JP3835133B2 - Rare earth hybrid magnet composition and magnet - Google Patents

Rare earth hybrid magnet composition and magnet Download PDF

Info

Publication number
JP3835133B2
JP3835133B2 JP2000213781A JP2000213781A JP3835133B2 JP 3835133 B2 JP3835133 B2 JP 3835133B2 JP 2000213781 A JP2000213781 A JP 2000213781A JP 2000213781 A JP2000213781 A JP 2000213781A JP 3835133 B2 JP3835133 B2 JP 3835133B2
Authority
JP
Japan
Prior art keywords
magnetic powder
rare earth
magnet
resin
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000213781A
Other languages
Japanese (ja)
Other versions
JP2002033205A (en
Inventor
尚 石川
健二 村岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2000213781A priority Critical patent/JP3835133B2/en
Publication of JP2002033205A publication Critical patent/JP2002033205A/en
Application granted granted Critical
Publication of JP3835133B2 publication Critical patent/JP3835133B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、希土類−鉄−窒素系磁性粉末とフェライト磁性粉末とからなるボンド磁石用組成物、およびそれを用いて製造されるボンド磁石に関する。
【0002】
【従来の技術】
永久磁石は雑貨からモータやセンサに至るまで様々な分野で利用される。この磁石を材料面で分類すると、フェライト、Sm−Co系やNd−Fe−B系などの希土類磁性材料、アルニコや鉄クロムコバルトなどの金属磁性材料などがある。フェライトは磁気特性が希土類磁性材料より低いものの、安価であることから幅広く利用されている。希土類磁性材料は磁気特性が高いものの、希土類元素を用いるためフェライトより高価である。
【0003】
また、磁石形態で分類すると、焼結磁石、磁性粉末と樹脂バインダとからなるボンド磁石、鋳造磁石などがある。ボンド磁石は、成形方法の違いによって、射出成形磁石、押出成形磁石、圧縮成形磁石、圧延成形磁石などに分類される。
【0004】
焼結磁石は粉末冶金の手法を応用し相対密度90%以上に緻密化できるため、材料の磁力をそのまま引き出せるが、形状自由度が小さく機械強度に劣る点を持つ。それに対してボンド磁石は、樹脂を結合材として磁性粉末を成形しているため磁力が樹脂体積分弱くなるものの、形状自由度や機械強度に優れ、他の部品との一体成形が可能であるといった特長を持つ。
【0005】
また磁石をNSに磁化する場合、着磁により任意の方向に磁化できる等方性磁石と、磁石の製造時に決められたある方向に磁化して使用する異方性磁石とに、分類することもできる。
【0006】
永久磁石では、用いる材料と磁石形態との組み合わせによって磁気特性を選択でき、使用する用途に合わせた組み合わせを選択している。例えば、最大エネルギー積が16kJ/m3までの用途としては、フェライトを用いたボンド磁石、36kJ/m3程度までの用途にはフェライトを用いた焼結磁石、100kJ/m3程度まではSm−Co系またはNd−Fe−B系ボンド磁石、430kJ/m3まではSm−Co系またはNd−Fe−B系焼結磁石を選択している。
【0007】
ところで、フェライトボンド磁石を超える最大エネルギー積16kJ/m3以上100kJ/m3程度までの特性領域、すなわち従来フェライト焼結磁石や希土類ボンド磁石などを用いる領域で、低コスト、かつ成形性、加工性に優れたボンド磁石の開発が検討されている。この一つとして、フェライトと希土類磁性材料とを混合したボンド磁石、すなわちハイブリッド磁石が提案されている。
【0008】
例えば、特開昭55−99703号公報、特開昭57−39102号公報、特開昭60−223095号公報にはフェライト磁性粉末とSm−Co系磁性粉末とを用いたハイブリッド磁石が提案されている。また特開昭61−284906号公報、特開昭62−257703号公報、特開平10−223421号公報にはフェライト磁性粉末とNd−Fe−B系磁性粉末とを用いたハイブリッド磁石が提案されている。
【0009】
【発明が解決しようとする課題】
上記のSm−Co系磁性粉末やNd−Fe−B系磁性粉末を用いたハイブリット磁石では、目的とする磁気特性を得るためには、混合する希土類磁性粉末量を多くせざるを得ず、コストが期待したほど低くならなかった。Sm−Co系では磁性粉末の磁化が小さく、またNd−Fe−B系では磁性粉末の飽和磁化は大きいものの等方性であるために残留磁化が小さいためである。なおSm−Co系磁性粉末は、高価なCoを多く含むためコストの低減化は一層困難であった。
【0010】
本発明者らは、この欠点を解消するものとしてR−Fe−N系磁性粉末とフェライト磁性粉末とからなるハイブリッド磁石用組成物と、この組成物より作成した磁石とを特開2000−21615号公報に開示した。また特開2000−124018号公報にもR−Fe−N系磁性粉末とフェライト磁性粉末とからなる射出成形体が開示されている。
【0011】
しかしながら、上記R−Fe−N系磁性粉末とフェライト磁性粉末とを用いたハイブリッド磁石組成物やこれから製造されたハイブリッド磁石では減磁曲線の角型性が十分でないという問題点があった。すなわち、このハイブリット磁石は動作点が低く、高い磁気特性を持った実用化可能範囲が広い磁石となっていないという問題点があった。
【0012】
一般的に角形比としてはHk/HcJが用いられる。ここでHkは磁化Jが残留磁束密度Brの90%の大きさになったときの減磁界である。希土類磁性粉末とフェライト磁性粉末からなるハイブリッド磁石では、それぞれの磁性粉末の保磁力がかなり異なるためJ−H減磁曲線上に屈曲点が生じることがあり、Hk/HcJは十分な指標にならない。そこで、本発明では減磁曲線の角型性を表す角形比としてμ0HcB/Brを用いる。
本発明者らの検討では、従来のR−Fe−N系磁性粉末とフェライト磁性粉末とのハイブリッド磁石の角形比μ0HcB/Brは、50〜65%程度であった。本発明の目的は、角形比μ0HcB/Brが65%を超えるR−Fe−N系磁性粉末とフェライト磁性粉末とからなる希土類ハイブリッド磁石用組成物および磁石を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは上記課題を解決するために、R−Fe−N系磁性粉末とフェライト磁性粉末とからなるハイブリッド磁石組成物を数多く検討した。その結果、フェライト磁性粉末として特定の粉体特性を持つものを用いることによって良好な角型性を持つハイブリッド磁石組成物と磁石が得られることを見出したものである。
【0014】
すなわち、本発明の第1の発明によれば、希土類元素(R)と、鉄(Fe)または鉄(Fe)とコバルト(Co)と、窒素(N)とを主成分とする菱面体晶系または六方晶の結晶構造を持つ磁性粉末と、Srフェライト及び/又はBaフェライトからなるフェライト磁性粉末と、樹脂バインダとからなる希土類ハイブリッド磁石組成物において、上記フェライト磁性粉末は、保磁力が310kA/m 以上、比表面積が1.5m/g 以上、圧縮密度が3.3g/cc以下の異方性磁性粉末であることを特徴とする希土類ハイブリッド磁石組成物が提供される。
また、本発明の第2の発明によれば、第1の発明において、上記樹脂バインダは、樹脂成分としてポリアミド樹脂を含み、かつ、射出成形法によって成形されることを特徴とする希土類ハイブリッド磁石組成物が提供される。
【0015】
一方、本発明の第3の発明によれば、第1又は2の発明に係る希土類ハイブリッド磁石組成物を射出成形して得られる希土類ハイブリッド磁石であって、その角形比μ0HcB/Brは、65%以上であることを特徴とする希土類ハイブリッド磁石が提供される
また、本発明の第4の発明によれば、第3の発明において、異方性ボンド磁石であることを特徴とする希土類ハイブリッド磁石が提供される
【0016】
【発明の実施の形態】
本発明で用いられるR−Fe−N系磁性粉末は希土類元素(R)と、鉄(Fe)または鉄(Fe)とコバルト(Co)と、窒素(N)とを主成分とする菱面体晶系または六方晶の結晶構造を持つ磁性粉末で、例えば特開平2−57663号公報、特開平3−16102号公報、特開平3−101102号公報、特開平3−141608号公報、特開平3−153852号公報、特開平3−160705号公報、特開平8−45718号公報、特開平8−55712号公報、特開平8−144024号公報、特開平8−316018号公報、特開平10−163056号公報、特開平10−241923号公報、特開平10−289811号公報、特開平11−297518号公報に開示されたものである。
【0017】
この製造方法としては、これらの公知文献に記載されているように、窒素を含有しない合金粉末を還元拡散法、溶解鋳造法、液体急冷法などで製造し、その後窒素または窒素原子を含む雰囲気中で熱処理することによって窒素を合金粉末内に導入する。希土類ハイブリッド磁石は低コストが要求される。この面では、還元拡散法で製造される合金を原料とすることか望まれる。還元拡散法による磁性粉末製造例は特開平5−148517号公報や特開平9−143636号公報に開示されている。
【0018】
特開平2−57663号公報、特開平3−16102号公報、特開平3−101102号公報、特開平3−141608号公報、特開平03−153852号公報、特開平03−160705号公報などに開示されるR−Fe−N系磁性粉末は、平均粒径が1〜10μmの微粉末である。この磁性微粉末を用いる場合には、例えば、特開昭52−54998、特開昭59−170201、特開昭60−128202、特開平3−211203号公報、特開昭46−7153、特開昭56−55503、特開昭61−154112、特開平3−126801号公報に開示されているような湿式ないし乾式処理による徐酸化皮膜を磁性粉末表面に形成して自然発火防止を図るなどのハンドリング性を向上させることが好ましい。
【0019】
また、本発明の磁性粉末表面に、特開平4−338603、特開平5−230501、特開平5−234729、特開平8−143913、特開平7−268632、特開平9−190909号公報などに開示されているような方法に従い金属皮膜を形成する、あるいは、特公平6−17015、特開平1−234502、特開平4−21702、特開平5−213601、特開平7−326508、特開平8−153613、特開平8−183601号公報などに記載されている方法により無機皮膜を形成するなどすればより耐熱性が改善される。
【0020】
本発明の最大の特徴であるフェライト磁性粉末の選択は本発明の希土類ハイブリッド磁石の角形比μ0HcB/Brを65%以上とするために重要である。この目的を達成するために、その保磁力が310kA/m 以上のフェライト磁性粉末を本発明では用いる。希土類ハイブリッド磁石の製造工程では混練時にフェライト磁性粉末が剪断力を受け、歪みによってその保磁力が大きく低下する。したがって原料のフェライト磁性粉末の保磁力が310kA/m 未満では角型性が65%以上に上がらない。さらにフェライト磁性粉末としてその比表面積が1.5m2/g 以上、好ましくは2.0m2/g 以上のものを選択すること、またその圧縮密度が3.3g/cc以下、好ましくは3.1g/cc以下のものを選択することによって角形比μ0HcB/Brを70%以上とすることができる。
【0021】
なお、フェライト磁性粉末の保磁力は日本ボンド磁石工業協会発行「ボンド磁石試験方法ガイドブックBMG−2002および2005」に基づき評価される。比表面積はBET比表面積を一点法で測定することによって、また圧縮密度は金型に入れた磁性粉末を98MPaで加圧したときの見かけ密度を測定することによって評価される。また、材質としてはSrフェライトとBaフェライトのいずれでも構わないが、Srフェライトの方が角型性を高めるために好ましい。
【0022】
なお後述するように本発明の希土類ハイブリッド磁石を異方性ボンド磁石として製造する場合、用いるフェライト粉末は個々の粉末が実質的に単結晶となっている異方性磁性粉末から選択することが望ましい。その選択にあたっては、磁界中成形工程での磁性粉末配向性を高めるために、アスペクト比の大きい板状の磁性粉末よりも比較的球状のものを選択することが望ましい。
【0023】
前記特開2000−124018号公報には、R−Fe−N系磁性粉末とフェライト磁性粉末とを混合して最大エネルギー積2〜10MGOeの射出成形磁石が得られることが記載されているが、具体的なフェライト磁性粉末の選定や混合率と得られた磁石の磁気特性については全く開示されていない。
【0024】
本発明の磁石組成物を得るに際しては、上記したR−Fe−N系磁性粉末は希土類元素(R)と、鉄(Fe)または鉄(Fe)とコバルト(Co)と、窒素(N)とを主成分とする菱面体晶系または六方晶の結晶構造を持つ磁性粉末と、フェライト磁性粉末と、樹脂バインダと、好ましくはカップリング剤や滑剤や安定剤とを混合・混練して得る。
【0025】
用い得る樹脂バインダとしては特に限定されることはなく、例えば熱可塑性樹脂の場合は、6ナイロン、6、6ナイロン、11ナイロン、12ナイロン、6、12ナイロン、芳香族系ナイロン、これらの分子を一部変性した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合樹脂、エチレン−エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂、エチレン−四フッ化エチレン共重合樹脂、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、各種エラストマーやゴム類等が挙げられ、これらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質での末端基変性品などが挙げられる。
【0026】
またこれら熱可塑性樹脂の2種類以上のブレンド等における系も当然含まれる。これら熱可塑性樹脂の溶融粘度や分子量は、所望の機械的強度が得られる範囲で低い方が望ましく、形状は、パウダー、ビーズ、ペレット等特に限定されないが、磁性粉末との均一混合性から考えるとパウダーが望ましい。
【0027】
また、例えば熱硬化性樹脂の場合は、エポキシ樹脂、ビニルエステル系エポキシ樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ベンゾグアナミン樹脂、ビスマレイミド・トリアジン樹脂、ジアリルフタレート樹脂、フラン樹脂、熱硬化性ポリブタジエン樹脂、ポリイミド樹脂、ポリウレタン系樹脂、シリコーン樹脂、キシレン樹脂等が挙げられ、これらの基本組成物や他種モノマーやこれら樹脂の2種類以上のブレンド等における系も当然含まれる。これら熱硬化性樹脂の粘度、分子量、性状等は、所望の機械的強度や成形性が得られる範囲であれば特に限定されないが、磁性粉末との均一混合性や成形性から考えるとパウダー又は液状が望ましい。
【0028】
また本発明の組成物を製造するとき、添加剤としてカップリング剤や滑剤や安定剤などを使用すると、さらに組成物の加熱流動性が向上し成形性や磁気特性が向上する。カップリング剤としては、シラン系カップリング剤、たとえばビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β−(3、4エポキシシクロヘキシルエチルトリメトキシシラン)、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシメチルジエトキシシラン、N−β(アミノエチル)γアミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、フェニルトリエトキシシラン、ジフェニルジエトキシシラン、イソブチルトリメトキシシラン、デシルトリメトキシシランなどが、またチタン系カップリング剤、たとえばイソプロピルトリイソステアロイルチタネート、イソプロピルトリ(N−アミノエチル−アミノエチル)チタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトライソプロピルチタネート、テトラブチルチタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、イソプロピルトリオクタノイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリ(ジオクチルホスフェート)チタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルジメタクリルイソステアロイルチタネート、テトラ(2、2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシルホスファイト)チタネート、イソプロピルトリクミルフェニルチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、イソプロピルイソステアロイルジアクリルチタネートなど、が挙げられ、樹脂バインダの種類にあわせた適当なものを選択しそれらの一種または二種以上を使うことが出来る。
【0029】
滑剤としては、例えばパラフィンワックス、流動パラフィン、ポリエチレンワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類、ステアリン酸、1、2−オキシステアリン酸、ラウリン酸、パルミチン酸、オレイン酸等の脂肪酸類、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸リチウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2−エチルヘキソイン酸亜鉛等の脂肪酸塩(金属石鹸類)ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N−ステアリルステアリン酸アミド等脂肪酸アミド類、ステアリン酸ブチル等の脂肪酸エステル、エチレングリコール、ステアリルアルコール等のアルコール類、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、及びこれら変性物からなるポリエーテル類、ジメチルポリシロキサン、シリコングリース等のポリシロキサン類、弗素系オイル、弗素系グリース、含弗素樹脂粉末といった弗素化合物、窒化珪素、炭化珪素、酸化マグネシウム、アルミナ、二酸化珪素、二硫化モリブデン等の無機化合物粉体が挙げられる。
【0030】
また、安定剤としては、ビス(2、2、6、6、−テトラメチル−4−ピペリジル)セバケート、ビス(1、2、2、6、6、−ペンタメチル−4−ピペリジル)セバケート、1−[2−{3−(3、5−ジ−第三ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−{3−(3、5−ジ−第三ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2、2、6、6−テトラメチルピペリジン、8−ベンジル−7、7、9、9−テトラメチル−3−オクチル−1、2、3−トリアザスピロ[4、5]ウンデカン−2、4−ジオン、4−ベンゾイルオキシ−2、2、6、6−テトラメチルピペリジン、こはく酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2、2、6、6−テトラメチルピペリジン重縮合物、ポリ[[6−(1、1、3、3−テトラメチルブチル)イミノ−1、3、5−トリアジン−2、4−ジイル][(2、2、6、6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン[[2、2、6、6−テトラメチル−4−ピペリジル]イミノ]]、2−(3、5−ジ・第三ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1、2、2、6、6−ペンタメチル−4−ピペリジル)等のヒンダード・アミン系安定剤のほか、フェノール系、ホスファイト系、チオエーテル系等の抗酸化剤等が挙げられる。
【0031】
また滑剤としては、パラフィンワックス、流動パラフィン、ポリエチレンワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックスなどのワックス類、ステアリン酸、12−オキシステアリン酸、ラウリン酸などの脂肪酸類や、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、ラウリン酸カルシウム、リノール酸亜鉛、リノール酸カルシウム、2−エチルヘキソイン酸亜鉛などの脂肪酸塩、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N−ステアリルスアリン酸アミド、N−オレイルステアリン酸アミド、N−ステアリルエルカ酸アミド、メチロールステアリン酸アミド、メチロールベヘン酸アミドなどの脂肪酸アミド、ステアリン酸ブチルなどの脂肪酸エステル、エチレングリコール、ステアリルアルコールなどのアルコール類、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールおよびこれらの変性物からなるポリエーテル類、シリコーンオイル、シリコングリースなどのポリシロキサン類、フッ素系オイル、フッ素系グリース、含フッ素樹脂粉末といったフッ素化合物、窒化珪素、炭化珪素、酸化マグネシウム、アルミナ、シリカゲルなどの無機化合物粉体などが挙げられ、これらの一種または二種以上を使うことが出来る。
【0032】
本発明の希土類ハイブリッド磁石用組成物および磁石において、R−Fe−N系磁性粉末とフェライト磁性粉末と樹脂バインダとの混合比率は特に限定されず、目的とする磁気特性に対して、R−Fe−N系磁性粉末とフェライト磁性粉末の混合比および樹脂バインダの含有率とを適宜設定して製造することができる。目的の磁気特性に対して(R−Fe−N系磁性粉末重量)/(フェライト磁性粉末重量)を大きく設定すれば、樹脂バインダ含有率を多くすることができ、その結果組成物の流動性が向上する。他方樹脂バインダ含有率を少な目に設定すれば、(R−Fe−N系磁性粉末重量)/(フェライト磁性粉末重量)を小さくすることができ、このことはすなわちフェライト磁性粉末の含有率を高めることになるため原料コストが低減できる。
【0033】
R−Fe−N系磁性粉末とフェライト磁性粉末と樹脂バインダなどを、例えばリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、およびバンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を使用して混合・混練することによって本発明の希土類ハイブリッド磁石用組成物が得られる。またこの組成物を射出成形・圧縮成形・押出成形することによって本発明の希土類ハイブリッド磁石が得られる。
【0034】
なおR−Fe−N系磁性粉末として特開平2−57663号公報などで開示されるものを用いた場合、個々の粉末が実質的に単結晶となっている異方性磁性粉末であるため、組成物を磁界中で成形することによりR−Fe−N系磁性粉末の磁化容易方向が揃い高い磁束密度を持つ異方性希土類ハイブリッド磁石が製造できる。同様にフェライト磁性粉末についても、異方性磁性粉末を選択し磁界中成形することによってフェライト磁性粉末の磁化容易方向が揃い高い磁束密度を持つ異方性希土類ハイブリッド磁石が製造できる。したがって、異方性のR−Fe−N系磁性粉末と異方性のフェライト磁性粉末とから製造された組成物を磁界中成形することによって得た異方性希土類ハイブリッド磁石で、最も高い磁束密度が得られる。
【0035】
前述の特開昭61−284906号公報などで開示されているフェライト磁性粉末とNd−Fe−B系希土類磁性粉末とからなる従来のハイブリッド磁石は、Nd−Fe−B系磁性粉末が等方性であるため、同一の磁束密度を得る場合でも、高価な希土類磁性粉末含有量を本発明よりも多く設定せざるを得ずコストメリットが小さい。
【0036】
【実施例】
以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1〜6、比較例1、2)
純度99.9wt%、粒度150メッシュ(タイラー標準、以下同じ)以下の電解Fe粉と、純度99wt%平均粒度325メッシュの酸化Sm粉末と、純度99wt%の粒状金属Caとを、Vブレンダーを用いて混合した。ここで得られた混合物をステンレス容器に入れ、アルゴン雰囲気下1150℃で8時間加熱し還元拡散反応させた。次いで反応生成物を、冷却してから水中に投入し崩壊させた。得られたスラリーを水洗しさらに酢酸を用いて酸洗浄して未反応のCaと副生したCaOを除去した。得られたスラリーを濾過しエタノールで置換した後真空乾燥して150μm以下のSm−Fe合金粉末を得た。
【0037】
次いでこの粉末を管状炉中に装填し、アンモニア分圧0.35のアンモニア−水素混合ガス雰囲気中465℃で6時間加熱(窒化処理)し、その後アルゴンガス中465℃で2時間加熱(アニール処理)し24.6wt%Sm−3.6wt%N−bal.FeのR−Fe−N系合金粉末を得た。この合金粉末をX線解析したところ、菱面体晶系のTh2Zn17型結晶構造の回折線(Sm2Fe17N3金属間化合物)を示した。この粉末をフィッシャー平均粒径1.6μmまで衝突板型ジェットミルを用いて微粉砕し、異方性のR−Fe−N系磁性粉末を得た。
【0038】
次にR−Fe−N系磁性粉末と表1に示す異方性のSrフェライト磁性粉末と樹脂バインダとして12ポリアミド樹脂を混合しラボプラストミル混練することによって希土類ハイブリッド磁石用組成物を得た。それぞれの含有率は、R−Fe−N系磁性粉末が44wt%、フェライト磁性粉末が46wt%、12ポリアミド樹脂が10wt%である。
【0039】
フェライト磁性粉末の保磁力は振動試料型磁力計を用いて「ボンド磁石試験方法ガイドブックBMG−2002および2005」に従って測定した。比表面積はBET一点法で評価した。また圧縮密度は金型に磁性粉末を入れて98MPaで加圧したときの見かけ密度で評価した。
【0040】
混練温度は200〜220℃とし、混練後に取り出した組成物は空冷した。得られた組成物をプラスチック粉砕機により粉砕し成形用ペレットとした。このペレットからφ10×7mmの円柱状希土類ハイブリッド磁石を7mm方向に560kA/mの配向磁界をかけながら射出成形して製造した。シリンダー温度は200〜220℃、金型温度は80℃とした。得られたボンド磁石を7mm方向に3350kA/mのパルス磁界で着磁した後、その磁気特性を自記磁束計で測定した。その結果と密度を表2に示す。
【0041】
(実施例7)
実施例1〜6で使用した電解Fe粉の10wt%を、粒度150メッシュ以下のCo粉で置換した以外は同様にして25wt%Sm−7.2wt%Co−bal.Fe合金粉末を製造し、菱面体晶系のTh2Zn17型結晶構造の回折線(Sm2(Fe、Co)173金属間化合物)を示す24.6wt%Sm−3.5wt%N−7.1wt%Co−bal.FeのSm−(Fe、Co)−N磁性粉末を得た。さらに実施例1−6と同様にして、希土類ハイブリッド磁石用組成物ペレットを製造しφ10×7mmの円柱状希土類ハイブリッド磁石を得た。用いたフェライト磁性粉末の特性を表1に、ハイブリッド磁石の磁気特性と密度の測定結果を表2に示す。
【0042】

Figure 0003835133
【0043】
Figure 0003835133
【0044】
実施例1によれば、保磁力が310kA/m以上のフェライト磁性粉末を用いた希土類ハイブリッド磁石用組成物から製造した磁石で、角形比μ0HcB/Brが65%を超えている。実施例2によれば、保磁力が310kA/m以上で比表面積が1.5m2/g以上のフェライト磁性粉末を用いた組成物から製造した磁石で、角形比μ0HcB/Brが70%を超えている。さらに実施例3〜6によれば、保磁力が310kA/m以上で比表面積が1.5m2/g以上で圧縮密度3.3g/cc以下のフェライト磁性粉末を用いた組成物から製造した磁石で、角形比μ0HcB/Brがさらに向上し80%を超えるものもあることが分かる。また実施例7によれば、R−(Fe、Co)−N系磁性粉末でも高い角形比が得られることが分かる。
【0045】
(実施例8)
配向磁界をかけずに実施例7の希土類ハイブリッド磁石用組成物を射出成形し、φ10×7mmの等方性希土類ハイブリッド磁石を得た。その7mm方向に3350kA/mのパルス磁界で着磁した後、磁気特性を自記磁束計で測定したところ、Br 0.26T、(BH)max.12kJ/m3、μ0HcB/Br 84%だった。磁石の密度は 4.1g/ccだった。角型性は十分高いものが得られているものの、実施例7に比べて残留磁束密度Brが小さく、したがって最大エネルギー積(BH)max.も小さくなっていることが分かる。
【0046】
(実施例9,10)
希土類ハイブリッド磁石用組成物をラボプラストミル混練して製造する際,添加剤として,
実施例9:イソプロピルトリイソステアロイルチタネート
実施例10:ビニルトリエトキシシラン
をそれぞれ0.5wt%を含有させたこと以外は,実施例1と同様にしてハイブリッド磁石を成形した。得られた磁石の磁気特性を表3に示す。
【0047】
Figure 0003835133
実施例1に比べて,添加剤を入れることによって流動性が向上した。またそれに伴い配向が向上し残留磁束密度Brと角形比μ0HcB/Brが改善されていることが分かる。
【0048】
(実施例11)
樹脂バインダとしてポリアミド系熱可塑性エラストマーとポリアミド−ポリエステルブロックのオリゴマーを用いた以外は実施例3と同様にして,希土類ハイブリッド磁石用組成物を製造した。混練温度は170〜180℃である。この組成物から幅20mm厚み1mmの板状希土類ハイブリッド磁石を,1mm方向に1600kA/mの配向磁界をかけながら押出成形して製造した。シリンダー温度は180〜200℃とした。得られた磁石の磁気特性は,Br 0.42T、(BH)max.33kJ/m3、μ0HcB/Br 79%だった。磁石の密度は 4.0g/ccだった。
【0049】
(実施例12)
実施例3のフェライト磁性粉末と樹脂バインダとしてエポキシ樹脂を用いて希土類ハイブリッド磁石用組成物を製造した。それぞれの含有率は、R−Fe−N系磁性粉末が20wt%、フェライト磁性粉末が77wt%、エポキシ樹脂が3wt%である。この組成物からφ10×7mmの円柱状希土類ハイブリッド磁石を,7mm方向に1200kA/mの配向磁界をかけながら圧縮成形して製造した。成形圧力は780MPa,キュア温度は120℃とした。得られた磁石の磁気特性は,Br 0.40T、(BH)max.28kJ/m3、μ0HcB/Br 66%だった。磁石の密度は 4.7g/ccだった。
【0050】
(従来例)
希土類磁性粉末としてNd−Fe−B系磁性粉末(商品名:MQP−B、マグネクエンチインターナショナル社製)を用い、フェライト磁性粉末として実施例7に使用したものを用いて希土類ハイブリッド磁石用組成物を製造し、それを磁界中射出成形することによって実施例7と同等の磁気特性Br 0.43T、(BH)max.35kJ/m3、μ0HcB/Br 82%を持つ射出成形ボンド磁石を得た。この組成物を製造するために用いた原料の含有率は、Nd−Fe−B系磁性粉末72wt%、フェライト磁性粉末19wt%、12ポリアミド樹脂9wt%だった。
【0051】
実施例7のR−(Fe、Co)−N系磁性粉末含有率に比べてかなり多くのNd−Fe−B系磁性粉末が必要になることが分かる。
【0052】
【発明の効果】
本発明によれば、R−Fe−N系磁性粉末とフェライト磁性粉末とからなる希土類ハイブリッド磁石用組成物とそれから製造した磁石において、B−H減磁曲線の角形比を大幅に改善できる。従来提案されていたSm−Co系磁性粉末やNd−Fe−B系磁性粉末を用いたものに比べて、同等の磁気特性を得る場合でも高価な希土類磁性粉末含有量が少なくて済み、その工業的価値は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bonded magnet composition comprising a rare earth-iron-nitrogen based magnetic powder and a ferrite magnetic powder, and a bonded magnet manufactured using the composition.
[0002]
[Prior art]
Permanent magnets are used in various fields ranging from general goods to motors and sensors. When this magnet is classified by material, there are rare earth magnetic materials such as ferrite, Sm-Co system and Nd-Fe-B system, and metal magnetic materials such as alnico and iron chrome cobalt. Although ferrite has lower magnetic properties than rare earth magnetic materials, it is widely used because of its low cost. Although rare earth magnetic materials have high magnetic properties, they are more expensive than ferrite because they use rare earth elements.
[0003]
Further, when classified by magnet form, there are sintered magnets, bonded magnets made of magnetic powder and resin binder, cast magnets, and the like. Bond magnets are classified into injection-molded magnets, extrusion-molded magnets, compression-molded magnets, rolled-molded magnets, etc., depending on the molding method.
[0004]
Sintered magnets can be densified to a relative density of 90% or more by applying a powder metallurgy technique, so that the magnetic force of the material can be extracted as it is, but the shape flexibility is small and the mechanical strength is poor. On the other hand, the bond magnet is formed of magnetic powder using resin as a binder, so the magnetic force becomes weaker in resin volume, but it has excellent shape flexibility and mechanical strength and can be integrally molded with other parts. Has features.
[0005]
In addition, when magnetizing a magnet to NS, it can be classified into an isotropic magnet that can be magnetized in any direction by magnetization and an anisotropic magnet that is magnetized in a certain direction determined when the magnet is manufactured. it can.
[0006]
In the permanent magnet, the magnetic characteristics can be selected depending on the combination of the material to be used and the magnet form, and the combination suitable for the intended use is selected. For example, the maximum energy product is 16 kJ / m Three Up to this point, the bonded magnet using ferrite, 36 kJ / m Three Sintered magnet using ferrite for applications up to about 100 kJ / m Three To the extent, Sm-Co based or Nd-Fe-B based bonded magnet, 430 kJ / m Three Up to this point, Sm—Co or Nd—Fe—B sintered magnets are selected.
[0007]
By the way, the maximum energy product exceeding the ferrite bonded magnet is 16 kJ / m. Three 100 kJ / m Three Development of bonded magnets that are low in cost and excellent in formability and workability is being studied in a characteristic region up to a certain extent, that is, in a region where conventional sintered ferrite magnets or rare earth bonded magnets are used. As one of these, a bond magnet in which ferrite and a rare earth magnetic material are mixed, that is, a hybrid magnet has been proposed.
[0008]
For example, Japanese Patent Laid-Open Nos. 55-99703, 57-39102, and 60-223095 propose hybrid magnets using ferrite magnetic powder and Sm-Co magnetic powder. Yes. JP-A-61-284906, JP-A-62-257703, and JP-A-10-223421 propose hybrid magnets using ferrite magnetic powder and Nd-Fe-B magnetic powder. Yes.
[0009]
[Problems to be solved by the invention]
In the hybrid magnet using the above Sm—Co based magnetic powder or Nd—Fe—B based magnetic powder, in order to obtain the desired magnetic characteristics, the amount of rare earth magnetic powder to be mixed must be increased, and the cost is reduced. Was not as low as expected. This is because the magnetization of the magnetic powder is small in the Sm—Co system, and the residual magnetization is small in the Nd—Fe—B system because the magnetic powder is isotropic but is isotropic. In addition, since the Sm—Co based magnetic powder contains a lot of expensive Co, it is more difficult to reduce the cost.
[0010]
In order to solve this drawback, the present inventors have disclosed a composition for a hybrid magnet composed of an R—Fe—N magnetic powder and a ferrite magnetic powder, and a magnet made from this composition, as disclosed in Japanese Patent Application Laid-Open No. 2000-21615. It was disclosed in the publication. Japanese Patent Laid-Open No. 2000-124018 also discloses an injection-molded body made of R—Fe—N-based magnetic powder and ferrite magnetic powder.
[0011]
However, the hybrid magnet composition using the R-Fe-N magnetic powder and the ferrite magnetic powder and the hybrid magnet manufactured therefrom have a problem that the squareness of the demagnetization curve is not sufficient. That is, this hybrid magnet has a problem that it has a low operating point and is not a magnet with high magnetic properties and a wide range of practical use.
[0012]
Generally, Hk / HcJ is used as the squareness ratio. Here, Hk is a demagnetizing field when the magnetization J becomes 90% of the residual magnetic flux density Br. In a hybrid magnet composed of rare earth magnetic powder and ferrite magnetic powder, the coercive force of each magnetic powder is quite different, so that a bending point may occur on the JH demagnetization curve, and Hk / HcJ is not a sufficient index. Therefore, in the present invention, μ is used as the squareness ratio representing the squareness of the demagnetization curve. 0 HcB / Br is used.
In the study by the present inventors, the square ratio μ of the conventional hybrid magnet of R—Fe—N magnetic powder and ferrite magnetic powder 0 HcB / Br was about 50 to 65%. The object of the present invention is to 0 An object of the present invention is to provide a composition for a rare earth hybrid magnet and a magnet comprising an R—Fe—N-based magnetic powder and a ferrite magnetic powder with HcB / Br exceeding 65%.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have studied many hybrid magnet compositions comprising R—Fe—N magnetic powder and ferrite magnetic powder. As a result, it has been found that a hybrid magnet composition and a magnet having good squareness can be obtained by using a ferrite magnetic powder having specific powder characteristics.
[0014]
That is, according to the first aspect of the present invention, the rhombohedral system mainly composed of rare earth elements (R), iron (Fe) or iron (Fe), cobalt (Co), and nitrogen (N). Or magnetic powder having a hexagonal crystal structure; Made of Sr ferrite and / or Ba ferrite In the rare earth hybrid magnet composition comprising a ferrite magnetic powder and a resin binder, the ferrite magnetic powder has a coercive force of 310 kA / m 2 or more and a specific surface area of 1.5 m. 2 A rare earth hybrid magnet composition is provided that is an anisotropic magnetic powder having a compression density of 3.3 g / cc or less.
According to a second aspect of the present invention, there is provided a rare earth hybrid magnet composition according to the first aspect, wherein the resin binder includes a polyamide resin as a resin component and is molded by an injection molding method. Things are provided.
[0015]
On the other hand, according to the third invention of the present invention, a rare earth hybrid magnet obtained by injection molding the rare earth hybrid magnet composition according to the first or second invention, the squareness ratio μ0HcB / Br is 65%. A rare earth hybrid magnet characterized by the above is provided. .
According to a fourth aspect of the present invention, there is provided a rare earth hybrid magnet according to the third aspect, wherein the rare earth hybrid magnet is an anisotropic bonded magnet. .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The R—Fe—N magnetic powder used in the present invention is a rhombohedral crystal composed mainly of rare earth elements (R), iron (Fe) or iron (Fe), cobalt (Co), and nitrogen (N). Magnetic powders having a system or hexagonal crystal structure, for example, Japanese Patent Laid-Open Nos. 2-57663, 3-16102, 3-101102, 3-141608, and 3- No. 153852, JP-A-3-160705, JP-A-8-45718, JP-A-8-55712, JP-A-8-144024, JP-A-8-316018, JP-A-10-163056 JP-A-10-241923, JP-A-10-289811, and JP-A-11-297518.
[0017]
As described in these publicly known documents, this production method involves producing an alloy powder containing no nitrogen by a reduction diffusion method, a melt casting method, a liquid quenching method, etc., and then in an atmosphere containing nitrogen or nitrogen atoms. Nitrogen is introduced into the alloy powder by heat treatment at. Rare earth hybrid magnets are required to be low in cost. In this aspect, it is desirable to use an alloy manufactured by the reduction diffusion method as a raw material. Examples of magnetic powder production by the reduction diffusion method are disclosed in JP-A-5-148517 and JP-A-9-143636.
[0018]
Disclosure in JP-A-2-57663, JP-A-3-16102, JP-A-3-101102, JP-A-3-141608, JP-A-03-153852, JP-A-03-160705, etc. The R—Fe—N magnetic powder is a fine powder having an average particle diameter of 1 to 10 μm. In the case of using this magnetic fine powder, for example, JP-A 52-54998, JP-A 59-170201, JP-A 60-128202, JP-A 3-211203, JP-A 46-7153, JP Handling of preventing spontaneous ignition by forming a gradual oxide film by wet or dry treatment on the surface of the magnetic powder as disclosed in JP-A-56-55503, JP-A-61-154112, JP-A-3-126801, etc. It is preferable to improve the property.
[0019]
Further, the surface of the magnetic powder of the present invention is disclosed in JP-A-4-338603, JP-A-5-230501, JP-A-5-234729, JP-A-8-143913, JP-A-7-268632, JP-A-9-190909, and the like. A metal film is formed according to the method described above, or JP-B-6-17015, JP-A-1-234502, JP-A-4-21702, JP-A-5-213601, JP-A-7-326508, JP-A-8-153613. If the inorganic film is formed by the method described in JP-A-8-183601 or the like, the heat resistance is further improved.
[0020]
The selection of the ferrite magnetic powder, which is the greatest feature of the present invention, is the squareness ratio μ of the rare earth hybrid magnet of the present invention. 0 It is important to make HcB / Br 65% or more. In order to achieve this object, ferrite magnetic powder having a coercive force of 310 kA / m 2 or more is used in the present invention. In the manufacturing process of the rare earth hybrid magnet, the ferrite magnetic powder receives a shearing force during kneading, and its coercive force is greatly reduced by the strain. Accordingly, when the coercive force of the raw ferrite magnetic powder is less than 310 kA / m 2, the squareness does not increase to 65% or more. Furthermore, the specific surface area of ferrite magnetic powder is 1.5m. 2 / G or more, preferably 2.0 m 2 By selecting one having a compression density of 3.3 g / cc or less, preferably 3.1 g / cc or less. 0 HcB / Br can be 70% or more.
[0021]
The coercive force of the ferrite magnetic powder is evaluated based on “bond magnet test method guidebook BMG-2002 and 2005” issued by Japan Bond Magnet Industry Association. The specific surface area is evaluated by measuring the BET specific surface area by a one-point method, and the compression density is evaluated by measuring the apparent density when the magnetic powder placed in the mold is pressed at 98 MPa. The material may be either Sr ferrite or Ba ferrite, but Sr ferrite is preferred in order to improve the squareness.
[0022]
As will be described later, when the rare earth hybrid magnet of the present invention is manufactured as an anisotropic bonded magnet, the ferrite powder to be used is preferably selected from anisotropic magnetic powders in which each powder is substantially a single crystal. . In the selection, in order to improve the magnetic powder orientation in the forming step in a magnetic field, it is desirable to select a relatively spherical one rather than a plate-like magnetic powder having a large aspect ratio.
[0023]
JP-A-2000-124018 describes that an R-Fe-N magnetic powder and a ferrite magnetic powder are mixed to obtain an injection molded magnet having a maximum energy product of 2 to 10 MGOe. There is no disclosure at all about the selection of the appropriate ferrite magnetic powder, the mixing ratio and the magnetic properties of the obtained magnet.
[0024]
In obtaining the magnet composition of the present invention, the R-Fe-N magnetic powder described above contains rare earth elements (R), iron (Fe) or iron (Fe) and cobalt (Co), nitrogen (N), It is obtained by mixing and kneading a magnetic powder having a rhombohedral or hexagonal crystal structure, a ferrite magnetic powder, a resin binder, and preferably a coupling agent, a lubricant or a stabilizer.
[0025]
The resin binder that can be used is not particularly limited. For example, in the case of a thermoplastic resin, 6 nylon, 6, 6 nylon, 11 nylon, 12 nylon, 6, 12 nylon, aromatic nylon, and aromatic molecules are used. Partially modified polyamide resin such as modified nylon, linear polyphenylene sulfide resin, crosslinked polyphenylene sulfide resin, semi-crosslinked polyphenylene sulfide resin, low density polyethylene, linear low density polyethylene resin, high density polyethylene resin, ultra high molecular weight Polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene-ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile -Styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluoroethylene chloride resin, four Fluorinated ethylene-hexafluoropropylene copolymer resin, ethylene-tetrafluoroethylene copolymer resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin , Polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyarylate Examples include fats, aromatic polyester resins, cellulose acetate resins, various elastomers and rubbers, random copolymers, block copolymers, graft copolymers, and other substances of these monopolymers and other monomers. And the like, and the like.
[0026]
Of course, a system in a blend of two or more of these thermoplastic resins is also included. The melt viscosity and molecular weight of these thermoplastic resins are preferably low as long as the desired mechanical strength can be obtained, and the shape is not particularly limited, such as powder, beads, pellets, etc., but considering the homogeneous mixing with magnetic powder Powder is desirable.
[0027]
For example, in the case of a thermosetting resin, epoxy resin, vinyl ester epoxy resin, unsaturated polyester resin, phenol resin, melamine resin, urea resin, benzoguanamine resin, bismaleimide / triazine resin, diallyl phthalate resin, furan resin, Thermosetting polybutadiene resin, polyimide resin, polyurethane resin, silicone resin, xylene resin, and the like can be mentioned, and these basic compositions, other types of monomers, and systems in blends of two or more types of these resins are also included. The viscosity, molecular weight, properties, etc. of these thermosetting resins are not particularly limited as long as desired mechanical strength and moldability can be obtained, but in terms of uniform mixing with magnetic powder and moldability, they are powder or liquid. Is desirable.
[0028]
When a composition of the present invention is produced, if a coupling agent, a lubricant, a stabilizer, or the like is used as an additive, the heat fluidity of the composition is further improved and the moldability and magnetic properties are improved. As coupling agents, silane coupling agents such as vinyltriethoxysilane, γ-methacryloxypropyltrimethoxysilane, β- (3,4 epoxy cyclohexylethyltrimethoxysilane), γ-glycidoxypropyltrimethoxysilane , Γ-glycidoxymethyldiethoxysilane, N-β (aminoethyl) γaminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N- Phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, dimethyldimethoxysilane, phenyltrieth Xysilane, diphenyldiethoxysilane, isobutyltrimethoxysilane, decyltrimethoxysilane and the like, as well as titanium coupling agents such as isopropyltriisostearoyl titanate, isopropyltri (N-aminoethyl-aminoethyl) titanate, isopropyltris (dioctyl) Pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl titanate, tetrabutyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, isopropyl trioctanoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tri ( Dioctyl phosphate) titanate, bis (dioctyl pyrophosphate) ethyl N-titanate, isopropyldimethacrylisostearoyl titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecylphosphite) titanate, isopropyltricumylphenyl titanate, bis (dioctylpyrophosphate) oxyacetate titanate, isopropyliso Stearoyl diacryl titanate and the like can be mentioned, and a suitable one can be selected according to the type of resin binder, and one or more of them can be used.
[0029]
Examples of the lubricant include waxes such as paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba, and micro wax, stearic acid, 1,2-oxystearic acid, lauric acid, palmitic acid, oleic acid, and the like. Fatty acid salts such as fatty acids, calcium stearate, barium stearate, magnesium stearate, lithium stearate, zinc stearate, aluminum stearate, calcium laurate, zinc linoleate, calcium ricinoleate, zinc 2-ethylhexoate (metal soaps) ) Stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylene bis-stearyl Fatty acid amides such as acid amide, ethylene bis stearic acid amide, ethylene bis lauric acid amide, distearyl adipic acid amide, ethylene bis oleic acid amide, dioleyl adipic acid amide, N-stearyl stearic acid amide, fatty acid such as butyl stearate Esters, alcohols such as ethylene glycol and stearyl alcohol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethers composed of these modified products, polysiloxanes such as dimethylpolysiloxane and silicon grease, fluorine-based oil, fluorine Examples thereof include inorganic compound powders such as fluorine compounds such as greases and fluorine-containing resin powders, silicon nitride, silicon carbide, magnesium oxide, alumina, silicon dioxide, and molybdenum disulfide.
[0030]
As stabilizers, bis (2,2,6,6, -tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6, -pentamethyl-4-piperidyl) sebacate, 1- [2- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} ethyl] -4- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyl Oxy} -2,2,6,6-tetramethylpiperidine, 8-benzyl-7,7,9,9-tetramethyl-3-octyl-1,2,3-triazaspiro [4,5] undecane-2, 4-dione, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, succinic acid dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine heavy Shrinkage , Poly [[6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4 -Piperidyl) imino] hexamethylene [[2,2,6,6-tetramethyl-4-piperidyl] imino]], 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n In addition to hindered amine stabilizers such as bis (1,2,2,6,6-pentamethyl-4-piperidyl) butyl malonate, antioxidants such as phenols, phosphites, thioethers, etc. It is done.
[0031]
Further, as the lubricant, waxes such as paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba, microwax, fatty acids such as stearic acid, 12-oxystearic acid, lauric acid, zinc stearate, Fatty acid salts such as calcium stearate, barium stearate, aluminum stearate, magnesium stearate, calcium laurate, zinc linoleate, calcium linoleate, zinc 2-ethylhexoate, stearamide, oleamide, erucamide, behenic acid Amides, palmitic acid amides, lauric acid amides, hydroxy stearic acid amides, methylene bis stearic acid amides, ethylene bis stearic acid amides, ethylene bis Phosphoric acid amide, distearyl adipic acid amide, ethylenebisoleic acid amide, dioleyl adipic acid amide, N-stearylsulphonic acid amide, N-oleyl stearic acid amide, N-stearyl erucic acid amide, methylol stearic acid amide, methylol Fatty acid amides such as behenic acid amide, fatty acid esters such as butyl stearate, alcohols such as ethylene glycol and stearyl alcohol, polyether glycols composed of polyethylene glycol, polypropylene glycol, polytetramethylene glycol and modified products thereof, silicone oil, Polysiloxanes such as silicon grease, fluorine compounds such as fluorine oil, fluorine grease, fluorine-containing resin powder, silicon nitride, silicon carbide, magnesium oxide, alumina An inorganic compound powder such as silica gel and the like, can be used alone or in combination.
[0032]
In the rare earth hybrid magnet composition and magnet of the present invention, the mixing ratio of the R—Fe—N magnetic powder, the ferrite magnetic powder, and the resin binder is not particularly limited, and the R—Fe— The mixing ratio of the -N based magnetic powder and the ferrite magnetic powder and the content of the resin binder can be set as appropriate. If (R—Fe—N magnetic powder weight) / (ferrite magnetic powder weight) is set large with respect to the desired magnetic properties, the resin binder content can be increased, and as a result, the fluidity of the composition can be increased. improves. On the other hand, if the resin binder content is set to a small value, (R-Fe-N magnetic powder weight) / (ferrite magnetic powder weight) can be reduced, which means that the ferrite magnetic powder content is increased. Therefore, the raw material cost can be reduced.
[0033]
R-Fe-N magnetic powder, ferrite magnetic powder, resin binder, etc., for example, a blender such as a ribbon blender, tumbler, Nauter mixer, Henschel mixer, super mixer, planetary mixer, and Banbury mixer, kneader, roll, The composition for rare earth hybrid magnets of the present invention is obtained by mixing and kneading using a kneader such as a kneader ruder, a single screw extruder, or a twin screw extruder. Further, the rare earth hybrid magnet of the present invention can be obtained by subjecting this composition to injection molding, compression molding and extrusion molding.
[0034]
In addition, when using what was disclosed by Unexamined-Japanese-Patent No. 2-57663 etc. as R-Fe-N type magnetic powder, since each powder is an anisotropic magnetic powder which has become substantially single crystal, By molding the composition in a magnetic field, an anisotropic rare earth hybrid magnet having a high magnetic flux density in which the easy magnetization direction of the R—Fe—N magnetic powder is aligned can be produced. Similarly, with respect to the ferrite magnetic powder, an anisotropic rare earth hybrid magnet having a high magnetic flux density in which the easy magnetization direction of the ferrite magnetic powder is aligned can be manufactured by selecting the anisotropic magnetic powder and molding it in a magnetic field. Therefore, an anisotropic rare earth hybrid magnet obtained by molding a composition produced from an anisotropic R—Fe—N magnetic powder and an anisotropic ferrite magnetic powder in a magnetic field, has the highest magnetic flux density. Is obtained.
[0035]
The conventional hybrid magnet composed of the ferrite magnetic powder and the Nd—Fe—B rare earth magnetic powder disclosed in the above-mentioned Japanese Patent Application Laid-Open No. Sho 61-284906 etc. has an isotropic Nd—Fe—B magnetic powder. Therefore, even when the same magnetic flux density is obtained, the expensive rare earth magnetic powder content must be set more than in the present invention, and the cost merit is small.
[0036]
【Example】
Examples of the present invention will be described below, but the present invention is not limited to these examples.
(Examples 1-6, Comparative Examples 1 and 2)
Electrolytic Fe powder having a purity of 99.9 wt% and a particle size of 150 mesh (Tyler standard, the same shall apply hereinafter), oxidized Sm powder having a purity of 99 wt% and an average particle size of 325 mesh, and granular metal Ca having a purity of 99 wt%, using a V blender And mixed. The obtained mixture was put in a stainless steel container and heated at 1150 ° C. for 8 hours under an argon atmosphere to cause a reduction diffusion reaction. Next, the reaction product was cooled and then poured into water to be destroyed. The obtained slurry was washed with water and further acid washed with acetic acid to remove unreacted Ca and by-produced CaO. The obtained slurry was filtered and replaced with ethanol, followed by vacuum drying to obtain an Sm—Fe alloy powder of 150 μm or less.
[0037]
Next, this powder was loaded into a tube furnace, heated in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.35 at 465 ° C. for 6 hours (nitriding treatment), and then heated in argon gas at 465 ° C. for 2 hours (annealing treatment). 24.6 wt% Sm-3.6 wt% N-bal. An R—Fe—N alloy powder of Fe was obtained. X-ray analysis of this alloy powder showed a diffraction line (Sm2Fe17N3 intermetallic compound) with a rhombohedral Th2Zn17 crystal structure. This powder was finely pulverized to a Fischer average particle size of 1.6 μm using an impact plate jet mill to obtain anisotropic R—Fe—N magnetic powder.
[0038]
Next, R-Fe-N magnetic powder, anisotropic Sr ferrite magnetic powder shown in Table 1, and 12 polyamide resin as a resin binder were mixed and kneaded with Laboplast mill to obtain a composition for a rare earth hybrid magnet. The respective contents are 44 wt% for the R—Fe—N magnetic powder, 46 wt% for the ferrite magnetic powder, and 10 wt% for the 12 polyamide resin.
[0039]
The coercive force of the ferrite magnetic powder was measured according to “Bond Magnet Test Method Guidebook BMG-2002 and 2005” using a vibrating sample magnetometer. The specific surface area was evaluated by the BET single point method. The compression density was evaluated based on the apparent density when the magnetic powder was put in the mold and pressed at 98 MPa.
[0040]
The kneading temperature was 200 to 220 ° C., and the composition taken out after kneading was air-cooled. The obtained composition was pulverized with a plastic pulverizer to form pellets for molding. A cylindrical rare earth hybrid magnet of φ10 × 7 mm was produced from this pellet by injection molding while applying an orientation magnetic field of 560 kA / m in the 7 mm direction. The cylinder temperature was 200 to 220 ° C, and the mold temperature was 80 ° C. The obtained bonded magnet was magnetized with a pulse magnetic field of 3350 kA / m in the 7 mm direction, and then its magnetic characteristics were measured with a self-recording magnetometer. The results and density are shown in Table 2.
[0041]
(Example 7)
25 wt% Sm-7.2 wt% Co-bal. Was similarly used except that 10 wt% of the electrolytic Fe powder used in Examples 1 to 6 was replaced with Co powder having a particle size of 150 mesh or less. A Fe alloy powder was produced and a rhombohedral Th2Zn17 crystal structure diffraction line (Sm 2 (Fe, Co) 17 N Three 24.6 wt% Sm-3.5 wt% N-7.1 wt% Co-bal. An Sm— (Fe, Co) —N magnetic powder of Fe was obtained. Further, in the same manner as in Example 1-6, a rare earth hybrid magnet composition pellet was produced to obtain a cylindrical rare earth hybrid magnet of φ10 × 7 mm. Table 1 shows the characteristics of the ferrite magnetic powder used, and Table 2 shows the measurement results of the magnetic characteristics and density of the hybrid magnet.
[0042]
Figure 0003835133
[0043]
Figure 0003835133
[0044]
According to Example 1, a magnet manufactured from a composition for a rare earth hybrid magnet using a ferrite magnetic powder having a coercive force of 310 kA / m or more has a square ratio μ 0 HcB / Br exceeds 65%. According to Example 2, the coercive force is 310 kA / m or more and the specific surface area is 1.5 m. 2 / G or more of a magnet manufactured from a composition using ferrite magnetic powder, the squareness ratio μ 0 HcB / Br exceeds 70%. Furthermore, according to Examples 3 to 6, the coercive force is 310 kA / m or more and the specific surface area is 1.5 m. 2 A magnet manufactured from a composition using a ferrite magnetic powder having a compression density of 3.3 g / cc or less and a square density μ 0 It can be seen that the HcB / Br is further improved and exceeds 80%. Further, according to Example 7, it can be seen that a high squareness ratio can be obtained even with R- (Fe, Co) -N magnetic powder.
[0045]
(Example 8)
The composition for rare earth hybrid magnets of Example 7 was injection molded without applying an orientation magnetic field to obtain an isotropic rare earth hybrid magnet of φ10 × 7 mm. After being magnetized with a pulse magnetic field of 3350 kA / m in the 7 mm direction, the magnetic characteristics were measured with a self-recording magnetometer. As a result, Br 0.26T, (BH) max. 12kJ / m Three , Μ 0 HcB / Br was 84%. The density of the magnet was 4.1 g / cc. Although a sufficiently high squareness is obtained, the residual magnetic flux density Br is smaller than that of the seventh embodiment, and therefore the maximum energy product (BH) max. It can also be seen that it is getting smaller.
[0046]
(Examples 9 and 10)
When manufacturing a rare earth hybrid magnet composition by kneading with Laboplast Mill,
Example 9: Isopropyltriisostearoyl titanate
Example 10: Vinyltriethoxysilane
A hybrid magnet was formed in the same manner as in Example 1 except that 0.5 wt% of each was added. Table 3 shows the magnetic properties of the obtained magnet.
[0047]
Figure 0003835133
Compared to Example 1, the flowability was improved by adding an additive. As a result, the orientation is improved, and the residual magnetic flux density Br and the squareness ratio μ 0 It can be seen that HcB / Br is improved.
[0048]
(Example 11)
A composition for a rare earth hybrid magnet was produced in the same manner as in Example 3 except that a polyamide-based thermoplastic elastomer and an oligomer of polyamide-polyester block were used as the resin binder. The kneading temperature is 170 to 180 ° C. A plate-like rare earth hybrid magnet having a width of 20 mm and a thickness of 1 mm was produced from this composition by extrusion molding while applying an orientation magnetic field of 1600 kA / m in the 1 mm direction. The cylinder temperature was 180 to 200 ° C. The magnetic properties of the obtained magnet were as follows: Br 0.42T, (BH) max. 33 kJ / m Three , Μ 0 HcB / Br was 79%. The density of the magnet was 4.0 g / cc.
[0049]
(Example 12)
A composition for a rare earth hybrid magnet was manufactured using the ferrite magnetic powder of Example 3 and an epoxy resin as a resin binder. The respective contents are 20 wt% for the R—Fe—N magnetic powder, 77 wt% for the ferrite magnetic powder, and 3 wt% for the epoxy resin. A cylindrical rare earth hybrid magnet of φ10 × 7 mm was produced from this composition by compression molding while applying an orientation magnetic field of 1200 kA / m in the 7 mm direction. The molding pressure was 780 MPa and the curing temperature was 120 ° C. The magnetic properties of the obtained magnet were as follows: Br 0.40 T, (BH) max. 28 kJ / m Three , Μ 0 HcB / Br was 66%. The density of the magnet was 4.7 g / cc.
[0050]
(Conventional example)
Using a Nd-Fe-B based magnetic powder (trade name: MQP-B, manufactured by Magnequen International) as the rare earth magnetic powder, and using the ferrite magnetic powder used in Example 7 as a rare earth hybrid magnet composition By manufacturing and injection molding in a magnetic field, the magnetic properties Br 0.43T, (BH) max. 35 kJ / m Three , Μ 0 An injection molded bonded magnet with 82% HcB / Br was obtained. The contents of the raw materials used to produce this composition were Nd—Fe—B magnetic powder 72 wt%, ferrite magnetic powder 19 wt%, and 12 polyamide resin 9 wt%.
[0051]
It can be seen that considerably more Nd—Fe—B magnetic powder is required than the R— (Fe, Co) —N magnetic powder content of Example 7.
[0052]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the square ratio of a BH demagnetization curve can be improved significantly in the composition for rare earth hybrid magnets which consist of R-Fe-N type magnetic powder and ferrite magnetic powder, and the magnet manufactured therefrom. Compared to the conventionally proposed Sm—Co magnetic powder and Nd—Fe—B magnetic powder, even when obtaining equivalent magnetic properties, the content of expensive rare earth magnetic powder can be reduced. Target value is extremely high.

Claims (4)

希土類元素(R)と、鉄(Fe)または鉄(Fe)とコバルト(Co)と、窒素(N)とを主成分とする菱面体晶系または六方晶の結晶構造を持つ磁性粉末と、Srフェライト及び/又はBaフェライトからなるフェライト磁性粉末と、樹脂バインダとからなる希土類ハイブリッド磁石組成物において、
上記フェライト磁性粉末は、保磁力が310kA/m 以上、比表面積が1.5m/g 以上、圧縮密度が3.3g/cc以下の異方性磁性粉末であることを特徴とする希土類ハイブリッド磁石組成物。
A rare earth element (R), iron (Fe) or iron (Fe) and cobalt (Co), and a magnetic powder having a rhombohedral or hexagonal crystal structure mainly composed of nitrogen (N), Sr In a rare earth hybrid magnet composition comprising a ferrite magnetic powder composed of ferrite and / or Ba ferrite and a resin binder,
The ferrite magnetic powder is an anisotropic magnetic powder having a coercive force of 310 kA / m or more, a specific surface area of 1.5 m 2 / g or more, and a compression density of 3.3 g / cc or less. Composition.
上記樹脂バインダは、樹脂成分としてポリアミド樹脂を含み、かつ、射出成形法によって成形されることを特徴とする請求項1に記載の希土類ハイブリッド磁石組成物。  The rare earth hybrid magnet composition according to claim 1, wherein the resin binder includes a polyamide resin as a resin component and is molded by an injection molding method. 請求項1又は2に記載の希土類ハイブリッド磁石組成物を射出成形して得られる希土類ハイブリッド磁石であって、
その角形比μ0HcB/Brは、65%以上であることを特徴とする希土類ハイブリッド磁石。
A rare earth hybrid magnet obtained by injection molding the rare earth hybrid magnet composition according to claim 1 or 2,
A rare earth hybrid magnet having a squareness ratio μ0HcB / Br of 65% or more.
異方性ボンド磁石であることを特徴とする請求項3に記載の希土類ハイブリッド磁石。  The rare earth hybrid magnet according to claim 3, wherein the rare earth hybrid magnet is an anisotropic bonded magnet.
JP2000213781A 2000-07-14 2000-07-14 Rare earth hybrid magnet composition and magnet Expired - Lifetime JP3835133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000213781A JP3835133B2 (en) 2000-07-14 2000-07-14 Rare earth hybrid magnet composition and magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000213781A JP3835133B2 (en) 2000-07-14 2000-07-14 Rare earth hybrid magnet composition and magnet

Publications (2)

Publication Number Publication Date
JP2002033205A JP2002033205A (en) 2002-01-31
JP3835133B2 true JP3835133B2 (en) 2006-10-18

Family

ID=18709478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000213781A Expired - Lifetime JP3835133B2 (en) 2000-07-14 2000-07-14 Rare earth hybrid magnet composition and magnet

Country Status (1)

Country Link
JP (1) JP3835133B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198637B2 (en) * 2018-11-06 2023-01-04 光洋シーリングテクノ株式会社 Rubber composition for magnetized pulser and magnetized pulser

Also Published As

Publication number Publication date
JP2002033205A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP2003007521A (en) High weather-resistant magnet powder and magnet using the same
JP5910467B2 (en) Bonded magnet composition and bonded magnet using the same
JP2002124406A (en) Method of manufacturing high-weatherability magnet powder and product obtained thereby
JP4096531B2 (en) Rare earth hybrid magnet composition, method for producing the same, and magnet obtained therefrom
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP4438445B2 (en) Rare earth hybrid bonded magnet composition and rare earth hybrid bonded magnet
JP3835133B2 (en) Rare earth hybrid magnet composition and magnet
JP3139827B2 (en) Manufacturing method of bonded magnet using rare earth magnetic resin composite material
JP2000195714A (en) Polar anisotropic rare-earth bonded magnet, manufacturing method, and permanent magnet type motor
JP2002110411A (en) Rare earth hybrid magnet composition and magnet using the same
JP2007250646A (en) Composition for resin bond type magnet, magnetically anisotropic bond magnet using same, and manufacturing method thereof
JP4389672B2 (en) Bonded magnet composition and bonded magnet
JP2008305878A (en) Magnetic material, its manufacturing method and resin bond type magnet for sensor employing it
JP4501574B2 (en) Bonded magnet composition and bonded magnet
JP2016092262A (en) Material for bond magnet formation and bond magnet
JP5110296B2 (en) Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP2008010460A (en) Composition for bond magnet, bond magnet employing it, and its production process
JP2004266151A (en) Composition for rare earth hybrid magnet, and rare earth hybrid magnet
JP3473677B2 (en) Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JP2002110412A (en) Rare earth hybrid magnet composition and magnet using the same
JP2000003809A (en) Resin bonded metallic component and metal molding
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JP2001072863A (en) Composition for resin-bonded type magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3835133

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

EXPY Cancellation because of completion of term