JP3139827B2 - Manufacturing method of bonded magnet using rare earth magnetic resin composite material - Google Patents

Manufacturing method of bonded magnet using rare earth magnetic resin composite material

Info

Publication number
JP3139827B2
JP3139827B2 JP04112709A JP11270992A JP3139827B2 JP 3139827 B2 JP3139827 B2 JP 3139827B2 JP 04112709 A JP04112709 A JP 04112709A JP 11270992 A JP11270992 A JP 11270992A JP 3139827 B2 JP3139827 B2 JP 3139827B2
Authority
JP
Japan
Prior art keywords
resin
magnetic
composite material
rare earth
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04112709A
Other languages
Japanese (ja)
Other versions
JPH05315116A (en
Inventor
伸嘉 今岡
勉 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP04112709A priority Critical patent/JP3139827B2/en
Publication of JPH05315116A publication Critical patent/JPH05315116A/en
Application granted granted Critical
Publication of JP3139827B2 publication Critical patent/JP3139827B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は希土類−鉄−窒素系材料
を用いた、耐酸化性及び磁気特性に優れた成形性のよい
磁性材樹脂複合材料を用いたボンド磁石の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bonded magnet using a magnetic resin composite material having excellent oxidation resistance and magnetic properties and excellent moldability using a rare earth-iron-nitrogen material. br />

【0002】[0002]

【従来の技術】ボンド磁石は焼結磁石に比べ成形加工性
に優れており、複雑形状や一体成形が可能で、割れ欠け
に強く、寸法精度が良好なことから、近年特に注目さ
れ、工業的な利用範囲が広がっている。
2. Description of the Related Art Bonded magnets are superior to sintered magnets in terms of moldability, can be formed into complex shapes and integrally, are resistant to cracking and cracking, and have good dimensional accuracy. Use range is expanding.

【0003】中でも、Sm−Co系やNd−Fe−B系
の希土類系磁性材料を用いた高磁気特性ボンド磁石の市
場が急成長している。
[0003] Among them, the market for bonded magnets having high magnetic properties using Sm-Co-based or Nd-Fe-B-based rare earth magnetic materials is growing rapidly.

【0004】希土類系磁性材料としては、これらの外に
希土類−鉄−窒素系磁性材料が発明されている。(例え
ば特開平2−57663)この材料は、Sm−Co系や
Nd−Fe−B系材料と違って特に10μm以下の微粉
でも、高い磁気特性を有している。粒度の小さいこの材
料を用いれば、表面平滑性や機械的強度に優れた、高い
磁気特性の磁性材樹脂複合材料やその磁石が期待でき
る。
[0004] In addition to the above, rare earth-iron-nitrogen based magnetic materials have been invented as rare earth magnetic materials. This material has high magnetic properties even in the case of fine powder of 10 μm or less, in particular, unlike Sm—Co-based or Nd—Fe—B-based materials. If this material having a small particle size is used, a magnetic material-resin composite material having excellent magnetic properties and excellent surface smoothness and mechanical strength and its magnet can be expected.

【0005】しかし、この材料は高い磁性を有してお
り、しかも、粒度が小さく、比表面積が大きいので、磁
粉同士の凝集が激しく、樹脂との均質な混合、混練が困
難である。特に、熱可塑性樹脂との混練においては、そ
の溶融体の粘度が高くなり、均質な混練が難しい。
However, since this material has high magnetism, and has a small particle size and a large specific surface area, agglomeration of magnetic powders is severe and uniform mixing and kneading with a resin are difficult. In particular, in the case of kneading with a thermoplastic resin, the viscosity of the melt becomes high, and uniform kneading is difficult.

【0006】そのため、磁性粉の表面被覆が不充分でボ
イドが多く、高密度で、充分な耐食性、耐酸化及び高磁
気特性を有したボンド磁石用途の磁性材樹脂複合材料と
するのは難しかった。
Therefore, it has been difficult to obtain a magnetic resin composite material for a bonded magnet, which has insufficient surface coverage of the magnetic powder, has many voids, has high density, and has sufficient corrosion resistance, oxidation resistance and high magnetic properties. .

【0007】とりわけ、高磁気特性のボンド磁石を得る
ためには、外部から磁場をかけて、磁性粒子を磁気的に
配向させるが、磁粉の凝集が激しかったり、溶融粘度が
高かったりすると、磁場配向性が悪くなり、材料が本来
有する高磁力を発揮できない。さらに粒度が小さいの
で、工程処理中に酸化され易く、磁気特性の劣化が大き
い。
In particular, in order to obtain a bonded magnet having high magnetic properties, a magnetic field is applied from the outside to magnetically align the magnetic particles. However, if the magnetic powder is strongly agglomerated or the melt viscosity is high, the magnetic field orientation is increased. And the material cannot exhibit the high magnetic force inherent to the material. Further, since the particle size is small, it is easily oxidized during the process, and the magnetic characteristics are greatly deteriorated.

【0008】従って、高い磁気特性と、耐酸化性を有
し、表面平滑性、寸法安定性に優れたボンド磁石を得る
ために、希土類−鉄−窒素系を含有し、しかも磁場配向
の優れた成形性のよい磁性材樹脂複合材料の出現が強く
望まれている。
Accordingly, in order to obtain a bonded magnet having high magnetic properties, oxidation resistance, and excellent surface smoothness and dimensional stability, it contains a rare earth-iron-nitrogen system and has an excellent magnetic field orientation. The emergence of a magnetic material-resin composite material having good moldability is strongly desired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、微粒子で高
い磁気特性を有する希土類−鉄−窒素系磁性材料を用い
て、磁場配向性と耐酸化性に優れた、成形性のよい磁性
材樹脂複合材料を用いたボンド磁石の製造方法を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention relates to a magnetic material resin which is excellent in magnetic field orientation and oxidation resistance and has good moldability by using a rare earth-iron-nitrogen based magnetic material having fine magnetic properties and high magnetic properties. An object of the present invention is to provide a method for manufacturing a bonded magnet using a composite material.

【0010】[0010]

【課題を解決するための手段】一次粒子が微粒子で高い
磁気特性を有する希土類−鉄−窒素系磁性材料を用い
て、密度が高く、磁場配向性と耐酸化性に優れた磁性材
樹脂複合材料を得るために、磁性粉表面の処理方法、樹
脂の組成、添加法、混練方法、成形方法及びそれらの組
み合わせについて鋭意検討を行った結果、樹脂成分とし
て熱可塑性樹脂と熱硬化性樹脂を組み合わせれば、磁場
配向性と耐酸化性に優れた組成物となることを発見し、
本発明を成すに至った。
SUMMARY OF THE INVENTION A magnetic material resin composite material having a high density, excellent magnetic field orientation and excellent oxidation resistance using a rare earth-iron-nitrogen based magnetic material having primary particles of fine particles and high magnetic properties. In order to obtain a magnetic powder surface treatment method, resin composition , addition method, kneading method, molding method and a combination thereof, as a result of a thorough study, as a resin component thermoplastic resin and thermosetting resin combined If it is found that it will be a composition with excellent magnetic field orientation and oxidation resistance,
The present invention has been accomplished.

【0011】本発明は、カップリング剤で表面処理をし
希土類−鉄−窒素系磁性粉体80.0〜99.9重量
%に熱硬化性樹脂0.1〜20重量%で表面被覆し、次
いでこの磁性材樹脂複合材料80.0〜99.9重量%
と熱可塑性樹脂0.1〜20重量%を混合し、しかも熱
硬化性樹脂と熱可塑性樹脂の合計量が0.5〜20.1
重量%の範囲である磁性材樹脂複合材料を射出成形する
ことを特徴とするボンド磁石の製造方法である。
According to the present invention , a surface treatment with a coupling agent is performed.
The rare earth-iron-nitrogen based magnetic powder 80.0 to 99.9% by weight is coated with 0.1 to 20% by weight of a thermosetting resin, and then the magnetic material / resin composite material 80.0 to 99.9 is coated. weight%
Mixing 0.1 to 20 wt% thermoplastic resin and, moreover heat
The total amount of the curable resin and the thermoplastic resin is 0.5 to 20.1
A method for producing a bonded magnet , which comprises injection-molding a magnetic material / resin composite material having a weight percent range .

【0012】[0012]

【0013】以下本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

【0014】本発明で用いる希土類−鉄−窒素(Re−
Fe−N)系磁性材料について説明する。
The rare earth-iron-nitrogen (Re-
The Fe—N) based magnetic material will be described.

【0015】希土類(R)としては、Y、La、Ce、
Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、H
o、Er、Tm、YbおよびLuのうち少なくとも一種
を含めば良く、従って、ミッシュメタルやジジム等の二
種以上の希土類元素の混合物を用いても良いが、好まし
い希土類としては、Y、Nd、Ce、Pr、Sm、G
d、Dy、Erである。さらに好ましくは、Y、Nd、
Ce、Pr、Smである。
As the rare earth (R), Y, La, Ce,
Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, H
At least one of o, Er, Tm, Yb, and Lu may be included. Therefore, a mixture of two or more rare earth elements such as misch metal and dymium may be used. Preferred rare earths include Y, Nd, Ce, Pr, Sm, G
d, Dy, and Er. More preferably, Y, Nd,
Ce, Pr, and Sm.

【0016】鉄(Fe)は、強磁性を担う本磁性材の基
本組成であるが、Feの0.01〜49原子%をCo、
Ni、Ti、Zr、Hf、V、Nb、Ta、Cr、M
o、W、Mn、Pd、Zn、B、Al、Ga、C、S
i、Ge、Snの元素(M)の一種または二種以上に置
き換えることができる。このうち、Ti、Zr、Hf、
V、Mo、Mn、B、Al、C、Si、Geのうち一種
あるいは二種以上が好ましい。さらに好ましくは、Z
r、V、Cr、Mo、B、Cのうち一種または二種以上
である。以降、鉄もしくは鉄成分と記述した場合、Fe
の一部をのMにより置換した場合を含むこととする。
Iron (Fe) is the basic composition of the present magnetic material which is responsible for ferromagnetism, but 0.01 to 49 atomic% of Fe is Co,
Ni, Ti, Zr, Hf, V, Nb, Ta, Cr, M
o, W, Mn, Pd, Zn, B, Al, Ga, C, S
It can be replaced by one or more of the elements (M) of i, Ge, and Sn. Among them, Ti, Zr, Hf,
One, two or more of V, Mo, Mn, B, Al, C, Si, and Ge are preferable. More preferably, Z
One or more of r, V, Cr, Mo, B, and C. Hereinafter, when it is described as iron or iron component, Fe
Is replaced by M.

【0017】Co一種のみで置換した場合を除くMによ
Feの置換量については、好ましくは0.01〜34
原子%、更に好ましくは0.1〜20原子%である。
The substitution amount of Fe by M excluding the case of substitution by only one kind of Co is preferably 0.01 to 34.
Atomic%, more preferably 0.1 to 20 atomic%.

【0018】希土類−鉄−窒素系磁性材料の組成は、少
なくとも希土類、鉄、窒素を含みかつ強磁性を示す組成
範囲にあることが重要である。本発明の中でも、高い磁
気特性を得るためには、Rが5〜20原子%、鉄成分が
40〜90原子%、窒素(N)が1〜25原子%組成範
囲にあること好ましく、窒素の組成範囲に関して、さら
に好ましくは2〜25原子%、最も好ましくは3〜20
原子%である。
It is important that the composition of the rare earth-iron-nitrogen based magnetic material is at least a composition range containing at least rare earth, iron and nitrogen and exhibiting ferromagnetism. In the present invention, in order to obtain high magnetic properties, it is preferable that R is in the composition range of 5 to 20 atomic%, iron component is in the range of 40 to 90 atomic%, and nitrogen (N) is in the composition range of 1 to 25 atomic%. With respect to the composition range, more preferably 2 to 25 atomic%, most preferably 3 to 20 atomic%.
Atomic%.

【0019】窒素のほかに、本発明に用いる希土類−鉄
−窒素系磁性材料には、水素(H)が0.01〜5原子
%、さらに酸素(O)が0.01〜10原子%含まれる
場合もある。
In addition to nitrogen, the rare earth-iron-nitrogen based magnetic material used in the present invention contains 0.01 to 5 atomic% of hydrogen (H) and 0.01 to 10 atomic% of oxygen (O). In some cases.

【0020】希土類−鉄−窒素磁性材料の結晶構造とし
ては、R2Fe17x型やR2Fe17YX型などの六方
晶系並びに菱面体晶系、R2Fe14BNx型、R2Fe14
CNx型やR(Fe 1-Z Z 12 x 型などの正方晶系のう
ち一種もしくは二種以上をとる。なお好ましいYの値と
しては、0.00022〜3、この時の鉄に対するMの
原子比は0.001原子%〜13.6原子%、好ましい
Zの値としては0.000012〜0.33、この時の
鉄に対するMの原子比は、0.001原子%〜33.3
原子%である。
The crystal structure of the rare earth-iron-nitrogen magnetic material includes a hexagonal system such as R 2 Fe 17 N x type and R 2 Fe 17 C Y N X type, a rhombohedral system, and R 2 Fe 14 BN x Type, R 2 Fe 14
One or more of tetragonal systems such as CN x type and R (Fe 1 -Z M Z ) 12 N x type are used. The preferred value of Y is 0.00022 to 3, the atomic ratio of M to iron at this time is 0.001 to 13.6 atomic%, and the preferable value of Z is 0.000012 to 0.33. At this time, the atomic ratio of M to iron is 0.001 atomic% to 33.3.
Atomic%.

【0021】さらに、M成分とは別に、Li、Na、
K、Mg、Ca、Sr、Ba、Ti、Zr、Hf、V、
Nb、Ta、Cr、Mo、W、Mn、Pd、Cu、A
g、Zn、B、Al、Ga、In、C、Si、Ge、S
n、Pb、Biの元素、及びこれらの元素やRの酸化
物、フッ化物、炭化物、窒化物、水素化物、炭酸塩、硫
酸塩、ケイ酸塩、塩化物、硝酸塩のうち少なくとも一種
を希土類−鉄−窒素系磁性材料に対して0.001〜4
9重量%含む事も可能である。
Further, apart from the M component, Li, Na,
K, Mg, Ca, Sr, Ba, Ti, Zr, Hf, V,
Nb, Ta, Cr, Mo, W, Mn, Pd, Cu, A
g, Zn, B, Al, Ga, In, C, Si, Ge, S
n, Pb, Bi, and at least one of oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides, and nitrates of these elements and R; 0.001 to 4 for iron-nitrogen based magnetic material
It is possible to contain 9% by weight.

【0022】本発明の磁性材樹脂複合材料における希土
類−鉄−窒素系磁性材料の含有量については、79.9
〜99.5重量%である事が必要である。79.9重量
%より含有量が少ない場合は残留磁束密度が低く、永久
磁石用途としての実用性は小さいうえに本発明における
樹脂の磁場配向性に対する効果が小さくなる。また9
9.5重量%を越えると、単位体積あたりの磁性粉量が
多くなる反面、磁場配向性に劣り、樹脂成分の減少に伴
う残留磁束密度の向上が見られない上に、樹脂量が少な
く磁性粉の表面を被覆できないので、耐酸化性に劣る。
希土類−鉄−窒素系磁性粉体の平均粒径は0.1〜80
μmの範囲にあることが望ましい。
The content of the rare earth-iron-nitrogen based magnetic material in the magnetic resin composite material of the present invention is 79.9.
9999.5% by weight. When the content is less than 79.9% by weight, the residual magnetic flux density is low, the practicability as a permanent magnet is small, and the effect on the magnetic field orientation of the resin in the present invention is small. 9
When the content exceeds 9.5% by weight, the amount of magnetic powder per unit volume increases, but the magnetic field orientation is poor, the residual magnetic flux density is not improved due to the decrease of the resin component, and the amount of resin is small. Poor oxidation resistance because the surface of the powder cannot be coated.
The average particle size of the rare earth-iron-nitrogen based magnetic powder is 0.1 to 80.
It is desirable to be in the range of μm.

【0023】本発明の複合磁性材料の特徴である寸法安
定性、表面平滑性に特に優れた材料を作製する場合、平
均粒径が1〜10μmであることが好ましい。さらに密
度向上のため、粒度に適当な分布を持たせる事は有効で
ある。
In the case of producing a material having particularly excellent dimensional stability and surface smoothness, which are characteristics of the composite magnetic material of the present invention, the average particle diameter is preferably 1 to 10 μm. In order to further increase the density, it is effective to give the particle size an appropriate distribution.

【0024】本発明における熱硬化性樹脂としては、エ
ポキシ樹脂、フェノール樹脂、エポキシ変性フェノール
樹脂、不飽和ポリエステル樹脂、キシレン樹脂、ユリア
樹脂、メラニン樹脂、熱硬化型シリコーン樹脂、アルキ
ド樹脂、フラン樹脂、熱硬化型アクリル樹脂、熱硬化型
フッ素樹脂等が挙げられる。またモノエポキシなどの反
応性希釈剤や反応性可塑剤もこの中に含まれる。これら
の熱硬化性樹脂は一種または二種以上が用いられるが、
特に機械的強度、耐薬品性、耐熱性、弾性などの物性の
バランスの良いエポキシ樹脂及び不飽和ポリエステル樹
脂は好適な成分である。耐熱性が特に要求される用途に
は、エポキシ変性フェノール樹脂及びフェノール樹脂が
好ましい。樹脂の種類は機械的強度、弾性、寸法安定
性、耐油性、耐水性、耐薬品性、耐候性などの製品の要
求性能によって選択される。
The thermosetting resin in the present invention includes epoxy resin, phenol resin, epoxy-modified phenol resin, unsaturated polyester resin, xylene resin, urea resin, melanin resin, thermosetting silicone resin, alkyd resin, furan resin, A thermosetting acrylic resin, a thermosetting fluororesin, and the like can be given. A reactive diluent such as monoepoxy or a reactive plasticizer is also included in the above. One or two or more of these thermosetting resins are used,
Particularly preferred are epoxy resins and unsaturated polyester resins having well-balanced physical properties such as mechanical strength, chemical resistance, heat resistance, and elasticity. For applications where heat resistance is particularly required, epoxy-modified phenol resins and phenol resins are preferred. The type of resin is selected according to the required performance of the product such as mechanical strength, elasticity, dimensional stability, oil resistance, water resistance, chemical resistance, and weather resistance.

【0025】本発明の熱硬化性樹脂の含有量は0.1〜
20重量%の範囲にある事が必要である。0.1重量%
より少ないと磁場配向性に対する本発明の効果が不充分
となり、20重量%より多いと磁化が低く、永久磁石用
途としての実用性は低い。
The content of the thermosetting resin of the present invention is from 0.1 to
It must be in the range of 20% by weight. 0.1% by weight
If the amount is less than the above, the effect of the present invention on the magnetic field orientation becomes insufficient.

【0026】本発明における熱可塑性樹脂としては、1
2−ナイロン、6−ナイロン、6,6−ナイロン等のポ
リアミド系樹脂、ポリエチレン、ポリプロピレン等のポ
リオレフィン系樹脂、ポリスチレン系樹脂、ポリ塩化ビ
ニル、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリビニ
ルアルコール、エチレン−酢酸ビニル共重合体等のポリ
ビニル系樹脂、エチレン−エチルアクリレート共重合
体、ポリメタクリル酸メチル等のアクリル系樹脂、ポリ
アクリロニトリル、アクリロニトリル/ブタジエン/ス
チレン共重合体等のアクリロニトリル系樹脂、ポリウレ
タン系樹脂、ポリエチレンオキシド、ポリオキシメチレ
ン等のポリエーテル系樹脂のほか、ポリアセタール、ポ
リカーボネート、ポリイミド、ポリスルホン、ポリブチ
レンテレフタレート、ポリエチレンテレフタレート、ポ
リアリレート、ポリフェニレンオキシド、ポリエーテル
スルホン、ポリフェニルスルフィド、ポリアミドイミ
ド、ポリオキシベンジレン、ポリエーテルケトン等のエ
ンジニアプラスチックと呼称される樹脂、ポリアラミ
ド、全芳香族ポリエステル、全芳香族ポリエーテル、ポ
リエステルアミド等の液晶樹脂、ポリアミドエラストマ
ー、ポリエステルエラストマー、ポリウレタンエラスト
マー等の熱可塑性エラストマー、ポリテトラフルオロエ
チレン、テトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体、エチレン−テトラフルオロエチレン共
重合体、ポリ弗化ビニリデン、ポリ弗化ビニル、ポリ弗
化ウレタンなどの弗素系樹脂等と上記各樹脂のプレポリ
マーやオリゴマー、シリコーン油、シリコーングリー
ス、シリコーン樹脂等のポリシロキサン類などが挙げら
これらの樹脂のうち1種もしくは2種以上がもちい
られるが、特に機械的強度、弾性、寸法精度、コスト、
成形加工性等の物性のバランスの良い12−ナイロン、
6−ナイロン、6,6−ナイロン等のポリアミド樹脂は
好適な成分である。
As the thermoplastic resin in the present invention, 1
Polyamide resins such as 2-nylon, 6-nylon and 6,6-nylon, polyolefin resins such as polyethylene and polypropylene, polystyrene resins, polyvinyl chloride, polyvinyl acetate, polyvinylidene chloride, polyvinyl alcohol, ethylene-acetic acid Polyvinyl resin such as vinyl copolymer, ethylene-ethyl acrylate copolymer, acrylic resin such as polymethyl methacrylate, acrylonitrile, acrylonitrile resin such as acrylonitrile / butadiene / styrene copolymer, polyurethane resin, poly In addition to polyether resins such as ethylene oxide and polyoxymethylene, polyacetal, polycarbonate, polyimide, polysulfone, polybutylene terephthalate, polyethylene terephthalate, polyarylate, poly Engineered plastics such as phenylene oxide, polyether sulfone, polyphenyl sulfide, polyamide imide, polyoxybenzylene, and polyether ketone; liquid crystal resins such as polyaramid, wholly aromatic polyester, wholly aromatic polyether, and polyester amide , Polyamide elastomer, polyester elastomer, thermoplastic elastomer such as polyurethane elastomer, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymer, ethylene-tetrafluoroethylene copolymer, polyvinylidene fluoride, polyvinyl fluoride, Polysiloxanes such as fluorine-based resins such as urethane polyfluoride and prepolymers and oligomers of the above resins, silicone oils, silicone greases, silicone resins, etc. And the like, although one or two or more of these resins are used, in particular mechanical strength, elasticity, dimensional accuracy, cost,
12-nylon with good balance of physical properties such as moldability
Polyamide resins such as 6-nylon and 6,6-nylon are suitable components.

【0027】また、熱可塑性樹脂の種類は耐熱性、機械
的強度、弾性、寸法安定性、耐油性、耐水性、耐薬品
性、耐候性等の製品の要求性能によって適宜選択でき
る。
The type of the thermoplastic resin can be appropriately selected depending on the required properties of the product such as heat resistance, mechanical strength, elasticity, dimensional stability, oil resistance, water resistance, chemical resistance, weather resistance and the like.

【0028】本発明の熱可塑性樹脂の含有量は0.1〜
20重量%の範囲にある事が必要である。0.1重量%
より少ないと本発明の磁場配向性に対する効果が小さく
なり、20重量%より多いと磁化が低く、永久磁石用途
としての実用性は低い。
The content of the thermoplastic resin of the present invention is from 0.1 to
It must be in the range of 20% by weight. 0.1% by weight
If the amount is less than the above, the effect of the present invention on the magnetic field orientation becomes small.

【0029】熱可塑性樹脂、熱硬化性樹脂の組合せは目
的、要求性能によって自由に選ぶことができるが、あわ
せて0.5〜20.1重量%の範囲にあることが必要で
ある。0.5重量%より低いと、機械的強度が不充分と
なり、20.1重量%より多いと磁化が減少して、実用
的な磁石とはならない。
The combination of the thermoplastic resin and the thermosetting resin can be freely selected depending on the purpose and required performance, but it is necessary that the total is in the range of 0.5 to 20.1% by weight. If it is less than 0.5% by weight, the mechanical strength is insufficient, and if it is more than 20.1% by weight, the magnetization is reduced, and the magnet is not practical.

【0030】次に本発明の方法に用いる磁性材樹脂複合
材料の製造法について説明する。
Next, a method for producing a magnetic resin composite material used in the method of the present invention will be described.

【0031】一般に、ボンド磁石の製造法としては、熱
可塑性樹脂と磁性粉の混練物を射出成形、押し出し成形
する方法、熱硬化性樹脂と磁性粉の混練物を圧縮成形す
る方法が挙げられる。
In general, as a method for producing a bonded magnet, there are a method of injection molding and extrusion molding of a kneaded product of a thermoplastic resin and a magnetic powder, and a method of compression molding a kneaded product of a thermosetting resin and a magnetic powder.

【0032】希土類−鉄−窒素系材料と熱可塑性樹脂を
加熱混練する場合、希土類−鉄−窒素系材料の粒径が1
0μm以下と小さくてしかも非常に磁力が高いために凝
集が激しく、一般に用いられる樹脂と混練法の組合せで
は、溶融粘度が高くなり均質な磁性材樹脂複合材料が得
られにくい。従って、この樹脂複合材料を、磁場射出成
形する際、配向度80%を越える磁場配向性は得がた
く、高い磁気特性が得られない。
When the rare earth-iron-nitrogen material and the thermoplastic resin are heated and kneaded, the particle size of the rare earth-iron-nitrogen material is 1
Since it is as small as 0 μm or less and has a very high magnetic force, agglomeration is intense, and a combination of a commonly used resin and a kneading method has a high melt viscosity and makes it difficult to obtain a homogeneous magnetic resin composite material. Therefore, when this resin composite material is subjected to magnetic field injection molding, it is difficult to obtain a magnetic field orientation exceeding 80% of the degree of orientation, and high magnetic properties cannot be obtained.

【0033】ここに、配向度をσa/(σa+σb)と定
義する。配向度は通常百分率で言い、その場合、数値の
あとに%を付して言う。ただし磁場配向方向の残留磁化
をσa(kG)、それと垂直方向の残留磁化をσb(k
G)とする。配向度が大きく1に近いほど磁場配向性の
よい磁性材樹脂複合材料である。
Here, the degree of orientation is defined as σ a / (σ a + σ b ). The degree of orientation is usually expressed as a percentage, in which case the numerical value
I will add% afterwards. However, the residual magnetization in the direction of the magnetic field orientation is σ a (kG), and the residual magnetization in the perpendicular direction is σ b (k
G). The higher the degree of orientation is, the closer to 1, the magnetic material-resin composite material having better magnetic field orientation.

【0034】さらに、混練・射出時の酸化劣化も激しく
なる。
Further, oxidative deterioration during kneading and injection becomes severe.

【0035】また、熱硬化性樹脂を配合し圧縮成形する
場合においても、磁粉が凝集して均質な混練がしづら
く、成形時にも、磁場配向性が悪くなり、配向度80%
以上のボンド磁石は得難い。またキュア処理の際に熱劣
化する問題点もある。
In the case where a thermosetting resin is blended and compression-molded, the magnetic powder is also difficult to be homogeneously kneaded due to agglomeration, and the magnetic field orientation deteriorates during molding, and the degree of orientation is 80%.
The above bonded magnet is difficult to obtain. There is also a problem of thermal deterioration during the curing process.

【0036】これらの問題点を解決するためには、磁性
粉表面を被覆して酸化が進まない様にすると同時に、粉
同士の滑りをよくする方法が有効であると考えられる。
In order to solve these problems, it is considered that a method of coating the surface of the magnetic powder so that oxidation does not proceed and at the same time improving the slip between the powders is effective.

【0037】従って、本発明の磁性材樹脂複合材料の製
造法として、熱可塑性樹脂を熱硬化性樹脂に添加する、
単純配合法も考えられるが、磁場配向性、耐酸化性にも
っとも効果が高い方法は、熱硬化性樹脂表面被覆法であ
る。
Therefore, as a method for producing the magnetic resin composite material of the present invention, a thermoplastic resin is added to a thermosetting resin.
Although a simple compounding method is also conceivable, a method having the highest effect on magnetic field orientation and oxidation resistance is a thermosetting resin surface coating method.

【0038】以下、本発明の製造方法について説明す
る。
Hereinafter, the production method of the present invention will be described.

【0039】[0039]

【0040】[0040]

【0041】[0041]

【0042】熱硬化性樹脂表面被覆法磁性粉を熱硬化性
樹脂で表面被覆したのち、熱可塑性樹脂と混練・各種成
形する方法である。
Thermosetting Resin Surface Coating Method This is a method in which magnetic powder is surface-coated with a thermosetting resin, then kneaded with a thermoplastic resin, and variously molded.

【0043】熱硬化性樹脂の表面被覆方法の例としては
次の4つの方法が挙げられる。
Examples of the method of coating the surface of the thermosetting resin include the following four methods.

【0044】(i)樹脂をとかした溶剤とカップリング
剤で表面処理した磁性粉を混合し、混練しながら溶剤を
回収する方法、 (ii)カップリング剤で表面処理した磁性粉を溶剤、樹
脂とともにスラリー状としスプレードライする方法。
(I) Coupling with a solvent in which a resin is dissolved
A method in which a magnetic powder surface-treated with an agent is mixed and the solvent is recovered while kneading; and (ii) a method in which the magnetic powder surface-treated with a coupling agent is formed into a slurry with a solvent and a resin and spray-dried.

【0045】(iii)磁性粉をカップリング剤で表面処
理したのちカップリング剤の有機鎖と反応性のある樹脂
を混ぜ合わせ、加熱処理する方法、 (iv)樹脂を良溶媒に溶かし、カップリング剤で表面処
理した磁性粉を分散させながら、貧溶媒を滴下する方法
である。
(Iii) a method in which a magnetic powder is surface-treated with a coupling agent, and then a resin having a reactivity with an organic chain of the coupling agent is mixed and heat-treated; (iv) a method in which the resin is dissolved in a good solvent and coupling is performed. Surface treatment
This is a method of adding a poor solvent dropwise while dispersing the treated magnetic powder.

【0046】(i)の方法には、溶剤にとけうる樹脂なら
ばほぼ何でも使用できるが、アルコキシドを主鎖に有す
る熱硬化型シリコーン樹脂がこの方法の好適な例であ
る。
In the method (i), almost any resin soluble in a solvent can be used, but a thermosetting silicone resin having an alkoxide in the main chain is a preferred example of this method.

【0047】溶剤回収を(ii)の方法で行うと磁性粉表面
に樹脂が成膜され、特に好ましい。(iii)の方法として
は、例えば、磁性粉をアミン系カップリング剤で処理し
て磁性粉表面に導入されたアミノ基と樹脂とを反応させ
る方法が有効である。
When the solvent is recovered by the method (ii), a resin film is formed on the surface of the magnetic powder, which is particularly preferable. As the method (iii), for example, a method in which a magnetic powder is treated with an amine-based coupling agent to react an amino group introduced on the surface of the magnetic powder with a resin is effective.

【0048】これらの方法を用いると、熱可塑性樹脂と
の混練・射出工程で高温に晒されても、磁性粉の酸化劣
化が押さえられる利点がある。
When these methods are used, there is an advantage that the oxidative deterioration of the magnetic powder is suppressed even if the magnetic powder is exposed to a high temperature in the step of kneading and injecting with the thermoplastic resin.

【0049】なお、熱硬化性樹脂としては、エポキシ樹
脂、フェノール変性エポキシ樹脂、フェノール樹脂、熱
硬化型シリコーン樹脂、不飽和ポリエステル樹脂、アル
キド樹脂、弗素樹脂などが好ましく、熱可塑性樹脂とし
ては、ポリアミド樹脂、ポリブチレンテレフタレート、
ポリフェニレンスルフィド、ポリエーテルケトン、液晶
樹脂などが用いられる。
The thermosetting resin is preferably an epoxy resin, a phenol-modified epoxy resin, a phenol resin, a thermosetting silicone resin, an unsaturated polyester resin, an alkyd resin, a fluororesin, or the like. Resin, polybutylene terephthalate,
Polyphenylene sulfide, polyether ketone, liquid crystal resin and the like are used.

【0050】熱硬化性樹脂表面被覆法においては、樹脂
の組合せによるが、本発明に用いられる磁性粉体の場
合、熱硬化性樹脂と熱可塑性樹脂の比率及び硬化剤の量
を以下のようにすると、82〜87%の配向度を有する
磁性粉樹脂複合材料を得ることができる。
In the thermosetting resin surface coating method, depending on the combination of the resins, in the case of the magnetic powder used in the present invention, the ratio of the thermosetting resin to the thermoplastic resin and the amount of the curing agent are as follows. Then, a magnetic powder resin composite material having a degree of orientation of 82 to 87% can be obtained.

【0051】即ち、硬化剤を当量以下、好ましくは0.
5当量以下とする、また、硬化剤を使用しない一液型の
熱硬化性樹脂の場合は、添加量を複合材総量の0.1〜
0.5重量%とし、しかも熱硬化性樹脂の量を熱可塑性
樹脂の50重量%以下、好ましくは35重量%以下にす
る。
That is, the curing agent is used in an amount equal to or less than the equivalent, preferably in an amount equal to or less than 0.1.
In the case of a one-pack type thermosetting resin that does not use a curing agent, the amount of addition is 0.1 to the total amount of the composite material.
0.5% by weight, and the amount of the thermosetting resin is 50% by weight or less, preferably 35% by weight or less of the thermoplastic resin.

【0052】上記の範囲を越えると、熱硬化性樹脂が混
練中に硬化し、成形性及び磁場配向性に悪影響を及ぼ
す。
If the ratio exceeds the above range, the thermosetting resin is cured during kneading, which adversely affects moldability and magnetic field orientation.

【0053】[0053]

【0054】[0054]

【0055】[0055]

【0056】[0056]

【0057】[0057]

【0058】[0058]

【0059】[0059]

【0060】[0060]

【0061】[0061]

【0062】[0062]

【0063】[0063]

【0064】以上述べた本発明の製造法の効果が高いの
は、以下の理由による。表面処理剤、結合剤に熱硬化性
樹脂だけを用いると、混練時及び成形時に、表面処理剤
と結合剤の反応が起きたり、表面処理剤が溶け出して失
われてしまうのに対し、表面処理剤に熱硬化性樹脂を用
い、結合剤に熱可塑性樹脂を用いる方法であれば、磁性
粉表面での樹脂同士の反応や溶融が緩和され、そのため
に、磁粉同士が良く分離され、高い磁場配向性と耐酸化
性及びよい成形性が得られるのである。
The advantages of the manufacturing method of the present invention described above are high for the following reasons. If only a thermosetting resin is used for the surface treatment agent and the binder, the reaction between the surface treatment agent and the binder may occur during kneading and molding, or the surface treatment agent may be dissolved and lost. If a thermosetting resin is used as the treatment agent and a thermoplastic resin is used as the binder, the reaction and melting between the resins on the surface of the magnetic powder are alleviated. The magnetic field orientation, oxidation resistance, and good moldability can be obtained.

【0065】熱硬化性樹脂で磁性粉表面を被覆しやすく
するため、カップリング剤や滑剤で磁性粉を前処理する
方法は有効である。
In order to easily coat the surface of the magnetic powder with a thermosetting resin, it is effective to pretreat the magnetic powder with a coupling agent or a lubricant.

【0066】カップリング剤の例としては、イソプロピ
ルトリイソステアロイルチタネート、イソプロピルトリ
(N−アミノエチル−アミノエチル)チタネート、イソ
プロピルトリス(ジオクチルパイロホスフェート)チタ
ネート、テトライソプロピルビス(ジオクチルホスファ
イト)チタネート、テトライソプロピルチタネート、テ
トラブチルチタネート、テトラオクチルビス(ジトリデ
シルホスファイト)チタネート、イソプロピルトリオク
タノイルチタネート、イソプロピルトリドデシルベンゼ
ンスルホニルチタネート、イソプロピルトリ(ジオクチ
ルホスフェート)チタネート、ビス(ジオクチルパイロ
ホスフェート)エチレンチタネート、イソプロピルジメ
タクリルイソステアロイルチタネート、テトラ(2、2
−ジアリルオキシメチル−1−ブチル)ビス(ジトリデ
シルホスファイト)チタネート、イソプロピルトリクミ
ルフェニルチタネート、ビス(ジオクチルパイロホスフ
ェート)オキシアセテートチタネート、イソプロピルイ
ソステアロイルジアクリルチタネート等のチタン系カッ
プリング剤、γ−アミノプロピルトリエトキシシラン,
N−β−(アミノエチル)−γ−アミノプロピルトリメ
トキシシラン、γ−グリシドキシ−プロピルトリメトキ
シシラン、β−(3、4−エポキシ−シクロヘキシル)
エチルトリメトキシシラン、ビニルトリエトキシシラ
ン、ビニル−トリス(2−メトキシエトキシ)シラン、
γ−メルカプトプロピルトリメトキシシラン、N−β−
(アミノエチル)−γ−アミノプロピルメチルジメトキ
シシラン、γ−メタクリロキシプロピルトリメトキシシ
ラン,N−(3−トリエトキシシリルプロピル)ウレ
ア、メチルトリメトキシシラン、オクタデシルトリエト
キシララン、ビニルトアセトキシシラン、γ−クロロ
プロピルトリメトキシシラン、ヘキサメチルジシラザ
ン、γ−アニリノプロピルトリメトキシシラン、オクタ
デシルジメチル[3−(トリメトキシシリル)プロピ
ル]アンモニウムクロライド、γ−クロロプロピルメチ
ルジメトキシシラン、メチルトリクロロシラン、ポリア
ルキレンオキサイドシラン類、パーフルオロアルキルト
リメトキシシラン類等のシリコンを含有するカップリン
グ剤やアセトアルコキシアルミニウムジイソプロピレー
トのようなアルミニウム系、ジルコニウム系、クロム
系、鉄系、スズ系などのカップリング剤の一種または二
種以上が挙げられる。
Examples of the coupling agent include isopropyl triisostearoyl titanate, isopropyl tri (N-aminoethyl-aminoethyl) titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraisopropyl Isopropyl titanate, tetrabutyl titanate, tetraoctyl bis (ditridecyl phosphite) titanate, isopropyl trioctanoyl titanate, isopropyl tridodecyl benzenesulfonyl titanate, isopropyl tri (dioctyl phosphate) titanate, bis (dioctyl pyrophosphate) ethylene titanate, isopropyl di Methacryl isostearyl titanate, tetra (2,2
Titanium-based coupling agents such as -diallyloxymethyl-1-butyl) bis (ditridecylphosphite) titanate, isopropyltricumylphenyltitanate, bis (dioctylpyrophosphate) oxyacetate titanate, and isopropylisostearoyldiacryl titanate; Aminopropyltriethoxysilane,
N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-glycidoxy-propyltrimethoxysilane, β- (3,4-epoxy-cyclohexyl)
Ethyltrimethoxysilane, vinyltriethoxysilane, vinyl-tris (2-methoxyethoxy) silane,
γ-mercaptopropyltrimethoxysilane, N-β-
(Aminoethyl)-.gamma.-aminopropyl methyl dimethoxy silane, .gamma.-methacryloxypropyl trimethoxysilane, N-(3- triethoxysilylpropyl) urea, methyltrimethoxysilane, octadecyltriethoxysilane La orchid, Biniruto Li acetoxysilane, gamma -Chloropropyltrimethoxysilane, hexamethyldisilazane, γ-anilinopropyltrimethoxysilane, octadecyldimethyl [3- (trimethoxysilyl) propyl] ammonium chloride, γ-chloropropylmethyldimethoxysilane, methyltrichlorosilane, polyalkylene Oxide silanes, coupling agents containing silicon such as perfluoroalkyltrimethoxysilanes and aluminum-based materials such as acetoalkoxyaluminum diisopropylate, One or more kinds of coupling agents such as zirconium, chromium, iron and tin are exemplified.

【0067】カップリング剤の種類は、表面被覆したい
樹脂と親和性や反応性のあるものを選ぶ。
The type of the coupling agent is selected from those having affinity and reactivity with the resin to be coated on the surface.

【0068】また滑剤の例としては、ステアリン酸、オ
レイン酸、バルミチン酸、リノール酸、ラウリン酸、
1,2−オキシステアリン酸、リシノール酸などの脂肪
酸類、オレイルアミン、ステアリルアミン、ラウリルア
ミン等のアミン類、グリシン、アラニン、アスパラギン
酸、アルギニン、ヒスチジン等のアミノ酸類、ステアリ
ン酸亜鉛、ステアリン酸カルシュム、ステアリン酸バ
リウム、ステアリン酸アルミニウム、ステアリン酸マグ
ネシュウム、ラウリル酸亜鉛、ラウリン酸カルシュウ
ム、リシノール酸亜鉛、リシノール酸カルシュウム、2
−エチルヘキソイン酸亜鉛等の脂肪酸塩類、ステアリン
酸アミド、ヒドロキシステアリン酸アミド、バルミチン
酸アミド等の脂肪酸アミド類、Si34、SiC、Mg
O、Al23、TiC、Sb23等の無機化合物粉体、
ステアリン酸ブチル等の脂肪酸エステル、エチレングリ
コール、ステアリルアルコール等のアルコール類、パラ
フィンワックス、流動パラフィン、ポリエチレンワック
ス、ポリプロピレンワックス、エステルワックス、カル
ナウバ、マイクロワックス等のワックス類などの一種ま
たは二種以上が挙げられる。
Examples of the lubricant include stearic acid, oleic acid, balmitic acid, linoleic acid, lauric acid,
1,2-oxy-stearate, fatty acids such as ricinoleic acid, oleylamine, stearylamine, amines such as lauryl amine, glycine, alanine, aspartic acid, arginine, amino acids histidine, zinc stearate, Karushu stearate U System, barium stearate, aluminum stearate, magnesium stearate, zinc laurate, calcium laurate, zinc ricinoleate, calcium ricinoleate, 2
- Echiruhekisoin zinc fatty acid salts such as stearic acid amide, hydroxystearic acid amide, fatty acid amides such as palmitic acid amide, Si 3 N 4, SiC, Mg
Inorganic compound powders such as O, Al 2 O 3 , TiC, Sb 2 O 3 ,
One or more kinds of fatty acid esters such as butyl stearate, alcohols such as ethylene glycol and stearyl alcohol, waxes such as paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba, and micro wax. Can be

【0069】滑剤については磁性粉の表面処理だけでな
く混練時に配合して、系の粘度を下げたり、成形時に配
合して磁場配向性や密度を向上させるためにも使用す
る。
The lubricant is used not only for the surface treatment of the magnetic powder but also for kneading to reduce the viscosity of the system and for the magnetic powder to improve the magnetic field orientation and density when it is compounded.

【0070】また、本発明の磁性材樹脂複合材料は主に
樹脂の耐熱性を向上させるために、耐熱老化防止剤、酸
化防止剤などの熱安定剤を添加する事が出来る。
The magnetic material-resin composite material of the present invention may contain a heat stabilizer such as a heat-resistant anti-aging agent and an antioxidant, mainly for improving the heat resistance of the resin.

【0071】上記耐熱老化防止剤及び熱安定剤として
は、例えば、N,N’−ヘキサメチレン−ビス(3,5
−ジ第3ブチル−ヒドロキシケイ皮酸アミド)、4,
4’−ビス(2,6−ジ第3ブチルフェノール)、2,
2’−メチレンビス(4−エチル−6−第3ブチルフェ
ノール)等の各種ヒンダー−フェノール類、N,N−
ビス(β−ナフチル)−p−フェニレンジアミン、N,
N’ジフェニル−p−フェニレンジアミン、ポリ(2,
2,4−トリメチル−1,2−ジヒドロキノリン)等の
芳香族アミン類、塩化銅、ヨウ化銅等の銅塩、ジラウリ
ルチオジプロピオネートなどのイオウ化合物やリン化合
物等が挙げられる。
Examples of the above-mentioned heat aging inhibitor and heat stabilizer include N, N'-hexamethylene-bis (3,5
-Di-tert-butyl-hydroxycinnamic acid amide), 4,
4'-bis (2,6-ditert-butylphenol), 2,
2'-methylenebis (4-ethyl-6-third butylphenol) Various, such as hindered de - phenols, N, N-
Bis (β-naphthyl) -p-phenylenediamine, N,
N'diphenyl-p-phenylenediamine, poly (2,
Aromatic amines such as 2,4-trimethyl-1,2-dihydroquinoline); copper salts such as copper chloride and copper iodide; and sulfur compounds and phosphorus compounds such as dilauryl thiodipropionate.

【0072】更に、本発明における磁性材樹脂複合材料
には、必要に応じて封止剤、紫外線吸収剤、帯電防止
剤、着色剤、充填剤などの添加剤、或いはシリカ、ウイ
スカー等のフィラを添加する事が出来る。
Further, the magnetic resin composite material of the present invention may contain additives such as a sealant, an ultraviolet absorber, an antistatic agent, a coloring agent, a filler, or a filler such as silica or whisker, if necessary. Can be added.

【0073】[0073]

【実施例】以下、実施例により本発明を具体的に説明す
る。
The present invention will be described below in detail with reference to examples.

【0074】評価方法は以下のとおりである。The evaluation method is as follows.

【0075】(1)磁気特性 磁性材樹脂複合材料を磁場中で約5×10×2mmの板
状に成形するか、大型試料から同じ大きさに切り出し、
これを室温中60kOeでパルス着磁したのち、振動試
料型磁力計(VSM)を用いて測定した。測定した磁気
特性は、外部磁場を15kOe印加した時の飽和磁化4
πIs(kG)、残留磁束密度Br(kG)、角形比B
r/4πIs(%)、保磁力(固有保磁力)iHc(k
Oe)、最大エネルギー積(BH)max(MGOe)、
配向度σa/(σa+σb)(%)である。
(1) Magnetic properties The magnetic material-resin composite material is formed into a plate of about 5 × 10 × 2 mm in a magnetic field, or cut out from a large sample to the same size.
This was pulse-magnetized at room temperature at 60 kOe, and then measured using a vibrating sample magnetometer (VSM). The measured magnetic properties are the saturation magnetization 4 when an external magnetic field is applied at 15 kOe.
πIs (kG), residual magnetic flux density Br (kG), squareness ratio B
r / 4πIs (%), coercive force (specific coercive force) iHc (k
Oe), maximum energy product (BH) max (MGOe),
The degree of orientation σ a / (σ a + σ b ) (%).

【0076】(2)耐食性試験 (1)で用いた板状もしくはリング状のボンド磁石を、
60℃、相対湿度90%の恒温恒湿槽内に96時間放置
した、外観を以下の3段階で評価した。
(2) Corrosion resistance test The plate-shaped or ring-shaped bonded magnet used in (1) was
The appearance was evaluated according to the following three grades after being left for 96 hours in a thermo-hygrostat at 60 ° C. and a relative humidity of 90%.

【0077】○;錆の発生なし、 △;僅かに錆の発生
あり、 ×;錆の発生あり (3)耐酸化性試験 150℃のオーブン内に(1)で用いた板状ボンド磁石
を入れ、20時間後の磁気特性を(1)と同様にして測
定し、(1)の結果と比較し、(BH)maxの保持率
(%)で評価した。
;: No rust was generated, Δ: Slight rust was generated, X: Rust was generated (3) Oxidation resistance test The plate-like bonded magnet used in (1) was placed in an oven at 150 ° C. After 20 hours, the magnetic properties were measured in the same manner as in (1), compared with the results in (1), and evaluated by the (BH) max retention (%).

【0078】[0078]

【0079】[0079]

【0080】[0080]

【0081】[0081]

【0082】[0082]

【0083】実施例平均粒径7μmのSm8.7Fe
73.314.60.82.6磁性粉体500gと、γ−アミノ
プロピルトリエトキシシラン2.5gのイソプロパノー
ル溶液をウェットミルによって20分間混合し、ふるい
の目を通して磁性粉と粉砕ボールを分離した。20分間
静置してから減圧下、150℃で25分間加熱し、溶剤
を回収した。
Example 1 Sm 8.7 Fe having an average particle size of 7 μm
500 g of 73.3 N 14.6 H 0.8 O 2.6 magnetic powder and 2.5 g of γ-aminopropyltriethoxysilane in an isopropanol solution were mixed for 20 minutes by a wet mill, and the magnetic powder and the crushed ball were separated through a sieve. After leaving still for 20 minutes, the mixture was heated under reduced pressure at 150 ° C. for 25 minutes to recover the solvent.

【0084】この表面処理した磁性粉体とケトン系希釈
剤に溶解したエポキシ樹脂5gをパッチ式ニーダーに入
れ、室温で30分間混練し、希釈剤を気化させた。この
ときの主剤と硬化剤の当量比は1:0.5である。次い
でこの磁性粉体を減圧下、80℃で30分間加熱し、エ
ポキシ樹脂とアミノ基を磁性粉体表面で反応させた。熱
硬化性樹脂で表面被覆されたこの磁性粉体450gと1
2−ナイロン50gを温度分布が230〜260℃の範
囲に調整された1軸押し出し機を用いて混練し、押し出
しした後ペレット状に裁断した。
The surface-treated magnetic powder and 5 g of an epoxy resin dissolved in a ketone-based diluent were put into a patch-type kneader and kneaded at room temperature for 30 minutes to evaporate the diluent. At this time, the equivalent ratio between the main agent and the curing agent is 1: 0.5. Next, this magnetic powder was heated under reduced pressure at 80 ° C. for 30 minutes to cause an epoxy resin and an amino group to react on the surface of the magnetic powder. 450 g of this magnetic powder coated with a thermosetting resin and 1
2-Nylon 50 g in a temperature range of 230 to 260 ° C.
The mixture was kneaded using a single-screw extruder adjusted to the surroundings , extruded, and then cut into pellets.

【0085】このペレットを用いて、射出温度285
℃、金型温度90℃、射出圧力1ton/cm2、磁場
15kOeの条件で射出成形を行った。この射出成形ボ
ンド磁石の評価結果を表1に示す。
Using these pellets, an injection temperature of 285
Injection molding was performed under the conditions of a temperature of 90 ° C., a mold temperature of 90 ° C., an injection pressure of 1 ton / cm 2 , and a magnetic field of 15 kOe. Table 1 shows the evaluation results of the injection-molded bonded magnet.

【0086】なお、この磁石の外観は、ひけがなく、光
沢があって美しく、割れ掛けがない成形性の良好な材料
であった。
The appearance of this magnet was a material with no sink marks, gloss and beauty, and good moldability without cracking.

【0087】比較例表面を熱硬化性樹脂で被覆しない
以外は、実施例と同様にして射出成形ボンド磁石を得
た。このものの評価結果を表1に示す。
Comparative Example 1 An injection-molded bonded magnet was obtained in the same manner as in Example 1 , except that the surface was not coated with a thermosetting resin. Table 1 shows the results of the evaluation.

【0088】なお、この磁石の外観は、色むらがあり、
ひけも見れた。成形性が悪く、割れ掛けがある成形品
が30%の割りで見られ、全体に脆い材料であった。
The appearance of this magnet is uneven in color.
Sink also saw we were. Moldability was poor, and cracked molded products were found at a rate of 30%, and the whole was a brittle material.

【0089】[0089]

【表1】 [Table 1]

【0090】[0090]

【発明の効果】以上説明したように、本発明によれば、
粒度が小さく高い磁気特性を有する希土類−鉄−窒素材
料を含有し、しかも高い磁場配向性と耐食性、耐酸化性
を合わせ持つ磁性材樹脂複合材料を得ることができ、更
に、これらの材料を用いて、表面平滑性、寸法安定性に
優れた高磁気特性のボンド磁石を作製することができ
る。
As described above, according to the present invention,
A magnetic material-resin composite material containing a rare earth-iron-nitrogen material having a small particle size and high magnetic properties and having high magnetic field orientation, corrosion resistance, and oxidation resistance can be obtained. Thus, a bonded magnet having high magnetic properties and excellent surface smoothness and dimensional stability can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01F 1/08 C22C 38/00 H01F 1/053 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01F 1/08 C22C 38/00 H01F 1/053

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 カップリング剤で表面処理をした希土類
−鉄−窒素系磁性粉体80.0〜99.9重量%に熱硬
化性樹脂0.1〜20重量%で表面被覆し、次いでこの
磁性材樹脂複合材料80.0〜99.9重量%と熱可塑
性樹脂0.1〜20重量%を混合し、しかも熱硬化性樹
脂と熱可塑性樹脂の合計量が0.5〜20.1重量%の
範囲である磁性材樹脂複合材料を射出成形することを特
徴とするボンド磁石の製造方法
1. A rare earth-iron-nitrogen based magnetic powder 80.0-99.9% by weight surface-treated with a coupling agent is surface-coated with a thermosetting resin 0.1-20% by weight. magnetic material-resin composite material 80.0 to 99.9 were mixed 0.1 to 20 wt% wt% and the thermoplastic resin, moreover thermosetting tree
The total amount of the fat and the thermoplastic resin is 0.5 to 20.1% by weight.
A method for manufacturing a bonded magnet , which comprises injection-molding a magnetic material-resin composite material within a range .
JP04112709A 1992-05-01 1992-05-01 Manufacturing method of bonded magnet using rare earth magnetic resin composite material Expired - Lifetime JP3139827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04112709A JP3139827B2 (en) 1992-05-01 1992-05-01 Manufacturing method of bonded magnet using rare earth magnetic resin composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04112709A JP3139827B2 (en) 1992-05-01 1992-05-01 Manufacturing method of bonded magnet using rare earth magnetic resin composite material

Publications (2)

Publication Number Publication Date
JPH05315116A JPH05315116A (en) 1993-11-26
JP3139827B2 true JP3139827B2 (en) 2001-03-05

Family

ID=14593542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04112709A Expired - Lifetime JP3139827B2 (en) 1992-05-01 1992-05-01 Manufacturing method of bonded magnet using rare earth magnetic resin composite material

Country Status (1)

Country Link
JP (1) JP3139827B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956760B2 (en) * 2002-04-25 2007-08-08 松下電器産業株式会社 Manufacturing method of flexible magnet and its permanent magnet type motor
JP4135447B2 (en) * 2002-09-17 2008-08-20 住友金属鉱山株式会社 High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP4301222B2 (en) * 2005-08-12 2009-07-22 セイコーエプソン株式会社 Rare earth bonded magnet manufacturing method and rare earth bonded magnet
JP4301221B2 (en) * 2005-08-12 2009-07-22 セイコーエプソン株式会社 Rare earth bonded magnet manufacturing method and rare earth bonded magnet
EP2146357B1 (en) * 2007-04-27 2018-08-08 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
JP2012199462A (en) * 2011-03-23 2012-10-18 Aichi Steel Works Ltd Rare earth bond magnet, rare earth magnet powder and manufacturing method therefor, and compound for rare earth bond magnet
JP5339644B2 (en) * 2012-02-17 2013-11-13 旭化成ケミカルズ株式会社 Manufacturing method of solid material for magnet
JP6780693B2 (en) * 2018-01-22 2020-11-04 日亜化学工業株式会社 Manufacturing method of bond magnets and compounds for bond magnets
CN110070985B (en) * 2018-01-22 2022-11-22 日亚化学工业株式会社 Bonded magnet and method for producing mixture for bonded magnet

Also Published As

Publication number Publication date
JPH05315116A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
KR101233725B1 (en) The rapidly solidified rare earth-transition metal-boron magnet material and the process for making the same
JP2003007521A (en) High weather-resistant magnet powder and magnet using the same
JP3139827B2 (en) Manufacturing method of bonded magnet using rare earth magnetic resin composite material
EP3054460A1 (en) Process for producing r-t-b-based rare earth magnet powder, r-t-b-based rare earth magnet powder, and bonded magnet
JP3719492B2 (en) Rare earth magnetic powder, surface treatment method thereof, and rare earth bonded magnet using the same
JPH07226312A (en) Magnetic material resin composite material
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP4389672B2 (en) Bonded magnet composition and bonded magnet
JPH06295805A (en) Bond magnet forming material
JP4096531B2 (en) Rare earth hybrid magnet composition, method for producing the same, and magnet obtained therefrom
JP4438445B2 (en) Rare earth hybrid bonded magnet composition and rare earth hybrid bonded magnet
JP2000195714A (en) Polar anisotropic rare-earth bonded magnet, manufacturing method, and permanent magnet type motor
JP3139826B2 (en) Magnetic material resin composite material
JP2008010460A (en) Composition for bond magnet, bond magnet employing it, and its production process
JP3145473B2 (en) Fluorine resin magnetic material composite material
JP3217057B2 (en) Magnetic material-resin composite material, method for producing the same, and bonded magnet
JP3473677B2 (en) Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet
JP2002110411A (en) Rare earth hybrid magnet composition and magnet using the same
JPH05308007A (en) Thermosetting magnetic material resin composite material
JP2008305878A (en) Magnetic material, its manufacturing method and resin bond type magnet for sensor employing it
JPH05234727A (en) Rare earth magnetic substance resin composite material
JP2002343623A (en) Plastic sheet magnet molded body and manufacturing method therefor
JPH05304009A (en) Magnetic resin composite material
JP2003261826A (en) Coating material composition fluid and method for rust prevention of magnet
JP3835133B2 (en) Rare earth hybrid magnet composition and magnet

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20001128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081215

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 12