましい磁石形態として磁極中心のMmax⊥/Mmax//よりも磁極間のMmax⊥/Mmax//を小さくした垂直磁気異方性薄板磁石の磁気異方性の方向をラジアル方向に転換するラジアル磁気異方性磁石モータの製造方法である。   As a more preferable magnet configuration in the present invention, the magnetic anisotropy direction of the perpendicular magnetic anisotropic thin plate magnet in which Mmax / Mmax // between the magnetic poles is smaller than Mmax / Mmax // at the magnetic pole center is changed to the radial direction. This is a method of manufacturing a radial magnetic anisotropic magnet motor.

これにより、高(BH)maxで薄型化、小型化、高出力化が可能なモータのトルク脈動を抑制し、モータの薄型化、小型化、高出力化、低振動騒音化、並びに位置制御性の向上に対応できる。 This suppresses torque pulsation of the motor that can be thinned, downsized, and increased in output power at a high (BH) max , making the motor thinner, downsized, increased output, reduced vibration noise, and position controllability. It can cope with improvement.

以下、本発明を実施例により更に詳しく説明する。ただし、本発明は実施例に限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the examples.

[1.垂直異方性薄板磁石の作製]
単磁区粒子型Sm2Fe173微粉末38.20重量部、多結晶集合型Nd2Fe14B粒子57.44重量部にオリゴマーAを1重量部表面被覆し、120〜130℃でポリマーBと溶融混練したのち、室温に冷却して粗粉砕し、ケミカルコンタクトCを0.28重量部混合したコンパウンドを160℃の成形型キャビティに充填し、1.5MA/m以上の平行磁界中、50MPaで圧縮成形し、150℃で20min程度の熱処理によって架橋間巨大分子鎖Dを含む厚さ1.3mm以下の垂直磁気異方性薄板磁石を作製した。なお、
得られた磁石の室温における引張強さは9.2MPaであった。
[1. Fabrication of perpendicular anisotropic thin plate magnet]
Single domain particle type Sm 2 Fe 17 N 3 fine powder 38.20 parts by weight, polycrystalline aggregated Nd 2 Fe 14 B particles 57.44 parts by weight, 1 part by weight of oligomer A, and polymer at 120 to 130 ° C. After melt kneading with B, the mixture is cooled to room temperature and coarsely pulverized, and a compound mixed with 0.28 parts by weight of chemical contact C is filled into a 160 ° C. mold cavity, and in a parallel magnetic field of 1.5 MA / m or more, A perpendicular magnetic anisotropic thin plate magnet having a thickness of 1.3 mm or less including a macromolecular chain D between crosslinks was produced by compression molding at 50 MPa and heat treatment at 150 ° C. for about 20 minutes. In addition,
The obtained magnet had a tensile strength at room temperature of 9.2 MPa.

ただし、多結晶集合型Nd2Fe14B粒子は合金組成Nd12.3Dy0.3Fe64.7Co12.36.0Ga0.6Zr0.1のHDDR処理粒子、オリゴマーAはエポキシ当量205〜220g/eq,融点70−76℃のポリグリシジルエ−テル−o−クレゾールノボラック型エポキシ、ポリマーBは融点80℃、酸価10以下、アミン価20以下、分子量4000〜12000のポリアミド粉末、ケミカルコンタクトCは平均粒子径3μm、融点80−100℃のイミダゾール誘導体である。 However, the polycrystalline aggregated Nd 2 Fe 14 B particles are HDDR-treated particles having an alloy composition of Nd 12.3 Dy 0.3 Fe 64.7 Co 12.3 B 6.0 Ga 0.6 Zr 0.1 , and oligomer A has an epoxy equivalent of 205 to 220 g / eq, melting point of 70 to 76 ° C. Polyglycidyl ether-o-cresol novolak type epoxy, polymer B has a melting point of 80 ° C., acid value of 10 or less, amine value of 20 or less, and polyamide powder having a molecular weight of 4000 to 12000, chemical contact C has an average particle diameter of 3 μm, melting point of 80 It is an imidazole derivative at −100 ° C.

[2.垂直磁気異方性薄板磁石の磁気特性]
図2は磁石(試料形状8×3.5×8mm、パーミアンス係数Pc≒5.36)を4MA/mでパルス着磁し、試料振動型磁力計(VSM)を用いて反磁界係数Nを0.157とし反磁界補正した減磁曲線の温度依存性を示す。図のようにSm2Fe173/Nd2Fe14BとNd2Fe14Bボンド磁石の室温の減磁曲線は残留磁化JrからB/μ0H=1付近まで、ほぼ一致し、その(BH)maxは、ほぼ160kJ/m3であった。しかし、減磁曲線の角型性(Hk/HcJ)は温度上昇に伴って差が生じ、Sm2Fe173/Nd2Fe14BはNd2Fe14B磁石よりHk/HcJの劣化が少ない。
[2. Magnetic properties of perpendicular magnetic anisotropic thin plate magnets]
In FIG. 2, a magnet (sample shape 8 × 3.5 × 8 mm, permeance coefficient Pc≈5.36) is pulse magnetized at 4 MA / m, and a demagnetizing field coefficient N is set to 0 using a sample vibration magnetometer (VSM). .157 shows the temperature dependence of the demagnetization curve after demagnetizing field correction. As shown in the figure, the room temperature demagnetization curves of the Sm 2 Fe 17 N 3 / Nd 2 Fe 14 B and Nd 2 Fe 14 B bonded magnets almost coincide from the residual magnetization Jr to around B / μ 0 H = 1. (BH) max was approximately 160 kJ / m 3 . However, the squareness (Hk / HcJ) of the demagnetization curve varies as the temperature rises, and Sm 2 Fe 17 N 3 / Nd 2 Fe 14 B has a lower Hk / HcJ than the Nd 2 Fe 14 B magnet. Few.

図3は50MPaで成形した磁石の破断面を示す。Nd2Fe14B粒子はSm2Fe173微粉末よって隔離され、Nd2Fe14B粒子の成形加工での破砕や表面の損傷が抑制されるため、高温下での減磁曲線のHk/HcJが良化する。なお、1.5GPaで成形したSm2Fe173/Nd2Fe14Bボンド磁石はNd2Fe14B粒子の破砕による新生面や表面欠陥の影響でHkの良化は観測されない(K.Noguchi,K.Machida,G.Adachi,“Preparation and characterization of composite−type bonded magnets of Sm2Fe17Nx and Nd−Fe−B HDDR powders”,Proc.16th Int.Workshop on RE Magnets and Their
Applications,pp.845−854,2000)。
FIG. 3 shows a fracture surface of a magnet molded at 50 MPa. Nd 2 Fe 14 B particles are isolated by Sm 2 Fe 17 N 3 fine powder, and crushing and surface damage during molding of Nd 2 Fe 14 B particles are suppressed, so the Hk of the demagnetization curve at high temperature / HcJ improves. In addition, in the Sm 2 Fe 17 N 3 / Nd 2 Fe 14 B bonded magnet molded at 1.5 GPa, no improvement in Hk is observed due to the influence of the new surface and surface defects caused by the crushing of the Nd 2 Fe 14 B particles (K. Noguchi). , K. Machida, G. Adachi, “Preparation and characterization of composite-type bonded magnets of Sm 2 Fe 17 Nx and Nd-Fe-B HDDR powers, Proc.
Applications, pp. 845-854, 2000).

図4は本実験に用いた厚さ1029μmの垂直磁気異方性薄板磁石と同一条件で作製した厚さ400−1350μm薄板磁石の密度と(BH)maxの関係を示す。ただし、図中、1は添加剤PESTEを含む標準組成薄板磁石であり、2はPESTEを含まない。また、3は比較としての厚さ350μm、密度4.79Mg/m3、(BH)max94.7kJ/m3のSm2Fe173射出成形ボンド磁石である。(K.Ohmori,S.Hayashi,S.Yoshizawa,“Injection molded Sm−Fe−N anisotropic magnets using unsaturated polyester resin”,Proc.Rare−Earths’04
in NARA,(2004)JO−02)図からSm2Fe173射出成形ボンド磁石3に比べるとNd2Fe14B粒子を含む薄板磁石1、2の密度は高い。また、薄板磁石2に比べ1の密度は5.72−5.94Mg/m3と安定し、しかも最小厚さは薄板磁石2の1/2の400μmまで作製可能である。また、同一密度で(BH)maxを比較すると標準組成薄板磁石1が2よりも、ほぼ10kJ/m3高い値が得られている。これは、アキシャル磁界(1.4MA/m)中で成形加工するとき、図5(b)のように溶融流動の際に速度勾配が生じると見掛けの溶融粘度が増加し、材料と成形型の間にせん断応力が生じる。このせん断応力が薄肉化や配向を阻むと考えられる。標準組成薄板磁石1は添加剤PESTEの無極性長鎖脂肪族炭化水素の外部滑性作用で図5(a)のように滑りを伴う溶融流動となる(F.Yamashita,H.Fukunaga:“Anisotropic rare−earth thin bonded magnets prepared by compaction using slip−flow phenomenon”,IEEE Trans.Magn.,vol.41,(in press
)。
FIG. 4 shows the relationship between (BH) max and the density of 400- 1350 μm thick thin plate magnets manufactured under the same conditions as the 1029 μm thick perpendicular magnetic anisotropic thin plate magnet used in this experiment. However, in the figure, 1 is a standard composition thin plate magnet containing the additive PESTE, and 2 does not contain PESTE. Reference numeral 3 denotes a Sm 2 Fe 17 N 3 injection-molded bonded magnet having a thickness of 350 μm, a density of 4.79 Mg / m 3 and a (BH) max of 94.7 kJ / m 3 as a comparison. (K. Ohmori, S. Hayashi, S. Yoshizawa, “Injection molded Sm-Fe-Nanitropic magnets using unsaturated polyresin”, Proc. Rare-Earths'04.
in NARA, (2004) JO-02) As compared with the Sm 2 Fe 17 N 3 injection-molded bonded magnet 3, the density of the thin plate magnets 1 and 2 containing Nd 2 Fe 14 B particles is higher. Further, the density of 1 is stable at 5.72-5.94 Mg / m 3 as compared with the thin plate magnet 2, and the minimum thickness can be made up to 400 μm, which is 1/2 of the thin plate magnet 2. Further, when (BH) max is compared at the same density, the value of the standard composition thin plate magnet 1 is approximately 10 kJ / m 3 higher than 2. This is because when the molding process is performed in an axial magnetic field (1.4 MA / m), the apparent melt viscosity increases when a velocity gradient occurs during melt flow as shown in FIG. Shear stress occurs between them. This shear stress is thought to hinder thinning and orientation. The standard composition thin plate magnet 1 becomes a melt flow with slipping as shown in FIG. 5 (a) due to the external sliding action of the non-polar long chain aliphatic hydrocarbon of the additive PESTE (F. Yamashita, H. Fukunaga: “Anisotropic”). rare-earth thin bonded magnets prepared by compacting using slip-flow phenomenon ", IEEE Trans. Magn., vol. 41, (in press
).

上記効果はDie−upset Nd2Fe14BにおけるGa(M.Tokunaga,N.Nozawa,K.Iwasaki,M.Endoh,S.Tanigawa,and H.Harada,“Ga added Nd−Fe−B sintered and die−up set magnets”,IEEE Trans.Magn.,vol.25,pp.3561−3566,(1989).26)、Cu(T.Mukai,Y.Okazaki,H.Sakamoto,M.Fujikura,and T.Inaguma,“Fully−dense Nd−Fe−B magnets prepared from hot−rolled anisotropic powders”,Proc.11th Int.Workshop on RE Magnets and Their Applications,pp.72−84(1990))の添加による加工性の向上と同様に本磁石も配向と薄肉化に有効である。 The above effect is due to Ga (M. Tokunaga, N. Nozawa, K. Iwasaki, M. Endoh, S. Tanigawa, and H. Harada, "Ga added Nd-Fe-B sintered and died in Die-upset Nd 2 Fe 14 B. -Up set magnets ", IEEE Trans. Magn., Vol. 25, pp. 3561-3566, (1989) .26), Cu (T. Mukai, Y. Okazaki, H. Sakamoto, M. Fujikura, and T.-M. Inaguma, “Fully-dense Nd-Fe-B magnets prepared from hot-rolled anisotropic powders,” Proc. 11th Int. Workshop. RE Magnets and Their Applications, workability present magnet similar to the improvement of by the addition of pp.72-84 (1990)) is effective in orienting and thinning.

[3.圧延による異方性変化]
図6は本発明にかかる磁石の圧延を示す。図中1は直径90mmの等速圧延ロール、2は圧延によって磁石に含まれる架橋間巨大分子を一軸延伸する状態、3は延伸方向に生じる可撓性を利用して磁石の異方性の方向を面垂直からラジアル方向に転換した状態を示すが、このような可撓性の発現には圧下率3−5%を要する。
[3. Anisotropy change due to rolling]
FIG. 6 shows the rolling of a magnet according to the present invention. In the figure, 1 is a constant-speed rolling roll having a diameter of 90 mm, 2 is a state in which a macromolecule between crosslinks contained in the magnet is uniaxially stretched by rolling, and 3 is a direction of anisotropy of the magnet by utilizing flexibility generated in the stretching direction Shows a state in which the vertical direction is changed from the vertical direction to the radial direction, and a reduction ratio of 3 to 5% is required to develop such flexibility.

図7は厚さ0.85〜2.50mmの磁石を、予め4MA/mでパルス磁化し、80℃で圧延したときの磁束変化を圧延前2.5mmの磁束を基準に規格化した結果を示す。図において記号□は圧延前、○は圧延後の磁束を示す。また、図中の曲線は圧延前の磁束の厚さ依存性を示している。厚さ2.1〜2.5mmの磁石の磁束を圧延前の磁束を示す曲線と比較すると顕著な磁束の減少が見られる。これは、圧延による磁石粉末の配向の乱れと推察される。これに対し、厚さ0.85〜1.35mmの範囲では圧延前後の磁束がほぼ一致している。   FIG. 7 shows a result of normalizing a change in magnetic flux when a magnet having a thickness of 0.85 to 2.50 mm is pulse-magnetized in advance at 4 MA / m and rolled at 80 ° C. with reference to a magnetic flux of 2.5 mm before rolling. Show. In the figure, symbol □ indicates the magnetic flux before rolling, and ○ indicates the magnetic flux after rolling. Moreover, the curve in a figure has shown the thickness dependence of the magnetic flux before rolling. When the magnetic flux of a magnet having a thickness of 2.1 to 2.5 mm is compared with a curve indicating the magnetic flux before rolling, a remarkable reduction in magnetic flux is observed. This is presumed to be a disorder in the orientation of the magnet powder due to rolling. On the other hand, the magnetic flux before and after rolling substantially matches in the thickness range of 0.85 to 1.35 mm.

ところで、小型モータに使われる等方性Nd2Fe14Bボンド磁石の厚さは、ほぼ1mmである。そこで、厚さ約1029μmの垂直磁気異方性薄板磁石を厚さ約830μm(圧下率0〜20%)まで圧延したときのM−Hループの一例を図8に示す。ただし、磁石(5mm×5mm)の圧下率は7水準、各水準の試料数nは5とし、全ての試料の垂直方向と面内方向のM−HループをVSM(最大測定磁界Hm=2.4MA/m)により測定したものである。図8において最大測定磁界Hm付近で見られる垂直方向の磁化M⊥、面内方向の磁化M//の減少はミラー効果による。なお、M−Hループは反磁界補正していない。 By the way, the thickness of the isotropic Nd 2 Fe 14 B bond magnet used in the small motor is about 1 mm. Accordingly, FIG. 8 shows an example of the MH loop when a perpendicular magnetic anisotropic thin plate magnet having a thickness of about 1029 μm is rolled to a thickness of about 830 μm (a reduction rate of 0 to 20%). However, the reduction rate of the magnet (5 mm × 5 mm) is 7 levels, the number of samples n of each level is 5, and the MH loops in the vertical and in-plane directions of all the samples are set to VSM (maximum measurement magnetic field Hm = 2.2. 4 MA / m). In FIG. 8, the decrease in the vertical magnetization M⊥ and the in-plane magnetization M // seen in the vicinity of the maximum measurement magnetic field Hm is due to the mirror effect. The MH loop is not demagnetized.

表1は圧下率7水準、各水準のn=5全てのM−Hループから求めた垂直方向の保磁力HcJ⊥、面内方向の保磁力HcJ//、垂直方向の最大磁化Mmax⊥、面内方向の最大磁化Mmax//などを一括して示す。   Table 1 shows a reduction ratio of 7 levels, n = 5 coercivity HcJ⊥ in the vertical direction obtained from all MH loops at each level, coercivity HcJ // in the in-plane direction, maximum magnetization Mmax⊥ in the vertical direction, surface The maximum magnetization Mmax // in the inner direction is shown collectively.

Figure 0004710424
Figure 0004710424

次に、圧延による垂直磁気異方性薄板磁石の異方性変化の詳細を明らかにするため、先ず、垂直方向の最大磁化Mmax⊥、面内方向の最大磁化Mmax//により、Mmax⊥/Mmax//を評価した。ただし、磁化のミラー効果補正には試料とほぼ同形状の標準Niが必要なので、ここでのMmax⊥/Mmax//の値は図8のミラー効果が生じる前での最大磁界での磁化とした。   Next, in order to clarify the anisotropy change of the perpendicular magnetic anisotropic thin plate magnet by rolling, first, the maximum magnetization Mmax⊥ in the vertical direction and the maximum magnetization Mmax // in the in-plane direction, Mmax⊥ / Mmax // was evaluated. However, since the standard Ni of the same shape as the sample is necessary for correcting the mirror effect of magnetization, the value of Mmax⊥ / Mmax // here is the magnetization in the maximum magnetic field before the occurrence of the mirror effect of FIG. .

図9はMmax⊥/Mmax//の圧下率依存性を示す。磁気的に等方性の磁石では面垂直方向は反磁界の影響が強い。このため、本実験のように反磁界補正なしの状態ではMmax⊥/Mmax//=0.9であった。このことより、Mmax⊥/Mmax//が0.9以上であれば垂直方向へ異方化していることになる。また、Mmax⊥/Mmax//値が大きくなる程、垂直方向への異方化が大きいことを意味する。図のように本実験では圧下率0%の試料でもMmax⊥/Mmax//の平均値は1.45以上あるが、圧下率が大きくなる程、その値は低下している。しかしながら、図6、図中3のように、延伸方向の可撓性を利用して異方性の方向を面垂直からラジアル方向に転換するには3−5%程度の圧下率でよい。   FIG. 9 shows the reduction rate dependence of Mmax / Mmax //. A magnetically isotropic magnet is strongly influenced by a demagnetizing field in the direction perpendicular to the surface. Therefore, Mmax / Mmax // = 0.9 in the state without demagnetizing correction as in this experiment. Therefore, if MmaxM / Mmax // is 0.9 or more, it is anisotropic in the vertical direction. Moreover, it means that the anisotropy in the vertical direction increases as the value of Mmax / Mmax // increases. As shown in the figure, in this experiment, the average value of Mmax / Mmax // is 1.45 or more even for a sample with a reduction ratio of 0%, but the value decreases as the reduction ratio increases. However, as shown in FIG. 6 and 3 in the figure, a rolling reduction of about 3 to 5% may be used to change the anisotropic direction from the perpendicular to the radial direction by utilizing the flexibility in the stretching direction.

そこで、表1に示した圧下率0と5.11%のMmax⊥/Mmax//の母分散と母平均の差の検定を行うとFo=4.83<F(4,4;0.025)=9.60、to=0.679<t(8,0.10)=1.860となり、危険率5%で両者共に差はなく、異方性は変化しない。また、圧下率0と7.21%のMmax⊥/Mmax//の母分散と母平均の差の検定を行うとFo=1.708<F(4,4;0.025)=9.60、to=4.078>t(8,0.10)=1.860となり、危険率5%で母分散に差はないが、母平均には差がでる。更に、圧下率が増すと異方性に変化があることが明らかとなった。   Therefore, when the difference between the population variance and the population mean of Mmax⊥ / Mmax // with a reduction rate of 0 and 5.11% shown in Table 1 is tested, Fo = 4.83 <F (4,4; 0.025 ) = 9.60, to = 0.679 <t (8,0.10) = 1.860, the risk is 5%, there is no difference between them, and the anisotropy does not change. Further, when the difference between the population variance and the population mean of Mmax // Mmax // with a rolling reduction of 0 and 7.21% is tested, Fo = 1.708 <F (4,4; 0.025) = 9.60. To = 4.078> t (8,0.10) = 1.860, and there is no difference in population variance at a risk rate of 5%, but there is a difference in population mean. Furthermore, it became clear that the anisotropy changed as the rolling reduction increased.

続いて、本実験のような垂直異方性薄板磁石で垂直方向の保磁力をHcJ⊥、面内方向の保磁力をHcJ//とすると図8に示したM−Hループから明らかなように、HcJ⊥≦HcJ//なる関係が読み取れる。そこで、から、HcJ⊥/HcJ//を評価した。   Subsequently, in the case of a perpendicular anisotropic thin plate magnet as in this experiment, when the coercive force in the vertical direction is HcJ 内 and the coercive force in the in-plane direction is HcJ //, as apparent from the MH loop shown in FIG. , HcJ⊥ ≦ HcJ //. Therefore, HcJ⊥ / HcJ // was evaluated.

図10はHcJ⊥/HcJ//の圧下率依存性を示す。反磁界の影響に係わらず磁気的に等方性の磁石ではHcJ///HcJ⊥は1となる。しかし、本実験では圧下率0〜15%の範囲でHcJ⊥/HcJ//の平均値は0.90±0.01となり、圧下率が15%を越えたとき1に近づく傾向が見られた。   FIG. 10 shows the reduction rate dependency of HcJH / HcJ //. HcJ /// HcJ⊥ is 1 in a magnetically isotropic magnet regardless of the influence of the demagnetizing field. However, in this experiment, the average value of HcJ⊥ / HcJ // was 0.90 ± 0.01 in the range of 0-15%, and a tendency toward 1 was observed when the reduction rate exceeded 15%. .

以上のように、リジッドな薄板磁石の異方性の方向を面垂直からラジアル方向に転換するには3−5%の圧下率を要するが、図11(a)のように異方性の程度を維持しながら可撓性を制御できる。また、多極着磁を想定したとき、磁極間部分の圧下率を15%以上に設定することで、図11(b)の概念図のように当該部分のみ磁気的に等方性に近づける磁極間の配向制御も可能となる。加えて、磁極間と鉄心との空隙距離が増すためにラジアル異方性磁石と鉄心との磁束密度分布が正弦波状に近づけることができる。   As described above, in order to change the anisotropy direction of the rigid thin plate magnet from the plane perpendicular to the radial direction, a rolling reduction of 3-5% is required. However, the degree of anisotropy as shown in FIG. Flexibility can be controlled while maintaining Further, when assuming multipolar magnetization, by setting the rolling reduction ratio of the portion between the magnetic poles to 15% or more, only the portion of the magnetic pole that is magnetically close to isotropic as shown in the conceptual diagram of FIG. It is also possible to control the orientation between. In addition, since the gap distance between the magnetic poles and the iron core is increased, the magnetic flux density distribution between the radial anisotropic magnet and the iron core can be made close to a sine wave.

したがって、モータの高出力化、或いは出力特性を保ちながら薄型化などを図るとともに回転に伴うトルク脈動を低減することができる。なお、本ラジアル磁気異方性磁石モータは多極着磁するが、着磁は異方性の方向をラジアル方向へ転換する前後の何れであっても差し支えない。   Therefore, it is possible to reduce the torque pulsation accompanying rotation while increasing the output of the motor or reducing the thickness while maintaining the output characteristics. Although the present radial magnetic anisotropic magnet motor is magnetized with multiple poles, the magnetization may be performed before or after the direction of anisotropy is changed to the radial direction.

本発明の、ラジアル磁気異方性磁石モータの製造方法は、モータの薄型化、小型化、高出力化、低振動騒音化、並びに位置制御性の向上に有用である。   The method for manufacturing a radial magnetic anisotropic magnet motor according to the present invention is useful for making the motor thinner, smaller, higher output, lower vibration noise, and improving position controllability.

架橋間巨大分子鎖の分子構造概念図Conceptual diagram of molecular structure of macromolecular chain between crosslinks バルク磁石の減磁曲線を示す特性図Characteristic diagram showing demagnetization curve of bulk magnet 垂直磁気異方性薄板磁石の破断面図Broken section of perpendicular magnetic anisotropic thin plate magnet 薄板磁石の密度と(BH)maxの関係を示す特性図Characteristic diagram showing the relationship between the density of thin magnets and (BH) max 滑りを伴う溶融流動の概念図Conceptual diagram of melt flow with slip 圧延を示す外観図External view showing rolling 圧延前後の磁石厚さと磁束の関係を示す特性図Characteristic diagram showing the relationship between magnet thickness and magnetic flux before and after rolling 圧延前後の垂直方向、並びに面内方向のM−H曲線を示す特性図Characteristic chart showing MH curves in the vertical direction before and after rolling and in the in-plane direction 垂直方向の最大磁化Mmax⊥と面内方向の最大磁化Mmax//の比と圧下率依存性を示す特性図Characteristic diagram showing the ratio of the maximum magnetization Mmax⊥ in the vertical direction and the maximum magnetization Mmax // in the in-plane direction and the reduction ratio dependency 垂直方向の保磁力HcJ⊥と面内方向の保磁力HcJ//の比の圧下率依存性を示す特性図Characteristic diagram showing the reduction ratio dependency of the ratio of the coercive force HcJ⊥ in the vertical direction and the coercive force HcJ // in the in-plane direction 圧延による異方性と可撓性の同時制御、極間異方性制御の概念図Conceptual diagram of simultaneous control of anisotropy and flexibility by rolling, and control of anisotropy between electrodes

符号の説明Explanation of symbols

A オリゴマー
B ポリマー
C ケミカルコンタクト
N 磁極の種類(矢印の向きは磁石の磁化方向)
S 磁極の種類(矢印の向きは磁石の磁化方向)
HcJ⊥ 垂直方向の保磁力
HcJ// 面内方向の保磁力
Mmax⊥ 垂直方向の最大磁化
Mmax// 面内方向の最大磁化

A oligomer B polymer C chemical contact N type of magnetic pole (the direction of the arrow is the magnetization direction of the magnet)
S Type of magnetic pole (the direction of the arrow is the magnetization direction of the magnet)
HcJ⊥ vertical coercive force HcJ // in-plane coercive force Mmax⊥ vertical maximum magnetization Mmax // in-plane maximum magnetization

Claims (6)

垂直方向の最大磁化をMmax⊥、面内方向の最大磁化をMmax//としたとき、圧延前後のMmax⊥/Mmax//の母分散、母平均に確率95%で差がない垂直磁気異方性薄板磁石の異方性の方向をラジアル方向に転換するラジアル磁気異方性磁石モータの製造方法。 When the maximum magnetization in the vertical direction is Mmax⊥ and the maximum magnetization in the in-plane direction is Mmax //, the Mmax⊥ / Mmax // population dispersion before and after rolling, and the perpendicular magnetic anisotropy with no difference in the population mean with a probability of 95% For manufacturing a radial magnetic anisotropic magnet motor that changes the direction of anisotropy of a magnetic thin plate magnet to a radial direction. Mmax⊥/Mmax//の下限が1.45、並びに垂直方向の保磁力をHcJ⊥、面内方向の保磁力をHcJ//としたとき、HcJ⊥/HcJ//が0.90±0.01である垂直磁気異方性薄板磁石の異方性の方向をラジアル方向に転換する請求項1記載のラジアル磁気異方性磁石モータの製造方法。 When the lower limit of Mmax / Mmax // is 1.45, the coercivity in the vertical direction is HcJ⊥, and the coercivity in the in-plane direction is HcJ //, HcJJ / HcJ // is 0.90 ± 0.00. The method for manufacturing a radial magnetic anisotropic magnet motor according to claim 1, wherein the direction of anisotropy of the perpendicular magnetic anisotropic thin plate magnet which is 01 is changed to the radial direction. 磁極中心のMmax⊥/Mmax//よりも、磁極間のMmax⊥/Mmax//を小さくした垂直磁気異方性薄板磁石の磁気異方性の方向をラジアル方向に転換する請求項1記載のラジアル磁気異方性磁石モータの製造方法。 2. A radial according to claim 1, wherein the direction of the magnetic anisotropy of the perpendicular magnetic anisotropic thin plate magnet in which Mmax / Mmax // between the magnetic poles is smaller than Mmax / Mmax // at the center of the magnetic pole is changed to the radial direction. Manufacturing method of magnetic anisotropic magnet motor. 磁極中心の磁石の厚さを1.35mm以下とする請求項1記載のラジアル磁気異方性磁石モータの製造方法。 2. The method of manufacturing a radial magnetic anisotropic magnet motor according to claim 1, wherein the thickness of the magnet at the magnetic pole center is 1.35 mm or less. 磁石粉末がSm2Fe173微粉末と多結晶集合型Nd2Fe14B粒子との混合磁石とする請求項1記載のラジアル磁気異方性磁石モータの製造方法。 Claim 1 radial anisotropic magnet motor manufacturing method according to the magnet powder is a mixed magnets of Sm 2 Fe 17 N 3 fine powder and polycrystalline aggregate-type Nd 2 Fe 14 B grains. 磁極部分の最大エネルギー積(BH)maxが140kJ/m3以上である請求項1記載のラジアル磁気異方性磁石モータ。

The radial magnetic anisotropic magnet motor according to claim 1, wherein a maximum energy product (BH) max of the magnetic pole portion is 140 kJ / m 3 or more.

JP2005167985A 2005-06-08 2005-06-08 Manufacturing method of radial magnetic anisotropic magnet motor Active JP4710424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167985A JP4710424B2 (en) 2005-06-08 2005-06-08 Manufacturing method of radial magnetic anisotropic magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167985A JP4710424B2 (en) 2005-06-08 2005-06-08 Manufacturing method of radial magnetic anisotropic magnet motor

Publications (2)

Publication Number Publication Date
JP2006345619A JP2006345619A (en) 2006-12-21
JP4710424B2 true JP4710424B2 (en) 2011-06-29

Family

ID=37642133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167985A Active JP4710424B2 (en) 2005-06-08 2005-06-08 Manufacturing method of radial magnetic anisotropic magnet motor

Country Status (1)

Country Link
JP (1) JP4710424B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344171B2 (en) * 2009-09-29 2013-11-20 ミネベア株式会社 Anisotropic rare earth-iron resin magnet

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045718A (en) * 1999-07-29 2001-02-16 Sumitomo Metal Mining Co Ltd Permanent magnet motor and other permanent magnet applied device
JP2002343623A (en) * 2001-05-21 2002-11-29 Nichia Chem Ind Ltd Plastic sheet magnet molded body and manufacturing method therefor
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP2006352941A (en) * 2005-06-13 2006-12-28 Matsushita Electric Ind Co Ltd Multilayer structure multipolar magnet rotor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161523A (en) * 1993-12-03 1995-06-23 Seiko Epson Corp Rare earth permanent magnet and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001045718A (en) * 1999-07-29 2001-02-16 Sumitomo Metal Mining Co Ltd Permanent magnet motor and other permanent magnet applied device
JP2002343623A (en) * 2001-05-21 2002-11-29 Nichia Chem Ind Ltd Plastic sheet magnet molded body and manufacturing method therefor
JP2004047872A (en) * 2002-07-15 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing rare earth bonded magnet from sheet to film, and its permanent magnet motor
JP2006352941A (en) * 2005-06-13 2006-12-28 Matsushita Electric Ind Co Ltd Multilayer structure multipolar magnet rotor

Also Published As

Publication number Publication date
JP2006345619A (en) 2006-12-21

Similar Documents

Publication Publication Date Title
JP5169823B2 (en) Manufacturing method of radial anisotropic magnet, permanent magnet motor and cored permanent magnet motor using radial anisotropic magnet
US8329056B2 (en) Anisotropic rare earth-iron based resin bonded magnet
JP5754232B2 (en) Manufacturing method of high coercive force NdFeB magnet
EP3041005A1 (en) Anisotropic complex sintered magnet comprising mnbi which has improved magnetic properties and method of preparing the same
EP3291249A1 (en) Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
US8044547B2 (en) Radial-direction gap type magnet motor
JP4311063B2 (en) Anisotropic rare earth bonded magnet and motor
JP4710424B2 (en) Manufacturing method of radial magnetic anisotropic magnet motor
JP4203646B2 (en) Method for manufacturing flexible hybrid rare earth bonded magnet, magnet and motor
JP2016066675A (en) Rare earth isotropic bond magnet
JP4033112B2 (en) Self-organized hybrid rare earth bonded magnet, method for manufacturing the same, and motor
JP2006049554A (en) Manufacturing method of polar anisotropy rare earth bond magnet and permanent magnet motor
JP4577026B2 (en) Method for manufacturing self-assembled annular anisotropic rare earth bonded magnet motor
JP4706412B2 (en) Anisotropic composite magnet
JP4622767B2 (en) Manufacturing method of radial magnetic anisotropic multipole magnet
JP4529598B2 (en) Fiber-reinforced layer integrated flexible rare earth bonded magnet
JP4622536B2 (en) Radial magnetic anisotropic magnet motor
JP4635583B2 (en) Manufacturing method of radial anisotropic magnet motor
JP2006080115A (en) Anisotropic rare earth/iron-based bond magnet
JP4701917B2 (en) Reproduction method of composite magnet containing polycrystalline aggregated anisotropic particles
Yamashita et al. Anisotropic Nd-Fe-B based flexible bonded magnet for small permanent magnet motors
JPH0992515A (en) Anisotropic bonded magnet
JP2006128436A (en) Permanent magnet motor
JP3703903B2 (en) Anisotropic bonded magnet
JPH09186011A (en) Anisotropic bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080606

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110307

R151 Written notification of patent or utility model registration

Ref document number: 4710424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370