JP2002343623A - Plastic sheet magnet molded body and manufacturing method therefor - Google Patents

Plastic sheet magnet molded body and manufacturing method therefor

Info

Publication number
JP2002343623A
JP2002343623A JP2001150558A JP2001150558A JP2002343623A JP 2002343623 A JP2002343623 A JP 2002343623A JP 2001150558 A JP2001150558 A JP 2001150558A JP 2001150558 A JP2001150558 A JP 2001150558A JP 2002343623 A JP2002343623 A JP 2002343623A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetic
rare earth
molded body
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001150558A
Other languages
Japanese (ja)
Inventor
Tadao Hayashi
忠雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2001150558A priority Critical patent/JP2002343623A/en
Publication of JP2002343623A publication Critical patent/JP2002343623A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PROBLEM TO BE SOLVED: To provide a polar anisotropic sheet magnet molded body, which is improved in flexibility and magnetic properties, enabling use for various kinds of products over a wider range of applications. SOLUTION: A polar anisotropic flexible sheet magnetic molded body is composed of thermoplastic resin and magnetic powder. Anisotropic rare earth magnetic powder containing at least rare earth iron nitrogen magnetic powder is used as the magnetic powder, so that a plastic sheet-like magnetic molded body, formed of the above magnetic powder, can be improved in flexibility and magnetic characteristics.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類ボンド磁石に関す
るものであり、特に優れた可撓性、磁気特性を有する可
撓性シート状磁石成形体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare-earth bonded magnet, and more particularly to a flexible sheet-like magnet having excellent flexibility and magnetic properties and a method for producing the same.

【0002】[0002]

【従来の技術】永久磁石材料の代表的な用途にモーター
がある。特に出力が数W以下の小型のモーターでは、界
磁子に環状の永久磁石が使用されている。特にボンド磁
石は成形、加工性に優れており、このモーター界磁子用
の永久磁石に利用されている。近年、この環状の永久磁
石を製造する方法として、可撓性を有するシート状の磁
石成形体をカーリングし、環状の磁石とする手法が提案
された。これはモーターの組み立てが簡便であるなどの
利点があり、工業上有用である。
2. Description of the Related Art Motors are a typical application of permanent magnet materials. In particular, in a small motor having an output of several W or less, an annular permanent magnet is used as a field element. Particularly, bond magnets are excellent in moldability and workability, and are used as permanent magnets for the motor field element. In recent years, as a method of manufacturing this annular permanent magnet, a method has been proposed in which a sheet-like magnet molded body having flexibility is curled into an annular magnet. This has advantages such as easy assembly of the motor and is industrially useful.

【0003】例えば特開2000−331812号公報
では、等方性の希土類磁性粉末を用いた可撓性シート状
磁石成形体に関して、長期高温度保存下での可撓性の低
下を抑制する技術が提案されている。等方性磁石成形体
は磁場成形の必要がないため、異方性磁石成形体に比べ
て成形しやすく、また着磁によって目的とする磁極パタ
ーンを発生させることができる特徴を有する。しかし等
方性磁石成形体は異方性磁石成形体に比べて発生できる
磁束密度が小さく、更なるモーターの高性能化には限界
があった。
[0003] For example, Japanese Patent Application Laid-Open No. 2000-331812 discloses a technique for suppressing a decrease in flexibility of a flexible sheet-like magnet formed using isotropic rare earth magnetic powder under long-term high-temperature storage. Proposed. Since the isotropic magnet molded body does not need to be subjected to magnetic field molding, it is easily molded as compared with the anisotropic magnet molded body, and has a characteristic that a desired magnetic pole pattern can be generated by magnetization. However, the isotropic magnet molded body has a smaller magnetic flux density than the anisotropic magnet molded body, and there is a limit to further improving the performance of the motor.

【0004】また特開2000−341916号公報で
は、磁場成形し、アキシャル異方性とした可撓性シート
状磁石成形体を環状にカーリングして実装した永久磁石
界磁形モーターが提案されている。等方性磁石成形体に
比べて高い磁束密度が得られる特徴がある。しかしなが
ら、環状にカーリングし、モーターに実装したとき、異
方性の向きがラジアル方向となる。このためモーターの
駆動に利用されない漏洩磁束が大きく、希土類磁性粉末
の高い磁束密度を十分に利用できない問題があった。
Japanese Patent Application Laid-Open No. 2000-341916 proposes a permanent magnet field type motor in which a flexible sheet-like magnet molded article having a magnetic field and made axially anisotropic is curled and mounted. . There is a feature that a higher magnetic flux density can be obtained as compared with an isotropic magnet molded body. However, when curled in a ring and mounted on a motor, the direction of anisotropy is the radial direction. For this reason, there is a problem that the leakage magnetic flux not used for driving the motor is large, and the high magnetic flux density of the rare earth magnetic powder cannot be sufficiently utilized.

【0005】モーターとして利用される環状の永久磁石
には、環状の内周面又は外周面の一方のみに磁極を形成
した極異方性磁石成形体がある。これは漏洩磁束が少な
く、同一寸法では最も高い磁束密度が期待できる。また
アキシャル異方性に比べて、極異方性は磁路長を長く確
保できるためパーミアンス係数を大きくすることができ
る特徴がある。例えば特開平7−250460号公報で
は、異方性フェライト粉末と可撓性樹脂とを混合し、押
し出し成形によって極異方性のシート状磁石成形体と
し、カーリングしてハウジングに挿入する技術が提案さ
れている。
A ring-shaped permanent magnet used as a motor includes a polar anisotropic magnet molded body in which magnetic poles are formed only on one of the ring-shaped inner and outer peripheral surfaces. This has a small leakage magnetic flux, and the highest magnetic flux density can be expected for the same size. Also, compared to axial anisotropy, polar anisotropy has a feature that a permeance coefficient can be increased because a longer magnetic path length can be secured. For example, Japanese Patent Application Laid-Open No. 7-250460 proposes a technique in which anisotropic ferrite powder and a flexible resin are mixed, extruded to form a polar anisotropic sheet-like magnet, curled, and inserted into a housing. Have been.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開平
7−250460号公報の方法にて、Nd−Fe−B系
やSm−Co系の異方性希土類磁性粉末を使用し、十分
な可撓性を有した極異方性のシート状磁石成形体を成形
することは難しい。Nd−Fe−B系やSm−Co系の
異方性希土類磁性粉末は粒子径が大きいため極異方のよ
うな複雑な配向には適さない。また、シート状磁石成形
体をカーリングしたとき粗大粒子同士がせめぎ合い、粒
子間を繋いでいる可撓性樹脂が分断される。このため磁
石成形体に割れが生じたり、また磁石成形体から粒子が
析出し、脱落、飛散してしまう問題があった。
However, according to the method disclosed in JP-A-7-250460, an Nd-Fe-B-based or Sm-Co-based anisotropic rare-earth magnetic powder is used to provide sufficient flexibility. It is difficult to form a polar anisotropic sheet-like magnet molded body having the following. Nd-Fe-B-based or Sm-Co-based anisotropic rare earth magnetic powders are not suitable for complicated orientation such as extremely anisotropic due to their large particle diameter. In addition, when the sheet-like magnet molded body is curled, coarse particles compete with each other, and the flexible resin connecting the particles is separated. For this reason, there was a problem that a crack was generated in the magnet molded body, and particles were precipitated from the magnet molded body, dropped off, and scattered.

【0007】またNd−Fe−B系やSm−Co系の異
方性希土類磁性粉末は、一般に合金を原料として製造さ
れ、粉砕によって目的の粒度とするため、微小粒子を多
く含有している。微小粒子が多い場合、磁性粉末の比表
面積が大きくなるため、粒子と可撓性樹脂との界面で可
撓性樹脂の動きが制約を受け、シート状磁石成形体の可
撓性が低下してしまう問題があった。
[0007] Nd-Fe-B and Sm-Co anisotropic rare earth magnetic powders are generally produced using alloys as raw materials, and contain a large amount of fine particles in order to obtain a target particle size by grinding. When the number of fine particles is large, the specific surface area of the magnetic powder becomes large, so that the movement of the flexible resin at the interface between the particles and the flexible resin is restricted, and the flexibility of the sheet-like magnet molded body is reduced. There was a problem.

【0008】従って本発明の目的は、上記した事情に鑑
みなされたものである。すなわち異方性希土類磁性粉末
を使用し、可撓性、磁気特性に優れた可撓性シート状磁
石成形体及びその製造方法を提供することを目的とす
る。
Accordingly, an object of the present invention has been made in view of the above circumstances. That is, an object of the present invention is to provide a flexible sheet-like magnet molded body using anisotropic rare-earth magnetic powder and having excellent flexibility and magnetic properties, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】本発明者は上記した問題
を解決するために、異方性希土類磁性粉末を用いた極異
方性の可撓性シート状磁石成形体について鋭意研究した
結果、希土類鉄窒素系磁性粉末を使用することによって
上記した課題を解決できることを見いだし、本発明を完
成するに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive studies on a polar anisotropic flexible sheet-like magnet formed using anisotropic rare earth magnetic powder, The inventors have found that the above-mentioned problems can be solved by using a rare earth iron-nitrogen based magnetic powder, and have completed the present invention.

【0010】すなわち本発明の目的は、下記(1)〜
(5)の構成によって達成することができる。 (1)可撓性を有する熱可塑性樹脂と磁性粉末とからな
る極異方性の可撓性シート状磁石成形体であって、前記
磁性粉末は少なくとも希土類鉄窒素系磁性粉末を含む異
方性希土類磁性粉末であることを特徴とする可撓性シー
ト状磁石成形体。
That is, the objects of the present invention are as follows:
This can be achieved by the configuration of (5). (1) A polar anisotropic flexible sheet-like magnet formed from a flexible thermoplastic resin and magnetic powder, wherein the magnetic powder contains at least a rare earth iron-nitrogen-based magnetic powder. A flexible sheet-shaped magnet molded body, which is a rare earth magnetic powder.

【0011】(2)前記異方性希土類磁性粉末は、希土
類鉄窒素系磁性粉末が50重量%以上含まれることを特
徴とする前記(1)に記載の可撓性シート状磁石成形
体。
(2) The molded flexible sheet magnet according to (1), wherein the anisotropic rare earth magnetic powder contains at least 50% by weight of rare earth iron-nitrogen based magnetic powder.

【0012】(3)前記希土類鉄窒素系磁性粉末のフィ
ッシャー径は1.5〜5.5μmであり、かつBET値
は0.1〜5m/gであることを特徴とする前記
(1)又は(2)に記載の可撓性シート状磁石成形体。
(3) The rare earth iron-nitrogen based magnetic powder has a Fisher diameter of 1.5 to 5.5 μm and a BET value of 0.1 to 5 m 2 / g. Or the flexible sheet-like molded magnet according to (2).

【0013】(4)前記可撓性シート状磁石成形体の可
撓性αは30mm以下であることを特徴とする前記
(1)及至(3)に記載の可撓性シート状磁石成形体。
(ただし、前記可撓性αは厚さ1.5mmの可撓性シー
ト状磁石成形体を円柱状の棒に巻き付けた際、その外周
面に変色、クラック、又は割れが生じることなく巻き付
けることができる前記円柱状の棒の最小直径αで表
す。)
(4) The flexible sheet-like magnet molded article according to any one of (1) to (3), wherein the flexibility α of the flexible sheet-like magnet molded article is 30 mm or less.
(However, when the flexible α is wound around a 1.5 mm-thick flexible sheet-shaped magnet formed around a cylindrical rod without discoloration, cracking, or cracking on the outer peripheral surface thereof, It is represented by the minimum diameter α of the cylindrical rod that can be formed.)

【0014】(5)磁性粉末と樹脂とからなる樹脂組成
物を磁場中で成形する2つの主面を有するシート状磁石
成形体の製造方法において、前記磁性粉末は少なくとも
希土類鉄窒素系磁性粉末を含む異方性希土類磁性粉末で
あり、前記樹脂は可撓性を有する熱可塑性樹脂であり、
前記磁場中における成形は第1の主面にのみ磁極が発生
するように成形することを特徴とする前記(1)及至
(4)に記載の可撓性シート状磁石成形体の製造方法。
(5) In a method for producing a sheet-like magnet molded body having two main surfaces, which comprises molding a resin composition comprising a magnetic powder and a resin in a magnetic field, the magnetic powder comprises at least a rare earth iron-nitrogen based magnetic powder. Containing anisotropic rare earth magnetic powder, wherein the resin is a thermoplastic resin having flexibility,
The method of manufacturing a flexible sheet-like magnet according to any one of (1) to (4), wherein the forming in the magnetic field is performed such that a magnetic pole is generated only on the first main surface.

【0015】すなわち本発明の可撓性シート状磁石成形
体は、希土類鉄窒素系磁性粉末を用いることによって優
れた磁気特性、可撓性が実現できる。特に希土類鉄窒素
系磁性粉末は、保磁力の発現機構がニュークリエーショ
ン型であり、粒子径を単磁区粒子径として使用される。
このため磁場配向しやすく、かつ成形加工性に優れ、実
用レベルの可撓性が得られる。またNd−Fe−B系や
Sm−Co系など他の異方性希土類磁性粉末と共に使用
しても、優れた可撓性、成形加工性が得られる。このと
き前記(2)に記載したように、希土類鉄窒素系磁性粉
末の含有量を規格化することが好ましい。さらに前記
(3)に記載したように、粉体特性を規格化した希土類
鉄窒素系磁性粉末を用いることが好ましく、シート状磁
石成形体の可撓性を更に向上させることができる。
That is, the flexible sheet-like magnet molded article of the present invention can realize excellent magnetic properties and flexibility by using a rare earth iron-nitrogen based magnetic powder. In particular, the rare-earth iron-nitrogen based magnetic powder has a nucleation type in which the coercive force is developed, and the particle diameter is used as a single magnetic domain particle diameter.
For this reason, it is easy to orient the magnetic field, is excellent in molding workability, and obtains a practical level of flexibility. Even when used together with other anisotropic rare earth magnetic powders such as Nd-Fe-B and Sm-Co, excellent flexibility and moldability can be obtained. At this time, as described in the above (2), it is preferable to standardize the content of the rare earth iron-nitrogen based magnetic powder. Further, as described in the above (3), it is preferable to use a rare earth iron-nitrogen-based magnetic powder whose powder properties are standardized, and the flexibility of the sheet-like magnet molded body can be further improved.

【0016】また前記(4)では、ボンド磁石試験方法
ガイドブック(日本ボンド磁石工業協会)のBMG−3
002に記載された方法に従い、磁石成形体の可撓性を
評価する。厚さ1.5mmのシート状磁石成形体を種々
の外径の円柱状の棒に巻き付け、このときシート状磁石
成形体の外周面に変色、クラック、割れがないか目視に
て観察する。シート状磁石成形体の外周面に変質が生じ
ることなく巻き付けることができる前記円柱状の棒の直
径のうち、最小値をαとし、可撓性評価の指標とする。
本発明ではこの可撓性αが30mm以下であることが更
に好ましい。
In the above (4), BMG-3 of the Guidebook for Bonded Magnet Test Methods (Japan Bonded Magnet Industry Association)
According to the method described in 002, the flexibility of the magnet molded body is evaluated. A sheet-shaped magnet molded body having a thickness of 1.5 mm is wound around cylindrical rods having various outer diameters, and at this time, the outer peripheral surface of the sheet-shaped magnet molded body is visually observed for any discoloration, crack, or crack. The minimum value among the diameters of the cylindrical rods that can be wound around the outer peripheral surface of the sheet-shaped magnet molded body without causing deterioration is α, which is used as an index for evaluating flexibility.
In the present invention, the flexibility α is more preferably 30 mm or less.

【0017】[0017]

【発明の実施の形態】次に本発明について詳細に説明す
る。本発明では一般式RFe100−x− (R
は一種以上の希土類金属)で表される異方性希土類鉄窒
素系磁性粉末を使用する。希土類金属としてはSmを必
ず含有することが好ましく、Smを含有すると磁気異方
性、飽和磁化が大きくなり、永久磁石材料として優れた
磁気特性が得られる。さらにSmFe17で表さ
れる組成のSm−Fe−N系磁性粉末が最も好ましく、
優れた磁気特性が得られる。
Next, the present invention will be described in detail. In the present invention the general formula R x Fe 100-x- y N y (R
Uses one or more rare earth metals). The rare earth metal preferably contains Sm. When Sm is contained, magnetic anisotropy and saturation magnetization increase, and excellent magnetic properties can be obtained as a permanent magnet material. Further, Sm-Fe-N-based magnetic powder having a composition represented by Sm 2 Fe 17 N 3 is most preferable,
Excellent magnetic properties can be obtained.

【0018】この希土類鉄窒素系磁性粉末は、Nd−F
e−B系磁性粉末と同等の磁気特性を有し、平均粒子径
は数μm〜20μm程度である。このため配向性に優
れ、薄肉のシート状磁石成形体でも十分な配向が可能で
ある。さらに粗大粒子をほとんど含有しないため、優れ
た可撓性の磁石成形体を作製できる。また窒化物である
ため、耐食性に優れ、作製した磁石成形体はエポキシ樹
脂などによるコーティングを施す必要がない。表1〜3
に示したように希土類鉄窒素系磁性粉末を使用しない比
較例に比べて、本実施例は可撓性、防錆性共に優れ、か
つ高い表面磁束密度が得られている。
This rare earth iron-nitrogen based magnetic powder is made of Nd-F
It has the same magnetic properties as the eB magnetic powder and has an average particle size of about several μm to 20 μm. For this reason, the orientation is excellent, and a sufficient orientation is possible even with a thin sheet-shaped magnet molded body. Furthermore, since it contains almost no coarse particles, an excellent flexible magnet molded body can be produced. In addition, since it is a nitride, it has excellent corrosion resistance, and it is not necessary to coat the produced magnet molded body with an epoxy resin or the like. Tables 1-3
As compared with the comparative example using no rare earth iron-nitrogen-based magnetic powder as shown in the above, the present example is excellent in both flexibility and rust prevention and has a high surface magnetic flux density.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】本発明では、希土類鉄窒素系磁性粉末を単
独で使用することが好ましいが、他の異方性希土類磁性
粉末と共に使用してもよい。希土類鉄窒素系磁性粉末と
共に使用できる異方性希土類磁性粉末は、例えばSmC
(1−5系)、Sm(Co,Fe,Zr,V)
17(2−17系)などのSm−Co系、NdFe
B、Nd(Fe,Co)14B、(Nd,Dy)
Fe14BなどのNd−Fe−B系、及びNd−Fe−
Ti−N系や、Nd−Fe−V−N系などが挙げられ
る。
In the present invention, the rare-earth iron-nitrogen-based magnetic powder is preferably used alone, but may be used together with another anisotropic rare-earth magnetic powder. Anisotropic rare earth magnetic powder that can be used together with rare earth iron-nitrogen based magnetic powder is, for example, SmC
o 5 (1-5 system), Sm 2 (Co, Fe , Zr, V)
17 (2-17 type), such as Sm-Co type, Nd 2 Fe 1
4 B, Nd 2 (Fe, Co) 14 B, (Nd, Dy) 2
Nd-Fe-B system, such as Fe 14 B, and Nd-Fe-
Ti-N type, Nd-Fe-VN type and the like can be mentioned.

【0023】例えばNdFe14Bに代表されるNd
−Fe−B系磁性粉末は、比較的安価であり、かつ優れ
た磁気特性を有する。このため希土類鉄窒素系磁性粉末
と共にNd−Fe−B系磁性粉末を用いることで、優れ
た磁気特性を有し、かつ可撓性に優れ、しかも安価なシ
ート状磁石成形体ができる。このように用途、使用条件
により、希土類鉄窒素系磁性粉末と共に使用する異方性
希土類磁性粉末は選択でき、また2種以上を使用しても
よい。さらに耐熱性、耐環境性を向上させるために、希
土類鉄窒素系磁性粉末や上記異方性希土類磁性粉末をシ
ラン系カップリング剤などによって表面処理を行っても
構わない。
For example, Nd represented by Nd 2 Fe 14 B
-Fe-B based magnetic powder is relatively inexpensive and has excellent magnetic properties. Therefore, by using the Nd-Fe-B-based magnetic powder together with the rare-earth iron-nitrogen-based magnetic powder, an inexpensive sheet-shaped magnet molded body having excellent magnetic properties, excellent flexibility, and excellent flexibility can be obtained. As described above, the anisotropic rare-earth magnetic powder used together with the rare-earth iron-nitrogen-based magnetic powder can be selected depending on the application and use conditions, and two or more kinds may be used. In order to further improve heat resistance and environmental resistance, the rare earth iron-nitrogen-based magnetic powder or the anisotropic rare-earth magnetic powder may be subjected to a surface treatment with a silane-based coupling agent or the like.

【0024】希土類鉄窒素系磁性粉末を前記した異方性
希土類磁性粉末と共に使用する場合、使用する磁性粉末
100重量部のうち、希土類鉄窒素系磁性粉末は50重
量部以上であることが好ましい。更に好ましくは70重
量部以上である。図2に示したように、希土類鉄窒素系
磁性粉末を50重量部以上含有したとき、表面磁束密度
が向上する。また表1〜3に示したように、希土類鉄窒
素系磁性粉末の含有量が多いほど、可撓性、防錆性が向
上していくことが分かる。
When the rare-earth iron-nitrogen-based magnetic powder is used together with the above-described anisotropic rare-earth magnetic powder, the rare-earth iron-nitrogen-based magnetic powder is preferably 50 parts by weight or more based on 100 parts by weight of the magnetic powder used. It is more preferably at least 70 parts by weight. As shown in FIG. 2, when the rare earth iron-nitrogen based magnetic powder is contained in an amount of 50 parts by weight or more, the surface magnetic flux density is improved. Further, as shown in Tables 1 to 3, it can be seen that the higher the content of the rare earth iron-nitrogen based magnetic powder, the higher the flexibility and the rust prevention.

【0025】また本発明では、希土類鉄窒素系磁性粉末
のフィッシャー径が1.5〜5.5μmであり、かつB
ET値が0.1〜5m/gであることが好ましい。こ
のとき表4に示したように、可撓性が向上することが分
かる。更に好ましくはフィッシャー径が2〜4μmであ
り、かつBET値が0.5〜2m/gである。このと
き表4に示したように、外周面に変色、クラック、及び
割れを生じることなく、外周の直径が5mmの円柱状の
棒に巻き付けることができ、優れた可撓性が得られるこ
とが分かる。ここで磁性粉末のフィッシャー径はフィッ
シャーサブシーブサイザーを用いて、空気透過法により
測定した平均粒子径である。またBET値は窒素ガスを
用いた吸着法で測定した磁性粉末の比表面積である。
In the present invention, the rare earth iron-nitrogen based magnetic powder has a Fischer diameter of 1.5 to 5.5 μm,
The ET value is preferably from 0.1 to 5 m 2 / g. At this time, as shown in Table 4, it can be seen that the flexibility is improved. More preferably, the Fisher diameter is 2 to 4 μm, and the BET value is 0.5 to 2 m 2 / g. At this time, as shown in Table 4, the outer peripheral surface can be wound around a cylindrical rod having a diameter of 5 mm without causing discoloration, cracks, and cracks on the outer peripheral surface, and excellent flexibility can be obtained. I understand. Here, the Fischer diameter of the magnetic powder is an average particle diameter measured by an air permeation method using a Fischer sub-sieve sizer. The BET value is a specific surface area of the magnetic powder measured by an adsorption method using nitrogen gas.

【0026】[0026]

【表4】 [Table 4]

【0027】更に使用する希土類鉄窒素系磁性粉末は、
粉砕を行わずに製造されることが好ましい。これによ
り、粉砕に伴う微小粒子の生成や、表面性状の変化によ
る磁気特性の劣化がなく、可撓性、磁気特性に優れたシ
ート状磁石成形体を作製できる。
The rare earth iron-nitrogen based magnetic powder to be used is
Preferably, it is produced without pulverization. This makes it possible to produce a sheet-like magnet molded body having excellent flexibility and magnetic properties without generation of fine particles due to pulverization and deterioration of magnetic properties due to changes in surface properties.

【0028】次に本発明では樹脂に可撓性を有する熱可
塑性樹脂を用いる。特にハードセグメントとソフトセグ
メントとのブロック共重合体である熱可塑性エラストマ
ーを使用することが好ましい。熱可塑性エラストマー
は、融点以上の温度領域ではハードセグメントが溶融す
るため低い溶融粘度を示し、磁場成形のとき磁性粒子が
流動しやすい。このため極異方性のように複雑な磁場配
向でも成形可能である。さらに磁場成形後、融点以下に
冷却すると、ハードセグメントが結晶化するため、極異
方性に配向した状態で磁性粉末を固着できる特徴を有す
る。
Next, in the present invention, a thermoplastic resin having flexibility is used as the resin. In particular, it is preferable to use a thermoplastic elastomer which is a block copolymer of a hard segment and a soft segment. The thermoplastic elastomer exhibits a low melt viscosity in a temperature range of the melting point or higher because the hard segment is melted, and the magnetic particles easily flow during magnetic field molding. For this reason, molding can be performed even with a complicated magnetic field orientation such as polar anisotropy. Further, when the magnetic segment is cooled to a temperature equal to or lower than the melting point after the magnetic field is formed, the hard segment is crystallized, so that the magnetic powder can be fixed in a state of being polar anisotropically oriented.

【0029】本発明では、例えばポリエチレン、ポリプ
ロピレン、ポリブテン、塩素化ポリエチレン、ポリスチ
レンなどのポリオレフィン系樹脂、ポリ塩化ビニル、ポ
リ酢酸ビニルなどのポリビニル系樹脂、ポリスチレン系
樹脂、ポリエステル、ポリアミド、ポリウレタン、ポリ
エチレン酢酸ビニル共重合体などの熱可塑性を有するセ
グメントを少なくとも1種構成単位とした熱可塑性エラ
ストマーが使用できる。2種以上の熱可塑性エラストマ
ーを適宜混合して使用してもよい。
In the present invention, for example, polyolefin resins such as polyethylene, polypropylene, polybutene, chlorinated polyethylene, and polystyrene; polyvinyl resins such as polyvinyl chloride and polyvinyl acetate; polystyrene resins; polyesters, polyamides, polyurethanes, and polyethylene acetate A thermoplastic elastomer having at least one type of structural unit having a thermoplastic segment such as a vinyl copolymer can be used. Two or more kinds of thermoplastic elastomers may be appropriately mixed and used.

【0030】熱可塑性エラストマーは成形方法、用途、
使用条件に応じて選択できるが、特にハードセグメント
がポリブチレンテレフタレート又はポリアミドである熱
可塑性エラストマーが好ましい。このとき磁場成形時、
特に優れた流動性が得られ、配向性が向上する。このた
め磁性粉末を高充填した場合や、薄型シート状であって
も、複雑な極異方性とすることができ、表1〜4のアミ
ド系熱可塑性エラストマーを用いた結果にみられるよう
に、優れた磁束密度を実現できる。更に本発明では使用
目的に応じて、ポリオレフィン系樹脂、ポリビニル系樹
脂、ポリスチレン系樹脂、ポリエステル、ポリアミド、
ポリウレタン、ポリエチレン酢酸ビニル共重合体から選
ばれた少なくとも一種の樹脂バインダーと熱可塑性エラ
ストマーとを混合して使用しても構わない。
The thermoplastic elastomer is formed by a molding method, an application,
Although it can be selected according to the use conditions, a thermoplastic elastomer whose hard segment is polybutylene terephthalate or polyamide is particularly preferable. At this time, when forming the magnetic field,
Particularly excellent fluidity is obtained, and the orientation is improved. For this reason, even when the magnetic powder is highly filled, or even in the form of a thin sheet, complicated polar anisotropy can be obtained, as shown in the results of using the amide-based thermoplastic elastomers in Tables 1 to 4. And excellent magnetic flux density can be realized. Further in the present invention, depending on the purpose of use, polyolefin resin, polyvinyl resin, polystyrene resin, polyester, polyamide,
A mixture of at least one resin binder selected from polyurethane and polyethylene vinyl acetate copolymer and a thermoplastic elastomer may be used.

【0031】本発明では、まず上記した異方性希土類磁
性粉末と可撓性を有する熱可塑性樹脂とを所定の配合比
で調合し、ミキサー、混練機を用いて混合、混練し樹脂
組成物とする。配合比は、用いる異方性希土類磁性粉末
と可撓性を有する熱可塑性樹脂の種類、作製条件などに
応じて適宜設定できる。また成形加工性や、成形品の可
撓性などの諸特性を改善するために、滑剤、可塑剤、酸
化防止剤などの添加剤を目的に応じて適宜使用すること
が好ましい。
In the present invention, first, the above-described anisotropic rare earth magnetic powder and a flexible thermoplastic resin are prepared at a predetermined compounding ratio, and mixed and kneaded using a mixer and a kneader to obtain a resin composition. I do. The compounding ratio can be appropriately set according to the type of the anisotropic rare earth magnetic powder to be used and the thermoplastic resin having flexibility, production conditions, and the like. In addition, in order to improve various properties such as moldability and flexibility of the molded product, it is preferable to appropriately use additives such as a lubricant, a plasticizer, and an antioxidant according to the purpose.

【0032】次に作製した樹脂組成物を磁場中で成形
し、極異方性のシート状磁石成形体とする。このとき平
板の2つの主面のうち、一方の主面にのみ磁極が発生す
るように磁場成形する。磁極の形状は特に限定されるも
のではないが、モーター界磁用磁石として使用する場
合、ストライプ状に磁極を形成することが好ましい。ま
たカーリングしたときスキュー付き磁極となるように、
磁極を形成しても構わない。
Next, the prepared resin composition is molded in a magnetic field to obtain a polar anisotropic sheet-like molded magnet. At this time, the magnetic field is formed such that a magnetic pole is generated only on one of the two main surfaces of the flat plate. The shape of the magnetic pole is not particularly limited, but when used as a motor field magnet, it is preferable to form the magnetic poles in a stripe shape. Also, when curled, it becomes a skewed magnetic pole,
A magnetic pole may be formed.

【0033】ここで成形手段は、例えば押し出し成形、
圧縮成形、射出成形が適用できる。なかでも射出成形が
好ましい。成形には極異方性化に必要な配向磁界を発生
させるために、ダイス又は金型に磁界発生用の磁石又は
コイルを配置し、磁気回路を形成する。このとき使用す
る磁性粉末の磁気特性、樹脂の流動性に応じて、極異方
性磁石とするために必要な磁界の強さを設定する。
Here, the molding means is, for example, extrusion molding,
Compression molding and injection molding can be applied. Of these, injection molding is preferred. In molding, a magnet or a coil for generating a magnetic field is arranged in a die or a mold to generate an orientation magnetic field necessary for polar anisotropy to form a magnetic circuit. At this time, the strength of the magnetic field necessary for forming a polar anisotropic magnet is set according to the magnetic properties of the magnetic powder used and the fluidity of the resin.

【0034】射出成形は、作製した樹脂組成物を加熱
し、溶融状態としてから金型内に射出する。このため磁
場成形の際、磁性粒子が流動しやすく、容易に極異方性
が形成できる。さらに金型を加熱しないため、金型に射
出された樹脂組成物は配向磁界中で速やかに冷却、固化
される。このため磁性粒子は完全に目的とする極異方性
に配向しており、優れた磁気特性を有するシート状磁石
成形体が得られる。
In the injection molding, the produced resin composition is heated to be in a molten state and then injected into a mold. For this reason, at the time of magnetic field shaping, magnetic particles flow easily, and polar anisotropy can be easily formed. Further, since the mold is not heated, the resin composition injected into the mold is rapidly cooled and solidified in the orientation magnetic field. For this reason, the magnetic particles are completely oriented in the desired polar anisotropy, and a sheet-like magnet molded body having excellent magnetic properties can be obtained.

【0035】押し出し成形は、磁場成形を連続的に行え
るため、生産性に優れる特徴がある。異方性希土類磁性
粉末と可撓性を有する熱可塑性樹脂とを混練機で混練し
ながら、できた樹脂組成物をダイスに押し出して磁場成
形してもよい。また射出成形のように、混練機にて混練
後、粒状の樹脂組成物とし、成形機にて再度加熱して所
定の磁石成形体としても構わない。
Extrusion molding is characterized by excellent productivity because magnetic field molding can be performed continuously. While kneading the anisotropic rare earth magnetic powder and the flexible thermoplastic resin with a kneader, the resulting resin composition may be extruded into a die and subjected to magnetic field molding. Further, as in the injection molding, after kneading with a kneading machine, a granular resin composition may be formed and heated again with a molding machine to form a predetermined magnet molded body.

【0036】圧縮成形では、金型温度を上げて可撓性を
有する熱可塑性樹脂の粘度を低下させることで、極異方
性に磁場配向できる。そして配向磁界を印加したまま金
型を冷却することで、極異方性に配向した磁性粒子を固
着できる。
In the compression molding, the magnetic field can be oriented in a polar anisotropic manner by increasing the mold temperature and decreasing the viscosity of the thermoplastic resin having flexibility. Then, by cooling the mold while applying the orientation magnetic field, the magnetic particles oriented in the polar anisotropy can be fixed.

【0037】上記したようにして得られる本発明の可撓
性シート状磁石成形体は、表1〜5に示したように、可
撓性αが30mm未満の優れた可撓性を有することが分
かる。
As shown in Tables 1 to 5, the flexible sheet-like molded magnet of the present invention obtained as described above has excellent flexibility with a flexibility α of less than 30 mm. I understand.

【0038】[0038]

【実施例】以下、本発明の実施例について説明するが、
本発明は具体的実施例のみに限定されるものではない。 〔実施例1〕純度99.9%で平均粒子径1.2μmの
酸化サマリウムと純度99.9%で平均粒子径1.3μ
mの酸化鉄とからなる混合原料を炉内に水素ガスを通気
しながら600℃で20時間焼成し、酸化鉄の一部を鉄
に還元した。
Hereinafter, embodiments of the present invention will be described.
The present invention is not limited to only specific examples. [Example 1] Samarium oxide having a purity of 99.9% and an average particle diameter of 1.2 µm, and a samarium oxide having a purity of 99.9% and an average particle diameter of 1.3 µm
The mixed raw material consisting of m. iron oxide was calcined at 600 ° C. for 20 hours while passing hydrogen gas through the furnace to reduce a part of the iron oxide to iron.

【0039】次に粒状の金属Caを加え、軟鋼製のるつ
ぼに入れ、Arガス雰囲気中にて1100℃で3時間焼
成し、還元拡散処理を行った。そして炉内を100℃ま
で徐冷後、窒素雰囲気中にて450℃で10時間焼成
し、窒化処理を行った。
Next, granular metal Ca was added, put into a mild steel crucible, fired at 1100 ° C. for 3 hours in an Ar gas atmosphere, and subjected to a reduction diffusion treatment. Then, the inside of the furnace was gradually cooled to 100 ° C., and calcined at 450 ° C. for 10 hours in a nitrogen atmosphere to perform a nitriding treatment.

【0040】得られた窒化生成物を純水に投入し、デカ
ンテーションを数回繰り返した。次にpH4.0の酢酸
水溶液中で撹拌し、Ca分を除去した。スラリーを固液
分離し、80℃で真空乾燥して、Sm−Fe−N系磁性
粉末を得た。このSm−Fe−N系磁性粉末は、フィッ
シャー径が3μm、BET値が1.4m/gであっ
た。
The obtained nitrided product was put into pure water, and decantation was repeated several times. Next, the mixture was stirred in an aqueous acetic acid solution having a pH of 4.0 to remove Ca. The slurry was subjected to solid-liquid separation and vacuum-dried at 80 ° C. to obtain an Sm—Fe—N-based magnetic powder. This Sm—Fe—N magnetic powder had a Fisher diameter of 3 μm and a BET value of 1.4 m 2 / g.

【0041】アミノ系シランカップリング剤で表面処理
したSm−Fe−N系磁性粉末89重量部、アミド系熱
可塑性エラストマー10重量部、フェノール系酸化防止
剤0.6重量部、滑剤としてステアリン酸亜鉛0.4重
量部とをミキサーにて均一に混合した。次に得られた混
合物を2軸押し出し機にて加熱温度220℃で混練し、
ペレット状の樹脂組成物とした。
89 parts by weight of Sm-Fe-N type magnetic powder surface-treated with an amino type silane coupling agent, 10 parts by weight of an amide type thermoplastic elastomer, 0.6 parts by weight of a phenolic antioxidant, zinc stearate as a lubricant And 0.4 parts by weight were uniformly mixed with a mixer. Next, the obtained mixture was kneaded at a heating temperature of 220 ° C. with a twin-screw extruder,
A pellet-shaped resin composition was obtained.

【0042】このペレット状の樹脂組成物を射出成形機
にて加熱温度230℃、配向磁界4kOe以上で磁場成
形し、図1に示した極異方性で長さ90mm、幅10m
m、厚さ1.5mmのシート状磁石成形体とした。この
とき磁極はストライプ状で、シート状磁石成形体の幅方
向に平行となるように4極を形成した。そして形成した
極異方に沿って20kOeの磁場にて着磁し、磁極を形
成した。
This pellet-shaped resin composition was magnetically molded by an injection molding machine at a heating temperature of 230 ° C. and an orientation magnetic field of 4 kOe or more, and the polar anisotropy shown in FIG.
m, a sheet-like magnet molded body having a thickness of 1.5 mm. At this time, the magnetic poles were striped, and four poles were formed so as to be parallel to the width direction of the sheet-like magnet molded body. Then, it was magnetized with a magnetic field of 20 kOe along the formed pole anisotropy to form a magnetic pole.

【0043】〔実施例2〜10及び比較例1〜3〕HD
DR処理して得られたNd−Fe−B系磁性粉末(平均
粒子径50μm)、Sm−Co(2−17系)磁性粉末
(平均粒子径40μm)、Sm−Co(1−5系)磁性
粉末(平均粒子径10μm)を用い、表1〜3に示した
重量比でSm−Fe−N系磁性粉末と混合し、使用する
以外は実施例1と同様にして、シート状磁石成形体を作
製した。
Examples 2 to 10 and Comparative Examples 1 to 3 HD
Nd-Fe-B based magnetic powder (average particle diameter 50 μm), Sm-Co (2-17 based) magnetic powder (average particle diameter 40 μm), Sm-Co (1-5 based) magnetic obtained by DR treatment Using a powder (average particle diameter of 10 μm) and mixing with the Sm—Fe—N-based magnetic powder at the weight ratios shown in Tables 1 to 3, a sheet-like magnet molded body was produced in the same manner as in Example 1 except that it was used. Produced.

【0044】〔実施例11〜23〕原料となる酸化サマ
リウムと酸化鉄の粒度特性、還元拡散処理の温度、窒化
処理の温度などの製造条件を変えて、表4に示されたフ
ィッシャー径とBET値のSm−Fe−N系磁性粉末を
製造した。次に実施例1と同様にして、シート状磁石成
形体を作製した。
[Examples 11 to 23] By changing the particle size characteristics of raw materials such as samarium oxide and iron oxide, the temperature of reduction diffusion treatment, and the temperature of nitriding treatment, the Fischer diameter and BET shown in Table 4 were changed. A Sm-Fe-N-based magnetic powder having a specific value was produced. Next, in the same manner as in Example 1, a sheet-like magnet molded body was produced.

【0045】〔実施例24、25及び比較例4〕アミド
系熱可塑性エラストマーの代わりに表5に示した樹脂バ
インダーを使用する以外は実施例1と同様にして、シー
ト状磁石成形体を作製した。
Examples 24 and 25 and Comparative Example 4 A sheet-like magnet molded body was produced in the same manner as in Example 1 except that the resin binder shown in Table 5 was used instead of the amide-based thermoplastic elastomer. .

【0046】[0046]

【表5】 [Table 5]

【0047】〔比較例5〕射出成形機にてアキシャル方
向に磁場成形する以外は実施例1と同様にして、シート
状磁石成形体を作製した。
Comparative Example 5 A sheet-like magnet molded body was produced in the same manner as in Example 1 except that the magnetic field was molded in an axial direction by an injection molding machine.

【0048】得られたシート状磁石成形体は、以下の方
法にて表面磁束密度、可撓性、防錆性を評価した。 (表面磁束密度の測定)シート状磁石成形体の長手方向
にホール素子を動かし、ガウスメーターにて測定し、表
面磁束密度の最大値、最小値を記録した。
The obtained sheet-like magnet molded body was evaluated for surface magnetic flux density, flexibility and rust prevention by the following methods. (Measurement of Surface Magnetic Flux Density) The Hall element was moved in the longitudinal direction of the sheet-like magnet molded body, and measured with a Gauss meter, and the maximum and minimum values of the surface magnetic flux density were recorded.

【0049】(可撓性の評価)シート状磁石成形体を外
径が5〜40mmの円柱状の棒に巻き付け、このときシ
ート状磁石成形体の外周面に変色、クラック、割れがな
いか目視にて観察した。磁石成形体の外周面に変質が生
じることなく巻き付けることができる前記円柱状の棒の
直径のうち、最小値をαとし、可撓性を評価する指標と
した。この可撓性αの値が小さいほど、可撓性に優れ、
小径でもカーリングできることを示す。
(Evaluation of Flexibility) A sheet-like magnet molded body was wound around a cylindrical rod having an outer diameter of 5 to 40 mm. At this time, the outer peripheral surface of the sheet-like magnet molded body was visually inspected for discoloration, cracks, and cracks. Was observed. Among the diameters of the columnar rods that can be wound without causing deterioration on the outer peripheral surface of the magnet molded body, the minimum value was α, which was used as an index for evaluating flexibility. The smaller the value of the flexibility α, the better the flexibility,
This shows that curling can be performed even with a small diameter.

【0050】(防錆性の評価)シート状磁石成形体を5
%の濃度の食塩水中に25℃で24時間浸漬し、目視に
てシート状磁石成形体に錆が発生していないか観察し
た。錆が確認されず防錆性が良好な状態を「○」で示し
た。錆が数カ所に見られる状態を「△」で示し、多数の
錆が発生している状態を「×」で示した。
(Evaluation of Rust Prevention Property)
% Salt solution at 25 ° C. for 24 hours, and visually inspected for rust on the sheet-like magnet molded body. A state in which no rust was confirmed and the rust resistance was good was indicated by "O". The state where rust was observed at several places was indicated by “△”, and the state where many rusts were generated was indicated by “×”.

【0051】得られたシート状磁石成形体の表面磁束密
度、可撓性、防錆性を表1〜5、図2に示した。
Tables 1 to 5 and FIG. 2 show the surface magnetic flux density, flexibility and rust prevention of the obtained sheet-like magnet molded product.

【0052】[0052]

【発明の効果】このように本発明の可撓性シート状磁石
成形体は、優れた可撓性を有し、かつ高い磁束密度を実
現できた。本発明の可撓性シート状磁石成形体は、例え
ばカーリングし、リング状とすることで、モーター界磁
用磁石として使用できる。特に可撓性に優れるため、小
径のモーターにも実装でき、かつ極異方性で高い表面磁
束密度が得られ、小型で高出力のモーターを実用化でき
る。また本発明の製造方法によって、この優れた磁気特
性を有する可撓性シート状磁石成形体を提供することが
できる。
As described above, the flexible sheet-like magnet molded article of the present invention has excellent flexibility and high magnetic flux density. The flexible sheet-like magnet molded article of the present invention can be used as a magnet for a motor field by, for example, being curled and formed into a ring shape. Particularly, since it is excellent in flexibility, it can be mounted on a small-diameter motor, and a highly anisotropic and high surface magnetic flux density can be obtained. Further, according to the production method of the present invention, it is possible to provide a flexible sheet-like molded magnet having excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】形成された極異方性の磁極を示す本発明の可撓
性シート状磁石成形体の模式図。
FIG. 1 is a schematic view of a flexible sheet-like magnet molded article of the present invention showing formed polar anisotropic magnetic poles.

【図2】シート状磁石成形体の表面磁束密度の最大値と
磁性粉末中の希土類鉄窒素系磁性粉末の含量との関係。
FIG. 2 is a graph showing the relationship between the maximum value of the surface magnetic flux density of the sheet-like magnet molded body and the content of rare earth iron-nitrogen-based magnetic powder in the magnetic powder.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】可撓性を有する熱可塑性樹脂と磁性粉末と
からなる極異方性の可撓性シート状磁石成形体であっ
て、前記磁性粉末は少なくとも希土類鉄窒素系磁性粉末
を含む異方性希土類磁性粉末であることを特徴とする可
撓性シート状磁石成形体。
1. A molded article made of a polar anisotropic flexible magnet made of a thermoplastic resin having flexibility and magnetic powder, wherein the magnetic powder contains at least a rare earth iron-nitrogen based magnetic powder. A flexible sheet-shaped magnet molded product, which is an isotropic rare earth magnetic powder.
【請求項2】前記異方性希土類磁性粉末は、希土類鉄窒
素系磁性粉末が50重量%以上含まれることを特徴とす
る請求項1に記載の可撓性シート状磁石成形体。
2. The flexible sheet-like molded magnet according to claim 1, wherein the anisotropic rare earth magnetic powder contains at least 50% by weight of a rare earth iron-nitrogen based magnetic powder.
【請求項3】前記希土類鉄窒素系磁性粉末のフィッシャ
ー径は1.5〜5.5μmであり、かつBET値は0.
1〜5m/gであることを特徴とする請求項1又は2
に記載の可撓性シート状磁石成形体。
3. The rare earth iron-nitrogen based magnetic powder has a Fischer diameter of 1.5 to 5.5 μm and a BET value of 0.5.
3. It is 1 to 5 m 2 / g.
3. The flexible sheet-like magnet molded product according to item 1.
【請求項4】前記可撓性シート状磁石成形体の可撓性α
は30mm以下であることを特徴とする請求項1及至3
に記載の可撓性シート状磁石成形体。(ただし、前記可
撓性αは厚さ1.5mmの可撓性シート状磁石成形体を
円柱状の棒に巻き付けた際、その外周面に変色、クラッ
ク、又は割れが生じることなく巻き付けることができる
前記円柱状の棒の最小直径αで表す。)
4. The flexibility α of the flexible sheet-like magnet molded body.
Is not more than 30 mm.
3. The flexible sheet-like magnet molded product according to item 1. (However, when the flexible α is wound around a 1.5 mm-thick flexible sheet-shaped magnet formed around a cylindrical rod without discoloration, cracking, or cracking on the outer peripheral surface thereof, It is represented by the minimum diameter α of the cylindrical rod that can be formed.)
【請求項5】磁性粉末と樹脂とからなる樹脂組成物を磁
場中で成形する2つの主面を有するシート状磁石成形体
の製造方法において、前記磁性粉末は少なくとも希土類
鉄窒素系磁性粉末を含む異方性希土類磁性粉末であり、
前記樹脂は可撓性を有する熱可塑性樹脂であり、前記磁
場中における成形は第1の主面にのみ磁極が発生するよ
うに成形することを特徴とする請求項1及至4に記載の
可撓性シート状磁石成形体の製造方法。
5. A method for producing a sheet-shaped magnet molded body having two main surfaces, wherein a resin composition comprising a magnetic powder and a resin is molded in a magnetic field, wherein the magnetic powder contains at least a rare earth iron-nitrogen based magnetic powder. Anisotropic rare earth magnetic powder,
The flexible resin according to any one of claims 1 to 4, wherein the resin is a thermoplastic resin having flexibility, and the molding in the magnetic field is performed such that a magnetic pole is generated only on the first main surface. Method for producing conductive sheet-shaped magnet molded body.
JP2001150558A 2001-05-21 2001-05-21 Plastic sheet magnet molded body and manufacturing method therefor Pending JP2002343623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001150558A JP2002343623A (en) 2001-05-21 2001-05-21 Plastic sheet magnet molded body and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001150558A JP2002343623A (en) 2001-05-21 2001-05-21 Plastic sheet magnet molded body and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2002343623A true JP2002343623A (en) 2002-11-29

Family

ID=18995549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001150558A Pending JP2002343623A (en) 2001-05-21 2001-05-21 Plastic sheet magnet molded body and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2002343623A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303821A (en) * 2003-03-28 2004-10-28 Toda Kogyo Corp BOND MAGNET AND METHOD FOR MANUFACTURING Sm-Fe-N BASED MAGNETIC POWDER THEREFOR
JP2005050988A (en) * 2003-07-28 2005-02-24 Nichia Chem Ind Ltd Sheet-like resin magnet and magnet motor using the same
JP2006156423A (en) * 2003-07-09 2006-06-15 Bridgestone Corp Rubber magnet sheet and its production method
JP2006214752A (en) * 2005-02-01 2006-08-17 Nsk Ltd Magnetic encoder and rolling bearing unit
JP2006345619A (en) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd Manufacturing method for radial anisotropic magnet motor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299221A (en) * 1992-01-23 1993-11-12 Nippon Steel Corp Manufacture of rare earth-iron-nitrogen bonded magnet and manufacture thereof
JPH07250460A (en) * 1994-03-11 1995-09-26 C I Kasei Co Ltd Manufacture of dice for orienting magnetic field and flexible magnet
JPH08181015A (en) * 1994-12-26 1996-07-12 Aichi Steel Works Ltd Magnetic anisotropic rubber coupling type magnet and its manufacturing method
JPH09190909A (en) * 1995-11-10 1997-07-22 Sumitomo Special Metals Co Ltd Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP2001015313A (en) * 1999-06-29 2001-01-19 Sumitomo Metal Mining Co Ltd Radial anisotropic rare earth bonded magnet and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299221A (en) * 1992-01-23 1993-11-12 Nippon Steel Corp Manufacture of rare earth-iron-nitrogen bonded magnet and manufacture thereof
JPH07250460A (en) * 1994-03-11 1995-09-26 C I Kasei Co Ltd Manufacture of dice for orienting magnetic field and flexible magnet
JPH08181015A (en) * 1994-12-26 1996-07-12 Aichi Steel Works Ltd Magnetic anisotropic rubber coupling type magnet and its manufacturing method
JPH09190909A (en) * 1995-11-10 1997-07-22 Sumitomo Special Metals Co Ltd Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JP2001015313A (en) * 1999-06-29 2001-01-19 Sumitomo Metal Mining Co Ltd Radial anisotropic rare earth bonded magnet and manufacture thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303821A (en) * 2003-03-28 2004-10-28 Toda Kogyo Corp BOND MAGNET AND METHOD FOR MANUFACTURING Sm-Fe-N BASED MAGNETIC POWDER THEREFOR
JP2006156423A (en) * 2003-07-09 2006-06-15 Bridgestone Corp Rubber magnet sheet and its production method
JP2005050988A (en) * 2003-07-28 2005-02-24 Nichia Chem Ind Ltd Sheet-like resin magnet and magnet motor using the same
JP2006214752A (en) * 2005-02-01 2006-08-17 Nsk Ltd Magnetic encoder and rolling bearing unit
JP4706271B2 (en) * 2005-02-01 2011-06-22 日本精工株式会社 Magnetic encoder and rolling bearing unit
JP2006345619A (en) * 2005-06-08 2006-12-21 Matsushita Electric Ind Co Ltd Manufacturing method for radial anisotropic magnet motor
JP4710424B2 (en) * 2005-06-08 2011-06-29 パナソニック株式会社 Manufacturing method of radial magnetic anisotropic magnet motor

Similar Documents

Publication Publication Date Title
JP5910467B2 (en) Bonded magnet composition and bonded magnet using the same
EP3202717B1 (en) Ferrite particle powder for bonded magnets, resin composition for bonded magnets, and molded article using same
JP5045868B2 (en) Composite magnetic powder for bonded magnet, resin composition for bonded magnet, and bonded magnet
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH07226312A (en) Magnetic material resin composite material
JP4478869B2 (en) Method for manufacturing anisotropic bonded magnet
JP2000195714A (en) Polar anisotropic rare-earth bonded magnet, manufacturing method, and permanent magnet type motor
JP2007250646A (en) Composition for resin bond type magnet, magnetically anisotropic bond magnet using same, and manufacturing method thereof
JP2008010460A (en) Composition for bond magnet, bond magnet employing it, and its production process
JP2016066675A (en) Rare earth isotropic bond magnet
JP2008305878A (en) Magnetic material, its manufacturing method and resin bond type magnet for sensor employing it
JP4096531B2 (en) Rare earth hybrid magnet composition, method for producing the same, and magnet obtained therefrom
JP2005039218A (en) Composition for bond magnet, and bond magnet
JP2003168602A (en) Anisotropic rare earth bonded magnet and its manufacturing method
JP3217057B2 (en) Magnetic material-resin composite material, method for producing the same, and bonded magnet
JP2002110411A (en) Rare earth hybrid magnet composition and magnet using the same
JP2005072564A (en) Composition for bonded magnet and the bonded magnet
JP4069714B2 (en) Anisotropic injection-molded magnet manufacturing method and injection-molded magnet obtained thereby
JP2004266151A (en) Composition for rare earth hybrid magnet, and rare earth hybrid magnet
JP4296379B2 (en) Method for producing Sm-Fe-N magnetic powder for bonded magnet and bonded magnet
JP2003318051A (en) Anisotropic sheet magnet, and method and apparatus for manufacturing the same
JPH09194911A (en) Production of raw material powder for permanent magnet excellent in moldability
JP2000195713A (en) Polar anisotropic rare earth bonded magnet and manufacturing method
JP3835133B2 (en) Rare earth hybrid magnet composition and magnet
JP2005050988A (en) Sheet-like resin magnet and magnet motor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120