JP4135447B2 - High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same - Google Patents

High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same Download PDF

Info

Publication number
JP4135447B2
JP4135447B2 JP2002269801A JP2002269801A JP4135447B2 JP 4135447 B2 JP4135447 B2 JP 4135447B2 JP 2002269801 A JP2002269801 A JP 2002269801A JP 2002269801 A JP2002269801 A JP 2002269801A JP 4135447 B2 JP4135447 B2 JP 4135447B2
Authority
JP
Japan
Prior art keywords
magnet powder
magnet
powder
phosphate
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002269801A
Other languages
Japanese (ja)
Other versions
JP2004111515A (en
Inventor
尚 石川
佳代 橋口
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002269801A priority Critical patent/JP4135447B2/en
Publication of JP2004111515A publication Critical patent/JP2004111515A/en
Application granted granted Critical
Publication of JP4135447B2 publication Critical patent/JP4135447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高耐候性磁石粉、ボンド磁石用樹脂組成物及びそれを用いて得られるボンド磁石に関し、さらに詳しくは、安定して高い保磁力を有し耐候性に優れ、保磁力や耐候性のばらつきが低減された高耐候性磁石粉、ボンド磁石用樹脂組成物及びそれを用いて得られるボンド磁石に関する。
【0002】
【従来の技術】
従来から、フェライト磁石、アルニコ磁石、希土類磁石等が、モーターをはじめとする種々の用途に用いられている。しかし、これらの磁石は、主に焼結法により製造されるために、一般に脆く、薄肉のものや複雑な形状のものを得るのが難しいという欠点を有している。それに加え、焼結時の収縮が15〜20%と大きいために、寸法精度の高いものが得られず、精度を上げるには研磨等の後加工が必要であるという欠点をも有している。
【0003】
ボンド磁石は、これら焼結法の欠点を解決すると共に新しい用途をも開拓するために、近年になって開発されたものであるが、通常は、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性樹脂をバインダーとし、これに磁石粉末を充填することにより製造されている。
【0004】
しかし、こうしたボンド磁石の中でも、特に、希土類元素−鉄−窒素系磁石粉を用いたボンド磁石は、高温多湿雰囲気下で錆の発生や磁気特性の低下を起こし易いため、例えば、成形体表面に熱硬化性樹脂等のコーティング膜を形成することで発錆を抑制したり、また、成形体表面に燐酸塩含有塗料による被覆処理を施すことで発錆を抑制しているが(特許文献1参照)、成形体を構成する磁石粉を被覆するわけではないので、難発錆特性や保磁力等の磁気特性の点で十分に満足できるものではない。
【0005】
ところで、希土類元素−鉄−窒素系磁石粉を樹脂と混練してボンド磁石として使用する場合、高い磁気特性を得るためには磁石合金粉を数μmに粉砕する必要がある。磁石合金粉の粉砕は、通常、不活性ガス中または溶剤中で行なわれるが、粉砕後の磁石粉は極めて活性が高いため、成形体に被覆処理を施す前に大気に触れると酸化発錆が急激に進んで磁気特性が低下するという問題がある。
【0006】
これらの問題を解決するために、例えば、磁性粉を湿式ないし乾式処理で徐酸化して薄い酸化膜を磁石粉表面に形成したり(特許文献2参照)、分子内にP−O結合を有する燐酸化合物又はこれとオルガノポリシロキサン化合物との混合物(特許文献3参照)、燐酸エステル(特許文献4、5参照)、あるいは燐酸塩(特許文献6参照)によって粉砕後の磁石粉に被覆処理を施したり、オルト燐酸などによって粉砕後の磁石粉表面に燐酸皮膜を形成する(特許文献7〜9参照)ことが行なわれている。
【0007】
希土類−鉄−窒素系磁石粉の表面を燐酸塩皮膜で被覆する場合、粉砕終了後に燐酸塩を添加すると、粉砕後の磁石粉は、その磁力によって互いに凝集しているため、磁石粉の接触面に燐酸塩皮膜で被覆されていない部分が発生する。
このような磁石粉を、ボンド磁石用樹脂と一旦混練すると、凝集していた磁石粉が混練による剪断力により一部解砕され、皮膜のない活性な粉末表面が露出することとなる。このため、かかる磁石粉を成形して得られたボンド磁石は、実用上重要な湿度環境下での使用で、容易に腐食が生じ、磁気特性が低下してしまう。希土類−鉄−窒素系磁石粉は、核発生型の保磁力発現機構を示すため、一部にこのような領域が生じると著しく保磁力が低下してしまう。
【0008】
つまり、磁力により互いに凝集した磁石粉は、凝集粉表面が皮膜で保護されていても、個々の磁石粉に対する保護が十分ではないため、乾燥環境下での耐候性は向上しているものの、実用上重要な湿度環境下での耐候性が満足できるほど改善されていないという問題があった。
【0009】
本発明者らは、このような問題点に対して、磁石粉を粉砕中に燐酸を添加することにより、燐酸塩皮膜の機能、形態が従来よりも改良された希土類元素−鉄−窒素系磁石粉を製造する方法を提案した(特許文献10参照)。しかしながら、この方法では磁石粉の磁気特性、特に保磁力や耐候性が製造ロット間でばらつく場合がある。
【0010】
【特許文献1】
特開2000−208321号公報(特許請求の範囲)
【特許文献2】
特開昭52−54998号公報(特許請求の範囲)
【特許文献3】
特開昭60−13826号公報(特許請求の範囲)
【特許文献4】
特許第2602883号公報(特許請求の範囲)
【特許文献5】
特開平2−46703号公報(特許請求の範囲)
【特許文献6】
特開平11−251124号公報(特許請求の範囲)
【特許文献7】
特許第2602979号公報(特許請求の範囲)
【特許文献8】
特開平7−278602号公報(特許請求の範囲)
【特許文献9】
特開2000−260616号公報(特許請求の範囲)
【特許文献10】
特開2002−124406号公報(請求項1)
【0011】
こうした状況下、近年、小型モーター、音響機器、OA機器等に用いられるボンド磁石には、機器の小型化の要請から磁気特性に優れたものが要求されているが、従来の希土類元素−鉄−窒素系磁石粉から得られるボンド磁石の磁気特性は、これらの用途に使用するには不十分であり、希土類元素−鉄−窒素系磁石粉の耐候性を早期に改善し、ボンド磁石の磁気特性を向上させることが強く望まれていた。
【0012】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、安定して高い保磁力を有し耐候性に優れ、保磁力や耐候性のばらつきが低減された高耐候性磁石粉、ボンド磁石用樹脂組成物及びそれを用いて得られるボンド磁石を提供することにある。
【0013】
【課題を解決するための手段】
本発明者らは、上記目的を達成するために鋭意研究を重ね、希土類−鉄−窒素系磁石粉の表面に様々な条件で燐酸塩の皮膜を形成して、その磁石粉の組成を分析し、組成と磁気特性や耐候性との関係を詳細に検討した結果、磁石粉の粉砕中に燐酸化合物を添加し、皮膜形成と乾燥処理を最適化することにより特定の元素組成を有する磁石粉が得られ、この磁石粉が安定した保磁力を有し耐候性に優れ、ばらつきも低減されていることを見出し、本発明を完成するに至った。
【0014】
即ち、本発明の第1の発明によれば、 ThZn17型またはThNi17型結晶構造をもつ希土類−鉄−窒素(R−T−N)系磁石粉を、燐酸化合物の存在下に有機溶剤中で粉砕した後、不活性ガスまたは真空中、120〜370℃で100〜400分間加熱乾燥することにより得られた、表面が燐酸塩(R−T−P−O)皮膜で被覆された平均粒径が1〜10μmの高耐候性磁石粉において、燐酸塩(R−T−P−O)皮膜は、膜厚が平均4〜50nmで均一に被覆されており、かつ該皮膜で被覆された高耐候性磁石粉の組成は、20〜25wt%のR(希土類元素)、2.1〜3.9wt%のN(窒素)、0.2〜2.0wt%のP(リン)、0.5〜5.0wt%のO(酸素)及び残部がT(遷移金属元素および不可避的不純物)であり、不可避的不純物であるH(水素)の含有量が0.3wt%以下とすることで、室温での保磁力Hc(0)が400kA/m以上、かつ大気中80℃−90%RHで300時間放置後の保磁力Hc(300)が392kA/m以上であり、さらに、前記保磁力Hc(300)と前記H(0)の比Hc(300)/Hc(0)が0.74以上であることを特徴とする高耐候性磁石粉が提供される。
【0015】
また、本発明の第2の発明によれば、第1の発明において、希土類−鉄−窒素(R−T−N)系磁石粉がSm−Fe−N系磁石粉であることを特徴とする高耐候性磁石粉が提供される。
【0016】
また、本発明の第3の発明によれば、第1の発明において、T(遷移金属元素)として、さらにCo、Zn、Cu、又はMnから選択される1種以上が含まれることを特徴とする高耐候性磁石粉が提供される。
【0018】
また、本発明の第の発明によれば、本発明の第1の発明において、燐酸塩皮膜が、燐酸鉄と希土類その他の燐酸塩からなる複合塩であり、かつ燐酸鉄含有率がFe/希土類元素比で8以上であることを特徴とする高耐候性磁石粉が提供される。
【0019】
また、本発明の第の発明によれば、本発明の第1の発明において、体積基準比表面積が7m/cm以下であることを特徴とする高耐候性磁石粉が提供される。
【0021】
一方、本発明の第の発明によれば、本発明の第1〜の発明に係り、高耐候性磁石粉に対して、樹脂バインダーが主成分として配合されていることを特徴とするボンド磁石用樹脂組成物が提供される。
【0022】
さらに、本発明の第の発明によれば、本発明の第1〜の発明に係るボンド磁石用樹脂組成物を射出成形法、押出成形法、射出圧縮成形法、射出プレス成形法、圧縮成形法又はトランスファー成形法のいずれかの成形法により成形してなるボンド磁石が提供される。
【0023】
【発明の実施の形態】
以下、本発明の高耐候性磁石粉、ボンド磁石用樹脂組成物及びそれを用いて得られるボンド磁石を詳細に説明する。
【0024】
1.高耐候性磁石粉
本発明の高耐候性磁石粉は、磁石合金粉である希土類−鉄−窒素(R−T−N)系磁石粉の表面が燐酸塩(R−T−P−O)皮膜で被覆され、特定の平均粒径で、構成成分が特定の元素組成をもつものである。
【0025】
(1)磁石合金粉
本発明の高耐候性磁石粉の材料となる磁石合金粉は、ThZn17型またはThNi17型結晶構造を持つ希土類元素−鉄−窒素(R−T−N)系磁石粉である。これらは菱面体晶系、六方晶系、正方晶系または単斜晶系の結晶構造をもつ金属間化合物であり、ThZn17型の磁石合金粉としては、例えばSmFe17合金、NdFe17などが挙げられ、また、ThNi17型の磁石合金粉としては、例えば、GdFe17などが挙げられる。
【0026】
希土類元素(R)としては、Sm、Nd、Pr、Y、La、Ce、またはGd等が挙げられ、これらは単独でも混合物でもよいが、これらの中では、Sm及びNdが有効であり、特にSmを80wt%以上含有するものが好ましい。遷移金属元素(T)は、Feが必須成分であり、この一部がCoで置換されたものでもよい。
【0027】
磁石合金粉は、C、Al、Si、Ca、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Re、Os、Ir、Pt、又はAuを含有することができる。これらの中には、遷移金属以外の元素も含まれているが、本発明では全て遷移金属元素(T)に準じて扱うものとする。これら成分を3wt%以下、好ましくは0.05〜0.5wt%添加すれば、磁石の耐候性や耐熱性をさらに高めることができる。
【0028】
このうち、Al、Si、Ca、V、Cr、Mn、Cu、Mo、Zr、Nb、又はTa等から選ばれた一種以上を添加すれば保磁力の向上、生産性の向上並びに低コスト化を図ることができる。この場合、添加量は、遷移金属(T)全重量に対して3重量%以下とすることが望ましい。
【0029】
本発明の磁石合金粉として、特に好ましい希土類−鉄−窒素(R−Fe−N)系磁石粉は、還元拡散法によって得られた希土類−鉄−窒素系磁石粉の粗粉末を微粉砕し、特定の平均粒径、粒度分布をもつ微粉末となるように粒度を揃えることによって製造される。
【0030】
原料として用いる鉄などの遷移金属粉末は、一般的にアトマイズ法、電解法等により製造されるが、粉末状の遷移金属であれば、その製法は限定されない。また、遷移金属の20wt%以下を遷移金属酸化物とすることもできる。遷移金属(T)、希土類元素(R)、また、保磁力の向上、生産性の向上並びに低コスト化のために添加しうる元素は、前記のとおりである。
【0031】
上記希土類元素を含む希土類酸化物粉末原料と、その粒径が10μm〜100μmの範囲に粒度調整された遷移金属粉末原料および、その他原料粉末を秤量して混合し、さらに希土類元素を還元するのに十分な量の還元剤を添加し混合する。還元剤としては、Caなどのアルカリ土類金属が用いられる。上記還元剤の粒度は、5mm以下の塊状になっていることが好ましい。
【0032】
その後、この混合物を非酸化性雰囲気(すなわち、酸素が実質的に存在しない雰囲気)中において、還元剤が溶融する温度以上で、かつ、目的とする希土類−鉄系合金が溶融しない温度まで昇温保持して加熱焼成する。
これにより、上記希土類酸化物が希土類元素に還元されると共に、還元時の発熱温度を用いて、この希土類元素が遷移金属に拡散され、希土類−鉄系合金が合成される。
【0033】
次に、この希土類−鉄系合金を室温まで冷却する。冷却した焙焼物を純水中に投じ、水素イオン濃度pHが10以下となるまで、攪拌とデカンテーションとを繰り返す。そして、pHがおよそ5となるまで水中に酢酸または塩酸を添加し、この状態で攪拌を行う。その後、得られた希土類−鉄系合金を乾燥して粉末状にした後、この粉末状の希土類−鉄系合金を窒化処理することで、所望の希土類−鉄−窒素系磁石粉が製造される。
【0034】
(2)高耐候性磁石粉
高耐候性磁石粉は、こうして得られた希土類元素−鉄−窒素(R−T−N)系磁石粉の表面に燐酸塩皮膜を形成したもので、磁石粉が特定の平均粒径にあり、この燐酸塩皮膜を含んだ磁石粉全体を構成する各成分が特定の元素組成を有することを特徴としている。
【0035】
本発明において、磁石粉の平均粒径は、1〜10μmである。磁石粉の平均粒径を1〜10μmの範囲とすることで、室温での保磁力が400kA/m以上もの高耐候性磁石粉を得ることができる。平均粒径が1μm未満では磁石粉の残留磁化が低下し、10μmを超えると室温での保磁力が小さくなるので好ましくない。
【0036】
燐酸塩被膜の成分は、例えば、燐酸鉄、燐酸サマリウム又はこれらの複合金属塩などである。主要な成分は、燐酸鉄であって、鉄/希土類元素比は8以上、好ましくは9以上、さらには10以上がより好ましい。鉄/希土類元素比が8以上であれば、水をある程度遮断するとともに、樹脂バインダーとの結合力を高め、ボンド磁石の成形性を高めることができる。鉄/希土類元素比が8未満では、これらの効果を期待することができない。
【0037】
高耐候性磁石粉の構成成分は、磁石粉の成分である希土類元素(R)、鉄などの遷移金属元素(T)及び窒素(N)と、燐酸塩皮膜の成分であるリン(P)、酸素(O)を必須成分とし、これらに製造途上で不可避的に混入する不純物(T)である水素(H)を含有したものということができる。前記のとおり、磁石粉の成分としてコバルト、燐酸塩皮膜の成分として、亜鉛、銅、マンガンなどの遷移金属元素(T)がさらに含まれていてもよい。
【0038】
本発明の高耐候性磁石粉を構成する各成分は、R(希土類元素)が20〜25wt%、N(窒素)が2.1〜3.9wt%、P(リン)が0.2〜2.0wt%、O(酸素)が0.5〜5.0wt%、残部がT(遷移金属元素及び不可避的不純物)という元素組成を有し、不可避的不純物としてH(水素)を含有しているが、その量は0.3wt%未満に低減されている。
【0039】
磁石粉の主要な成分である希土類元素(R)は、20〜25wt%、好ましくは23〜25wt%含有されている。Rが20wt%未満では磁石粉の残留磁化と保磁力が低下し、25wt%を超えると磁石粉の残留磁化と耐候性が低下する。
【0040】
N(窒素)は2.1〜3.9wt%、好ましくは2.8〜3.5wt%含有されている。Nが2.1wt%未満であるか、あるいは3.9wt%を超えると磁石粉の残留磁化と保磁力が低下するので好ましくない。
【0041】
一方、燐酸塩皮膜の成分であるP(リン)の含有量は0.2〜2.0wt%、好ましくは0.3〜1.0wt%である。Pが0.2wt%未満では磁石粉の耐候性や耐熱性に劣り、2.0wt%を超えるとその残留磁化が低下するので好ましくない。
【0042】
また、O(酸素)は0.5〜5.0wt%、好ましくは1.0〜3.0wt%である。Oが0.5wt%未満では磁石粉表面の燐酸塩皮膜が十分に形成されていないので、耐候性や耐熱性が劣るのに加えて、表面活性が高いため大気中で取り扱ったとき発火のおそれがある。一方、5.0wt%を超えると残留磁化が低下するので好ましくない。
【0043】
そして、残部が磁石粉の主成分の遷移金属元素(T)、すなわち、FeまたはCoなどである。燐酸塩皮膜の成分として、Zn、Cu、Mnなどがさらに含まれてもよい。このようなことから、遷移金属元素(T)としては、Feの他に、Co、Zn、Cu、又はMnから選択される1種以上が含まれるものが好適といえる。
【0044】
さらに、不可避的に混入する任意成分のH(水素)は0〜0.3wt%、好ましくは0.1wt%以下である。Hは耐候性に悪影響を及ぼし、0.3wt%を超えると耐候性が低下すると共に、保磁力も低下するので極力排除するのが望ましい。
【0045】
本発明の磁石粉は、その表面が平均3〜50nmの厚さの燐酸塩皮膜で均一に被覆されている。平均4〜45nm、特に5〜40nmの厚さであることが好ましい。3nm未満では磁石粉を被覆不良箇所が発生しやすく、耐候性が不十分となり、一方、50nmを超えると磁気特性が悪化する恐れがあり好ましくない。
【0046】
ここで、磁石粉表面が均一に被覆されているとは、磁石粉表面の80%以上、好ましくは85%以上、さらに好ましくは90%以上が燐酸塩皮膜で覆われていることをいう。
【0047】
本発明の高耐候性磁石粉は、体積基準比表面積が7m/cm以下であることを特徴とするものである。7m/cmを超えると耐候性が低下するので好ましくない。
【0048】
(3)高耐候性磁石粉の製造
本発明の高耐候性磁石粉を製造するには、例えば、希土類元素を含む鉄系磁石合金粉を燐酸化合物の存在下に有機溶剤中で粉砕した後、乾燥する方法が使用できる。
【0049】
すなわち、平均粒径10μmを超える希土類−鉄−窒素系磁石粉を粉砕機に入れ、燐酸化合物を添加し、有機溶媒中で、該磁石粉が平均粒径10μm以下になるまで攪拌、粉砕し、磁石粉の表面に鉄/希土類元素比が8以上である燐酸塩皮膜を形成させた後、有機溶媒を分離し、さらに特定条件で加熱、乾燥させる方法によって製造される。
【0050】
従って、本発明の高耐候性磁石粉は、先ず、合金粉を燐酸化合物の存在下に粉砕し、表面に燐酸塩による皮膜を形成する第1の工程、得られた合金粉を乾燥、加熱して表面の燐酸塩による皮膜を定着させる第2の工程によって製造される。
【0051】
従来、希土類−鉄−窒素系磁石粉の表面を燐酸塩皮膜で被覆する処理が行われているが、磁石粉の粉砕終了後に燐酸塩等の処理剤を添加しているために、粉砕後の磁石粉がその磁力によって互いに凝集してしまい、磁石粉の接触面に燐酸塩皮膜で被覆されていない部分が少なくとも一部に発生する。
【0052】
そこで、本発明では、燐酸化合物を、磁石粉末の粉砕前若しくは粉砕中に添加する。燐酸化合物の添加方法は、特に限定されないが、例えば、媒体攪拌ミル等の粉砕機で磁石合金粉を粉砕するに際し、溶媒として用いる有機溶剤に燐酸化合物を添加する。燐酸化合物は、最終的に所望の燐酸濃度になれば良く、粉砕開始前に一度に添加してもよいが、溶媒中の燐酸濃度が一定となるように徐々に添加するとなお好ましい。
【0053】
本発明の高耐候性磁石粉を製造する第1の工程では、燐酸化合物として、燐酸塩皮膜を形成できるものであれば特に制限はなく、市販されている通常の燐酸(例えば、85%濃度の燐酸水溶液)が使用できる。このほかに燐酸亜鉛などの金属燐酸化合物などを単独で或いは組み合わせて使用できるが、燐酸を単独で使用することが好ましい。組み合わせて使用する場合は、燐酸を金属燐酸化合物の1〜3倍の濃度として使用することが望ましい。公知の燐酸エステル類のみを用いても本発明の効果は得られない。
【0054】
燐酸としては、オルト燐酸をはじめ、亜燐酸、次亜燐酸、ピロ燐酸、直鎖状のポリ燐酸、環状のメタ燐酸などの燐酸系化合物が挙げられ、水、有機溶媒とともに好ましく使用される。
【0055】
また、燐酸アンモニウム、燐酸アンモニウムマグネシウムなど、更には磁石粉末表面でホパイト、フォスフォフェライト等を形成する燐酸亜鉛系;ショルツァイト、フォスフォフィライト、ホパイト等を形成する燐酸亜鉛カルシウム系;マンガンヒューリオライト、鉄ヒューリオライト等を形成する燐酸マンガン系;ストレンナイト、ヘマタイト等からなる燐酸鉄系などの被膜を形成する化合物も使用できる。これら金属燐酸化合物は、単独でも複数種を組合せてもよく、通常、キレート剤、中和剤などと混合して処理剤とされる。
【0056】
これらのうち、オルト燐酸が好ましい性能を発揮するが、その理由は、希土類系金属、鉄との反応性が大きく、磁石粉末の表面に燐酸塩被膜を形成しやすいためである。
【0057】
また、燐酸化合物の添加量は、粉砕後の磁石粉の粒径、表面積等に関係するので一概には言えないが、通常は、粉砕する磁石合金粉に対して、0.1mol/kg以上2mol/kg未満が良く、より好ましくは0.15〜1.5mol/kgであり、さらに好ましくは0.2〜0.4mol/kgである。
0.1mol/kg未満であると磁石粉の表面処理が十分に行なわれないために耐候性が改善されず、また、大気中で取り扱うと酸化・発熱して磁気特性が極端に低下する。2mol/kg以上であると磁石粉との反応が激しく起こって磁石粉が溶解してしまう。
【0058】
有機溶媒としては、特に制限はなく、通常はエタノールまたはイソプロピルアルコール等のアルコール類、ケトン類、低級炭化水素類、芳香族類、またはこれらの混合物が用いられるが、特にアルコール類の使用が好ましい。
【0059】
粉砕には、媒体攪拌ミル、或いはビーズミル等の装置が使用され、これによって磁石合金粉を粉砕する際に燐酸化合物を添加することにより、粉砕によって凝集粒子に新生面が生じても瞬時に溶媒中の燐酸化合物と反応し、粒子表面に安定な燐酸塩皮膜が形成される。また、その後、粉砕された磁石粉がその磁力によって凝集しても、接触面はすでに安定化されており、解砕により腐食が生じることはない。
【0060】
当初は平均粒径が10μm以上であった磁石粉も粉砕が進むにつれ、その表面に薄い燐酸塩被膜が短時間で形成されるが、この反応が完結し、充分な膜厚の燐酸塩被膜を形成するには、燐酸化合物の種類などにもよるが、30〜180分間、好ましくは60〜150分間の粉砕(攪拌)時間が必要である。
【0061】
ThZn17型結晶構造を持つ希土類元素−鉄−窒素系磁石粉では、燐酸処理に用いた燐酸化合物の種類によって構成元素それぞれの燐酸塩を生じ得るが、希土類元素は鉄に比べて著しく卑であり、燐酸化合物の添加量や粉砕条件によっては希土類元素が優先的に溶出して燐酸塩を形成する場合がある。
【0062】
この場合も、磁石粉の耐熱性には問題は生じないが、耐候性の観点からは皮膜中の燐酸鉄の含有量が多い方が望ましい。燐酸鉄は希土類元素の燐酸塩に比べて耐候性に優れており、また、希土類元素が優先的に溶出するような条件では、磁石粉表面のFe濃度が高くなり、磁石粉の磁気的性質が変化する可能性があるからである。
このため、燐酸塩中のFe/希土類元素(元素比)は、燐酸化合物の添加量、混合時間等により、8以上に調整することが望ましい。磁石粉表面を保護する燐酸塩皮膜の厚さは、平均で3〜50nmとするのが望ましい。
【0063】
なお、あらかじめ希土類元素−鉄−窒素系磁石粉の表面に、亜鉛を化学的に被覆反応させる亜鉛処理を施せば、粉末表面の軟磁性相や欠陥などが低減するので、燐酸塩皮膜を容易に形成でき、耐候性のみならず耐熱性にも優れるので特に好適である。
【0064】
第2の工程は、さらに、上記のようにして得た磁石粉を、不活性ガス中または真空中、100℃以上400℃未満の温度範囲で加熱処理する工程である。不活性ガスとしては、アルゴン、ヘリウムなども使用できるが、通常、窒素を使用する。0.1atm以下の真空度に減圧すれば、より効率的に乾燥させることができる。
【0065】
加熱温度は100℃〜400℃、特に120℃〜370℃の温度範囲が好ましい。100℃未満で加熱処理すると、磁石粉の乾燥が十分進まずに安定な表面皮膜の形成が阻害される。また、400℃を超える温度で加熱処理すると、磁石粉が熱的なダメージを受けるためか、保磁力がかなり低くなるという問題がある。
【0066】
なお、加熱処理に要する時間は、処理装置や処理量、加熱雰囲気や加熱温度によって変わるが、30分以上であればよく、60〜400分、特に100〜360分が好ましい。30分未満では、H(水素)を十分に低減できず、一方、400分を超える時間は経済性の面で好ましくない。
【0067】
これら燐酸化合物の添加量、粉砕時間、乾燥温度、又は乾燥時間などの条件を制御することにより、磁石粉の平均粒径と燐酸塩皮膜の厚さなどを特定の範囲に調整でき、これによって成分組成、特にP、O、Hの含有量を本発明の所定範囲に入るようにするのが重要である。
【0068】
本発明の高耐候性磁石粉は、表面に燐酸塩被膜が形成されていることで十分な性能を有するが、必要に応じて、さらにシラン系、アルミネート系、チタネート系など各種のカップリング剤やアビエチン酸系化合物などから選択された1種以上を被覆してもよい。
【0069】
2.ボンド磁石用樹脂組成物
本発明のボンド磁石用樹脂組成物は、高耐候性磁石粉に樹脂バインダーが主成分として配合されたものである。ボンド磁石用樹脂組成物を製造する方法は、特に限定されず、例えば、以下に示すような公知の熱可塑性樹脂、熱硬化性樹脂や添加剤を用いて製造することができる。
【0070】
(1)樹脂バインダー
本発明において樹脂バインダーは、磁石粉の結合剤として働くものであり、熱可塑性樹脂あるいは熱硬化性樹脂であれば特に制限なく、従来公知のものを使用できる。
【0071】
熱可塑性樹脂の具体例としては、6ナイロン、6,6ナイロン、11ナイロン、12ナイロン、6,12ナイロン、芳香族系ナイロン、これらの分子を一部変性した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン−酢酸ビニル共重合樹脂、エチレン−エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン共重合樹脂、アクリロニトリル−スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン−六フッ化プロピレン共重合樹脂、エチレン−四フッ化エチレン共重合樹脂、四フッ化エチレン−パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、前出各樹脂系エラストマー等が挙げられ、これらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質での末端基変性品等が挙げられる。
【0072】
このうち耐熱性、機械的強度、取り扱い性などの面から、ポリアミド樹脂、ポリフェニレンサルファイド樹脂或いはそれらの変性樹脂が好ましい。
これら熱可塑性樹脂の溶融粘度や分子量は、得られるボンド磁石に所望の機械的強度が得られる範囲で低い方が望ましい。また、熱可塑性樹脂の形状は、パウダー状、ビーズ状、ペレット状等、特に限定されないが、磁石粉と均一に混合される点で、パウダー状が望ましい。
【0073】
また、例えば熱硬化性樹脂の場合は、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ベンゾグアナミン樹脂、ビスマレイミド・トリアジン樹脂、ジアリルフタレート樹脂、フラン樹脂、熱硬化性ポリブタジエン樹脂、ポリイミド樹脂、ポリウレタン系樹脂、シリコーン樹脂、キシレン樹脂等が挙げられ、これらの基本組成物や他種モノマーやこれら樹脂の2種類以上のブレンド等における系も当然含まれる。特に好ましいのは、エポキシ樹脂、ビニルエステル樹脂、又は不飽和ポリエステル樹脂である。
【0074】
これら熱硬化性樹脂の粘度、分子量、性状等は、所望の機械的強度や成形性が得られる範囲であれば特に限定されないが、磁石粉との均一混合性や成形性から考えるとパウダー又は液状が望ましい。
射出成形ボンド磁石の製造では、熱硬化性樹脂を用いれば金型内で磁石成形品が硬化する直前で、いったん樹脂バインダーの粘度が低下するため良好な配向特性が得られる。
【0075】
これら樹脂バインダーの配合量は、磁石粉100重量部に対して、通常2〜100重量部、好ましくは3〜50重量部である。樹脂バインダーの配合量が2重量部未満であると、組成物の混練抵抗(トルク)が大きくなったり、流動性が低下して磁石の成形が困難となる他、成形体の機械強度が低下する。一方、100重量部を超えると、所望の磁気特性が得られない。
【0076】
(2)添加剤
本発明の高耐候性磁石粉を用いたボンド磁石用組成物には、本発明の目的を損なわない範囲で、プラスチック成形用滑剤や種々の安定剤等の添加剤を配合することができる。
【0077】
滑剤としては、例えば、パラフィンワックス、流動パラフィン、ポリエチレンワックス、ポリプロピレンワックス、エステルワックス、カルナウバ、マイクロワックス等のワックス類、ステアリン酸、1,2−オキシステアリン酸、ラウリン酸、パルミチン酸、オレイン酸等の脂肪酸類、ステアリン酸カルシウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸リチウム、ステアリン酸亜鉛、ステアリン酸アルミニウム、ラウリン酸カルシウム、リノール酸亜鉛、リシノール酸カルシウム、2−エチルヘキソイン酸亜鉛等の脂肪酸塩(金属石鹸類)ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、ベヘン酸アミド、パルミチン酸アミド、ラウリン酸アミド、ヒドロキシステアリン酸アミド、メチレンビスステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンビスラウリン酸アミド、ジステアリルアジピン酸アミド、エチレンビスオレイン酸アミド、ジオレイルアジピン酸アミド、N−ステアリルステアリン酸アミド等脂肪酸アミド類、ステアリン酸ブチル等の脂肪酸エステル、エチレングリコール、ステアリルアルコール等のアルコール類、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、及びこれら変性物からなるポリエーテル類、ジメチルポリシロキサン、シリコングリース等のポリシロキサン類、弗素系オイル、弗素系グリース、含弗素樹脂粉末といった弗素化合物、窒化珪素、炭化珪素、酸化マグネシウム、アルミナ、二酸化珪素、二硫化モリブデン等の無機化合物粉体が挙げられる。
これらの滑剤は、一種単独でも二種以上組み合わせても良い。該滑剤の配合量は、磁石粉100重量部に対して、通常0.01〜20重量部、好ましくは0.1〜10重量部である。
【0078】
また、安定剤としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、1−[2−{3−(3,5−ジ−第三ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}エチル]−4−{3−(3,5−ジ−第三ブチル−4−ヒドロキシフェニル)プロピオニルオキシ}−2,2,6,6−テトラメチルピペリジン、8−ベンジル−7,7,9,9−テトラメチル−3−オクチル−1,2,3−トリアザスピロ[4,5]ウンデカン−2,4−ジオン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、こはく酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物、ポリ[[6−(1,1,3,3−テトラメチルブチル)イミノ−1,3,5−トリアジン−2,4−ジイル][(2,2,6,6−テトラメチル−4−ピペリジル)イミノ]ヘキサメチレン[[2,2,6,6−テトラメチル−4−ピペリジル)イミノ]]、2−(3,5−ジ−第三ブチル−4−ヒドロキシベンジル)−2−n−ブチルマロン酸ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)等のヒンダード−アミン系安定剤のほか、フェノール系、ホスファイト系、チオエーテル系等の抗酸化剤等が挙げられる。
これらの安定剤も、一種単独でも二種以上組み合わせても良い。該安定剤の配合量は、磁石粉100重量部に対して、通常0.01〜5重量部、好ましくは0.05〜3重量部である。
【0079】
本発明の高耐候性の希土類−鉄−窒素系磁石には、フェライト、アルニコなど通常、ボンド磁石の原料となる各種の磁石粉末を混合してもよく、異方性磁石粉末だけでなく、等方性磁石粉末も対象となるが、異方性磁場(HA)が、4000kA/m(50kOe)以上の磁石粉末が好ましい。
【0080】
尚、上記の各成分の混合方法は、特に限定されず、例えばリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー等の混合機、あるいは、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を用いて実施される。
【0081】
得られるボンド磁石用組成物の形状は、パウダー状、ビーズ状、ペレット状、あるいはこれらの混合物の形であるが、取扱易さの点で、ペレット状が望ましい。熱硬化性樹脂は、混合時の剪断発熱などによって硬化が進まないよう、剪断力が弱く、かつ冷却機能を有する混合機を使用することが好ましい。
【0082】
本発明では平均3〜50nmの燐酸塩皮膜により磁石粉が安定化されているため、これを樹脂と混合してボンド磁石を作製する場合、混合に伴なう剪断力により粒子の凝集の一部が解砕されても皮膜のない新生面は生じず、得られたボンド磁石は極めて高い耐候性を示す。
【0083】
3.ボンド磁石
次いで、上記のボンド磁石用組成物は,所望の形状を有するボンド磁石に成形される。
【0084】
その際、成形法としては、従来からプラスチック成形加工等に利用されている射出成形法、押出成形法、射出圧縮成形法、射出プレス成形法、圧縮成形法、トランスファー成形法等の各種成形法が挙げられるが、これらの中では、特に射出成形法、押出成形法、射出圧縮成形法、及び射出プレス成形法が好ましい。
【0085】
こうして磁石粉を圧密化して成形した磁石は、磁石成形体の表面のみならず、それを構成する個々の磁石粉が上記燐酸塩皮膜で均一に被覆されているので、劣化が磁石体表面で発生しても磁石体内部に進行しにくく、高い耐候性を示す。換言すれば、本発明においては、優れた磁気特性を引き出すために、燐酸塩皮膜で均一に被覆され、安定化された高耐候性磁石粉を用いることが肝要である。
【0086】
【実施例】
以下に、本発明の実施例及び比較例を示すが、本発明は、これらの実施例によって何ら限定されるものではない。尚、実施例や比較例に用いた各成分の詳細や評価方法は、以下の通りである。
【0087】
(1)成分
磁石合金粉
・Sm−Fe−N系磁石合金粉(住友金属鉱山(株)製)
平均粒径:30μm、Sm:23.5〜24.5wt%、N:3.1〜3.5wt%、残部はFe(Ca:0.006〜0.015wt%、H:0.002〜0.008wt%)
燐酸化合物
・85%オルト燐酸水溶液(商品名:「りん酸」、関東化学(株)製)
【0088】
(2)試験・評価方法
・組成分析
得られた磁石粉試料中のSmとPをICP発光分析法で、Nは抵抗加熱・赤外吸収法で、O、Hは抵抗加熱・伝導率法で組成を分析した。
【0089】
・平均粒径、体積基準比表面積
(株)日本レーザー製HELOS&RODOSで測定した50%粒子径を磁石粉試料の平均粒径とした。体積基準比表面積も(株)日本レーザー製HELOS&RODOSで測定し、算出した。
【0090】
・皮膜厚さ、均一性
得られた磁石粉試料を熱硬化性樹脂と混合して硬化させた後、FIB(イオンビーム)加工して薄片試料を作製した。透過型電子顕微鏡で磁石粉の断面観察を行い、磁石粉の表面に形成されている燐酸塩皮膜の均一性を確認すると共に、厚みを求めた。
【0091】
・Fe/希土類元素比
得られた磁石粉試料をArスパッタしながら、XPS(X線光電子分光法)にて得たFe、Smスペクトルの面積強度に、測定装置(VG Scientific社製ESCALAB220i−XL)の感度係数を乗じて、Fe/Sm元素比を求めた。
【0092】
・磁石粉の保磁力と残留磁化
磁石粉試料の保磁力Hcと残留磁化σrを、日本ボンド磁石工業協会ボンド磁石試験方法ガイドブックBMG−2002に従い、振動試料型磁力計にて常温で測定した。
【0093】
・ボンド磁石の保磁力
磁石粉試料を用いて得たボンド磁石の保磁力は、磁石を4000kA/mで着磁した後に、チオフィー(Cioffi)型自記磁束計で測定した。
【0094】
[実施例1〜14]
容器内部を窒素で置換したアトライタを用い、回転数200rpmで、磁石合金粉1kgを1.5kgのイソプロパノール中で表1に示す時間粉砕し、磁石粉を作製した。
ここで、粉砕前または粉砕途中に、燐酸化合物を85%オルト燐酸水溶液として、磁石合金粉1kgあたり表1に記載した量だけ粉砕溶媒に添加している。その後、磁石粉を表1に示す条件で乾燥させた。
【0095】
【表1】

Figure 0004135447
【0096】
得られた磁石粉の分析組成、平均粒径、皮膜厚さ、Fe/希土類元素比、初期及び大気中80℃−90%RHで300時間放置後の保磁力Hc(0)とHc(300)、初期の残留磁化σrを上記方法で測定し、表2に示す通りの結果を得た。これにより、実施例1〜14では、それぞれの試料から任意に選んだ20個の粒子表面すべてに燐酸塩皮膜が均一に形成されていることが確認できた。
【0097】
【表2】
Figure 0004135447
【0098】
次に、得られた磁石粉を用いて、磁粉体積率が56%となるように12ナイロンを添加し、ラボプラストミルで混練後に、配向磁界640kA/mで磁界中射出成形して直径10mm高さ7mmの円柱状ボンド磁石を作製した。混練温度は200℃、射出成形のノズル温度は210℃とした。得られた磁石試料の保磁力HcJを上記方法で測定し、表2に示す通りの結果を得た。
【0099】
[比較例1〜4]
上記の実施例と同様にして、容器内部を窒素で置換したアトライタを用い、回転数200rpmで、磁石合金粉1kgを1.5kgのイソプロパノール中で表1に示す時間粉砕し、磁石粉を作製した。その後、磁石粉を表1に示す条件で乾燥させた。磁石合金粉として、本出願人による特許第3304726号公報の記載に基づいて、Sm組成とN組成を調整したSm−Fe−N磁石合金粉を用いた。
得られた磁石粉の分析組成、平均粒径、皮膜厚さ、Fe/希土類元素比、初期及び大気中80℃−90%RHで300時間放置後の保磁力Hc(0)とHc(300)、初期の残留磁化σrを上記方法で測定し、表3に示す通りの結果を得た。
【0100】
【表3】
Figure 0004135447
【0101】
次に、得られた磁石粉を用いて、実施例と同様にして円柱状ボンド磁石を作製した。得られた磁石試料の保磁力HcJを上記方法で測定し、表3に示す通りの結果を得た。
【0102】
[比較例5〜11]
上記の実施例と同様にして、表1に示した条件で磁石粉を燐酸塩皮膜で被覆し、得られた磁石粉に12ナイロンを配合し、比較用のボンド磁石を製造した。この結果は表3に示すとおりであった。
【0103】
これらの実施例1〜14より、磁石粉のSmが20〜25wt%である平均粒径が1〜10μmの試料に、燐酸化合物を添加し、有機溶媒中で粉砕し、100℃以上の温度で、30分以上乾燥させれば、皮膜厚さが平均3〜50nmでFe/希土類元素比が8以上の皮膜が形成され、これにより、皮膜を含む磁石粉全体の組成(R、N、P、O、H)を所定の範囲とすることができ、保磁力がほぼ400kA/m以上の高耐候性磁石粉が得られることが分かる。
これに対して、比較例1〜11では、これらの条件に合わない磁石粉を用いるか、磁石粉への燐酸塩被覆条件或いは乾燥条件が適切ではないために、いずれも磁気特性の面で満足すべき結果が得られないことが分かる。
【0104】
【発明の効果】
以上説明したように、本発明の磁石粉は、平均粒径が1〜10μmであって、その表面が燐酸塩皮膜で被覆され、所定の成分組成を有する希土類−鉄−窒素系磁石粉であり、さらには、所定の皮膜厚さ、Fe/希土類比となるよう皮膜が形成されているので、安定して400kA/m以上の保磁力を有し、耐候性に優れている。さらに、この磁石粉を使用したボンド磁石用樹脂組成物も耐候性に優れたものとなる。また、これを成形すれば、高い保磁力HcJを有するボンド磁石が得られる。すなわち、本発明の磁石粉を用いることにより高耐候性ボンド磁石を安定して製造することが可能となり、その工業的価値は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly weather-resistant magnet powder, a resin composition for a bonded magnet, and a bonded magnet obtained by using the same, and more specifically, has a stable and high coercive force and is excellent in weather resistance, coercive force and weather resistance. The present invention relates to a highly weather-resistant magnet powder having a reduced variation in the thickness, a resin composition for bonded magnets, and a bonded magnet obtained using the same.
[0002]
[Prior art]
Conventionally, ferrite magnets, alnico magnets, rare earth magnets, and the like have been used in various applications including motors. However, since these magnets are mainly manufactured by a sintering method, they are generally brittle and have a drawback that it is difficult to obtain a thin or complicated shape. In addition, since the shrinkage during sintering is as large as 15 to 20%, a product with high dimensional accuracy cannot be obtained, and there is a disadvantage that post-processing such as polishing is necessary to increase the accuracy. .
[0003]
Bond magnets have been developed in recent years in order to solve the disadvantages of these sintering methods and to develop new applications. Usually, however, bonded magnets such as polyamide resins and polyphenylene sulfide resins are used. It is manufactured by using a binder and filling it with magnet powder.
[0004]
However, among these bonded magnets, in particular, bonded magnets using rare earth element-iron-nitrogen based magnet powders are liable to generate rust and magnetic properties in a high temperature and high humidity atmosphere. Rust generation is suppressed by forming a coating film such as a thermosetting resin, or rust generation is suppressed by applying a coating treatment with a phosphate-containing paint on the surface of the molded body (see Patent Document 1). ), Because it does not cover the magnet powder constituting the molded body, it is not satisfactory in terms of magnetic properties such as hardly rusting properties and coercive force.
[0005]
By the way, when a rare earth element-iron-nitrogen based magnet powder is kneaded with a resin and used as a bonded magnet, it is necessary to pulverize the magnet alloy powder to several μm in order to obtain high magnetic properties. The magnet alloy powder is usually pulverized in an inert gas or a solvent, but the magnet powder after pulverization is extremely active. There is a problem that the magnetic properties deteriorate due to rapid progress.
[0006]
In order to solve these problems, for example, magnetic powder is gradually oxidized by wet or dry processing to form a thin oxide film on the surface of the magnet powder (see Patent Document 2), or has a PO bond in the molecule. The magnet powder after pulverization is coated with a phosphoric acid compound or a mixture of this and an organopolysiloxane compound (see Patent Document 3), phosphoric ester (see Patent Documents 4 and 5), or phosphate (see Patent Document 6). In addition, a phosphoric acid film is formed on the surface of the magnet powder after pulverization with orthophosphoric acid or the like (see Patent Documents 7 to 9).
[0007]
When the surface of the rare earth-iron-nitrogen based magnet powder is coated with a phosphate film, if the phosphate is added after pulverization, the magnet powder after pulverization is agglomerated with each other due to its magnetic force. The part which is not coat | covered with a phosphate film | membrane generate | occur | produces.
Once such magnet powder is kneaded with the bond magnet resin, the agglomerated magnet powder is partially crushed by the shearing force of kneading, and the active powder surface without a film is exposed. For this reason, the bond magnet obtained by molding such magnet powder easily corrodes and deteriorates magnetic properties when used in a practically important humidity environment. Since the rare earth-iron-nitrogen based magnet powder shows a nucleation type coercive force expression mechanism, the coercive force is remarkably lowered when such a region is generated in part.
[0008]
In other words, the magnet powders that are aggregated together by magnetic force, although the surface of the aggregated powder is protected with a film, the protection against individual magnet powders is not sufficient, so the weather resistance in a dry environment is improved, but practical use There has been a problem that the weather resistance under the humidity environment, which is important, has not been improved to a satisfactory extent.
[0009]
In order to solve such problems, the present inventors have added rare-earth element-iron-nitrogen-based magnets in which the function and form of the phosphate coating are improved by adding phosphoric acid during pulverization of the magnet powder. A method for producing powder was proposed (see Patent Document 10). However, with this method, the magnetic properties of the magnet powder, particularly the coercive force and weather resistance, may vary between production lots.
[0010]
[Patent Document 1]
JP 2000-208321 A (Claims)
[Patent Document 2]
JP-A-52-54998 (Claims)
[Patent Document 3]
JP 60-13826 (Claims)
[Patent Document 4]
Japanese Patent No. 2602883 (Claims)
[Patent Document 5]
JP-A-2-46703 (Claims)
[Patent Document 6]
JP-A-11-251124 (Claims)
[Patent Document 7]
Japanese Patent No. 2602979 (Claims)
[Patent Document 8]
JP-A-7-278602 (Claims)
[Patent Document 9]
JP 2000-260616 A (Claims)
[Patent Document 10]
JP 2002-124406 A (Claim 1)
[0011]
Under these circumstances, bond magnets used in small motors, acoustic equipment, OA equipment, and the like have recently been required to have excellent magnetic properties due to the demand for miniaturization of equipment. Conventional rare earth elements-iron- The magnetic properties of bond magnets obtained from nitrogen-based magnet powders are insufficient for use in these applications, improving the weather resistance of rare earth element-iron-nitrogen-based magnet powders early, and the magnetic properties of bond magnets There has been a strong demand for improvement.
[0012]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the object of the present invention is to provide a highly weather-resistant magnet powder having a stable and high coercive force, excellent weather resistance, and reduced variations in coercive force and weather resistance, and bonded magnets. It is providing the resin composition and the bonded magnet obtained by using it.
[0013]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies to achieve the above object, and formed phosphate films on the surface of rare earth-iron-nitrogen based magnet powder under various conditions, and analyzed the composition of the magnet powder. As a result of examining the relationship between the composition and the magnetic properties and weather resistance in detail, a phosphoric acid compound was added during the pulverization of the magnet powder to optimize the film formation and the drying process, thereby obtaining a magnet powder having a specific elemental composition. As a result, it was found that the magnetic powder had a stable coercive force, excellent weather resistance, and reduced variation, and the present invention was completed.
[0014]
That is, according to the first aspect of the present invention, Th 2 Zn 17 Mold or Th 2 Ni 17 Rare earth-iron-nitrogen (RTN) magnet powder having a type crystal structure Was obtained by pulverizing in an organic solvent in the presence of a phosphoric acid compound and then heating and drying at 120 to 370 ° C. for 100 to 400 minutes in an inert gas or vacuum. In a highly weather-resistant magnet powder having an average particle diameter of 1 to 10 μm whose surface is coated with a phosphate (RTPO) film, the phosphate (RTTP) film has a film thickness of The composition of the highly weather-resistant magnet powder uniformly coated at an average of 4 to 50 nm and coated with the film is 20 to 25 wt% R (rare earth element), 2.1 to 3.9 wt% N ( Nitrogen), 0.2-2.0 wt% P (phosphorus), 0.5-5.0 wt% O (oxygen) and the balance is T (transition metal elements and inevitable impurities), which are inevitable impurities When the content of certain H (hydrogen) is 0.3 wt% or less, the coercive force Hc (0) at room temperature is 400 kA / m or more, and after being left in the atmosphere at 80 ° C.-90% RH for 300 hours. The magnetic force Hc (300) is 392 kA / m or more, and the coercive force Hc (300) and the H (0 The ratio Hc (300) / Hc (0) is highly weather resistant magnet powder, characterized in that at 0.74 or more is provided for.
[0015]
According to the second invention of the present invention, in the first invention, the rare earth-iron-nitrogen (RTN) magnet powder is Sm-Fe-N magnet powder. High weathering magnet powder is provided.
[0016]
According to a third aspect of the present invention, in the first aspect, T (transition metal element) further includes at least one selected from Co, Zn, Cu, or Mn. A highly weather-resistant magnet powder is provided.
[0018]
In addition, the first of the present invention 4 According to the present invention, in the first invention of the present invention, the phosphate film is a composite salt composed of iron phosphate and rare earth and other phosphates, and the iron phosphate content is 8 or more in Fe / rare earth element ratio. There is provided a highly weather-resistant magnet powder characterized in that
[0019]
In addition, the first of the present invention 5 In the first invention of the present invention, the volume-based specific surface area is 7 m. 2 / Cm 3 A highly weather-resistant magnet powder characterized by the following is provided.
[0021]
On the other hand, the first of the present invention 6 According to the invention of the present invention, 5 According to the invention, there is provided a resin composition for a bonded magnet, characterized in that a resin binder is blended as a main component with respect to the highly weather-resistant magnet powder.
[0022]
Furthermore, the present invention 7 According to the invention of the present invention, 6 A bonded magnet formed by molding a resin composition for a bonded magnet according to the invention by any one of an injection molding method, an extrusion molding method, an injection compression molding method, an injection press molding method, a compression molding method, or a transfer molding method. Provided.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the highly weather-resistant magnet powder of the present invention, the resin composition for bonded magnets, and the bonded magnets obtained using the same will be described in detail.
[0024]
1. High weather resistance magnet powder
The highly weather-resistant magnet powder of the present invention has a surface of a rare earth-iron-nitrogen (R-TN) magnet powder, which is a magnet alloy powder, coated with a phosphate (RT-P-O) film. The constituents have a specific elemental composition with an average particle size of.
[0025]
(1) Magnet alloy powder
The magnet alloy powder used as the material of the highly weather-resistant magnet powder of the present invention is Th 2 Zn 17 Mold or Th 2 Ni 17 It is a rare earth element-iron-nitrogen (RTN) magnet powder having a type crystal structure. These are intermetallic compounds having a rhombohedral, hexagonal, tetragonal or monoclinic crystal structure, and Th 2 Zn 17 Examples of the type of magnet alloy powder include Sm 2 Fe 17 N 3 Alloy, Nd 2 Fe 17 N 3 Etc., and Th 2 Ni 17 Examples of the type of magnetic alloy powder include Gd 2 Fe 17 N 3 Etc.
[0026]
Examples of the rare earth element (R) include Sm, Nd, Pr, Y, La, Ce, and Gd. These may be used alone or as a mixture. Among these, Sm and Nd are effective. Those containing 80 wt% or more of Sm are preferable. The transition metal element (T) may be one in which Fe is an essential component and a part thereof is substituted with Co.
[0027]
Magnet alloy powders are C, Al, Si, Ca, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Re, Os. , Ir, Pt, or Au. Among these, elements other than transition metals are included, but in the present invention, they are all handled according to the transition metal element (T). If these components are added in an amount of 3 wt% or less, preferably 0.05 to 0.5 wt%, the weather resistance and heat resistance of the magnet can be further improved.
[0028]
Among these, if one or more selected from Al, Si, Ca, V, Cr, Mn, Cu, Mo, Zr, Nb, or Ta is added, the coercive force is improved, the productivity is improved, and the cost is reduced. Can be planned. In this case, the addition amount is desirably 3% by weight or less with respect to the total weight of the transition metal (T).
[0029]
As the magnet alloy powder of the present invention, a particularly preferable rare earth-iron-nitrogen (R-Fe-N) magnet powder is obtained by finely pulverizing a rare earth-iron-nitrogen magnet powder obtained by a reduction diffusion method, It is manufactured by aligning the particle size so that it becomes a fine powder having a specific average particle size and particle size distribution.
[0030]
The transition metal powder such as iron used as a raw material is generally manufactured by an atomizing method, an electrolytic method, or the like, but the manufacturing method is not limited as long as it is a powdered transition metal. Moreover, 20 wt% or less of the transition metal can be a transition metal oxide. The transition metals (T), rare earth elements (R), and elements that can be added to improve coercive force, improve productivity, and reduce costs are as described above.
[0031]
The rare earth oxide powder raw material containing the rare earth element, the transition metal powder raw material whose particle size is adjusted to the range of 10 μm to 100 μm, and other raw material powders are weighed and mixed to further reduce the rare earth element. Add a sufficient amount of reducing agent and mix. An alkaline earth metal such as Ca is used as the reducing agent. The particle size of the reducing agent is preferably 5 mm or less.
[0032]
Thereafter, the mixture is heated in a non-oxidizing atmosphere (that is, an atmosphere in which oxygen is not substantially present) to a temperature not lower than the temperature at which the reducing agent melts and not to melt the target rare earth-iron alloy. Hold and bake.
As a result, the rare earth oxide is reduced to a rare earth element, and the rare earth element is diffused into the transition metal using the exothermic temperature at the time of reduction to synthesize a rare earth-iron alloy.
[0033]
Next, the rare earth-iron alloy is cooled to room temperature. The cooled roasted product is poured into pure water, and stirring and decantation are repeated until the hydrogen ion concentration pH becomes 10 or less. Then, acetic acid or hydrochloric acid is added to water until the pH becomes approximately 5, and stirring is performed in this state. Thereafter, the obtained rare earth-iron alloy is dried and powdered, and then the powdered rare earth-iron alloy is nitrided to produce a desired rare earth-iron-nitrogen magnet powder. .
[0034]
(2) High weather-resistant magnet powder
The high weather resistance magnet powder is obtained by forming a phosphate film on the surface of the rare earth element-iron-nitrogen (R-TN) system magnet powder thus obtained, and the magnet powder has a specific average particle diameter. Each component constituting the entire magnet powder including the phosphate film has a specific elemental composition.
[0035]
In this invention, the average particle diameter of magnet powder is 1-10 micrometers. By setting the average particle size of the magnet powder in the range of 1 to 10 μm, it is possible to obtain a highly weather-resistant magnet powder having a coercive force at room temperature of 400 kA / m or more. If the average particle size is less than 1 μm, the residual magnetization of the magnet powder is lowered, and if it exceeds 10 μm, the coercive force at room temperature becomes small, which is not preferable.
[0036]
The component of the phosphate coating is, for example, iron phosphate, samarium phosphate, or a composite metal salt thereof. The main component is iron phosphate, and the iron / rare earth element ratio is 8 or more, preferably 9 or more, and more preferably 10 or more. If the iron / rare earth element ratio is 8 or more, water can be blocked to some extent, the bonding strength with the resin binder can be increased, and the moldability of the bonded magnet can be improved. If the iron / rare earth element ratio is less than 8, these effects cannot be expected.
[0037]
The components of the highly weather-resistant magnet powder include rare earth elements (R), which are components of magnet powder, transition metal elements (T) such as iron, and nitrogen (N), and phosphorus (P), which is a component of the phosphate film, It can be said that oxygen (O) is an essential component and contains hydrogen (H), which is an impurity (T) inevitably mixed in during the production. As described above, transition metal elements (T) such as zinc, copper, and manganese may further be included as components of the magnet powder and cobalt as a component of the phosphate coating.
[0038]
The components constituting the highly weather-resistant magnet powder of the present invention are as follows: R (rare earth element) is 20 to 25 wt%, N (nitrogen) is 2.1 to 3.9 wt%, and P (phosphorus) is 0.2 to 2%. 0.0 wt%, O (oxygen) is 0.5 to 5.0 wt%, the balance is T (transition metal element and inevitable impurities), and H (hydrogen) is contained as an inevitable impurity. However, the amount is reduced to less than 0.3 wt%.
[0039]
The rare earth element (R) which is a main component of the magnet powder is contained in an amount of 20 to 25 wt%, preferably 23 to 25 wt%. If R is less than 20 wt%, the remanent magnetization and coercive force of the magnet powder decrease, and if it exceeds 25 wt%, the remanent magnetization and weather resistance of the magnet powder decrease.
[0040]
N (nitrogen) is contained in an amount of 2.1 to 3.9 wt%, preferably 2.8 to 3.5 wt%. If N is less than 2.1 wt% or exceeds 3.9 wt%, the residual magnetization and coercive force of the magnet powder are undesirably lowered.
[0041]
On the other hand, the content of P (phosphorus) which is a component of the phosphate film is 0.2 to 2.0 wt%, preferably 0.3 to 1.0 wt%. When P is less than 0.2 wt%, the weather resistance and heat resistance of the magnet powder are inferior, and when it exceeds 2.0 wt%, the residual magnetization decreases, which is not preferable.
[0042]
Moreover, O (oxygen) is 0.5 to 5.0 wt%, preferably 1.0 to 3.0 wt%. If O is less than 0.5 wt%, the phosphate film on the surface of the magnet powder is not sufficiently formed. In addition to poor weather resistance and heat resistance, there is a risk of ignition when handled in the atmosphere due to high surface activity. There is. On the other hand, if it exceeds 5.0 wt%, the remanent magnetization decreases, which is not preferable.
[0043]
The balance is the transition metal element (T) as the main component of the magnet powder, that is, Fe or Co. Zn, Cu, Mn, and the like may be further included as a component of the phosphate film. For this reason, it can be said that the transition metal element (T) preferably includes one or more selected from Co, Zn, Cu, or Mn in addition to Fe.
[0044]
Furthermore, H (hydrogen) as an optional component inevitably mixed is 0 to 0.3 wt%, preferably 0.1 wt% or less. H adversely affects the weather resistance, and if it exceeds 0.3 wt%, the weather resistance decreases and the coercive force also decreases, so it is desirable to eliminate it as much as possible.
[0045]
The surface of the magnet powder of the present invention is uniformly coated with a phosphate film having an average thickness of 3 to 50 nm. The average thickness is preferably 4 to 45 nm, particularly 5 to 40 nm. If the thickness is less than 3 nm, a poorly coated portion of the magnet powder is likely to occur, and the weather resistance becomes insufficient. On the other hand, if it exceeds 50 nm, the magnetic properties may be deteriorated, which is not preferable.
[0046]
Here, that the surface of the magnet powder is uniformly coated means that 80% or more, preferably 85% or more, more preferably 90% or more of the surface of the magnet powder is covered with a phosphate film.
[0047]
The high weather resistance magnet powder of the present invention has a volume-based specific surface area of 7 m. 2 / Cm 3 It is characterized by the following. 7m 2 / Cm 3 Exceeding this is not preferable because the weather resistance is lowered.
[0048]
(3) Production of highly weather-resistant magnet powder
In order to produce the highly weather-resistant magnet powder of the present invention, for example, a method in which an iron-based magnet alloy powder containing a rare earth element is pulverized in an organic solvent in the presence of a phosphoric acid compound and then dried can be used.
[0049]
That is, a rare earth-iron-nitrogen magnet powder having an average particle size of 10 μm is put in a pulverizer, a phosphoric acid compound is added, and the mixture is stirred and pulverized in an organic solvent until the magnet powder has an average particle size of 10 μm or less. A phosphate film having an iron / rare earth element ratio of 8 or more is formed on the surface of the magnet powder, and then the organic solvent is separated, followed by heating and drying under specific conditions.
[0050]
Accordingly, the highly weather-resistant magnet powder of the present invention is a first step in which the alloy powder is first pulverized in the presence of a phosphoric acid compound to form a phosphate film on the surface, and the resulting alloy powder is dried and heated. And a second step of fixing the surface phosphate film.
[0051]
Conventionally, the surface of the rare earth-iron-nitrogen-based magnet powder is coated with a phosphate film, but after the grinding of the magnet powder, a treatment agent such as phosphate is added, so Magnet powder aggregates with each other by the magnetic force, and at least a portion of the contact surface of the magnet powder not covered with the phosphate film is generated.
[0052]
Therefore, in the present invention, the phosphoric acid compound is added before or during pulverization of the magnet powder. The method for adding the phosphoric acid compound is not particularly limited. For example, when the magnet alloy powder is pulverized by a pulverizer such as a medium stirring mill, the phosphoric acid compound is added to an organic solvent used as a solvent. The phosphoric acid compound only needs to finally have a desired phosphoric acid concentration, and may be added all at once before the start of pulverization. However, it is more preferable that the phosphoric acid compound is gradually added so that the phosphoric acid concentration in the solvent becomes constant.
[0053]
In the first step of producing the highly weather-resistant magnet powder of the present invention, the phosphoric acid compound is not particularly limited as long as it can form a phosphate film, and is commercially available ordinary phosphoric acid (for example, having a concentration of 85%). Phosphoric acid aqueous solution) can be used. In addition, metal phosphate compounds such as zinc phosphate can be used alone or in combination, but it is preferable to use phosphoric acid alone. When used in combination, it is desirable to use phosphoric acid at a concentration 1 to 3 times that of the metal phosphoric acid compound. Even if only known phosphoric acid esters are used, the effect of the present invention cannot be obtained.
[0054]
Examples of phosphoric acid include orthophosphoric acid, phosphoric acid compounds such as phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid, and cyclic metaphosphoric acid, and are preferably used together with water and an organic solvent.
[0055]
In addition, ammonium phosphate, ammonium phosphate, etc., and zinc phosphate that forms hopite, phosphoferrite, etc. on the surface of magnet powder; A compound that forms a coating such as manganese phosphate that forms light, iron heuriolite, or the like; iron phosphate that includes strenite, hematite, or the like can also be used. These metal phosphate compounds may be used alone or in combination of a plurality of types, and are usually mixed with a chelating agent, a neutralizing agent and the like to form a treating agent.
[0056]
Of these, orthophosphoric acid exhibits desirable performance because it is highly reactive with rare earth metals and iron, and easily forms a phosphate coating on the surface of the magnet powder.
[0057]
Further, the amount of the phosphoric acid compound added is related to the particle size, surface area, and the like of the magnet powder after pulverization, but cannot generally be said, but usually 0.1 mol / kg or more and 2 mol to the magnet alloy powder to be pulverized. / Kg is good, More preferably, it is 0.15-1.5 mol / kg, More preferably, it is 0.2-0.4 mol / kg.
If it is less than 0.1 mol / kg, the surface treatment of the magnet powder is not sufficiently performed, so that the weather resistance is not improved, and if it is handled in the air, the magnetic properties are extremely lowered due to oxidation and heat generation. When it is 2 mol / kg or more, the reaction with the magnetic powder occurs vigorously and the magnetic powder is dissolved.
[0058]
The organic solvent is not particularly limited, and usually alcohols such as ethanol or isopropyl alcohol, ketones, lower hydrocarbons, aromatics, or a mixture thereof is used, and the use of alcohols is particularly preferable.
[0059]
A device such as a medium stirring mill or a bead mill is used for the pulverization. By adding a phosphoric acid compound when pulverizing the magnet alloy powder, a pulverized aggregated particle can be instantly contained in the solvent even if a new surface is generated by the pulverization. It reacts with the phosphoric acid compound to form a stable phosphate film on the particle surface. Further, even if the pulverized magnet powder is aggregated by the magnetic force thereafter, the contact surface is already stabilized, and corrosion does not occur due to crushing.
[0060]
As the pulverization of the magnet powder having an average particle diameter of 10 μm or more initially progresses, a thin phosphate film is formed on the surface in a short time. This reaction is completed, and a phosphate film with a sufficient film thickness is formed. The formation requires a grinding (stirring) time of 30 to 180 minutes, preferably 60 to 150 minutes, depending on the type of the phosphoric acid compound.
[0061]
Th 2 Zn 17 In rare earth element-iron-nitrogen based magnet powders having a type crystal structure, phosphates of the respective constituent elements can be formed depending on the type of phosphoric acid compound used in the phosphoric acid treatment, but rare earth elements are significantly less basic than phosphorous, and phosphoric acid Depending on the amount of compound added and the grinding conditions, rare earth elements may elute preferentially to form phosphates.
[0062]
In this case as well, there is no problem with the heat resistance of the magnet powder, but from the viewpoint of weather resistance, it is desirable that the content of iron phosphate in the film is large. Iron phosphate has superior weather resistance compared to rare earth element phosphates, and under conditions where the rare earth element elutes preferentially, the Fe concentration on the surface of the magnet powder increases, and the magnetic properties of the magnet powder It is possible to change.
For this reason, the Fe / rare earth element (element ratio) in the phosphate is desirably adjusted to 8 or more depending on the addition amount of the phosphoric acid compound, the mixing time, and the like. The thickness of the phosphate film that protects the surface of the magnet powder is desirably 3 to 50 nm on average.
[0063]
In addition, if the surface of the rare earth element-iron-nitrogen based magnet powder is subjected to zinc treatment that chemically coats zinc, the soft magnetic phase and defects on the powder surface are reduced, so that the phosphate film can be easily formed. It is particularly suitable because it can be formed and has excellent heat resistance as well as weather resistance.
[0064]
The second step is a step of further heat-treating the magnetic powder obtained as described above in an inert gas or in a vacuum at a temperature range of 100 ° C. or higher and lower than 400 ° C. As the inert gas, argon, helium or the like can be used, but nitrogen is usually used. If the pressure is reduced to 0.1 atm or less, the drying can be performed more efficiently.
[0065]
The heating temperature is preferably from 100 ° C to 400 ° C, particularly from 120 ° C to 370 ° C. When heat treatment is performed at a temperature lower than 100 ° C., the drying of the magnet powder does not proceed sufficiently and the formation of a stable surface film is inhibited. Moreover, when heat-processing at the temperature exceeding 400 degreeC, since magnet powder receives a thermal damage, there exists a problem that a coercive force becomes quite low.
[0066]
The time required for the heat treatment varies depending on the treatment apparatus, the amount of treatment, the heating atmosphere and the heating temperature, but may be 30 minutes or more, preferably 60 to 400 minutes, particularly preferably 100 to 360 minutes. If it is less than 30 minutes, H (hydrogen) cannot be reduced sufficiently, while a time exceeding 400 minutes is not preferable in terms of economy.
[0067]
By controlling the conditions such as the addition amount of these phosphate compounds, pulverization time, drying temperature, or drying time, the average particle diameter of the magnet powder and the thickness of the phosphate film can be adjusted to a specific range. It is important that the composition, particularly the contents of P, O, and H, fall within the predetermined range of the present invention.
[0068]
The highly weather-resistant magnet powder of the present invention has sufficient performance because a phosphate coating is formed on the surface, but if necessary, various coupling agents such as silane, aluminate, and titanate Or one or more selected from abietic acid compounds and the like may be coated.
[0069]
2. Resin composition for bonded magnet
The resin composition for bonded magnets of the present invention is one in which a resin binder is blended as a main component in highly weather-resistant magnet powder. The method for producing the bonded magnet resin composition is not particularly limited, and for example, it can be produced using a known thermoplastic resin, thermosetting resin or additive as shown below.
[0070]
(1) Resin binder
In the present invention, the resin binder serves as a binder for magnet powder, and any conventionally known one can be used as long as it is a thermoplastic resin or a thermosetting resin.
[0071]
Specific examples of the thermoplastic resin include 6 nylon, 6,6 nylon, 11 nylon, 12 nylon, 6,12 nylon, aromatic nylon, polyamide resin such as modified nylon obtained by partially modifying these molecules, linear chain Type polyphenylene sulfide resin, crosslinked polyphenylene sulfide resin, semi-crosslinked polyphenylene sulfide resin, low density polyethylene, linear low density polyethylene resin, high density polyethylene resin, ultrahigh molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin , Ethylene-ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinyl chloride Nylidene resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluoroethylene chloride resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, ethylene -Tetrafluoroethylene copolymer resin, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether Allyl sulfone resin, polyether sulfone resin, polyether ether ketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, front Each resin-based elastomer and the like, and random copolymers of these homopolymers and other species monomer, block copolymers, graft copolymers, and end groups modified products with other substances.
[0072]
Of these, polyamide resins, polyphenylene sulfide resins, or modified resins thereof are preferred from the standpoints of heat resistance, mechanical strength, and handleability.
It is desirable that the melt viscosity and molecular weight of these thermoplastic resins be low as long as desired mechanical strength can be obtained for the obtained bonded magnet. Further, the shape of the thermoplastic resin is not particularly limited, such as powder, bead, pellet, and the like, but powder is preferable because it is uniformly mixed with the magnet powder.
[0073]
For example, in the case of a thermosetting resin, epoxy resin, vinyl ester resin, unsaturated polyester resin, phenol resin, melamine resin, urea resin, benzoguanamine resin, bismaleimide / triazine resin, diallyl phthalate resin, furan resin, thermosetting resin Examples include basic polybutadiene resins, polyimide resins, polyurethane resins, silicone resins, xylene resins, and the like, and naturally include systems in these basic compositions, other types of monomers, and blends of two or more types of these resins. Particularly preferred are epoxy resins, vinyl ester resins, or unsaturated polyester resins.
[0074]
The viscosity, molecular weight, properties, etc. of these thermosetting resins are not particularly limited as long as desired mechanical strength and moldability are obtained, but in terms of uniform mixing with magnet powder and moldability, they are powder or liquid. Is desirable.
In the production of an injection-molded bonded magnet, if a thermosetting resin is used, good orientation characteristics can be obtained because the viscosity of the resin binder once decreases immediately before the molded magnet is cured in the mold.
[0075]
The blending amount of these resin binders is usually 2 to 100 parts by weight, preferably 3 to 50 parts by weight with respect to 100 parts by weight of the magnet powder. If the blending amount of the resin binder is less than 2 parts by weight, the kneading resistance (torque) of the composition will increase, the fluidity will decrease and it will be difficult to mold the magnet, and the mechanical strength of the molded body will decrease. . On the other hand, if it exceeds 100 parts by weight, desired magnetic properties cannot be obtained.
[0076]
(2) Additive
Additives such as plastic molding lubricants and various stabilizers can be blended with the composition for bonded magnets using the highly weather-resistant magnet powder of the present invention within a range not impairing the object of the present invention.
[0077]
Examples of the lubricant include waxes such as paraffin wax, liquid paraffin, polyethylene wax, polypropylene wax, ester wax, carnauba, and microwax, stearic acid, 1,2-oxystearic acid, lauric acid, palmitic acid, oleic acid, and the like. Fatty acid salts such as calcium stearate, barium stearate, magnesium stearate, lithium stearate, zinc stearate, aluminum stearate, calcium laurate, zinc linoleate, calcium ricinoleate, zinc 2-ethylhexoate (metal soap) ) Stearic acid amide, oleic acid amide, erucic acid amide, behenic acid amide, palmitic acid amide, lauric acid amide, hydroxystearic acid amide, methylene bis-stear Fatty acid amides such as acid amide, ethylenebisstearic acid amide, ethylene bislauric acid amide, distearyl adipic acid amide, ethylene bisoleic acid amide, dioleyl adipic acid amide, N-stearyl stearic acid amide, butyl stearate, etc. Fatty acid esters, alcohols such as ethylene glycol and stearyl alcohol, polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and polyethers composed of these modified products, polysiloxanes such as dimethylpolysiloxane and silicon grease, fluorine-based oils, Examples include fluorine compounds such as fluorine-based grease and fluorine-containing resin powder, and inorganic compound powders such as silicon nitride, silicon carbide, magnesium oxide, alumina, silicon dioxide, and molybdenum disulfide.
These lubricants may be used alone or in combination of two or more. The blending amount of the lubricant is usually 0.01 to 20 parts by weight, preferably 0.1 to 10 parts by weight with respect to 100 parts by weight of the magnetic powder.
[0078]
As stabilizers, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 1- [2 -{3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} ethyl] -4- {3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy} -2,2,6,6-tetramethylpiperidine, 8-benzyl-7,7,9,9-tetramethyl-3-octyl-1,2,3-triazaspiro [4,5] undecane-2,4- Dione, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate Poly [[6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl ) Imino] hexamethylene [[2,2,6,6-tetramethyl-4-piperidyl) imino]], 2- (3,5-di-tert-butyl-4-hydroxybenzyl) -2-n-butyl In addition to hindered amine stabilizers such as bis (1,2,2,6,6-pentamethyl-4-piperidyl) malonate, antioxidants such as phenols, phosphites, and thioethers can be used.
These stabilizers may be used alone or in combination of two or more. The blending amount of the stabilizer is usually 0.01 to 5 parts by weight, preferably 0.05 to 3 parts by weight with respect to 100 parts by weight of the magnet powder.
[0079]
The highly weatherable rare earth-iron-nitrogen based magnet of the present invention may be mixed with various magnet powders that are usually raw materials for bonded magnets such as ferrite and alnico, as well as anisotropic magnet powders, etc. Although anisotropic magnetic powder is also a target, magnetic powder having an anisotropic magnetic field (HA) of 4000 kA / m (50 kOe) or more is preferable.
[0080]
In addition, the mixing method of each said component is not specifically limited, For example, mixers, such as a ribbon blender, a tumbler, a Nauta mixer, a Henschel mixer, a super mixer, or a Banbury mixer, a kneader, a roll, a kneader ruder, a uniaxial It implements using kneading machines, such as an extruder and a twin-screw extruder.
[0081]
The shape of the obtained composition for bonded magnets is in the form of powder, beads, pellets, or a mixture thereof. In terms of ease of handling, pellets are desirable. For the thermosetting resin, it is preferable to use a mixer having a low shearing force and a cooling function so that curing does not proceed due to shearing heat generation during mixing.
[0082]
In the present invention, the magnet powder is stabilized by a phosphate film having an average of 3 to 50 nm in the present invention. Therefore, when this is mixed with a resin to produce a bonded magnet, a part of the aggregation of particles is caused by the shearing force accompanying the mixing. Even if crushed, a new surface without a film does not occur, and the obtained bonded magnet exhibits extremely high weather resistance.
[0083]
3. Bond magnet
Next, the above composition for a bonded magnet is formed into a bonded magnet having a desired shape.
[0084]
At that time, various molding methods such as an injection molding method, an extrusion molding method, an injection compression molding method, an injection press molding method, a compression molding method, a transfer molding method and the like conventionally used for plastic molding and the like are used as molding methods. Among them, in particular, an injection molding method, an extrusion molding method, an injection compression molding method, and an injection press molding method are preferable.
[0085]
In magnets formed by compacting magnet powder in this way, not only the surface of the magnet compact, but also the individual magnet powders that make up the magnet are uniformly coated with the above-mentioned phosphate coating, so degradation occurs on the magnet surface. Even so, it does not easily progress inside the magnet body and exhibits high weather resistance. In other words, in the present invention, it is important to use a highly weatherable magnetic powder that is uniformly coated and stabilized with a phosphate film in order to extract excellent magnetic properties.
[0086]
【Example】
Examples of the present invention and comparative examples are shown below, but the present invention is not limited to these examples. In addition, the detail and evaluation method of each component used for the Example and the comparative example are as follows.
[0087]
(1) Ingredient
Magnet alloy powder
・ Sm-Fe-N magnet alloy powder (manufactured by Sumitomo Metal Mining Co., Ltd.)
Average particle size: 30 μm, Sm: 23.5 to 24.5 wt%, N: 3.1 to 3.5 wt%, balance is Fe (Ca: 0.006 to 0.015 wt%, H: 0.002 to 0 .008 wt%)
Phosphoric acid compound
・ 85% orthophosphoric acid aqueous solution (trade name: “phosphoric acid”, manufactured by Kanto Chemical Co., Inc.)
[0088]
(2) Testing and evaluation methods
・ Composition analysis
Sm and P in the obtained magnetic powder sample were analyzed by ICP emission analysis, N by resistance heating / infrared absorption, and O and H by resistance heating / conductivity.
[0089]
・ Average particle diameter, volume-based specific surface area
The 50% particle diameter measured with HELOS & RODOS manufactured by Nippon Laser Co., Ltd. was taken as the average particle diameter of the magnet powder sample. The volume-based specific surface area was also measured and calculated by HELOS & RODOS manufactured by Nippon Laser Corporation.
[0090]
・ Film thickness, uniformity
The obtained magnet powder sample was mixed with a thermosetting resin and cured, and then subjected to FIB (ion beam) processing to produce a thin piece sample. The cross section of the magnet powder was observed with a transmission electron microscope, and the uniformity of the phosphate film formed on the surface of the magnet powder was confirmed and the thickness was determined.
[0091]
・ Fe / rare earth ratio
While the obtained magnetic powder sample is sputtered with Ar, the area intensity of Fe and Sm spectra obtained by XPS (X-ray photoelectron spectroscopy) is multiplied by the sensitivity coefficient of the measuring device (ESCALAB220i-XL manufactured by VG Scientific). The Fe / Sm element ratio was determined.
[0092]
・ Coercivity and remanent magnetization of magnet powder
The coercive force Hc and the residual magnetization σr of the magnet powder sample were measured at room temperature with a vibrating sample magnetometer according to the Bond Magnet Test Method Guidebook BMG-2002 of the Japan Bond Magnet Industry Association.
[0093]
・ Coercivity of bonded magnet
The coercive force of the bonded magnet obtained using the magnet powder sample was measured with a Cioffi type self-recording magnetometer after magnetizing the magnet at 4000 kA / m.
[0094]
[Examples 1 to 14]
Using an attritor in which the inside of the container was replaced with nitrogen, 1 kg of the magnet alloy powder was pulverized in 1.5 kg of isopropanol at a rotation speed of 200 rpm for the time shown in Table 1 to prepare a magnet powder.
Here, before or during pulverization, the phosphoric acid compound is added as an 85% orthophosphoric acid aqueous solution to the pulverizing solvent in an amount shown in Table 1 per 1 kg of magnet alloy powder. Thereafter, the magnet powder was dried under the conditions shown in Table 1.
[0095]
[Table 1]
Figure 0004135447
[0096]
Analytical composition, average particle diameter, film thickness, Fe / rare earth element ratio, coercivity Hc (0) and Hc (300) after standing at 80 ° C.-90% RH in the atmosphere for 300 hours The initial residual magnetization σr was measured by the above method, and the results shown in Table 2 were obtained. Thereby, in Examples 1-14, it has confirmed that the phosphate membrane | film | coat was uniformly formed in all the 20 particle | grain surfaces arbitrarily selected from each sample.
[0097]
[Table 2]
Figure 0004135447
[0098]
Next, using the obtained magnetic powder, 12 nylon is added so that the magnetic powder volume ratio becomes 56%, and after kneading with a lab plast mill, the molding is injection molded in a magnetic field with an orientation magnetic field of 640 kA / m, and the diameter is increased by 10 mm. A 7 mm long cylindrical bonded magnet was produced. The kneading temperature was 200 ° C., and the injection molding nozzle temperature was 210 ° C. The coercive force HcJ of the obtained magnet sample was measured by the above method, and the results shown in Table 2 were obtained.
[0099]
[Comparative Examples 1-4]
In the same manner as in the above example, using an attritor in which the inside of the container was replaced with nitrogen, 1 kg of magnet alloy powder was pulverized in 1.5 kg of isopropanol at a rotation speed of 200 rpm for the time shown in Table 1 to prepare magnet powder. . Thereafter, the magnet powder was dried under the conditions shown in Table 1. As the magnet alloy powder, Sm—Fe—N magnet alloy powder in which the Sm composition and the N composition were adjusted based on the description of Japanese Patent No. 3304726 by the present applicant was used.
Analytical composition, average particle diameter, film thickness, Fe / rare earth element ratio, coercivity Hc (0) and Hc (300) after standing at 80 ° C.-90% RH in the atmosphere for 300 hours The initial residual magnetization σr was measured by the above method, and the results shown in Table 3 were obtained.
[0100]
[Table 3]
Figure 0004135447
[0101]
Next, using the obtained magnet powder, a cylindrical bonded magnet was produced in the same manner as in the example. The coercive force HcJ of the obtained magnet sample was measured by the above method, and the results shown in Table 3 were obtained.
[0102]
[Comparative Examples 5 to 11]
In the same manner as in the above examples, the magnet powder was coated with a phosphate film under the conditions shown in Table 1, and 12 nylon was blended with the obtained magnet powder to produce a comparative bonded magnet. The results are shown in Table 3.
[0103]
From these Examples 1 to 14, a phosphoric acid compound was added to a sample having an average particle size of 1 to 10 μm with an Sm of 20 to 25 wt% of magnet powder, and pulverized in an organic solvent, and at a temperature of 100 ° C. or higher. , When dried for 30 minutes or more, a film having an average film thickness of 3 to 50 nm and a Fe / rare earth element ratio of 8 or more is formed. Thus, the composition of the entire magnet powder including the film (R, N, P, O, H) can be made into a predetermined range, and it turns out that the highly weather-resistant magnet powder whose coercive force is about 400 kA / m or more is obtained.
On the other hand, in Comparative Examples 1 to 11, since magnet powder that does not meet these conditions is used, or the phosphate coating condition or drying condition on the magnet powder is not appropriate, both are satisfactory in terms of magnetic properties. It turns out that the result which should be cannot be obtained.
[0104]
【The invention's effect】
As described above, the magnet powder of the present invention is a rare earth-iron-nitrogen based magnet powder having an average particle diameter of 1 to 10 μm, the surface of which is coated with a phosphate film, and having a predetermined component composition. Furthermore, since the film is formed so as to have a predetermined film thickness and Fe / rare earth ratio, it has a coercive force of 400 kA / m or more stably and is excellent in weather resistance. Furthermore, the resin composition for bonded magnets using this magnet powder is also excellent in weather resistance. Moreover, if this is shape | molded, the bonded magnet which has high coercive force HcJ will be obtained. That is, by using the magnetic powder of the present invention, a highly weather-resistant bonded magnet can be stably produced, and its industrial value is extremely large.

Claims (7)

ThZn17型またはThNi17型結晶構造をもつ希土類−鉄−窒素(R−T−N)系磁石粉を、燐酸化合物の存在下に有機溶剤中で粉砕した後、不活性ガスまたは真空中、120〜370℃で100〜400分間加熱乾燥することにより得られた、表面が燐酸塩(R−T−P−O)皮膜で被覆された平均粒径が1〜10μmの高耐候性磁石粉において、
燐酸塩(R−T−P−O)皮膜は、膜厚が平均4〜50nmで均一に被覆されており、かつ該皮膜で被覆された高耐候性磁石粉の組成は、20〜25wt%のR(希土類元素)、2.1〜3.9wt%のN(窒素)、0.2〜2.0wt%のP(リン)、0.5〜5.0wt%のO(酸素)及び残部がT(遷移金属元素および不可避的不純物)であり、不可避的不純物であるH(水素)の含有量が0.3wt%以下とすることで、室温での保磁力Hc(0)が400kA/m以上、かつ大気中80℃−90%RHで300時間放置後の保磁力Hc(300)が392kA/m以上であり、さらに、前記保磁力Hc(300)と前記H(0)の比Hc(300)/Hc(0)が0.74以上であることを特徴とする高耐候性磁石粉。
After pulverizing rare earth-iron-nitrogen (RTN) -based magnet powder having a Th 2 Zn 17 type or Th 2 Ni 17 type crystal structure in an organic solvent in the presence of a phosphate compound, an inert gas or High weather resistance with an average particle size of 1 to 10 μm , the surface of which is obtained by heating and drying at 120 to 370 ° C. for 100 to 400 minutes in a vacuum, the surface of which is coated with a phosphate ( RTPO ) film In magnet powder,
The phosphate (R-T-P-O) film is uniformly coated with an average film thickness of 4 to 50 nm, and the composition of the highly weather-resistant magnet powder coated with the film is 20 to 25 wt%. R (rare earth element), 2.1 to 3.9 wt% N (nitrogen), 0.2 to 2.0 wt% P (phosphorus), 0.5 to 5.0 wt% O (oxygen) and the balance T (transition metal element and inevitable impurities), and the content of H (hydrogen), which is an inevitable impurity, is 0.3 wt% or less, so that the coercive force Hc (0) at room temperature is 400 kA / m or more. And the coercive force Hc (300) after standing for 300 hours at 80 ° C.-90% RH in the atmosphere is 392 kA / m or more, and the ratio Hc (300) of the coercive force Hc (300) to the H (0) ) / Hc (0) is 0.74 or more, a highly weather-resistant magnet powder.
希土類−鉄−窒素(R−T−N)系磁石粉は、Sm−Fe−N系磁石粉であることを特徴とする請求項1に記載の高耐候性磁石粉。  The high weather resistance magnet powder according to claim 1, wherein the rare earth-iron-nitrogen (RTN) magnet powder is an Sm—Fe—N magnet powder. T(遷移金属元素)として、さらにCo、Zn、Cu、又はMnから選択される1種以上が含まれることを特徴とする請求項1に記載の高耐候性磁石粉。  2. The highly weatherable magnet powder according to claim 1, further comprising at least one selected from Co, Zn, Cu, or Mn as T (transition metal element). 燐酸塩皮膜が、燐酸鉄と希土類その他の燐酸塩からなる複合塩であり、かつ燐酸鉄含有率がFe/希土類元素比で8以上であることを特徴とする請求項1に記載の高耐候性磁石粉。  2. The high weather resistance according to claim 1, wherein the phosphate film is a composite salt composed of iron phosphate and a rare earth or other phosphate, and the iron phosphate content is 8 or more in Fe / rare earth element ratio. Magnet powder. 体積基準比表面積が7m/cm以下であることを特徴とする請求項1に記載の高耐候性磁石粉。The high weather resistance magnet powder according to claim 1, wherein the volume-based specific surface area is 7 m 2 / cm 3 or less. 請求項1〜5に記載の高耐候性磁石粉に対して、樹脂バインダーが主成分として配合されていることを特徴とするボンド磁石用樹脂組成物。  A resin composition for a bond magnet, wherein a resin binder is blended as a main component with respect to the highly weather-resistant magnet powder according to claim 1. 請求項6に記載のボンド磁石用樹脂組成物を射出成形法、押出成形法、射出圧縮成形法、射出プレス成形法、圧縮成形法又はトランスファー成形法のいずれかの成形法により成形してなるボンド磁石。  A bond formed by molding the resin composition for a bonded magnet according to claim 6 by any one of an injection molding method, an extrusion molding method, an injection compression molding method, an injection press molding method, a compression molding method, or a transfer molding method. magnet.
JP2002269801A 2002-09-17 2002-09-17 High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same Expired - Lifetime JP4135447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002269801A JP4135447B2 (en) 2002-09-17 2002-09-17 High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002269801A JP4135447B2 (en) 2002-09-17 2002-09-17 High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007201898A Division JP2007324618A (en) 2007-08-02 2007-08-02 High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it

Publications (2)

Publication Number Publication Date
JP2004111515A JP2004111515A (en) 2004-04-08
JP4135447B2 true JP4135447B2 (en) 2008-08-20

Family

ID=32267623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002269801A Expired - Lifetime JP4135447B2 (en) 2002-09-17 2002-09-17 High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same

Country Status (1)

Country Link
JP (1) JP4135447B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2007003194A (en) * 2004-09-17 2007-05-16 Hoeganaes Ab Powder metal composition comprising secondary amides as lubricant and/or binder.
JP4671024B2 (en) * 2005-03-18 2011-04-13 Tdk株式会社 Manufacturing method of rare earth sintered magnet
JP5071160B2 (en) * 2008-03-04 2012-11-14 住友金属鉱山株式会社 Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JP6578971B2 (en) * 2015-08-25 2019-09-25 住友金属鉱山株式会社 Manufacturing method of iron-based alloy fine powder containing rare earth element, iron-based alloy fine powder containing rare earth element
JP6332259B2 (en) 2015-12-24 2018-05-30 日亜化学工業株式会社 Anisotropic magnetic powder and method for producing the same
US11453057B2 (en) * 2016-03-04 2022-09-27 National Institute Of Advanced Industrial Science And Technology Samarium-iron-nitrogen alloy powder and method for producing same
JP6862730B2 (en) * 2016-09-16 2021-04-21 大同特殊鋼株式会社 Sm-Fe-N magnet material and Sm-Fe-N bond magnet
JP6447768B2 (en) 2017-05-17 2019-01-09 日亜化学工業株式会社 Secondary particle for anisotropic magnetic powder and method for producing anisotropic magnetic powder
JP7385868B2 (en) 2020-06-29 2023-11-24 国立大学法人東北大学 Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139827B2 (en) * 1992-05-01 2001-03-05 旭化成株式会社 Manufacturing method of bonded magnet using rare earth magnetic resin composite material
JPH09190909A (en) * 1995-11-10 1997-07-22 Sumitomo Special Metals Co Ltd Manufacture of r-t-n permanent magnet powder and of anisotropic bond magnet
JPH1154312A (en) * 1997-07-31 1999-02-26 Sumitomo Metal Mining Co Ltd Resin-bonded magnet composition and resin-bonded magnet using the same
JP2000260616A (en) * 1999-03-10 2000-09-22 Meito:Kk Ferromagnetic fine powder for plastic magnet and resin composite material
JP2002008911A (en) * 2000-06-22 2002-01-11 Nichia Chem Ind Ltd Surface treating method of rare earth-iron-nitrogen magnetic powder, and plastic magnet formed of the same
JP3882490B2 (en) * 2000-10-13 2007-02-14 住友金属鉱山株式会社 Method for producing highly weather-resistant magnet powder and product obtained
JP2003297618A (en) * 2002-03-29 2003-10-17 Sumitomo Metal Mining Co Ltd Composition for rare-earth rubber magnet, its manufacturing method, and rare-earth rubber magnet using the same

Also Published As

Publication number Publication date
JP2004111515A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3882545B2 (en) High weather-resistant magnet powder and magnet using the same
JP4650593B2 (en) Iron-based magnet alloy powder containing rare earth element, method for producing the same, obtained resin composition for bonded magnet, bonded magnet, and compacted magnet
US20150187494A1 (en) Process for preparing rare earth magnets
JP7364158B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
WO2012128371A1 (en) Rare-earth magnetic powder, method for manufacturing same, compound of same, and bond magnet of same
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP2018127716A (en) Rare-earth-iron-nitrogen based magnetic powder and method for producing the same
JP3882490B2 (en) Method for producing highly weather-resistant magnet powder and product obtained
JP7385868B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP2022177699A (en) Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder
JP3781094B2 (en) Corrosion resistant rare earth magnet
JP2007324618A (en) High weather resistance magnetic powder and resin composition for bond magnet, and bond magnet obtained using it
JP3826537B2 (en) Rare earth bonded magnet and composition for rare earth bonded magnet
JP4126947B2 (en) Salt-resistant magnetic alloy powder, method for producing the same, resin composition for bonded magnet obtained by using the same, bonded magnet or compacted magnet
JP4096531B2 (en) Rare earth hybrid magnet composition, method for producing the same, and magnet obtained therefrom
JP6865437B2 (en) Manufacturing method of magnet alloy powder with film
JP4412376B2 (en) Salt-water resistant magnet alloy powder, and resin composition for bond magnet, bond magnet or compacted magnet obtained by using the same
JP2010001544A (en) Rare earth-iron-nitrogen-based magnet powder, method for producing the same, resin composition for bond magnet containing the same, and bond magnet
JP2018081970A (en) Iron-based magnet alloy powder including rare earth element, method for manufacturing the same, rare earth composition for bond magnet, and rare earth magnet
JP6556095B2 (en) Method for producing magnet alloy powder
JP3473677B2 (en) Magnetic powder for rare earth bonded magnet, composition for rare earth bonded magnet, and rare earth bonded magnet
JP2003297618A (en) Composition for rare-earth rubber magnet, its manufacturing method, and rare-earth rubber magnet using the same
WO2003034451A1 (en) Bonded magnet and method for production thereof
WO2015122271A1 (en) Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet
JP2018081969A (en) Iron-based magnet alloy powder including rare earth element, method for manufacturing the same, rare earth composition for bond magnet, and rare earth magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070831

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Ref document number: 4135447

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

EXPY Cancellation because of completion of term