JP2022177699A - Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder - Google Patents
Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder Download PDFInfo
- Publication number
- JP2022177699A JP2022177699A JP2021084126A JP2021084126A JP2022177699A JP 2022177699 A JP2022177699 A JP 2022177699A JP 2021084126 A JP2021084126 A JP 2021084126A JP 2021084126 A JP2021084126 A JP 2021084126A JP 2022177699 A JP2022177699 A JP 2022177699A
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- magnetic powder
- powder
- mass
- nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006247 magnetic powder Substances 0.000 title claims abstract description 243
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 119
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 76
- 150000001875 compounds Chemical class 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 31
- 239000002245 particle Substances 0.000 claims abstract description 206
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 202
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 192
- 239000013078 crystal Substances 0.000 claims abstract description 51
- 230000005415 magnetization Effects 0.000 claims abstract description 45
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 17
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 13
- 239000000843 powder Substances 0.000 claims description 208
- 239000000203 mixture Substances 0.000 claims description 142
- 150000002910 rare earth metals Chemical class 0.000 claims description 136
- 239000007795 chemical reaction product Substances 0.000 claims description 120
- 238000009792 diffusion process Methods 0.000 claims description 99
- 238000000034 method Methods 0.000 claims description 97
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 94
- 239000007789 gas Substances 0.000 claims description 87
- 238000010438 heat treatment Methods 0.000 claims description 84
- 238000011282 treatment Methods 0.000 claims description 83
- 239000011575 calcium Substances 0.000 claims description 78
- 230000009467 reduction Effects 0.000 claims description 74
- 229910052739 hydrogen Inorganic materials 0.000 claims description 69
- 239000001257 hydrogen Substances 0.000 claims description 66
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 64
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 64
- 238000005121 nitriding Methods 0.000 claims description 62
- 239000003638 chemical reducing agent Substances 0.000 claims description 60
- YYXHRUSBEPGBCD-UHFFFAOYSA-N azanylidyneiron Chemical compound [N].[Fe] YYXHRUSBEPGBCD-UHFFFAOYSA-N 0.000 claims description 59
- 238000002156 mixing Methods 0.000 claims description 59
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 57
- 229920005989 resin Polymers 0.000 claims description 57
- 239000011347 resin Substances 0.000 claims description 57
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 56
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 48
- 229910052760 oxygen Inorganic materials 0.000 claims description 45
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 44
- 238000000576 coating method Methods 0.000 claims description 43
- 239000011248 coating agent Substances 0.000 claims description 42
- 239000002994 raw material Substances 0.000 claims description 42
- 229910052772 Samarium Inorganic materials 0.000 claims description 40
- 229910052791 calcium Inorganic materials 0.000 claims description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 229910052786 argon Inorganic materials 0.000 claims description 32
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 31
- 239000001301 oxygen Substances 0.000 claims description 31
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 30
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 30
- -1 phosphoric acid compound Chemical class 0.000 claims description 29
- 150000002431 hydrogen Chemical class 0.000 claims description 26
- 238000010298 pulverizing process Methods 0.000 claims description 23
- 239000011230 binding agent Substances 0.000 claims description 18
- 230000014759 maintenance of location Effects 0.000 claims description 18
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 claims description 18
- 239000000047 product Substances 0.000 claims description 17
- 229910021529 ammonia Inorganic materials 0.000 claims description 15
- 238000002360 preparation method Methods 0.000 claims description 13
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 11
- 239000002904 solvent Substances 0.000 claims description 9
- 239000012756 surface treatment agent Substances 0.000 claims description 9
- 230000004580 weight loss Effects 0.000 claims description 8
- 238000005406 washing Methods 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 239000000470 constituent Substances 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 194
- 229910045601 alloy Inorganic materials 0.000 description 65
- 239000000956 alloy Substances 0.000 description 65
- 235000011007 phosphoric acid Nutrition 0.000 description 52
- 239000011701 zinc Substances 0.000 description 42
- 229910052742 iron Inorganic materials 0.000 description 36
- 230000008569 process Effects 0.000 description 36
- 238000002441 X-ray diffraction Methods 0.000 description 34
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 24
- 229910000859 α-Fe Inorganic materials 0.000 description 24
- 230000000052 comparative effect Effects 0.000 description 23
- 229910001954 samarium oxide Inorganic materials 0.000 description 22
- 229940075630 samarium oxide Drugs 0.000 description 22
- 230000002776 aggregation Effects 0.000 description 21
- 238000009826 distribution Methods 0.000 description 21
- 239000011572 manganese Substances 0.000 description 19
- 239000006228 supernatant Substances 0.000 description 19
- 239000002002 slurry Substances 0.000 description 18
- 238000004220 aggregation Methods 0.000 description 17
- 239000012798 spherical particle Substances 0.000 description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 15
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 15
- 235000013339 cereals Nutrition 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 14
- 239000002184 metal Substances 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 13
- QRVXKVFNBYFEOG-UHFFFAOYSA-N phosphanylidynesamarium Chemical compound [Sm]#P QRVXKVFNBYFEOG-UHFFFAOYSA-N 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 238000003756 stirring Methods 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000004677 Nylon Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000011261 inert gas Substances 0.000 description 9
- 229910052748 manganese Inorganic materials 0.000 description 9
- 150000004767 nitrides Chemical class 0.000 description 9
- 229920001778 nylon Polymers 0.000 description 9
- 238000001816 cooling Methods 0.000 description 8
- 238000003801 milling Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000011651 chromium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004734 Polyphenylene sulfide Substances 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 229920000069 polyphenylene sulfide Polymers 0.000 description 6
- 229910052723 transition metal Inorganic materials 0.000 description 6
- 238000013019 agitation Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 229920005992 thermoplastic resin Polymers 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 229920006026 co-polymeric resin Polymers 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000011812 mixed powder Substances 0.000 description 4
- 150000003624 transition metals Chemical class 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910019142 PO4 Inorganic materials 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 230000005381 magnetic domain Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 238000010899 nucleation Methods 0.000 description 3
- 239000012188 paraffin wax Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229920006337 unsaturated polyester resin Polymers 0.000 description 2
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 1
- NZEDMAWEJPYWCD-UHFFFAOYSA-N 3-prop-2-enylsulfonylprop-1-ene Chemical compound C=CCS(=O)(=O)CC=C NZEDMAWEJPYWCD-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 102100026816 DNA-dependent metalloprotease SPRTN Human genes 0.000 description 1
- 101710175461 DNA-dependent metalloprotease SPRTN Proteins 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- 229910018648 Mn—N Inorganic materials 0.000 description 1
- 229910001199 N alloy Inorganic materials 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- 229920006172 Tetrafluoroethylene propylene Polymers 0.000 description 1
- 229910052775 Thulium Inorganic materials 0.000 description 1
- 239000004699 Ultra-high molecular weight polyethylene Substances 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- MXZRMHIULZDAKC-UHFFFAOYSA-L ammonium magnesium phosphate Chemical compound [NH4+].[Mg+2].[O-]P([O-])([O-])=O MXZRMHIULZDAKC-UHFFFAOYSA-L 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 229920003233 aromatic nylon Polymers 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- IQBJFLXHQFMQRP-UHFFFAOYSA-K calcium;zinc;phosphate Chemical compound [Ca+2].[Zn+2].[O-]P([O-])([O-])=O IQBJFLXHQFMQRP-UHFFFAOYSA-K 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- CPSYWNLKRDURMG-UHFFFAOYSA-L hydron;manganese(2+);phosphate Chemical compound [Mn+2].OP([O-])([O-])=O CPSYWNLKRDURMG-UHFFFAOYSA-L 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052567 struvite Inorganic materials 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- ISIJQEHRDSCQIU-UHFFFAOYSA-N tert-butyl 2,7-diazaspiro[4.5]decane-7-carboxylate Chemical compound C1N(C(=O)OC(C)(C)C)CCCC11CNCC1 ISIJQEHRDSCQIU-UHFFFAOYSA-N 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- FRNOGLGSGLTDKL-UHFFFAOYSA-N thulium atom Chemical compound [Tm] FRNOGLGSGLTDKL-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229920000785 ultra high molecular weight polyethylene Polymers 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
本発明は、希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法に関する。 TECHNICAL FIELD The present invention relates to rare earth iron nitrogen-based magnetic powders, compounds for bonded magnets, bonded magnets, and methods for producing rare earth iron nitrogen-based magnetic powders.
希土類鉄窒素系のTh2Zn17型、Th2Ni17型、TbCu7型結晶構造を有するR2Fe17Nx(Rは希土類元素)窒化化合物は、その多くがニュークリエーション型の保磁力発生機構を有し、優れた磁気特性を有する磁性材料として知られている。なかでも希土類元素(R)がサマリウム(Sm)であるx=3のSm2Fe17N3を主相化合物とする磁性粉末は、高性能の永久磁石用磁性粉末である。そしてこの磁性粉末を含み、さらにポリアミド12やエチレンエチルアクリレートなどの熱可塑性樹脂、あるいはエポキシ樹脂や不飽和ポリエステル樹脂などの熱硬化性樹脂をバインダーとして含むボンド磁石は、多方面で応用されている。 Many of the R 2 Fe 17 N x (R is a rare earth element) nitride compounds having Th 2 Zn 17- type, Th 2 Ni 17 -type, and TbCu 7 -type crystal structures of the rare earth iron nitrogen system generate nucleation-type coercive force. It is known as a magnetic material that has a mechanism and excellent magnetic properties. Among them, the magnetic powder whose main phase compound is Sm 2 Fe 17 N 3 with x=3, in which the rare earth element (R) is samarium (Sm), is a high-performance magnetic powder for permanent magnets. Bonded magnets containing this magnetic powder and containing thermoplastic resins such as polyamide 12 and ethylene ethyl acrylate, or thermosetting resins such as epoxy resins and unsaturated polyester resins as binders are used in many fields.
Sm2Fe17N3に代表される希土類鉄窒素系磁性粉末の製法として、溶解法と還元拡散法が従来から知られている。溶解法では希土類金属を原料に用い、これを鉄などの金属とともに溶解及び反応させて磁性粉末を作製する。これに対して還元拡散法では希土類酸化物を原料に用い、これを還元させると同時に鉄などの金属と反応させて磁性粉末にする。安価な希土類酸化物を用いることができるため、還元拡散法は望ましい手法と考えられている。 Dissolution and reduction-diffusion methods are conventionally known as methods for producing rare earth iron nitrogen-based magnetic powders represented by Sm 2 Fe 17 N 3 . In the melting method, a rare earth metal is used as a raw material, which is melted and reacted with a metal such as iron to produce a magnetic powder. On the other hand, in the reduction-diffusion method, rare earth oxides are used as raw materials, which are simultaneously reduced and reacted with metals such as iron to form magnetic powder. The reduction-diffusion method is considered a desirable technique because it allows the use of inexpensive rare earth oxides.
ところで、希土類鉄窒素系磁性粉末は、耐熱性(耐酸化性)が悪いという欠点がある。粉末の耐熱性が悪いと、ボンド磁石製造時の混錬・成形工程での加熱により、磁気特性が低下する。またボンド磁石は、使用時に100℃以上の高温に曝されることがあり、そのような使用時に磁気特性が低下する。そこでこれらの問題を解決するために、希土類鉄窒素系磁性粉末において、鉄(Fe)の一部を他の元素で置換する、微粉割合を低減する、あるいは粉末表面に耐酸化性被膜を形成する、といった手法で、粉末の耐熱性を改善することが提案されている。 By the way, the rare earth iron nitrogen-based magnetic powder has a drawback of poor heat resistance (oxidation resistance). If the heat resistance of the powder is poor, the magnetic properties are degraded due to heating in the kneading/forming process during production of the bonded magnet. Bonded magnets may also be exposed to high temperatures of 100° C. or higher during use, and their magnetic properties deteriorate during such use. Therefore, in order to solve these problems, in the rare earth iron nitrogen-based magnetic powder, part of the iron (Fe) is replaced with another element, the fine powder ratio is reduced, or an oxidation-resistant coating is formed on the powder surface. , It has been proposed to improve the heat resistance of the powder.
例えば、特許文献1、非特許文献1及び非特許文献2には、溶解法や還元拡散法で作製した希土類鉄窒素系磁性粉末において、鉄(Fe)の一部をマンガン(Mn)で置換して、耐熱性及び耐酸化性を改善することが提案されている。すなわち特許文献1には、一般式Rα-Fe(100-α-β-γ)MnβNγ(但し、3≦α≦20、0.5≦β≦25、17≦γ≦25)で表され、平均粒径10μm以上であることを特徴とする磁性材料に関して、Sm、Fe及びMnを高周波溶解炉で溶解混合して合金を調整し、この合金をアンモニア混合気流中で加熱処理してSm-Fe-Mn-N系粉体を調整する旨、優れた耐酸化性能と温度特性を有している旨が記載されている(特許文献1の請求項1、[0048]~[0050]及び[0070])。また非特許文献1や非特許文献2には、還元拡散法により製造された磁石粉末に関して、Feの一部をMnで置換したSm2(Fe,Mn)17Nx(x>4)磁石粉末はSm2Fe17N3磁石粉末に比べて優れた耐熱性を示す旨が記載されている(非特許文献1の第881頁)。 For example, in Patent Document 1, Non-Patent Document 1 and Non-Patent Document 2, in rare earth iron nitrogen-based magnetic powders produced by a dissolution method or a reduction diffusion method, part of iron (Fe) is replaced with manganese (Mn). have been proposed to improve heat resistance and oxidation resistance. That is, in Patent Document 1, the general formula R α-Fe(100-α-β-γ) Mn β N γ (where 3 ≤ α ≤ 20, 0.5 ≤ β ≤ 25, 17 ≤ γ ≤ 25) and having an average particle size of 10 μm or more, Sm, Fe, and Mn are melted and mixed in a high-frequency melting furnace to prepare an alloy, and the alloy is heat-treated in an ammonia mixed gas flow. It is stated that Sm-Fe-Mn-N powder is prepared, and that it has excellent oxidation resistance and temperature characteristics (Claim 1 of Patent Document 1, [0048] to [0050] and [0070]). In addition, Non-Patent Document 1 and Non-Patent Document 2 disclose Sm 2 (Fe, Mn) 17 N x (x>4) magnet powder in which part of Fe is replaced with Mn, regarding the magnet powder produced by the reduction diffusion method. exhibits superior heat resistance compared to Sm 2 Fe 17 N 3 magnet powder (p. 881 of Non-Patent Document 1).
また特許文献2には希土類金属(R)と遷移金属(TM)を含む母合金を粉砕する工程(a)、粉砕された母合金粉末に希土類酸化物粉末と還元剤とを混合し、不活性ガス中加熱処理する工程(b)、得られた反応生成物を脆化・粉砕する工程(c)、得られた反応生成物粉末を窒化し磁石合金粉末を得る工程(d)、および得られた磁石合金粉末を水洗する工程(e)を含む希土類-遷移金属-窒素系磁石合金粉末の製造方法が開示され、該磁石合金粉末は、1μm未満の微粒子が極めて少ないため大気中での取り扱いが容易となり、耐熱性および耐候性に優れた磁石材料となる旨が記載されている(特許文献2の請求項1及び[0025])。 Further, Patent Document 2 describes a step (a) of pulverizing a master alloy containing a rare earth metal (R) and a transition metal (TM), mixing the pulverized master alloy powder with a rare earth oxide powder and a reducing agent, and adding an inert Step (b) of heat-treating in a gas, Step (c) of embrittlement and pulverization of the obtained reaction product, Step (d) of nitriding the obtained reaction product powder to obtain magnet alloy powder, and Disclosed is a method for producing a rare earth-transition metal-nitrogen based magnet alloy powder, which includes a step (e) of washing the magnet alloy powder with water, and the magnet alloy powder contains very few fine particles of less than 1 μm, so that it is difficult to handle in the atmosphere. It is described that the magnet material becomes easy and has excellent heat resistance and weather resistance (Claim 1 and [0025] of Patent Document 2).
さらに特許文献3には燐酸を含む有機溶剤中で希土類-鉄-窒素系磁石粗粉末を粉砕する工程を含む、ボンド磁石用希土類-鉄-窒素系磁石粉末の製造方法に関して、磁石の耐候性を高めるために、燐酸中に磁石粉末を入れて処理し、表面に燐酸塩皮膜を形成する旨が記載されている(特許文献3の請求項1及び[0002])。また特許文献4には表面被覆金属層を有する異方性希土類合金系磁性粉末と樹脂からなる希土類ボンド磁石に関して、還元拡散法によって製作したSm-Fe-N合金磁性粉末をZn蒸気中処理して表面に0.05ミクロンのZn被覆層をもつ磁性粉末を得た旨、180℃程度以上の高温長時間減磁を抑制でき、従来にない高性能・耐熱性のボンド磁石ができる旨が記載されている(特許文献4の請求項1、[0068]及び[0071])。 Further, Patent Document 3 relates to a method for producing rare earth-iron-nitrogen magnet powder for bonded magnets, which includes a step of pulverizing rare earth-iron-nitrogen magnet coarse powder in an organic solvent containing phosphoric acid. In order to increase the strength, it is described that a phosphate film is formed on the surface by placing magnet powder in phosphoric acid and treating it (Patent Document 3, claim 1 and [0002]). Further, Patent Document 4 describes a rare earth bonded magnet composed of an anisotropic rare earth alloy magnetic powder having a surface-coated metal layer and a resin, in which Sm--Fe--N alloy magnetic powder produced by the reduction diffusion method is treated in Zn vapor. It is stated that a magnetic powder having a 0.05 micron Zn coating layer on the surface was obtained, and that demagnetization at high temperatures of about 180°C or higher for a long period of time can be suppressed, resulting in a bonded magnet with unprecedented high performance and heat resistance. (Claim 1, [0068] and [0071] of Patent Document 4).
特許文献5には還元拡散反応法による希土類-遷移金属合金粉末の製造に関して、加熱処理後の還元生成物に水素処理を施すこと、水素処理された還元生成物は大気中にさらされるだけで自然崩壊が進行するので、水洗分離工程における時間短縮を図るとともに、さらなる粉砕を省略することが可能になることが記載されている(特許文献5の請求項1及び[0011])。特許文献6には還元拡散法による希土類-遷移金属合金粉末の製造に関して、還元拡散反応生成物を密閉容器に装入して水素処理すること、水素処理の際に大気圧よりも0.01~0.11MPa高い圧力として合金を自己発熱させ、その後、合金が実質的に発熱しなくなるまで大気圧より高くなるように加圧を続けることが記載されている(特許文献6の請求項1及び3)。
一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において、磁石粉末に樹脂バインダーを混合して成形される希土類元素を含む鉄系ボンド磁石の需要は拡大している。またボンド磁石の材料の保管や輸送、製品の使用条件も厳しくなってきている。そのため耐熱性がより一層優れ、保磁力などの特性の高いボンド磁石用磁性粉が必要とされている。 Demand for iron-based bonded magnets containing rare earth elements, which are formed by mixing magnet powder with a resin binder, is increasing in a wide range of fields, including general home appliances, communication/audio equipment, medical equipment, and general industrial equipment. In addition, the storage and transportation of materials for bonded magnets and the usage conditions of products are becoming stricter. Therefore, there is a need for magnetic powders for bonded magnets that have even better heat resistance and high properties such as coercive force.
しかしながら従来から提案されている技術では十分とは言えない。例えば鉄(Fe)の一部をマンガン(Mn)で置換する特許文献1、非特許文献1及び非特許文献2の手法は、磁性粉末の耐熱性が改善されるものの、磁化が低下してしまう問題がある。実際、特許文献1にはMn量3.5原子%である磁性材料(実施例1)はその飽和磁化が84emu/gであるのに対し、Mn量を10.3原子%に増量した磁性材料(実施例4)は飽和磁化が72emu/gまで低下することが示されている(特許文献1の[0069]表1)。また非特許文献1にはSm2(Fe,Mn)17N化合物において、Mn量が増加するのに伴って、キュリー温度Tcと最大磁化σmが単調に低下する旨が記載されている(非特許文献1の第885頁)。さらに特許文献2~4に開示される微粉割合を低減する手法や粉末表面に耐酸化性被膜を形成する手法は、一定の効果があるものの耐熱性の点で改善の余地があった。 However, conventionally proposed techniques are not sufficient. For example, the methods of Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2 in which a portion of iron (Fe) is replaced with manganese (Mn) improve the heat resistance of the magnetic powder, but the magnetization decreases. There's a problem. In fact, in Patent Document 1, the magnetic material having a Mn content of 3.5 atomic % (Example 1) has a saturation magnetization of 84 emu / g, whereas the magnetic material with an increased Mn content of 10.3 atomic % (Example 4) shows that the saturation magnetization is reduced to 72 emu/g ([0069] Table 1 of Patent Document 1). In addition, Non-Patent Document 1 describes that in a Sm 2 (Fe, Mn) 17 N compound, as the amount of Mn increases, the Curie temperature T c and the maximum magnetization σ m monotonously decrease ( Non-Patent Document 1, page 885). Furthermore, the technique of reducing the fine powder ratio and the technique of forming an oxidation-resistant film on the powder surface disclosed in Patent Documents 2 to 4 have a certain effect, but there is room for improvement in terms of heat resistance.
本発明者らは、ニュークリエーション型の保磁力発生機構をもつ希土類鉄窒素(R2Fe17N3)系磁性粉末における上記課題を解決するために鋭意検討を重ねた。その結果、R2Fe17N3化合物相を内部の主たる体積部(コア部)として備え、さらにR2Fe17N3よりも希土類(R)リッチな相を粒子表面層(シェル層)として備えるコアシェル構造を形成することで、高い耐熱性と磁気特性が両立された磁性粉末になるとの知見を得た。 The present inventors have extensively studied to solve the above-mentioned problems in rare earth iron nitrogen (R 2 Fe 17 N 3 ) magnetic powder having a nucleation type coercive force generation mechanism. As a result, the R 2 Fe 17 N 3 compound phase is provided as the main internal volume portion (core portion), and the rare earth (R) richer phase than R 2 Fe 17 N 3 is provided as the particle surface layer (shell layer). It was found that a magnetic powder having both high heat resistance and magnetic properties can be obtained by forming a core-shell structure.
本発明は、このような知見に基づき完成されたものであり、耐熱性及び磁気特性に優れる希土類鉄窒素系磁性粉末及びその製造方法の提供を課題とする。また本発明は希土類鉄窒素系磁性粉末を含むボンド磁石用コンパウンド及びボンド磁石の提供を課題とする。 The present invention was completed based on such findings, and aims to provide a rare earth iron nitrogen-based magnetic powder having excellent heat resistance and magnetic properties, and a method for producing the same. Another object of the present invention is to provide a compound for a bonded magnet containing rare earth iron nitrogen-based magnetic powder and a bonded magnet.
本発明は下記(1)~(14)の態様を包含する。なお、本明細書において「~」なる表現は、その両端の数値を含む。例えば、「a~b」は「a以上b以下」と同義である。 The present invention includes the following aspects (1) to (14). In the present specification, the expression "~" includes both numerical values. For example, "a to b" is synonymous with "a or more and b or less".
(1)希土類元素(R)、鉄(Fe)及び窒素(N)を主構成成分として含む希土類鉄窒素系磁性粉末であって、
前記磁性粉末は、その平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)を2.5質量%以上4.0質量%以下の量で含み、
前記磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、前記コア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備え、
前記シェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上5.0以下となるように含み、さらに窒素(N)を0原子%超10原子%以下の量で含み、
前記磁性粉末は、希土類元素(R)及び燐(P)から構成される化合物粒子を含み、且つ残留磁化σrが90Am2/kg以上である、磁性粉末。
(1) A rare earth iron nitrogen-based magnetic powder containing a rare earth element (R), iron (Fe) and nitrogen (N) as main constituents,
The magnetic powder has an average particle diameter of 1.0 μm or more and 10.0 μm or less, and contains 22.0% by mass or more and 30.0% by mass or less of a rare earth element (R) and 2.5% by mass of nitrogen (N). % or more and 4.0% by mass or less,
The magnetic powder comprises a core portion having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer having a thickness of 1 nm or more and 30 nm or less provided on the surface of the core portion. , and
The shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 5.0 or less, and nitrogen (N) is more than 0 atomic % and 10 atomic % or less. containing an amount of
The magnetic powder contains compound particles composed of a rare earth element (R) and phosphorus (P), and has a residual magnetization σr of 90 Am 2 /kg or more.
(2)前記シェル層が、外層と内層とからなる二層構造から構成され、
前記外層が、希土類元素(R)、鉄(Fe)及び窒素(N)に加えて、酸素(O)とカルシウム(Ca)とを含み、
前記内層が、希土類元素(R)、鉄(Fe)及び窒素(N)に加えて、酸素(O)を含むがカルシウム(Ca)を含まない、上記(1)の磁性粉末。
(2) the shell layer has a two-layer structure consisting of an outer layer and an inner layer;
The outer layer contains oxygen (O) and calcium (Ca) in addition to rare earth elements (R), iron (Fe) and nitrogen (N),
The magnetic powder according to (1) above, wherein the inner layer contains oxygen (O) but does not contain calcium (Ca) in addition to a rare earth element (R), iron (Fe) and nitrogen (N).
(3)前記シェル層が、外層と内層とからなる二層構造から構成され、
前記外層のR/Fe原子比(A)及び前記内層のR/Fe原子比(B)が、B<Aを満足する、上記(2)の磁性粉末。
(3) the shell layer has a two-layer structure consisting of an outer layer and an inner layer;
The magnetic powder according to (2) above, wherein the R/Fe atomic ratio (A) of the outer layer and the R/Fe atomic ratio (B) of the inner layer satisfy B<A.
(4)前記希土類元素(R)としてサマリウム(Sm)を含む、上記(1)~(3)のいずれかの磁性粉末。 (4) The magnetic powder according to any one of (1) to (3) above, containing samarium (Sm) as the rare earth element (R).
(5)前記磁性粉末の最表面にさらに燐酸系化合物被膜を備える、上記(1)~(4)のいずれかの磁性粉末。 (5) The magnetic powder according to any one of (1) to (4), further comprising a phosphoric acid compound coating on the outermost surface of the magnetic powder.
(6)アルゴン(Ar)雰囲気下300℃で1時間加熱したとき、加熱前の保磁力(Hc)に対する加熱後の保磁力(Hc,300)の比率である維持率(Hc,300/Hc)が70%以上である、上記(1)~(5)のいずれかの磁性粉末。 (6) When heated at 300 ° C. for 1 hour in an argon (Ar) atmosphere, the retention rate (H c , 300) is the ratio of the coercive force (H c, 300 ) after heating to the coercive force (H c ) before heating. /H c ) is 70% or more, the magnetic powder according to any one of the above (1) to (5).
(7)上記(1)~(6)のいずれかの磁性粉末と樹脂バインダーとを含む、ボンド磁石用コンパウンド。 (7) A compound for a bonded magnet, containing the magnetic powder according to any one of (1) to (6) above and a resin binder.
(8)上記(1)~(6)のいずれかの磁性粉末と樹脂バインダーとを含む、ボンド磁石。 (8) A bonded magnet comprising the magnetic powder according to any one of (1) to (6) above and a resin binder.
(9)上記(1)~(6)のいずれかの希土類鉄窒素系磁性粉末の製造方法であって、以下の工程;
Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する希土類鉄合金粉末と希土類酸化物粉末とを準備する準備工程と、
前記希土類鉄合金粉末100質量部に前記希土類酸化物粉末1~20質量部を混合して、粒径15.0μm以下の希土類鉄合金粉末と粒径2.0μm以下の希土類酸化物粉末とを含む原料混合物にする混合工程と、
前記原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量の還元剤を前記原料混合物に添加及び混合し、さらに還元剤を添加した前記原料混合物を非酸化性雰囲気中730~1050℃の範囲内の温度で加熱処理して還元拡散反応生成物にする還元拡散処理工程と、
前記還元拡散反応生成物を、その温度が300℃を超えないように水素ガス雰囲気中に曝すことで前記還元拡散反応生成物に水素を吸収させ、それにより前記還元拡散反応生成物に解砕処理を施す解砕処理工程と、
解砕処理を施した前記還元拡散反応生成物を窒素及び/又はアンモニアを含むガス気流中300~500℃の範囲内の温度で窒化熱処理して窒化反応生成物にする窒化熱処理工程と、を含み、
前記準備工程及び混合工程のいずれか一方又は両方の工程で、希土類鉄合金粉末に燐酸系化合物被膜を形成する、方法。
(9) A method for producing a rare earth iron nitrogen-based magnetic powder according to any one of (1) to (6) above, comprising the following steps;
a preparation step of preparing a rare earth iron alloy powder and a rare earth oxide powder having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type;
100 parts by mass of the rare earth iron alloy powder is mixed with 1 to 20 parts by mass of the rare earth oxide powder to contain a rare earth iron alloy powder having a particle size of 15.0 μm or less and a rare earth oxide powder having a particle size of 2.0 μm or less. A mixing step of forming a raw material mixture;
The raw material obtained by adding and mixing a reducing agent in an amount 1.1 to 10.0 times the equivalent required to reduce the oxygen component contained in the raw material mixture to the raw material mixture, and further adding the reducing agent. a reduction diffusion treatment step of heat-treating the mixture at a temperature within the range of 730 to 1050° C. in a non-oxidizing atmosphere to form a reduction diffusion reaction product;
The reduction-diffusion reaction product is exposed to a hydrogen gas atmosphere so that the temperature of the reduction-diffusion reaction product does not exceed 300° C., thereby causing the reduction-diffusion reaction product to absorb hydrogen, thereby disintegrating the reduction-diffusion reaction product. A crushing treatment step of applying
a nitriding heat treatment step of nitriding the crushed reduction-diffusion reaction product at a temperature within the range of 300 to 500° C. in a gas stream containing nitrogen and/or ammonia to form a nitriding reaction product. ,
A method, wherein a phosphoric acid-based compound coating is formed on the rare earth iron alloy powder in either one or both of the preparation step and the mixing step.
(10)前記混合工程の際に、希土類鉄合金粉末及び希土類酸化物粉末を、燐酸系表面処理剤を含む粉砕溶媒中で混合及び粉砕して、前記希土類鉄合金粉末に燐酸系化合物被膜を形成する、上記(9)の方法。 (10) In the mixing step, the rare earth iron alloy powder and the rare earth oxide powder are mixed and pulverized in a grinding solvent containing a phosphoric acid surface treatment agent to form a phosphoric acid compound coating on the rare earth iron alloy powder. The method of (9) above.
(11)前記還元拡散反応生成物及び/又は窒化反応生成物を水及び/又はグリコールを含む洗浄液中に投入して崩壊させ、それにより生成物中の還元剤由来成分を低減させる湿式処理を施す工程をさらに含む、上記(9)又は(10)の方法。 (11) A wet treatment is performed in which the reduction-diffusion reaction product and/or nitridation reaction product is put into a washing liquid containing water and/or glycol to disintegrate, thereby reducing the reducing agent-derived components in the product. The method of (9) or (10) above, further comprising a step.
(12)前記窒化熱処理後の生成物の表面に燐酸系化合物被膜を形成する工程をさらに含む、上記(9)~(11)のいずれかの方法。 (12) The method according to any one of (9) to (11) above, further comprising the step of forming a phosphoric acid-based compound coating on the surface of the product after the nitriding heat treatment.
(13)前記原料混合物の加熱減量が1質量%未満である、上記(9)~(12)のいずれかの方法。 (13) The method according to any one of (9) to (12) above, wherein the weight loss on heating of the raw material mixture is less than 1% by mass.
(14)前記拡散反応生成物とする際の加熱処理を0~10時間行う、上記(9)~(13)のいずれかの方法。 (14) The method according to any one of (9) to (13) above, wherein the heat treatment for forming the diffusion reaction product is performed for 0 to 10 hours.
本発明によれば、耐熱性及び磁気特性に優れる希土類鉄窒素系磁性粉末及びその製造方法が提供される。また本発明によれば希土類鉄窒素系磁性粉末を含むボンド磁石用コンパウンド及びボンド磁石が提供される。 INDUSTRIAL APPLICABILITY According to the present invention, a rare earth iron nitrogen-based magnetic powder having excellent heat resistance and magnetic properties and a method for producing the same are provided. Further, according to the present invention, a bonded magnet compound and a bonded magnet containing rare earth iron nitrogen-based magnetic powder are provided.
本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 A specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described. The present invention is not limited to the following embodiments, and various modifications are possible within the scope of the present invention.
≪希土類鉄窒素系磁性粉末≫
本実施形態の希土類鉄窒素系磁性粉末(以下、「磁性粉末」と総称する場合がある)は、希土類元素(R)、鉄(Fe)及び窒素(N)を主構成成分として含む。この磁性粉末は、その平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)を2.5質量%以上4.0質量%以下の量で含む。この磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、このコア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備える。このシェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上5.0以下となるように含み、さらに窒素(N)を0原子%超10原子%以下の量で含む。さらにこの磁性粉末は、希土類元素(R)及び燐(P)から構成される化合物粒子を含む。そしてこの磁性粉末は、残留磁化σrが90Am2/kg以上である。
≪Rare earth iron nitrogen-based magnetic powder≫
The rare-earth iron-nitrogen-based magnetic powder (hereinafter sometimes collectively referred to as "magnetic powder") of the present embodiment contains a rare-earth element (R), iron (Fe), and nitrogen (N) as main constituents. This magnetic powder has an average particle size of 1.0 μm or more and 10.0 μm or less, and contains 22.0% by mass or more and 30.0% by mass or less of a rare earth element (R) and 2.5% by mass of nitrogen (N). % or more and 4.0 mass % or less. This magnetic powder has a core portion having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer having a thickness of 1 nm or more and 30 nm or less provided on the surface of the core portion. , provided. This shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 5.0 or less, and nitrogen (N) is more than 0 atomic % and 10 atomic % or less. in the amount of Furthermore, this magnetic powder contains compound particles composed of a rare earth element (R) and phosphorus (P). This magnetic powder has a residual magnetization σr of 90 Am 2 /kg or more.
希土類元素(R)は、特に限定されるものではないが、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、プラセオジウム(Pr)、ネオジム(Nd)、ガドリニウム(Gd)、テルビウム(Tb)からなる群から選ばれる少なくとも1種の元素が含まれるものが好ましい。あるいは、さらにジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)及びイッテルビウム(Yb)からなる群から選ばれる少なくとも1種の元素が含まれるものが好ましい。なかでもサマリウム(Sm)及び/又はネオジム(Nd)が含まれるものは、本実施形態の効果を顕著に発揮させるため特に好ましい。ボンド磁石に応用される場合には、その50原子%以上がサマリウム(Sm)であることが望ましく、また高周波磁性材料に応用される場合にはその50原子%以上がネオジウム(Nd)であることが望ましい。 Rare earth elements (R) are not particularly limited, but are lanthanum (La), cerium (Ce), samarium (Sm), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), and terbium (Tb). It is preferable that at least one element selected from the group consisting of is included. Alternatively, it preferably further contains at least one element selected from the group consisting of dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm) and ytterbium (Yb). Among them, those containing samarium (Sm) and/or neodymium (Nd) are particularly preferable because the effects of the present embodiment are exhibited remarkably. When applied to bonded magnets, it is desirable that 50 atomic % or more of it is samarium (Sm), and when it is applied to high-frequency magnetic materials, 50 atomic % or more of it is neodymium (Nd). is desirable.
磁性粉末は、希土類元素(R)、鉄(Fe)及び窒素(N)以外の他の成分を含んでいてもよい。例えばコバルト(Co)、ニッケル(Ni)、マンガン(Mn)、クロム(Cr)を含んでもよい。しかしながらニッケル(Ni)、マンガン(Mn)やクロム(Cr)は磁化を低下させる恐れがあるため、その含有量はなるべく少ないことが好ましい。希土類元素(R)、鉄(Fe)及び窒素(N)以外の他の成分を含む場合には、その含有量は10原子%以下が好ましく、5原子%以下がより好ましく、1原子%以下がさらに好ましい。ただしコバルト(Co)は20原子%以下であればよい。磁性粉末が、希土類元素(R)、鉄(Fe)及び窒素(N)を含み、残部不可避不純物であってもよい。 The magnetic powder may contain components other than rare earth elements (R), iron (Fe) and nitrogen (N). For example, cobalt (Co), nickel (Ni), manganese (Mn), chromium (Cr) may be included. However, since nickel (Ni), manganese (Mn) and chromium (Cr) may lower the magnetization, the content thereof should preferably be as small as possible. When other components other than rare earth elements (R), iron (Fe) and nitrogen (N) are included, the content is preferably 10 atomic % or less, more preferably 5 atomic % or less, and 1 atomic % or less. More preferred. However, cobalt (Co) should be 20 atomic % or less. The magnetic powder may contain rare earth elements (R), iron (Fe) and nitrogen (N), and the balance may be unavoidable impurities.
本実施形態の磁性粉末は、その平均粒径が1.0μm以上10.0μm以下である。平均粒径1.0μm未満では、磁性粉末の取扱いが困難となる。また粒子全体に占めるコア部の体積比率が小さくなってしまう。コア部は磁気特性が高いため、その体積比率が小さくなると、磁性粉末の磁気特性が高くなり難くなってしまう。平均粒径は2.0μm以上であってよく、3.0μm以上であってもよい。一方で、平均粒径が10μmより大きくなると、磁性材料として十分高い保磁力(Hc)を得にくい。平均粒径は9.0μm以下であってよく、8.0μm以下であってもよい。 The magnetic powder of this embodiment has an average particle size of 1.0 μm or more and 10.0 μm or less. If the average particle size is less than 1.0 μm, it becomes difficult to handle the magnetic powder. Moreover, the volume ratio of the core portion to the whole particle becomes small. Since the core portion has high magnetic properties, if the volume ratio of the core portion becomes small, it becomes difficult to increase the magnetic properties of the magnetic powder. The average particle size may be 2.0 μm or more, and may be 3.0 μm or more. On the other hand, when the average particle size is larger than 10 μm, it is difficult to obtain a sufficiently high coercive force (H c ) as a magnetic material. The average particle size may be 9.0 μm or less, and may be 8.0 μm or less.
本実施形態の磁性粉末は、希土類元素(R)を22.0質量%以上30.0質量%以下の量で含む。磁性粉末全体の組成で、希土類元素(R)量が22質量%未満では保磁力が低下する。一方で30質量%を超えると磁化の低いシェル層が厚くなり、また希土類元素(R)及び燐(P)から構成される化合物粒子(RP化合物粒子)やRFe3窒化物相が増加する。そのため残留磁化(σr)が低下する。希土類(R)量は24.0質量%以上29.0質量%以下が好ましく、25.0質量%以上28.0質量%以下がより好ましい。 The magnetic powder of the present embodiment contains a rare earth element (R) in an amount of 22.0% by mass or more and 30.0% by mass or less. If the amount of rare earth element (R) is less than 22% by mass in the composition of the entire magnetic powder, the coercive force is lowered. On the other hand, if it exceeds 30% by mass, the shell layer with low magnetization becomes thick, and compound particles (RP compound particles) composed of rare earth elements (R) and phosphorus (P) and RFe 3 nitride phase increase. Therefore, the residual magnetization (σ r ) is reduced. The rare earth (R) content is preferably 24.0% by mass or more and 29.0% by mass or less, more preferably 25.0% by mass or more and 28.0% by mass or less.
また本実施形態の磁性粉末は、窒素(N)を2.5質量%以上4.0質量%以下の量で含む。窒素(N)量が2.5質量%未満では十分に窒化されていない粒子が形成されてしまう。そのような粒子は飽和磁化と磁気異方性が小さい。そのため磁性粉末の残留磁化と保磁力が低下する。一方で窒素(N)量が4.0質量%を超えると過剰に窒化された粒子が増加して残留磁化と保磁力が低下する。窒素(N)量は2.8質量%以上3.6質量%以下が好ましく、2.9質量%以上3.4質量%以下がより好ましい。 Further, the magnetic powder of the present embodiment contains nitrogen (N) in an amount of 2.5% by mass or more and 4.0% by mass or less. If the nitrogen (N) content is less than 2.5% by mass, insufficiently nitrided particles are formed. Such particles have low saturation magnetization and magnetic anisotropy. As a result, the residual magnetization and coercive force of the magnetic powder are reduced. On the other hand, when the amount of nitrogen (N) exceeds 4.0% by mass, the number of excessively nitrided particles increases and the residual magnetization and coercive force decrease. The nitrogen (N) content is preferably 2.8% by mass or more and 3.6% by mass or less, more preferably 2.9% by mass or more and 3.4% by mass or less.
さらに本実施形態の磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部を備える。このような結晶構造を有するコア部を備えることで、優れた磁気特性を有する磁性粉末とすることが可能になる。コア部の結晶構造は、通常の粉末X線回折で求められるピーク位置から判断することができる。この場合には、シェル層も含めて測定されるが、シェル層の厚みはコア部に比べて十分に薄い。そのためシェル層の影響はX線回折パターンにはほとんど見られない。 Furthermore, the magnetic powder of the present embodiment has a core portion having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type and TbCu 7 type. A magnetic powder having excellent magnetic properties can be obtained by providing a core portion having such a crystal structure. The crystal structure of the core portion can be determined from the peak positions obtained by ordinary powder X-ray diffraction. In this case, the thickness of the shell layer is measured including the shell layer, and the thickness of the shell layer is sufficiently thinner than that of the core portion. Therefore, the influence of the shell layer is hardly seen in the X-ray diffraction pattern.
本実施形態の磁性粉末は、コア部の表面に設けられるシェル層を備える。このシェル層は、厚さ1nm以上30nm以下であり、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上5.0以下となるように含み、さらに窒素(N)を0原子%超10原子%以下の量で含む。平均粒径1~10μmの粒子(コア部)の表面部にこのようなシェル層を存在させることで、耐熱性と磁気特性を両立させることができる。ここで形成されるシェル層は、R2Fe17N3相より希土類に富むR相、RFe2相、RFe3相、あるいはこれらの窒化物になっていると推測される。R/Feが0.3未満ではシェル層の組成がコア部に近くなってしまい、耐熱性向上が期待できない。一方でR/Feが5.0を超えると残留磁化が低下する場合がある。R/Feは0.5以上3.0以下が好ましい。シェル層の厚み1nm未満では耐熱性改善の効果が小さく、30nmを超えると残留磁化が低下する。厚みは3nm以上20nm以下が好ましい。またシェル層が窒素を含まないと、磁性粉末の残留磁化、保磁力及び耐熱性が低下する恐れがある。一方でシェル層の窒素量が10原子%を超えても、磁性粉末の残留磁化、保磁力、耐熱性が低下する。 The magnetic powder of this embodiment has a shell layer provided on the surface of the core portion. The shell layer has a thickness of 1 nm or more and 30 nm or less, contains a rare earth element (R) and iron (Fe) in an R/Fe atomic ratio of 0.3 or more and 5.0 or less, and further contains nitrogen (N). in an amount of more than 0 atomic % and 10 atomic % or less. By providing such a shell layer on the surface of the particles (core portion) having an average particle diameter of 1 to 10 μm, both heat resistance and magnetic properties can be achieved. The shell layer formed here is presumed to be R phase, RFe 2 phase, RFe 3 phase, or nitrides of these, which are richer in rare earth elements than R 2 Fe 17 N 3 phase. If R/Fe is less than 0.3, the composition of the shell layer becomes close to that of the core, and improvement in heat resistance cannot be expected. On the other hand, when R/Fe exceeds 5.0, residual magnetization may decrease. R/Fe is preferably 0.5 or more and 3.0 or less. If the thickness of the shell layer is less than 1 nm, the effect of improving the heat resistance is small, and if it exceeds 30 nm, the residual magnetization decreases. The thickness is preferably 3 nm or more and 20 nm or less. Also, if the shell layer does not contain nitrogen, the residual magnetization, coercive force and heat resistance of the magnetic powder may be lowered. On the other hand, even if the nitrogen content of the shell layer exceeds 10 atomic %, the residual magnetization, coercive force and heat resistance of the magnetic powder are lowered.
本実施形態の磁性粉末は、希土類元素(R)及び燐(P)から構成される化合物粒子(RP化合物粒子)を含む。ここでRP化合物粒子は、燐化サマリウム(SmP)相などの燐化希土類相を含む。RP化合物は、保磁力や耐熱性劣化をもたらすRFe2相やRFe3相の生成を抑制する働きがある。そのため磁性粉末にRP化合物粒子を含ませることで、保磁力や耐熱性劣化を抑制することが可能になる。RP化合物粒子の量は特に限定されない。しかしながら劣化抑制の観点から、磁性粉末中のRP化合物粒子の量は0.01質量%以上であってよく、0.1質量%以上であってよく、1.0質量%以上であってよい。一方で、RP化合物粒子が過度に多いと残留磁化が低下する恐れがある。RP化合物粒子の量は15.0質量%以下であってよく、10.0質量%以下であってよく、5.0質量%以下であってもよい。またRP化合物粒子の大きさは、限定されるものではないが、例えば100nm~5μm程度である。 The magnetic powder of this embodiment contains compound particles (RP compound particles) composed of a rare earth element (R) and phosphorus (P). The RP compound particles herein include rare earth phosphide phases such as samarium phosphide (SmP) phases. The RP compound has the function of suppressing the formation of RFe 2 phase and RFe 3 phase, which cause deterioration of coercive force and heat resistance. Therefore, by including the RP compound particles in the magnetic powder, it is possible to suppress the deterioration of coercive force and heat resistance. The amount of RP compound particles is not particularly limited. However, from the viewpoint of suppressing deterioration, the amount of RP compound particles in the magnetic powder may be 0.01% by mass or more, 0.1% by mass or more, or 1.0% by mass or more. On the other hand, if there are too many RP compound particles, the residual magnetization may decrease. The amount of RP compound particles may be 15.0 wt% or less, may be 10.0 wt% or less, or may be 5.0 wt% or less. The size of the RP compound particles is not limited, but is, for example, about 100 nm to 5 μm.
本実施形態の磁性粉末は、残留磁化σrが90Am2/kg以上である。換言するに、この磁性粉末は異相たるα-Feの量が少ない。磁性粉末にα-Feが多量に含まれていると磁性粉末の磁気特性が劣化する。すなわち、α-Feは軟磁性であるが故に、これが多量に含まれていると磁性粉末の磁化曲線における角形性が悪化する。角形性が悪化すると、残留磁化のみならず、保磁力の維持率、すなわち耐熱性が低下する。またα-Feは逆磁区発生の核として働くためその粒子の保磁力を低下させる。本実施形態の磁性粉末はα-Fe量が少なく、それ故、残留磁化σrをはじめとする磁気特性に優れている。σrは95Am2/kg以上であってよく、100Am2/kg以上であってよく、105Am2/kg以上であってよく、110Am2/kg以上であってもよい。なお残留磁化σrは、磁性粉末を配向させた状態で測定される。具体的には後述する実施例で行う手法で測定される。 The magnetic powder of this embodiment has a residual magnetization σr of 90 Am 2 /kg or more. In other words, this magnetic powder has a small amount of α-Fe, which is a different phase. If the magnetic powder contains a large amount of α-Fe, the magnetic properties of the magnetic powder deteriorate. That is, since α-Fe is soft magnetic, if it is contained in a large amount, the squareness of the magnetization curve of the magnetic powder deteriorates. If the squareness deteriorates, not only the residual magnetization but also the coercive force retention rate, that is, the heat resistance, is lowered. In addition, α-Fe acts as a nucleus for generation of reversed magnetic domains, thereby reducing the coercive force of the particles. The magnetic powder of the present embodiment has a small amount of α-Fe and is therefore excellent in magnetic properties including residual magnetization σr. σr may be 95 Am 2 /kg or more, 100 Am 2 /kg or more, 105 Am 2 /kg or more, or 110 Am 2 /kg or more. Note that the residual magnetization σr is measured with the magnetic powder oriented. Specifically, it is measured by a method performed in Examples described later.
磁性粉末は、好ましくはシェル層が外層と内層とからなる二層構造から構成される。また外層が、希土類元素(R)、鉄(Fe)及び窒素(N)に加えて、酸素(O)とカルシウム(Ca)とを含み、内層が、希土類元素(R)、Fe(Fe)及び窒素(N)に加えて、酸素(O)を含むがカルシウム(Ca)を含まないことがより好ましい。このような磁性粉末の構造を図1に基づき説明する。図1は磁性粉末の断面模式図の一例をモデル的に示す。磁性粉末(1)は、コア部(2)と、このコア部(2)の表面に設けられたシェル内層(3)と、このシェル内層(3)の表面に設けられたシェル外層(4)とから構成されている。コア部(2)はTh2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有する。シェル外層(4)はカルシウム(Ca)を含むのに対し、シェル内層(3)はカルシウム(Ca)を含まない。このようにCa含有の外層とCa非含有の内層の二層構造にすることで、酸素の拡散抑制という効果が期待される。なお本明細書においてカルシウム(Ca)を含有しない(Ca非含有)とは、Ca量が1.0原子%未満のことを意味する。 The magnetic powder preferably has a two-layer structure in which the shell layer consists of an outer layer and an inner layer. Further, the outer layer contains oxygen (O) and calcium (Ca) in addition to the rare earth element (R), iron (Fe) and nitrogen (N), and the inner layer contains the rare earth element (R), Fe (Fe) and In addition to nitrogen (N), it more preferably contains oxygen (O) but does not contain calcium (Ca). The structure of such magnetic powder will be described with reference to FIG. FIG. 1 shows an example of a schematic cross-sectional view of magnetic powder as a model. The magnetic powder (1) comprises a core portion (2), an inner shell layer (3) provided on the surface of the core portion (2), and an outer shell layer (4) provided on the surface of the inner shell layer (3). It consists of The core portion (2) has a crystal structure of any one of Th2Zn17 type, Th2Ni17 type and TbCu7 type. The outer shell layer (4) contains calcium (Ca), whereas the inner shell layer (3) does not contain calcium (Ca). Such a two-layer structure of a Ca-containing outer layer and a Ca-free inner layer is expected to have the effect of suppressing the diffusion of oxygen. In the present specification, the term "does not contain calcium (Ca)" means that the amount of Ca is less than 1.0 atomic percent.
磁性粉末は、好ましくは外層のR/Fe原子比(A)及び内層のR/Fe原子比(B)が、B<Aを満足する。このように外層の組成を内層より希土類(R)リッチにすることで、Caと同様に酸素の拡散抑制という効果が期待される。 In the magnetic powder, the R/Fe atomic ratio (A) of the outer layer and the R/Fe atomic ratio (B) of the inner layer preferably satisfy B<A. By making the composition of the outer layer richer in rare earth elements (R) than the inner layer in this way, the effect of suppressing the diffusion of oxygen is expected as with Ca.
磁性粉末は、好ましくは希土類元素(R)としてサマリウム(Sm)を含む。これにより磁性粉末をボンド磁石として好適に用いることが可能になる。 The magnetic powder preferably contains samarium (Sm) as rare earth element (R). This makes it possible to suitably use the magnetic powder as a bonded magnet.
磁性粉末は、好ましくはその最表面に更に燐酸系化合物被膜を備える。磁性粉末のシェル層の外側に公知の燐酸系化合物被膜を設けると、湿度環境下での安定性を高めることができる。燐酸系化合物被膜の厚みは、シェル層の厚みよりも薄いことが望ましい。厚さは例えば30nm以下であり、5nm以上20nm以下が好ましい。燐酸系化合物被膜の厚み30nmを超えると磁気特性が低下することがある。 The magnetic powder preferably further has a phosphoric acid compound coating on its outermost surface. If a known phosphoric acid-based compound coating is provided on the outside of the magnetic powder shell layer, the stability in a humid environment can be enhanced. The thickness of the phosphoric acid-based compound coating is desirably thinner than the thickness of the shell layer. The thickness is, for example, 30 nm or less, preferably 5 nm or more and 20 nm or less. If the thickness of the phosphoric acid compound coating exceeds 30 nm, the magnetic properties may deteriorate.
磁性粉末は、保磁力(Hc)が600kA/m以上であってよく、800kA/m以上であってよく、1000kA/m以上であってよく、1200kA/m以上であってよく、1400kA/m以上であってもよい。さらにこの磁性粉末は、保磁力の維持率(Hc,300/Hc)が70%以上であってよく、75%以上であってよく、80%以上であってよく、85%以上であってよく、90%以上であってもよい。ここで保磁力の維持率(Hc,300/Hc)とは、磁性粉末をアルゴン(Ar)雰囲気下300℃で1.5時間(90分間)加熱したとき、加熱前の保磁力(Hc)に対する加熱後の保磁力(Hc,300)の比率である。 The magnetic powder may have a coercive force (H c ) of 600 kA/m or more, 800 kA/m or more, 1000 kA/m or more, 1200 kA/m or more, 1400 kA/m or more. or more. Furthermore, this magnetic powder may have a coercivity retention rate (Hc ,300 / Hc ) of 70% or more, 75% or more, 80% or more, or 85% or more. It may be 90% or more. Here, the coercive force retention ratio (H c,300 /H c ) is defined as the coercive force (H is the ratio of coercivity after heating (H c,300 ) to c ).
本実施形態の磁性粉末は、耐熱性、耐候性だけでなく、磁気特性、特に磁化及び保磁力に優れるという特徴がある。すなわちこの磁性粉末はSm2Fe17N3に代表される従来の磁性粉末に比べて高い耐熱性を有する。また鉄(Fe)の一部を他元素(Mn、Cr)で置換した高耐熱性のR2(Fe、M)17Nx磁性粉末(M=Cr、Mn)に比べて同等以上の磁気特性を有する。 The magnetic powder of the present embodiment is characterized by excellent magnetic properties, particularly magnetization and coercive force, as well as heat resistance and weather resistance. That is, this magnetic powder has higher heat resistance than conventional magnetic powder represented by Sm 2 Fe 17 N 3 . In addition, the magnetic properties are equal to or higher than those of highly heat-resistant R 2 (Fe, M) 17 N x magnetic powder (M=Cr, Mn) in which part of iron (Fe) is replaced with other elements (Mn, Cr). have
耐熱性及び磁気特性に優れる本実施形態の磁性粉末は、これを樹脂バインダーと混合してボンド磁石を作製する上で好適である。すなわち磁性粉末を用いてボンド磁石を作製する際に、磁性粉末が高温に曝されることがある。例えばポリフェニレンサルファイド樹脂や芳香族ポリアミド樹脂などの耐熱性の高い熱可塑性樹脂をバインダーとして用いてボンド磁石を作製すると、磁性粉末と樹脂バインダーとの混合混練工程や射出成形工程で、材料の曝される温度が300℃を超えることがある。本実施形態の磁性粉末は、このような高温に曝された後であっても、磁気特性の劣化が抑制される。 The magnetic powder of this embodiment, which is excellent in heat resistance and magnetic properties, is suitable for producing a bonded magnet by mixing it with a resin binder. That is, the magnetic powder may be exposed to high temperatures when producing a bonded magnet using the magnetic powder. For example, when a bonded magnet is manufactured using a highly heat-resistant thermoplastic resin such as polyphenylene sulfide resin or aromatic polyamide resin as a binder, the material is exposed during the mixing and kneading process of the magnetic powder and the resin binder and the injection molding process. Temperatures can exceed 300°C. The magnetic powder of the present embodiment is prevented from deteriorating in magnetic properties even after being exposed to such a high temperature.
≪希土類鉄窒素系磁性粉末の製造方法≫
希土類鉄窒素系磁性粉末の製造方法は、得られる磁性粉末が上述する要件を満足する限り、限定されない。しかしながら還元拡散法により製造することが好ましく、以下に説明される手法で製造することが特に好ましい。
<<Method for producing rare earth iron nitrogen-based magnetic powder>>
The method for producing the rare earth iron nitrogen-based magnetic powder is not limited as long as the resulting magnetic powder satisfies the above requirements. However, it is preferably produced by the reduction diffusion method, and particularly preferably by the technique described below.
本実施形態の希土類鉄窒素系磁性粉末の製造方法は、以下の工程;Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する希土類鉄合金粉末と希土類酸化物粉末とを準備する準備工程と、この希土類鉄合金粉末100質量部に希土類酸化物粉末1~20質量部を混合して、粒径15.0μm以下の希土類鉄合金粉末と粒径2.0μm以下の希土類酸化物粉末とを含む原料混合物にする混合工程と、この原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量の還元剤を原料混合物に添加及び混合し、さらに還元剤を添加した原料混合物を非酸化性雰囲気中730~1050℃の範囲内の温度で加熱処理して還元拡散反応生成物にする還元拡散処理工程と、この還元拡散反応生成物を、その温度が300℃を超えないように水素ガス雰囲気中に曝すことで還元拡散反応生成物に水素を吸収させ、それにより還元拡散反応生成物に解砕処理を施す解砕処理工程と、解砕処理を施した還元拡散反応生成物を窒素及び/又はアンモニアを含むガス気流中300~500℃の範囲内の温度で窒化熱処理して窒化反応生成物にする窒化熱処理工程と、を含む。また準備工程及び混合工程のいずれか一方又は両方の工程で、希土類鉄合金粉末に燐酸系化合物被膜を形成する。各工程の詳細について以下に説明する。 The method for producing the rare earth iron nitrogen-based magnetic powder of the present embodiment includes the following steps: a rare earth iron alloy powder having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a rare earth oxide. 100 parts by mass of the rare earth iron alloy powder is mixed with 1 to 20 parts by mass of the rare earth oxide powder to obtain a rare earth iron alloy powder having a particle size of 15.0 μm or less and a particle size of 2.0 μm or less. A mixing step of obtaining a raw material mixture containing the rare earth oxide powder and the reducing agent in an amount 1.1 to 10.0 times the equivalent amount required to reduce the oxygen component contained in the raw material mixture. A reduction diffusion treatment step of adding and mixing to the mixture, and further heat-treating the raw material mixture to which a reducing agent is added at a temperature within the range of 730 to 1050 ° C. in a non-oxidizing atmosphere to make a reduction diffusion reaction product, and this reduction The diffusion reaction product is exposed to a hydrogen gas atmosphere so that the temperature does not exceed 300° C., thereby causing the reduction diffusion reaction product to absorb hydrogen, thereby subjecting the reduction diffusion reaction product to a crushing treatment. a treatment step, and a nitriding heat treatment step of nitriding the reduced-diffusion reaction product subjected to the crushing treatment at a temperature within the range of 300 to 500° C. in a gas stream containing nitrogen and/or ammonia to form a nitriding reaction product. ,including. In one or both of the preparation step and the mixing step, a phosphoric acid compound coating is formed on the rare earth iron alloy powder. Details of each step are described below.
<準備工程>
準備工程では、希土類鉄合金粉末と希土類酸化物粉末とを準備する。ここで希土類鉄合金粉末は、主としてコア部を形成するための原料であり、Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する粉末、例えばR2Fe17組成の粉末である。希土類鉄合金粉末は、後続する混合工程で15.0μm以下の粒径になるものを選択すればよい。すなわち粒径15.0μm以下の粉末を用いてもよく、あるいは15.0μm超の粉末を用いてもよい。15μm超の粉末を用いる場合には、混合工程で粒径15.0μm以下になるまで粉砕すればよい。なお本明細書において、合金は、複数種の金属の固溶体のみならず、金属間化合物及び混晶を含む概念である。また結晶質であってもよく、あるいは非晶質であってもよい。
<Preparation process>
In the preparation step, rare earth iron alloy powder and rare earth oxide powder are prepared. Here, the rare earth iron alloy powder is mainly a raw material for forming the core portion, and is a powder having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, such as R 2 Fe 17 The composition is a powder. Rare-earth-iron-alloy powder may be selected that will have a particle size of 15.0 μm or less in the subsequent mixing step. That is, powder with a particle size of 15.0 μm or less may be used, or powder with a particle size of more than 15.0 μm may be used. When using a powder with a particle size of more than 15 μm, it may be pulverized to a particle size of 15.0 μm or less in the mixing step. In the present specification, an alloy is a concept that includes not only solid solutions of multiple kinds of metals, but also intermetallic compounds and mixed crystals. It may be crystalline or amorphous.
希土類鉄合金粉末(R2Fe17粉末等)は、公知の手法、例えば還元拡散法、溶解鋳造法、あるいは液体急冷法などの手法で作製することができる。このうち還元拡散法であれば、その原料である鉄粒子の大きさと還元拡散反応時の温度等の条件を調整することで、所望とする粒径の合金粉末を直接製造できる。あるいは、より大きな粒径の合金粉末や合金塊からなる出発物質を所望の粒径まで粉砕して製造することもできる。 Rare earth iron alloy powder (R 2 Fe 17 powder, etc.) can be produced by a known method such as reduction diffusion method, melting casting method, or liquid quenching method. Among these methods, the reduction diffusion method can directly produce an alloy powder having a desired particle size by adjusting conditions such as the size of the iron particles as the raw material and the temperature during the reduction diffusion reaction. Alternatively, it can be produced by pulverizing a starting material consisting of an alloy powder or an alloy lump having a larger particle size to a desired particle size.
なお還元拡散法で製造した希土類鉄合金粉末は、製造条件によっては金属間化合物中に水素が含まれ、水素含有物(R2Fe17Hx粉末等の水素含有希土類鉄合金粉末)になっている場合がある。この水素含有物は、希土類鉄合金(R2Fe17)と結晶構造が変わらないものの、格子定数が大きくなっていることがある。また溶解鋳造法や液体急冷法で製造した場合であっても、水素を吸蔵させて粉砕した合金粉末は、同様に格子定数が大きな水素含有物になっていることがある。合金粉末がこのような水素を含有している状態であっても差支えない。ただし希土類鉄合金粉末は、その含有水分量(加熱減量)が1質量%未満であることが望ましい。 In the rare earth iron alloy powder produced by the reduction diffusion method, hydrogen is contained in the intermetallic compound depending on the production conditions, resulting in hydrogen-containing substances (hydrogen-containing rare earth iron alloy powder such as R 2 Fe 17 H x powder). There may be Although this hydrogen-containing material has the same crystal structure as the rare earth iron alloy (R 2 Fe 17 ), it may have a larger lattice constant. Moreover, even in the case of manufacturing by the melting casting method or the liquid quenching method, the alloy powder pulverized by occluding hydrogen may similarly become a hydrogen-containing material having a large lattice constant. There is no problem even if the alloy powder contains such hydrogen. However, the rare earth iron alloy powder preferably has a water content (weight loss on heating) of less than 1% by mass.
希土類酸化物粉末は、主としてシェル層を形成するための原料である。希土類酸化物粉末を構成する希土類元素(R)は、希土類鉄合金粉末を構成する希土類元素と同一であってもよく、或いは異なっていてもよい。しかしながら両者が同一であることが好ましい。また希土類酸化物粉末は、後続する混合工程で2.0μm以下の粒径になるものを選択すればよい。すなわち粒径2.0μm以下の粉末を用いてもよく、あるいは2.0μm超の粉末を用いてもよい。2.0μm超の粉末を用いる場合には、混合工程で粒径2.0μm以下になるまで粉砕すればよい。 Rare earth oxide powder is mainly a raw material for forming the shell layer. The rare earth element (R) constituting the rare earth oxide powder may be the same as or different from the rare earth element constituting the rare earth iron alloy powder. However, it is preferred that both are identical. Also, the rare earth oxide powder may be selected so that the particle size becomes 2.0 μm or less in the subsequent mixing step. That is, powder with a particle size of 2.0 μm or less may be used, or powder with a particle size of more than 2.0 μm may be used. When using a powder with a particle size of more than 2.0 μm, it may be pulverized to a particle size of 2.0 μm or less in the mixing step.
<混合工程>
混合工程では、準備した希土類鉄合金粉末100質量部に希土類酸化物粉末1~20質量部を混合して原料混合物とする。希土類酸化物粉末量が1質量部未満であると、後述する還元拡散処理後に希土類鉄合金粉末(R2Fe17粉末等)の表面にα-Feが生成し、最終的に得られる磁性粉末の保磁力が低下する。一方で、希土類酸化物粉末量が20質量部を超えると希土類鉄合金よりも希土類(R)リッチなRFe3および/またはRFe2化合物が多く生成し、最終的に得られる磁性粉末の収率が低下する。
<Mixing process>
In the mixing step, 100 parts by mass of the prepared rare earth iron alloy powder is mixed with 1 to 20 parts by mass of the rare earth oxide powder to obtain a raw material mixture. When the amount of the rare earth oxide powder is less than 1 part by mass, α-Fe is generated on the surface of the rare earth iron alloy powder (R 2 Fe 17 powder, etc.) after the reduction diffusion treatment described later, and the magnetic powder finally obtained is deteriorated. Coercive force decreases. On the other hand, when the amount of the rare earth oxide powder exceeds 20 parts by mass, more rare earth (R)-rich RFe3 and/or RFe2 compounds are produced than the rare earth iron alloy, and the yield of the finally obtained magnetic powder is reduced. descend.
本実施形態の製造方法では、準備工程及び混合工程のいずれか一方又は両方の工程で、希土類鉄合金粉末に燐酸系化合物被膜を形成する。そのため混合工程で得られた混合物中の希土類鉄合金粉末は燐酸系化合物被膜を備えている。例えば、準備した希土類鉄合金粉末の粒径が15.0μm以下である場合には、予め合金粉末に燐酸系化合物被膜を形成してもよい。あるいは本混合工程で希土類鉄合金粉末に燐酸系化合物被膜を形成してもよい。いずれの場合であっても、混合工程で得られた混合物中の希土類鉄合金粉末が燐酸系化合物被膜を備えていればよい。このように燐酸系化合物被膜を設けることで、製造される磁性粉末の保磁力や耐熱性を向上させることが可能になる。すなわち後続する還元拡散反応工程で、燐酸系化合物被膜に含まれる燐(P)が余剰希土類元素(R)と反応して、希土類元素(R)及び燐(P)から構成される化合物粒子(RP化合物粒子)を析出させる。このRP化合物粒子は、磁性粉末の保磁力や耐熱性劣化をもたらす粗大なRFe2相やRFe3相の生成を抑制する。これに対して燐酸系化合物被膜を備えていない希土類鉄合金粉末を用いると、シェル層とは別に粗大なRFe2相やRFe3相が生成して、磁性粉末の保磁力や耐熱性を劣化させることがある。 In the production method of the present embodiment, a phosphoric acid-based compound coating is formed on the rare earth iron alloy powder in one or both of the preparation step and the mixing step. Therefore, the rare earth iron alloy powder in the mixture obtained in the mixing step is provided with a phosphoric acid compound coating. For example, when the prepared rare earth iron alloy powder has a particle size of 15.0 μm or less, the alloy powder may be previously coated with a phosphoric acid compound coating. Alternatively, a phosphoric acid-based compound coating may be formed on the rare earth iron alloy powder in the main mixing step. In any case, it is sufficient that the rare earth iron alloy powder in the mixture obtained in the mixing step is provided with a phosphoric acid compound coating. By providing the phosphoric acid-based compound film in this way, it is possible to improve the coercive force and heat resistance of the manufactured magnetic powder. That is, in the subsequent reduction diffusion reaction step, phosphorus (P) contained in the phosphoric acid-based compound coating reacts with the excess rare earth element (R) to form compound particles (RP) composed of rare earth element (R) and phosphorus (P). compound particles) are precipitated. The RP compound particles suppress the formation of coarse RFe 2 phases and RFe 3 phases, which deteriorate the coercive force and heat resistance of the magnetic powder. On the other hand, when a rare earth iron alloy powder not provided with a phosphoric acid compound coating is used, a coarse RFe 2- phase or RFe 3- phase is generated separately from the shell layer, deteriorating the coercive force and heat resistance of the magnetic powder. Sometimes.
燐酸系化合物被膜を形成するには、燐酸系表面処理剤を用いて希土類鉄合金粉末に表面処理を施せばよい。燐酸系表面処理剤として、特許文献3に開示されるような公知の化合物を用いることができる。具体的には、燐酸、亜燐酸、次亜燐酸、ピロ燐酸、直鎖状ポリ燐酸、環状メタ燐酸、燐酸アンモニウム、燐酸アンモニウムマグネシウム、燐酸亜鉛系、燐酸亜鉛カルシウム系、燐酸マンガン系、燐酸鉄系などが挙げられる。燐酸は、キレート剤、中和剤と混合して処理剤としてもよい。 In order to form the phosphoric acid-based compound coating, the rare earth iron alloy powder may be subjected to surface treatment using a phosphoric acid-based surface treatment agent. As the phosphoric acid-based surface treatment agent, a known compound as disclosed in Patent Document 3 can be used. Specifically, phosphoric acid, phosphorous acid, hypophosphorous acid, pyrophosphoric acid, linear polyphosphoric acid, cyclic metaphosphoric acid, ammonium phosphate, magnesium ammonium phosphate, zinc phosphate, zinc calcium phosphate, manganese phosphate, and iron phosphate. etc. Phosphoric acid may be mixed with a chelating agent and a neutralizing agent to form a treating agent.
表面処理は公知の手法で行えばよい。例えば準備工程で被膜を形成する場合には、燐酸系表面処理剤を含む溶液中に希土類鉄合金粉末を浸漬させて被膜を形成し、その後、固液分離して被膜形成した希土類鉄合金粉末を回収すればよい。また混合工程で被膜を形成する場合には、燐酸系表面処理剤を含む溶媒中に希土類鉄合金粉末と希土類酸化物粉末との予備混合物を浸漬させて被膜を形成してもよい。被膜形成の際に、媒体攪拌ミルなどの粉砕機を用いて、溶媒中で希土類鉄合金粉末及び/又は希土類酸化物粉末を粉砕してもよい。溶媒の種類は特に限定されない。例えば、イソプロピルアルコール、エタノール、メタノールなどのアルコール類、ペンタン、ヘキサンなどの低級炭化水素類、ベンゼン、トルエン、キシレンなど芳香族類、ケトン類又はそれらの混合物などの有機溶剤を使用することができる。 Surface treatment may be performed by a known method. For example, when forming a film in the preparation step, the rare earth iron alloy powder is immersed in a solution containing a phosphoric acid-based surface treatment agent to form a film, and then solid-liquid separation is performed to form a film of the rare earth iron alloy powder. You can collect it. In the case of forming the coating in the mixing step, the coating may be formed by immersing a preliminary mixture of the rare earth iron alloy powder and the rare earth oxide powder in a solvent containing the phosphoric acid surface treatment agent. When forming the film, the rare earth iron alloy powder and/or the rare earth oxide powder may be pulverized in a solvent using a pulverizer such as a medium stirring mill. The type of solvent is not particularly limited. For example, alcohols such as isopropyl alcohol, ethanol and methanol, lower hydrocarbons such as pentane and hexane, aromatics such as benzene, toluene and xylene, and organic solvents such as ketones and mixtures thereof can be used.
燐酸系化合物被膜の形成は準備工程及び混合工程のいずれか一方又は両方の工程で行えばよい。しかしながら混合工程で行うことが好ましい。この場合には、希土類鉄合金粉末及び希土類酸化物粉末を、燐酸系表面処理剤を含む粉砕溶媒中で混合及び粉砕して、希土類鉄合金粉末に燐酸系化合物被膜を形成することが好ましい。すなわち希土類鉄合金粉末が粉砕されると、新生面が現れる。混合工程で被膜形成すれば、この工程で現れた新生面にも被膜を設けることが可能である。また原料粉末(希土類鉄合金粉末、希土類酸化物粉末)の混合、粉砕及び被膜形成を一度に行うことができ、製造コスト低減に寄与する。 Formation of the phosphoric acid-based compound film may be performed in either one or both of the preparation process and the mixing process. However, it is preferred to do so in a mixing step. In this case, it is preferable to mix and pulverize the rare earth iron alloy powder and the rare earth oxide powder in a pulverizing solvent containing a phosphoric acid surface treatment agent to form a phosphoric acid compound coating on the rare earth iron alloy powder. That is, when the rare earth iron alloy powder is pulverized, a new surface appears. If the coating is formed in the mixing process, it is possible to form the coating on the new surfaces that appear in this process. In addition, the raw material powder (rare earth iron alloy powder, rare earth oxide powder) can be mixed, pulverized and coated at once, which contributes to a reduction in manufacturing costs.
燐酸系化合物被膜の最適被覆量は、希土類鉄合金粉末の粒径や表面積に依存するため、これを一概に決めることはできない。しかしながら燐酸系表面処理剤を含む溶媒を用いて被膜形成する場合には、燐酸量を、希土類鉄合金粉末全体に対して0.1~0.5mol/kgにすることができる。 The optimum coating amount of the phosphoric acid-based compound coating depends on the particle size and surface area of the rare earth iron alloy powder, so it cannot be determined unconditionally. However, when the film is formed using a solvent containing a phosphoric acid-based surface treatment agent, the amount of phosphoric acid can be 0.1 to 0.5 mol/kg with respect to the entire rare earth iron alloy powder.
混合工程で得られる原料混合物は、燐酸系化合物被膜を備える粒径15.0μm以下の希土類鉄合金粉末と粒径2.0μm以下の希土類酸化物粉末を含む。すなわち原料混合物に含まれる希土類鉄合金粉末と希土類酸化物粉末の最大粒径を、それぞれ15.0μm以下及び2.0μm以下にする。希土類鉄合金粉末は、磁性粉末のコアになる原料である。後続する還元拡散熱処理による粒成長、凝集及び焼結や、シェル層が形成される分を考慮すると、合金粉末は、その粒径が最大でも磁性粉末の粒径(1.0μm以上10.0μm以下)程度である。そのため原料混合粉末中の合金粉末の粒径を15.0μm以下にする。また希土類酸化物粉末は、シェル層を所望の厚みで均一に形成するために微細な粉末であることが望ましい。そのため原料混合粉末中の酸化物粉末は、その粒径を2.0μm以下とする。酸化物粉末の粒径は、1.5μm以下が好ましく、1.0μm以下がより好ましい。なお粒径は走査電子顕微鏡(SEM)で容易に確認することができる。 The raw material mixture obtained in the mixing step contains a rare earth iron alloy powder having a particle size of 15.0 μm or less and a rare earth oxide powder having a particle size of 2.0 μm or less, which is coated with a phosphoric acid compound. That is, the maximum particle size of the rare earth iron alloy powder and the rare earth oxide powder contained in the raw material mixture is set to 15.0 μm or less and 2.0 μm or less, respectively. The rare earth iron alloy powder is a raw material that becomes the core of the magnetic powder. Considering the grain growth, agglomeration and sintering due to the subsequent reduction and diffusion heat treatment, and the formation of the shell layer, the maximum grain size of the alloy powder is the grain size of the magnetic powder (1.0 μm or more and 10.0 μm or less). ). Therefore, the grain size of the alloy powder in the raw material mixed powder is set to 15.0 μm or less. Also, the rare earth oxide powder is desirably a fine powder in order to uniformly form a shell layer with a desired thickness. Therefore, the particle size of the oxide powder in the raw material mixed powder is set to 2.0 μm or less. The particle size of the oxide powder is preferably 1.5 μm or less, more preferably 1.0 μm or less. The grain size can be easily confirmed with a scanning electron microscope (SEM).
混合工程では、希土類鉄合金粉末と希土類酸化物粉末との混合操作が重要である。均一なシェル層を付与するには希土類酸化物粉末の粒度をなるべく微細にするとともに均一に分散させることが望ましい。混合は乾式法及び湿式法のいずれによってもよい。乾式混合は、ヘンシェルミキサー、コンピックス、メカノハイブリッド、メカノフュージョン、ノビルタ、ハイブリダイゼーションシステム、ミラーロ、タンブラーミキサー、シータ・コンポーザ又はスパルタンミキサーなどの乾式混合機を用い、不活性ガス雰囲気中で行えばよい。湿式混合は、ビーズミル、ボールミル、ナノマイザー、湿式サイクロン、ホモジナイザー、ディゾルバー、フィルミックスなどの湿式混合機を用いて行えばよい。 In the mixing step, the operation of mixing the rare earth iron alloy powder and the rare earth oxide powder is important. In order to provide a uniform shell layer, it is desirable to make the particle size of the rare earth oxide powder as fine as possible and to disperse it uniformly. Mixing may be done by either a dry method or a wet method. Dry mixing may be performed in an inert gas atmosphere using a dry mixer such as Henschel Mixer, Compix, Mechanohybrid, Mechanofusion, Nobilta, Hybridization System, Miraro, Tumbler Mixer, Theta Composer or Spartan Mixer. . Wet mixing may be performed using a wet mixer such as a bead mill, a ball mill, a nanomizer, a wet cyclone, a homogenizer, a dissolver, and a filmix.
希土類鉄合金粉末と希土類酸化物粉末を混合する際に、これらを同時に微粉砕して所望の粒径にしてもよい。この場合には微粉砕時に燐酸系化合物被膜を形成してもよい。希土類酸化物粉末を加えて同時に微粉砕することで、均一な混合物を得ることができる。微粉砕は、ジェットミルなどの乾式粉砕機や、振動ミル、回転ボールミル、媒体攪拌ミルなどの湿式微粉砕機が使用可能である。湿式微粉砕では、ケトン類、へキサンなどの低級炭化水素類、トルエンなどの芳香族類、エタノールまたはイソプロピルアルコール等のアルコール類、フッ素系不活性液体類、またはこれらの混合物などの有機溶媒を粉砕媒体として用いることができる。またはオルト燐酸などの燐酸系表面処理剤を添加した有機溶媒を粉砕媒体として用いれば、微粉砕時に燐酸系化合物被膜の形成を行うことができる。このような手法をとれば、粉砕された希土類鉄合金粉末に燐酸系化合物被膜が形成されると同時に希土類酸化物粉末も微粉砕され、それらが均一に分散されるので好ましい。湿式法では微粉砕後のスラリーから有機溶媒を乾燥除去して原料混合物とすればよい。 When the rare earth iron alloy powder and the rare earth oxide powder are mixed, they may be pulverized at the same time to obtain a desired particle size. In this case, a phosphoric acid compound coating may be formed during pulverization. A homogeneous mixture can be obtained by adding the rare earth oxide powder and pulverizing at the same time. For fine pulverization, a dry pulverizer such as a jet mill, or a wet pulverizer such as a vibrating mill, a rotating ball mill, or a medium stirring mill can be used. In wet pulverization, organic solvents such as ketones, lower hydrocarbons such as hexane, aromatics such as toluene, alcohols such as ethanol or isopropyl alcohol, fluorine-based inert liquids, or mixtures thereof are pulverized. It can be used as a medium. Alternatively, if an organic solvent to which a phosphoric acid-based surface treatment agent such as orthophosphoric acid is added is used as a grinding medium, a phosphoric acid-based compound film can be formed during pulverization. Such a technique is preferable because the phosphoric acid-based compound coating is formed on the pulverized rare earth iron alloy powder, and at the same time, the rare earth oxide powder is finely pulverized and uniformly dispersed. In the wet method, the raw material mixture can be obtained by drying and removing the organic solvent from the slurry after pulverization.
原料混合物は、その加熱減量が1質量%未満であることが望ましい。加熱減量は乾燥後の混合粉末の含有不純物量であり、水分を主体とする。また混合時に用いられる有機溶媒、分散助剤、あるいは取扱いプロセスの種類によっては炭素も含まれうる。加熱減量が1質量%を超えると、後続する還元拡散処理中に水蒸気や炭酸ガスが多量に発生することがある。水蒸気や炭酸ガスが多量に発生すると、これらが還元剤(Ca粒等)を酸化させて還元拡散反応を抑えてしまう。その結果、優れた磁気特性を得る上で望ましくないα-Feが最終的に得られる磁性粉末中に生成してしまう。したがって原料混合物を十分に減圧乾燥することが望ましい。これにより含まれる水分のみならず炭素が十分に除去される。なお加熱減量は、試料50gを真空中400℃で5時間加熱したときの減量αを測定することで求められる。 It is desirable that the weight loss on heating of the raw material mixture is less than 1% by mass. The weight loss on heating is the amount of impurities contained in the mixed powder after drying, and is mainly composed of water. Carbon may also be included depending on the type of organic solvent used during mixing, dispersing aids, or handling processes. If the weight loss on heating exceeds 1% by mass, a large amount of water vapor or carbon dioxide may be generated during the subsequent reduction diffusion treatment. When a large amount of water vapor or carbon dioxide gas is generated, these oxidize the reducing agent (such as Ca grains) and suppress the reduction diffusion reaction. As a result, α-Fe, which is not desirable for obtaining excellent magnetic properties, is produced in the finally obtained magnetic powder. Therefore, it is desirable to sufficiently dry the raw material mixture under reduced pressure. This sufficiently removes not only the contained moisture but also the carbon. The weight loss on heating is obtained by measuring the weight loss α when 50 g of a sample is heated at 400° C. for 5 hours in vacuum.
<還元拡散処理工程>
還元拡散処理工程では、得られた原料混合物に還元剤を添加及び混合し、さらに還元剤を添加した原料混合物を加熱処理して還元拡散反応生成物にする。ここで還元剤の添加量は、原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量とする。また加熱処理は非酸化性雰囲気中730~1050℃の範囲内の温度で行う。
<Reduction diffusion treatment step>
In the reduction-diffusion treatment step, a reducing agent is added to and mixed with the obtained raw material mixture, and the raw material mixture to which the reducing agent is added is heat-treated to obtain a reduction-diffusion reaction product. Here, the amount of the reducing agent to be added is 1.1 to 10.0 times the equivalent amount required to reduce the oxygen component contained in the raw material mixture. Further, the heat treatment is performed at a temperature within the range of 730 to 1050° C. in a non-oxidizing atmosphere.
還元剤として、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)及びこれらの水素化物からなる群から選ばれる少なくとも1種を用いることができる。このうちカルシウム(Ca)が特に有用である。還元剤は粒状の形態で供給されることが多い。粒度0.5~3.0mmの還元剤を使用することが望ましい。 At least one selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and hydrides thereof can be used as the reducing agent. Among these, calcium (Ca) is particularly useful. The reducing agent is often supplied in granular form. It is desirable to use a reducing agent with a particle size of 0.5-3.0 mm.
還元剤(Ca粒等)の添加量は当量に対して1.1~10.0倍である。ここで当量とは、原料混合物中の酸素成分、すなわち希土類鉄合金粉末の含有酸素と希土類酸化物粉末とを還元するのに必要な量である。添加量が1.1倍未満であると、酸化物の還元が不十分であるため、還元により生じた希土類元素(R)の拡散が進みにくくなる。一方で添加量が10倍を超えると、還元剤が過度に多量に残留するため好ましくない。多量に残留した還元剤は、希土類元素(R)の拡散に対する障害になる恐れがある。また還元剤に起因する残留物が多くなりその除去に手間がかかる。 The amount of the reducing agent (such as Ca grains) added is 1.1 to 10.0 times the equivalent. Here, the equivalent is the amount necessary to reduce the oxygen component in the raw material mixture, that is, the oxygen contained in the rare earth iron alloy powder and the rare earth oxide powder. If the added amount is less than 1.1 times, the reduction of the oxide is insufficient, so that the diffusion of the rare earth element (R) generated by the reduction is difficult to proceed. On the other hand, if the amount added exceeds 10 times, the reducing agent will remain in an excessively large amount, which is not preferable. A large amount of residual reducing agent may hinder diffusion of the rare earth element (R). In addition, the amount of residue caused by the reducing agent increases, and it takes time and effort to remove it.
混合工程では、原料混合物と還元剤(Ca粒等)とを均一に混合することが望ましい。混合器としてはVブレンダー、Sブレンダー、リボンミキサ、ボールミル、ヘンシェルミキサー、メカノフュージョン、ノビルタ、ハイブリダイゼーションシステム、ミラーロなどを使用できる。均一に混合し、特に原料である希土類鉄合金粉末に希土類酸化物粉末の偏析がないように混合することが望ましい。希土類酸化物粉末が偏析すると、シェル層の厚みばらつきの原因になるからである。 In the mixing step, it is desirable to uniformly mix the raw material mixture and the reducing agent (such as Ca grains). As a mixer, V blender, S blender, ribbon mixer, ball mill, Henschel mixer, Mechanofusion, Nobilta, Hybridization system, Miraro, etc. can be used. It is desirable to mix uniformly, and in particular, to avoid segregation of the rare earth oxide powder in the raw material rare earth iron alloy powder. This is because the segregation of the rare earth oxide powder causes variations in the thickness of the shell layer.
次に還元剤を添加した原料混合物を加熱処理して還元拡散反応生成物にする。この加熱処理は、例えば次のようにして行えばよい。すなわち得られた混合物を鉄製るつぼに装填し、このるつぼを反応容器に入れて電気炉に設置する。混合から電気炉への設置まで、可能な限り大気や水蒸気との接触を避けることが好ましい。混合物内に残留する大気や水蒸気を除去するため、反応容器内を真空引きしてヘリウム(He)、アルゴン(Ar)などの不活性ガスで置換することが好ましい。 Next, the raw material mixture to which the reducing agent is added is heat-treated to form a reduction diffusion reaction product. This heat treatment may be performed, for example, as follows. That is, the obtained mixture is charged into an iron crucible, and this crucible is placed in a reaction vessel and placed in an electric furnace. From mixing to installation in the electric furnace, it is preferable to avoid contact with the atmosphere and water vapor as much as possible. In order to remove air and water vapor remaining in the mixture, it is preferable to evacuate the inside of the reaction vessel and replace it with an inert gas such as helium (He) or argon (Ar).
その後、反応容器内を再度真空引きするか、ヘリウム(He)、アルゴン(Ar)などの不活性ガスを容器内にフローしながら非酸化性雰囲気中で混合物に還元拡散処理を施す。この加熱処理は730~1050℃の範囲内の温度で行うことが重要である。730℃未満では、蒸気となった還元剤(Ca粒等)により希土類酸化物の還元は進むが、希土類鉄合金粉末(R2Fe17粉末等)の表面での拡散反応によるシェル層の形成が進みにくい。そのため最終的に得られる磁性粉末の耐熱性向上が望めない。一方で1050℃を超えると、磁性粉末の粒成長や凝集及び焼結が進み、残留磁化や保磁力が低下する。加熱処理温度は、好ましくは750~1000℃である。 Thereafter, the inside of the reaction vessel is evacuated again, or the mixture is subjected to reduction diffusion treatment in a non-oxidizing atmosphere while flowing an inert gas such as helium (He) or argon (Ar) into the vessel. It is important to perform this heat treatment at a temperature within the range of 730-1050°C. When the temperature is lower than 730°C, the vaporized reducing agent (such as Ca grains) promotes the reduction of the rare earth oxides, but formation of a shell layer due to the diffusion reaction on the surface of the rare earth iron alloy powder (such as the R 2 Fe 17 powder) does not occur. Difficult to proceed. Therefore, the heat resistance of the finally obtained magnetic powder cannot be expected to be improved. On the other hand, if the temperature exceeds 1050° C., grain growth, agglomeration and sintering of the magnetic powder proceed, and residual magnetization and coercive force decrease. The heat treatment temperature is preferably 750 to 1000°C.
加熱保持時間は、最終的に得られる磁性粉末の粒成長や凝集及び焼結を抑制するように加熱温度と併せて設定すればよい。例えば設定温度で0~10時間保持する。8時間を超えると粒成長や凝集及び焼結が顕著になり、目的とする平均粒径が1μm以上10μm以下の磁性粉末を得ることが難しくなることがある。保持時間は、0~8時間であってよく、0~5時間であってよく、0~3時間であってもよい。なお保持時間が「0時間」とは、設定温度に到達後にすぐ冷却することを意味する。 The heating and holding time may be set together with the heating temperature so as to suppress grain growth, agglomeration and sintering of the finally obtained magnetic powder. For example, the set temperature is maintained for 0 to 10 hours. After 8 hours, grain growth, agglomeration, and sintering become significant, and it may become difficult to obtain the desired magnetic powder with an average particle size of 1 μm or more and 10 μm or less. The retention time may be 0-8 hours, 0-5 hours, or 0-3 hours. The holding time of "0 hours" means cooling immediately after reaching the set temperature.
このような加熱処理により、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有する希土類鉄合金を含むコア部が形成されるとともに、還元された希土類元素(R)の拡散反応によりシェル層が形成される。このシェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上5.0以下となるように含み、さらに窒素(N)を原子%超10原子%以下の量で含む。また希土類鉄合金粉末には燐酸系化合物被膜が設けられているので、加熱による拡散反応中に被膜に含まれる燐(P)が余剰な希土類元素(R)と反応する。その結果、希土類元素(R)及び燐(P)から構成される化合物粒子(RP化合物粒子)が磁性粉末中に析出する。 By such heat treatment, a core portion containing a rare earth iron alloy having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type and TbCu 7 type is formed, and a reduced rare earth element (R ) to form a shell layer. This shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 5.0 or less, and furthermore, nitrogen (N) is more than atomic % and 10 atomic % or less. Including quantity. In addition, since the rare earth iron alloy powder is provided with a phosphoric acid compound coating, phosphorus (P) contained in the coating reacts with excess rare earth element (R) during the diffusion reaction due to heating. As a result, compound particles (RP compound particles) composed of rare earth elements (R) and phosphorus (P) are precipitated in the magnetic powder.
希土類鉄窒素系磁性粉末は、ニュークリエーション型の保磁力発生機構を有する。粒子表面にα-Feなどの軟磁性相や結晶磁気異方性を低下させる結晶欠陥などが存在すると、そこが逆磁区の発生核(ニュークリエーション)になって粒子保磁力が低下する。従来の磁性粉末の耐熱性が悪いのは、加熱によってR2Fe17N3化合物相が分解してα-FeやFe窒化物などの軟磁性相が生成し、それが逆磁区発生核になるためである。これに対して、本実施形態では、R/Fe原子比0.3以上5.0以下のシェル層を表面に形成することで、磁性粉末の耐熱性(耐酸化性)が改善する。この理由として、シェル層は、加熱による分解がR2Fe17N3化合物相より起こりにくいためと推測される。またこの効果は、加熱処理条件を例えば2段階にしたときに有利に得ることができる。 Rare earth iron nitrogen-based magnetic powder has a nucleation type coercive force generation mechanism. If a soft magnetic phase such as α-Fe or a crystal defect that lowers the magnetocrystalline anisotropy is present on the grain surface, it becomes a nucleation of a reverse magnetic domain and reduces the coercive force of the grain. The reason why the heat resistance of conventional magnetic powders is poor is that the R 2 Fe 17 N 3 compound phase is decomposed by heating to generate soft magnetic phases such as α-Fe and Fe nitrides, which become reverse magnetic domain generation nuclei. It's for. In contrast, in the present embodiment, the heat resistance (oxidation resistance) of the magnetic powder is improved by forming a shell layer having an R/Fe atomic ratio of 0.3 to 5.0 on the surface. The reason for this is presumed to be that the shell layer is less likely to be decomposed by heating than the R 2 Fe 17 N 3 compound phase. Moreover, this effect can be advantageously obtained when the heat treatment conditions are set to two stages, for example.
すなわち、前記の還元拡散処理の工程において、加熱処理条件を2段階とし、前段で730~810℃の範囲内の温度で0.5~4時間保持し、後段では、さらに温度を上げて800~1000℃の範囲内の温度で3時間以内保持すればよい。この条件にすれば、希土類酸化物粉末が希土類金属に十分還元されて、R2Fe17希土類鉄合金がコア部になり、その表面で希土類元素(R)の拡散反応が促進されてシェル層が形成される。 That is, in the process of the reduction diffusion treatment, the heat treatment conditions are set in two stages, in the former stage, the temperature is maintained at a temperature within the range of 730 to 810 ° C. for 0.5 to 4 hours, and in the latter stage, the temperature is further increased to 800 to 800 ° C. A temperature within the range of 1000° C. may be maintained within 3 hours. Under these conditions, the rare earth oxide powder is sufficiently reduced to the rare earth metal, the R 2 Fe 17 rare earth iron alloy becomes the core, and the diffusion reaction of the rare earth element (R) is promoted on the surface to form the shell layer. It is formed.
加熱処理が終了した反応生成物は、シェル層を表面に有する希土類鉄合金粒子(R2Fe17粉末等)、R金属、RFe3および/またはRFe2化合物、RP化合物粒子、還元剤由来成分からなる焼結体である。ここで還元剤由来成分は、副生した還元剤酸化物粒子(CaO等)及び未反応残留還元剤(Ca等)からなる。 The reaction product after the heat treatment is rare earth iron alloy particles having a shell layer on the surface (R 2 Fe 17 powder, etc.), R metal, RFe 3 and / or RFe 2 compounds, RP compound particles, components derived from reducing agents It is a sintered body. Here, the reducing agent-derived component consists of by-produced reducing agent oxide particles (CaO, etc.) and unreacted residual reducing agent (Ca, etc.).
<解砕処理工程>
解砕処理工程では、還元拡散処理後の生成物(還元拡散反応生成物)を、その温度が300℃を超えないように水素ガス雰囲気中に曝すことで還元拡散反応生成物に水素を吸収させ、それにより還元拡散反応生成物に解砕処理を施す。このように生成物を所定条件下で水素ガス雰囲気に曝すことで、生成物に含まれるR金属、RFe3及び/又はRFe2化合物が水素を吸収する。その際に体積膨張が起こるため、これを利用して生成物を解砕する。解砕処理は、アルゴン、ヘリウム及び窒素などの不活性ガスを水素ガスに混合して行ってもよい。しかしながら水素ガス単独の雰囲気下で行うことが好ましい。このとき、酸素の残留を防ぐため、水素を導入する前にアルゴンなどの不活性ガスで加熱炉内の雰囲気を置換することが好ましい。またこの場合には不活性ガス置換後に炉内を一旦排気し、その後に水素ガスを導入することが好ましい。
<Crushing treatment process>
In the crushing treatment step, the product (reduction-diffusion reaction product) after the reduction-diffusion treatment is exposed to a hydrogen gas atmosphere so that the temperature does not exceed 300° C., thereby causing the reduction-diffusion reaction product to absorb hydrogen. , thereby subjecting the reduction-diffusion reaction product to a crushing treatment. By exposing the product to a hydrogen gas atmosphere under predetermined conditions in this manner, the R metal, RFe3 and/or RFe2 compounds contained in the product absorb hydrogen. Since volume expansion occurs at that time, the product is pulverized using this expansion. The pulverization treatment may be performed by mixing an inert gas such as argon, helium and nitrogen with the hydrogen gas. However, it is preferable to carry out in an atmosphere of hydrogen gas alone. At this time, in order to prevent oxygen from remaining, it is preferable to replace the atmosphere in the heating furnace with an inert gas such as argon before introducing hydrogen. In this case, it is preferable to once evacuate the interior of the furnace after replacing the inert gas, and then introduce hydrogen gas.
水素吸収処理(解砕処理)は、水素雰囲気中で還元拡散反応生成物を所定の温度、例えば50~200℃に加熱することで開始される。反応生成物は水素を吸収すると自己発熱し、この発熱により吸収がより速く進行する。吸収による自己発熱が起こる結果、反応生成物の温度は加熱温度より高くなる。しかしながら、このとき反応生成物の温度を300℃以下に維持することが重要である。反応生成物の温度が300℃を超えると、異相たるα-Feが最終生成物たる磁性粉末に残留する恐れがある。α-Feが残留すると、磁化曲線の角形性が悪化して磁性粉末の残留磁化が低下する。 The hydrogen absorption treatment (crushing treatment) is started by heating the reduction-diffusion reaction product to a predetermined temperature, eg, 50 to 200° C. in a hydrogen atmosphere. When the reaction product absorbs hydrogen, it self-heats, and this heat builds up the absorption more rapidly. As a result of self-heating due to absorption, the temperature of the reaction product is higher than the heating temperature. However, at this time, it is important to maintain the temperature of the reaction product below 300°C. If the temperature of the reaction product exceeds 300° C., α-Fe, which is a different phase, may remain in the magnetic powder as the final product. Remaining α-Fe deteriorates the squareness of the magnetization curve and reduces the residual magnetization of the magnetic powder.
反応生成物を300℃以下の低温に維持するためには、反応生成物に対する水素分圧を下げて徐々に水素を吸収させればよい。水素分圧を下げるためには、例えば、供給する水素量を抑制する、または水素ガスと不活性ガスとの混合ガスを用いる、といった手法が挙げられる。供給する水素量を抑制することで水素吸収処理(解砕処理)を大気圧未満の負圧下で行うのが好ましい。これにより反応生成物を低温に維持することが容易となる。この点、特許文献5及び6に開示される製法では、水素吸収処理を大気圧下または加圧下で行っている。しかしながら、水素吸収処理を大気圧以上の雰囲気下で行うと、水素吸収が過度に速く進行する恐れがある。そのため反応生成物の温度が300℃を超える高温になり、その結果、磁性粉末中にα-Feが残留することがある。実際、本発明者らが調べたところ、反応生成物の温度が300℃を超えた場合には最終的に得られる磁性粉末の残留磁化が低かった。この磁性粉末のXRDプロファイルにα-Feが認められたことから、残留磁化の低下は生成したα-Feによるものと思われる。
In order to maintain the temperature of the reaction product at a low temperature of 300° C. or less, the hydrogen partial pressure with respect to the reaction product should be lowered to gradually absorb hydrogen. Methods of reducing the hydrogen partial pressure include, for example, suppressing the amount of hydrogen to be supplied or using a mixed gas of hydrogen gas and inert gas. It is preferable to perform the hydrogen absorption treatment (crushing treatment) under a negative pressure lower than the atmospheric pressure by suppressing the amount of hydrogen to be supplied. This facilitates keeping the reaction product at a low temperature. In this regard, in the production methods disclosed in
<窒化熱処理工程>
窒化熱処理工程では、還元拡散処理後又は解砕処理後の生成物(還元拡散反応生成物)を窒素及び/又はアンモニアを含むガスの気流中で窒化熱処理して窒化反応生成物にする。窒化熱処理は公知の手法で行えばよく、例えば窒素(N2)ガス雰囲気、窒素(N2)ガスと水素(H2)ガスの混合雰囲気、アンモニア(NH3)ガス雰囲気、アンモニア(NH3)ガスと水素(H2)ガスの混合雰囲気、アンモニア(NH3)ガスと窒素(N2)ガスの混合ガス雰囲気、アンモニア(NH3)ガスと窒素(N2)ガスと水素(H2)ガスの混合ガス雰囲気下で行うことができる。
<Nitriding heat treatment process>
In the nitriding heat treatment step, the product (reduction-diffusion reaction product) after reduction-diffusion treatment or pulverization treatment is subjected to nitriding heat treatment in a stream of gas containing nitrogen and/or ammonia to form a nitriding reaction product. Nitriding heat treatment may be performed by a known method, for example, nitrogen (N 2 ) gas atmosphere, mixed atmosphere of nitrogen (N 2 ) gas and hydrogen (H 2 ) gas, ammonia (NH 3 ) gas atmosphere, ammonia (NH 3 ) gas atmosphere. Mixed atmosphere of gas and hydrogen (H 2 ) gas, mixed gas atmosphere of ammonia (NH 3 ) gas and nitrogen (N 2 ) gas, ammonia (NH 3 ) gas, nitrogen (N 2 ) gas and hydrogen (H 2 ) gas can be carried out in a mixed gas atmosphere.
窒化熱処理は300~500℃の範囲内の温度で行う。加熱温度が300℃未満では窒化が進まないので好ましくない。また500℃を超えると合金が希土類元素の窒化物と鉄に分解するので好ましくない。加熱温度は350℃以上であってよく、400℃以上であってもよい。また加熱温度は480℃以下であってよく、450℃以下であってもよい。 The nitriding heat treatment is performed at a temperature within the range of 300-500.degree. If the heating temperature is less than 300° C., the nitriding does not proceed, which is not preferable. If the temperature exceeds 500° C., the alloy decomposes into nitrides of rare earth elements and iron, which is not preferable. The heating temperature may be 350° C. or higher, or 400° C. or higher. Also, the heating temperature may be 480° C. or lower, or 450° C. or lower.
窒化熱処理の処理時間はガス種、ガス流量と加熱温度に応じて決めればよい。ガス流量と加熱温度が小さい(低い)ほど、処理時間を長くする。アンモニア(NH3)ガスと水素(H2)ガスの混合雰囲気にした場合には、例えば1~6時間が好ましく、2~4時間がより好ましい。また窒素(N2)ガス雰囲気にした場合には、例えば10~40時間とすることが好ましく、水素(H2)ガスとの混合雰囲気とした場合は、5~25時間とすることが好ましい。窒化熱処理後に冷却した窒化反応生成物を回収する。また必要に応じて、窒化熱処理に続いて真空中、又はアルゴンガス等の不活性ガス雰囲気中で磁石粉末を加熱してもよい。これにより磁性粉末に過剰に導入された窒素や水素が排出されて、磁性粉末コア部における窒素分布がより均一になる。そしてその結果、磁性粉末の角形性が向上する。 The treatment time of the nitriding heat treatment may be determined according to the gas species, gas flow rate and heating temperature. The smaller (lower) the gas flow rate and the heating temperature, the longer the treatment time. In the case of a mixed atmosphere of ammonia (NH 3 ) gas and hydrogen (H 2 ) gas, for example, 1 to 6 hours is preferable, and 2 to 4 hours is more preferable. Further, when a nitrogen (N 2 ) gas atmosphere is used, it is preferably 10 to 40 hours, and when a mixed atmosphere with hydrogen (H 2 ) gas is used, it is preferably 5 to 25 hours. After the nitriding heat treatment, the cooled nitriding reaction product is recovered. Further, if necessary, the magnet powder may be heated in a vacuum or in an atmosphere of an inert gas such as argon gas following the nitriding heat treatment. As a result, nitrogen and hydrogen excessively introduced into the magnetic powder are discharged, and the nitrogen distribution in the core of the magnetic powder becomes more uniform. As a result, the squareness of the magnetic powder is improved.
<湿式処理工程>
必要に応じて、還元拡散処理工程及び/又は窒化熱処理工程で得られた生成物(還元拡散反応生成物及び/又は窒化反応生成物)に湿式処理を施す工程(湿式処理工程)を設けてもよい。湿式処理は、還元拡散反応生成物及び/又は窒化反応生成物を水及び/又はグリコールを含む洗浄液に投入して崩壊させる。これにより生成物中の還元剤由来成分(副生した還元剤酸化物粒子及び未反応残留還元剤)が低減する。生成物を洗浄液(水及び/またはグリコール)に投入して0.1~24時間放置すると、細かく崩壊してスラリー化する。このスラリーはそのpHが10~12程度である。pHが10以下になるまで洗浄液の投入、攪拌及び上澄み除去(デカンテーション)を繰り返す。その後、必要に応じてスラリーのpHが6~7になるように酢酸などの弱酸を添加して、スラリー中の水酸化した還元剤成分(Ca(OH)2等)を溶解除去する。スラリー中にR金属、RFe3および/またはRFe2化合物由来の余剰窒化物が含まれている場合には、pHが6~7を保つように酸を添加しながら攪拌洗浄を続けて、これら余剰窒化物も溶解除去する。その後、残留する酸成分を水及び/またはグリコールで洗浄除去し、さらにメタノール、エタノールなどのアルコールで置換してから固液分離して乾燥すればよい。乾燥は、真空中または不活性ガス雰囲気中で、100~300℃、好ましくは150~250℃に加熱して行えばよい。
<Wet treatment process>
If necessary, a step (wet treatment step) of subjecting the product (reduction diffusion reaction product and/or nitridation reaction product) obtained in the reduction diffusion treatment step and/or the nitriding heat treatment step to a wet treatment may be provided. good. In the wet process, the reduction-diffusion reaction products and/or nitridation reaction products are disintegrated by immersing them in a cleaning solution containing water and/or glycol. As a result, reducing agent-derived components (by-produced reducing agent oxide particles and unreacted residual reducing agent) in the product are reduced. When the product is put into a washing liquid (water and/or glycol) and left for 0.1 to 24 hours, it breaks up finely and becomes a slurry. This slurry has a pH of about 10-12. The injection of the washing liquid, stirring and removal of the supernatant (decantation) are repeated until the pH becomes 10 or less. After that, a weak acid such as acetic acid is added as necessary so that the pH of the slurry becomes 6 to 7 to dissolve and remove hydroxylated reducing agent components (Ca(OH) 2 etc.) in the slurry. If the slurry contains surplus nitrides derived from the R metal, RFe3 and/or RFe2 compounds, continue stirring and washing while adding an acid so as to maintain the pH at 6-7 to remove these surplus nitrides. Nitrides are also dissolved and removed. After that, the remaining acid component is washed off with water and/or glycol, substituted with alcohol such as methanol or ethanol, and then solid-liquid separated and dried. Drying may be carried out by heating to 100 to 300°C, preferably 150 to 250°C, in vacuum or in an inert gas atmosphere.
グリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール及びトリプロピレングリコールからなる群から選ばれる1種以上のアルキレングリコールを使用できる。これらグリコールおよびその混合物をそのまま使用することが好ましい。粘度が高く、スラリー化した後に反応生成物と還元剤成分の分離除去がしにくい場合には、水で希釈したグリコールを使用できる。ただし洗浄液中の水含有率を50質量%以下にすることが好ましい。ここで水含有率は、水/(グリコール+水)の質量比を百分率で示したものである。水含有率が50質量%を超えると、粒子の酸化が顕著になる場合がある。水含有率は30質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。グリコールの使用量は、特に制限されないが、反応生成物中の還元剤成分がグリコールと反応する当量に対して2~10倍のグリコールを使用することができる。好ましいのは反応生成物の質量に対して3~8倍のグリコールを使用することである。 As the glycol, one or more alkylene glycols selected from the group consisting of ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol and tripropylene glycol can be used. It is preferred to use these glycols and mixtures thereof as such. If the viscosity is high and it is difficult to separate and remove the reaction product and the reducing agent component after slurrying, glycol diluted with water can be used. However, it is preferable to set the water content in the cleaning liquid to 50% by mass or less. Here, the water content is the weight ratio of water/(glycol+water) expressed as a percentage. If the water content exceeds 50% by mass, the particles may be significantly oxidized. The water content is more preferably 30% by mass or less, even more preferably 10% by mass or less, and particularly preferably 5% by mass or less. The amount of glycol to be used is not particularly limited, but glycol can be used in an amount of 2 to 10 times the equivalent of the reducing agent component in the reaction product reacting with glycol. Preference is given to using 3 to 8 times the amount of glycol relative to the mass of reaction product.
<微粉末化処理工程>
必要に応じて、窒化熱処理工程及び/又は湿式処理工程で得られた生成物に解砕・微粉末化処理を施す工程(微粉末化処理工程)を設けてもよい。還元拡散処理の条件によっては、得られた粉末が焼結してネッキングを起こしていることがある。最終的に得られる磁性粉末を異方性の磁石材料に応用する場合には、これを解砕することで、ネッキングによる磁性粉末の磁界中配向性の悪化を防ぐことができる。解砕は、ジェットミルなどの乾式粉砕機や媒体攪拌ミルなどの湿式粉砕機を使用できる。いずれの粉砕機であっても、強いせん断や衝突による粉砕となる条件は避けて、シェル層が維持できるよう、ネッキングした部分を解く程度の弱粉砕条件で運転することが望ましい。
<Micronization treatment step>
If necessary, a step of crushing and pulverizing the product obtained in the nitriding heat treatment step and/or the wet treatment step (pulverization treatment step) may be provided. Depending on the conditions of the reduction diffusion treatment, the obtained powder may be sintered to cause necking. When the finally obtained magnetic powder is applied to an anisotropic magnet material, crushing it can prevent deterioration of the orientation of the magnetic powder in the magnetic field due to necking. For pulverization, a dry pulverizer such as a jet mill or a wet pulverizer such as a medium stirring mill can be used. In any crusher, it is desirable to avoid crushing by strong shearing or collision, and to operate under weak crushing conditions to loosen the necked portion so that the shell layer can be maintained.
<被膜形成工程>
必要に応じて、得られた生成物(粉末)の表面に燐酸系化合物被膜を形成する工程(被膜形成工程)を設けてもよい。特に磁性粉末が高湿度環境下で使用される用途に適用される場合には、燐酸系化合物被膜を設けることで、粉末特性の安定性を高めることができる。燐酸系化合物被膜の種類やその形成方法は、特許文献3に開示されるように公知である。本実施形態では、シェル層を考慮して燐酸系化合物被膜を薄目に設けてもよい。20nmよりも厚いと磁化が低下することがあるので、5~20nm程度の被膜にすることが望ましい。
<Coating process>
If necessary, a step of forming a phosphoric acid-based compound coating on the surface of the obtained product (powder) (coating step) may be provided. In particular, when the magnetic powder is used in a high-humidity environment, the stability of the powder properties can be enhanced by providing the phosphoric acid-based compound film. The type of phosphoric acid-based compound coating and the method of forming the coating are known as disclosed in Patent Document 3. In this embodiment, the phosphoric acid-based compound coating may be thinly provided in consideration of the shell layer. If the thickness is more than 20 nm, the magnetization may be lowered, so it is desirable to make the film thickness about 5 to 20 nm.
このようにして本実施形態の磁性粉末を製造することができる。この磁性粉末は、希土類元素(R)、鉄(Fe)及び窒素(N)を主構成成分として含み、平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)をを2.5質量%以上4.0質量%以下の量で含む。またこの磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、このコア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備える。このシェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上5.0以下となるように含み、さらに窒素(N)を0原子%超10原子%以下の量で)含む。さらにこの磁性粉末は希土類元素(R)及び燐(P)から構成される化合物粒子(RP化合物粒子)を含む。この磁性粉末は、耐熱性、耐候性だけでなく、磁気特性にも優れるという効果がある。 Thus, the magnetic powder of this embodiment can be produced. This magnetic powder contains a rare earth element (R), iron (Fe) and nitrogen (N) as main constituents, has an average particle size of 1.0 μm or more and 10.0 μm or less, and contains 22% of the rare earth element (R). 0% by mass or more and 30.0% by mass or less, and nitrogen (N) in an amount of 2.5% by mass or more and 4.0% by mass or less. Further, this magnetic powder has a core portion having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer having a thickness of 1 nm or more and 30 nm or less provided on the surface of the core portion. And prepare. This shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 5.0 or less, and nitrogen (N) is more than 0 atomic % and 10 atomic % or less. in the amount of Further, this magnetic powder contains compound particles (RP compound particles) composed of rare earth elements (R) and phosphorus (P). This magnetic powder has the effect of being excellent not only in heat resistance and weather resistance but also in magnetic properties.
本発明者らの知る限り、本実施形態の磁性粉末やその製造方法は従来から知られていない。例えば特許文献2には希土類金属(R)と遷移金属(TM)を含む母合金を粉砕する工程(a)と粉砕された母合金粉末に希土類酸化物粉末と還元剤とを混合し、不活性ガス中加熱処理する工程(b)を含む希土類-遷移金属-窒素系磁石合金粉末の製造方法が開示されている。しかしながら本実施形態の製造方法とは異なり、特許文献2では粒径2.0μm以下の微細な希土類酸化物粉末を用いていない。また母合金のみを粉砕して、後から希土類酸化物粉末を混合している。そのため特許文献2の方法では、コアシェル構造を形成することはできない。 As far as the inventors of the present invention know, the magnetic powder of this embodiment and the method for producing the same have not been known in the past. For example, Patent Document 2 describes a step (a) of pulverizing a master alloy containing a rare earth metal (R) and a transition metal (TM), and mixing the pulverized master alloy powder with a rare earth oxide powder and a reducing agent to obtain an inert A method for producing a rare earth-transition metal-nitrogen magnet alloy powder including a step (b) of heat-treating in gas is disclosed. However, unlike the manufacturing method of this embodiment, Patent Document 2 does not use fine rare earth oxide powder having a particle size of 2.0 μm or less. Also, only the master alloy is pulverized, and then mixed with the rare earth oxide powder. Therefore, the method of Patent Document 2 cannot form a core-shell structure.
特許文献3には燐酸を含む有機溶剤中で希土類-鉄-窒素系磁石粗粉末を粉砕して、燐酸塩皮膜を形成することが開示されている。しかしながら燐酸塩被膜を形成する対象は、窒化処理後の磁石粉末であり、原料たる希土類鉄合金粉末ではない。そのため本実施形態の製造方法とは明確に異なる。また特許文献3では粒径2.0μm以下の微細な希土類酸化物粉末を用いていない。そのため特許文献3の方法では、コアシェル構造を形成することはできない。 Patent Document 3 discloses that coarse rare earth-iron-nitrogen magnet powder is pulverized in an organic solvent containing phosphoric acid to form a phosphate film. However, the object on which the phosphate coating is formed is the magnet powder after the nitriding treatment, not the rare earth iron alloy powder as the raw material. Therefore, it is clearly different from the manufacturing method of this embodiment. Further, in Patent Document 3, fine rare earth oxide powder having a particle size of 2.0 μm or less is not used. Therefore, the method of Patent Document 3 cannot form a core-shell structure.
特許文献4には表面被覆金属層を有する異方性希土類合金系磁性粉末と樹脂からなり、表面被覆金属層の金属がZn,Sn,In,Al,Si,希土類元素の少なくとも一種以上からなる単一金属または合金である希土類ボンド磁石が開示されている(特許文献4の請求項1及び2)。しかしながら特許文献4には表面被覆金属層について、希土類元素(R)、鉄(Fe)及び窒素(N)をR/Fe原子比で0.3以上5.0以下となるように含むことの開示や示唆は無く、この表面被覆金属層は本実施形態のシェル層とは全くの別物である。 Patent Document 4 discloses a single magnetic powder comprising an anisotropic rare earth alloy magnetic powder having a surface-coated metal layer and a resin, wherein the metal of the surface-coated metal layer is at least one of Zn, Sn, In, Al, Si, and rare earth elements. A rare earth bonded magnet of one metal or alloy is disclosed (claims 1 and 2 of Patent Document 4). However, Patent Document 4 discloses that the surface coating metal layer contains a rare earth element (R), iron (Fe) and nitrogen (N) so that the R/Fe atomic ratio is 0.3 or more and 5.0 or less. This surface coating metal layer is completely different from the shell layer of this embodiment.
<ボンド磁石用コンパウンド>
本実施形態のボンド磁石用コンパウンドは、上述した希土類鉄窒素系磁性粉末と樹脂バインダーとを含む。このコンパウンドは、磁性粉末と樹脂バインダーとを混合して作製される。混合は、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を用いて磁性粉末と樹脂バインダーとを溶融混練すればよい。
<Compound for bond magnet>
The compound for bonded magnets of the present embodiment contains the above-described rare earth iron nitrogen-based magnetic powder and a resin binder. This compound is produced by mixing magnetic powder and a resin binder. For mixing, the magnetic powder and the resin binder may be melt-kneaded using a kneader such as a Banbury mixer, kneader, roll, kneader-ruder, single-screw extruder, or twin-screw extruder.
樹脂バインダーは熱可塑性樹脂及び熱硬化性樹脂のいずれであってよい。熱可塑性樹脂系バインダーの種類は特に限定されない。例えば、6ナイロン、6-6ナイロン、11ナイロン、12ナイロン、6-12ナイロン、芳香族系ナイロン、これらの分子を一部変性、または共重合化した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合樹脂、エチレン-エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、アクリロニトリル-スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン-六フッ化プロピレン共重合樹脂、エチレン-四フッ化エチレン共重合樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、前出の各樹脂系エラストマー等が挙げられる。またこれらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質で末端基を変性したものなどが挙げられる。さらに熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂などを挙げることができる。 The resin binder may be either a thermoplastic resin or a thermosetting resin. The type of thermoplastic resin binder is not particularly limited. For example, 6 nylon, 6-6 nylon, 11 nylon, 12 nylon, 6-12 nylon, aromatic nylon, polyamide resin such as modified nylon obtained by partially modifying or copolymerizing these molecules, linear polyphenylene Sulfide resin, crosslinked polyphenylene sulfide resin, semi-crosslinked polyphenylene sulfide resin, low density polyethylene, linear low density polyethylene resin, high density polyethylene resin, ultra-high molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene - Ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluoroethylene chloride resin, tetrafluoroethylene-propylene hexafluoride copolymer resin, ethylene-tetrafluoroethylene copolymer resin, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, polyether sulfone resin, Polyether ether ketone resins, polyarylate resins, aromatic polyester resins, cellulose acetate resins, the aforementioned resin-based elastomers, and the like can be used. In addition, these homopolymers, random copolymers with other kinds of monomers, block copolymers, graft copolymers, and those whose terminal groups are modified with other substances are also included. Furthermore, examples of thermosetting resins include unsaturated polyester resins and epoxy resins.
これらの中では、得られる成形体の種々の特性やその製造方法の容易性から12ナイロンおよびその変性ナイロン、ナイロン系エラストマー、ポリフェニレンサルファイド樹脂が好ましい。これら熱可塑性樹脂の2種類以上のブレンドも当然に使用可能である。 Among these, 12-nylon and modified nylon thereof, nylon-based elastomers, and polyphenylene sulfide resins are preferred in terms of various properties of the resulting molded article and ease of production thereof. Blends of two or more of these thermoplastics can of course also be used.
本実施形態では、原料粉末として、従来のSm2Fe17N3磁性粉末に比べて高い耐熱性を有し、また高耐熱性R2(Fe、M)17Nx磁性粉末(M=Cr、Mn)に比べても同等以上の磁気特性を有する磁性粉末を使用する。磁性粉末が高い耐熱性を有するため、樹脂そのものの耐熱性が高いポリフェニレンサルファイド樹脂、芳香族ポリアミド樹脂などの熱可塑性樹脂をバインダーに用いた高温成形が可能である。したがって高性能高耐熱ボンド磁石の調製に有効である。 In this embodiment, as the raw material powder, R 2 (Fe , M ) 17 N x magnetic powder (M=Cr, A magnetic powder having magnetic properties equal to or higher than those of Mn) is used. Since the magnetic powder has high heat resistance, high-temperature molding is possible using thermoplastic resins such as polyphenylene sulfide resins and aromatic polyamide resins, which themselves have high heat resistance, as binders. Therefore, it is effective for preparing high-performance, high-heat-resistant bonded magnets.
樹脂バインダーの配合量は、特に制限されるものではないが、コンパウンド100質量部に対して1~50質量部が好ましい。1質量部より少ないと、混練トルクの著しい上昇や流動性低下を招いて成形困難になるだけでなく、磁気特性が不十分になることがある。一方で50質量部よりも多いと、所望の磁気特性を得られないことがある。樹脂バインダーの配合量は、3~50質量部であってよく、5~30質量部であってよく、7~20質量部であってよい。 The blending amount of the resin binder is not particularly limited, but is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the compound. If the amount is less than 1 part by mass, not only will the kneading torque be significantly increased and the fluidity will be lowered, molding will be difficult, but also the magnetic properties will be insufficient. On the other hand, if it is more than 50 parts by mass, desired magnetic properties may not be obtained. The blending amount of the resin binder may be 3 to 50 parts by mass, 5 to 30 parts by mass, or 7 to 20 parts by mass.
コンパウンドには、本実施形態の目的を損なわない範囲で、反応性希釈剤、未反応性希釈剤、増粘剤、滑剤、離型剤、紫外線吸収剤、難燃剤や種々の安定剤などの添加剤、充填材を配合することができる。また求められる磁気特性に合わせて、本実施形態の磁性粉末以外の他の磁石粉末を配合してもよい。他の磁石粉末として通常のボンド磁石に用いるものを採用することができ、例えば希土類磁石粉、フェライト磁石粉及びアルニコ磁石粉などが挙げられる。異方性磁石粉末だけでなく、等方性磁石粉末も混合できるが、異方性磁界HAが4.0MA/m(50kOe)以上の磁石粉末を用いることが好ましい。 Addition of reactive diluents, unreactive diluents, thickeners, lubricants, release agents, UV absorbers, flame retardants, various stabilizers, etc. Agents and fillers can be added. Further, other magnet powders than the magnetic powder of the present embodiment may be blended according to required magnetic properties. As other magnet powders, those used for ordinary bonded magnets can be employed, such as rare earth magnet powders, ferrite magnet powders and alnico magnet powders. Not only anisotropic magnet powder but also isotropic magnet powder can be mixed, but it is preferable to use magnet powder having an anisotropic magnetic field HA of 4.0 MA/m (50 kOe) or more.
<ボンド磁石>
本実施形態のボンド磁石は、上述した希土類鉄窒素系磁性粉末と樹脂バインダーとを含む。このボンド磁石は上述したボンド磁石用コンパウンドを射出成形、押出成形又は圧縮成形して作製される。特に好ましい成形方法は射出成形である。ボンド磁石中の成分やその含有割合はボンド磁石用コンパウンドと同一である。
<Bond magnet>
The bonded magnet of this embodiment contains the above-described rare earth iron nitrogen-based magnetic powder and a resin binder. This bonded magnet is produced by injection molding, extrusion molding, or compression molding of the compound for bonded magnets described above. A particularly preferred molding method is injection molding. The components and their content in the bonded magnet are the same as those of the compound for bonded magnets.
ボンド磁石用コンパウンドを射出成形する場合には、最高履歴温度が330℃以下、好ましくは310℃以下、より好ましくは300℃以下となる条件で成形することが好ましい。最高履歴温度が330℃を超えると、磁気特性が低下することがある。ただし本実施形態のボンド磁石は、シェル層を備えない従来の磁性粉末を用いた場合に比べて高い磁気特性を有する。 When injection-molding the compound for a bonded magnet, it is preferable to perform the molding under conditions such that the maximum hysteresis temperature is 330° C. or less, preferably 310° C. or less, and more preferably 300° C. or less. If the maximum history temperature exceeds 330°C, the magnetic properties may deteriorate. However, the bonded magnet of the present embodiment has higher magnetic properties than those using conventional magnetic powders that do not have a shell layer.
ボンド磁石用コンパウンドが異方性の磁性粉末を含有する場合には、成形機の金型に磁気回路を組み込み、コンパウンドの成形空間(金型キャビティ)に配向磁界がかかるようにすると、異方性のボンド磁石が製造できる。このとき配向磁界を、400kA/m以上、好ましくは800kA/m以上にすることで高い磁気特性のボンド磁石を得ることができる。ボンド磁石用コンパウンドが等方性の磁性粉末を含有する場合には、コンパウンドの成形空間(金型キャビティ)に配向磁界をかけないで行ってもよい。 When the compound for a bonded magnet contains anisotropic magnetic powder, an anisotropic magnetic powder can be obtained by incorporating a magnetic circuit into the mold of the molding machine and applying an oriented magnetic field to the molding space (mold cavity) of the compound. of bonded magnets can be manufactured. At this time, by setting the orientation magnetic field to 400 kA/m or more, preferably 800 kA/m or more, a bonded magnet with high magnetic properties can be obtained. When the bond magnet compound contains isotropic magnetic powder, the molding may be carried out without applying an oriented magnetic field to the molding space (mold cavity) of the compound.
本実施形態のボンド磁石は、自動車、一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において極めて有用である。また、本実施形態によれば、磁性粉末が高い耐熱性と高い磁気特性を有するため、磁性粉末を圧粉成形及び焼結して磁石を製造することが可能である。そのため保磁力劣化が抑制されたバインダレスの高性能磁石を得ることが可能である。 The bonded magnet of this embodiment is extremely useful in a wide range of fields, including automobiles, general household appliances, communication/audio equipment, medical equipment, and general industrial equipment. Further, according to this embodiment, since the magnetic powder has high heat resistance and high magnetic properties, it is possible to produce a magnet by compacting and sintering the magnetic powder. Therefore, it is possible to obtain a binderless high-performance magnet in which coercive force deterioration is suppressed.
本発明を以下の実施例を用いてさらに詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。 The invention is explained in more detail with the following examples. However, the invention is not limited to the following examples.
(1)評価
希土類鉄窒素系磁性粉末を作製するにあたり、各種特性の評価を以下のとおり行った。
(1) Evaluation In preparing the rare earth iron nitrogen-based magnetic powder, various characteristics were evaluated as follows.
<粉末の粒径>
粉末を走査型電子顕微鏡(SEM)で観察して、その粒径を評価した。観察の際には、倍率1000倍程度のSEM反射電子像において、コントラストの違いからそれぞれの成分粒子を判別し、その長軸径を求めて、これを粒径とした。またレーザー回折粒度分布計(株式会社日本レーザー、HELOS&RODOS)を用いて、粉末の体積分布における50%粒子径(D50)を求め、これを平均粒径とした。
<Powder particle size>
The powder was observed under a scanning electron microscope (SEM) to assess its particle size. During the observation, each component particle was distinguished from the difference in contrast in the SEM backscattered electron image at a magnification of about 1000 times, and the long axis diameter was obtained and used as the particle size. Using a laser diffraction particle size distribution analyzer (Nippon Laser Co., Ltd., HELOS & RODOS), the 50% particle size (D 50 ) in the volume distribution of the powder was determined and taken as the average particle size.
<加熱減量>
粉末50gを真空中400℃で5時間加熱し、加熱前後の質量を比較して加熱減量(α)を求めた。具体的には、(加熱前質量-加熱後質量)/加熱前質量を加熱減量(α)とした。
<Heat loss>
50 g of the powder was heated at 400° C. for 5 hours in vacuum, and the mass before and after heating was compared to determine the heat loss (α). Specifically, (mass before heating−mass after heating)/mass before heating was taken as the loss on heating (α).
<磁気特性>
粉末の磁気特性(残留磁化σrと保磁力Hc)を振動試料型磁力計で測定した。測定は、ボンド磁石試験方法ガイドブックBMG-2005(日本ボンド磁性材料協会)に則り行った。まず20mgほどの粉末試料を内径2mm×長さ7mmの透明アクリル製ケースにパラフィンと一緒に入れた。長さ方向に1.6MA/mの磁界を印加しながらドライヤーでケースを加熱して、パラフィンを溶かした。粉末を配向させた後に冷却してパラフィンを固めて測定試料を作製した。試料の着磁磁界は3.2MA/mとした。
<Magnetic properties>
The magnetic properties of the powder (residual magnetization σ r and coercive force H c ) were measured with a vibrating sample magnetometer. The measurement was performed in accordance with Bonded Magnet Test Method Guidebook BMG-2005 (Japan Bonded Magnetic Materials Association). First, about 20 mg of a powder sample was placed in a transparent acrylic case having an inner diameter of 2 mm and a length of 7 mm together with paraffin. The case was heated with a dryer while applying a magnetic field of 1.6 MA/m in the longitudinal direction to melt the paraffin. After orienting the powder, it was cooled to harden the paraffin to prepare a measurement sample. The magnetizing magnetic field of the sample was set to 3.2 MA/m.
<耐熱性>
加熱前後の粉末の保磁力(Hc)を比較することで粉末の耐熱性を評価した。加熱は、大気圧のアルゴン(Ar)雰囲気中300℃×90分間の条件で行った。加熱前の保磁力(Hc)と加熱後の保磁力(Hc,300)とを測定し、保磁力の維持率(Hc,300/Hc)を算出した。
<Heat resistance>
The heat resistance of the powder was evaluated by comparing the coercivity (H c ) of the powder before and after heating. Heating was performed under conditions of 300° C.×90 minutes in an argon (Ar) atmosphere at atmospheric pressure. The coercive force (H c ) before heating and the coercive force (H c,300 ) after heating were measured, and the coercive force retention rate (H c,300 /H c ) was calculated.
<粉末の結晶構造>
粉末の結晶構造を粉末X線回折(XRD)法で評価した。X線回折測定は、Cuターゲットを用いて加速電圧45kV、電流40mAの条件下、2θを2分./deg.の速度でスキャンして行った。その後、得られたX線回折(XRD)パターンを解析して結晶構造を同定した。
<Powder crystal structure>
The crystal structure of the powder was evaluated by powder X-ray diffraction (XRD) method. The X-ray diffraction measurement was performed using a Cu target under the conditions of an acceleration voltage of 45 kV and a current of 40 mA, and 2θ was measured for 2 minutes. /deg. was scanned at a speed of After that, the obtained X-ray diffraction (XRD) pattern was analyzed to identify the crystal structure.
<シェル層の組成分析、厚み>
シェル層の組成分析と平均厚みを透過型電子顕微鏡(TEM;日本電子株式会社、JEM-ARM200F;加速電圧200kV)及びEDS検出器(Thermo Fisher Scientific社、NSS)を用いて評価した。その際、粉末を熱硬化性樹脂に埋め込み、集束イオンビーム装置を用いて加工して作製した厚さ100nmの断面薄片を観察試料に用いた。
<Composition analysis and thickness of shell layer>
The composition analysis and average thickness of the shell layer were evaluated using a transmission electron microscope (TEM; JEOL Ltd., JEM-ARM200F; accelerating voltage 200 kV) and an EDS detector (Thermo Fisher Scientific, NSS). At that time, a cross-sectional slice with a thickness of 100 nm, which was prepared by embedding the powder in a thermosetting resin and processing it using a focused ion beam apparatus, was used as an observation sample.
<磁性粉末の組成>
磁性粉末の希土類(R)組成(量)と窒素(N)組成(量)のそれぞれを、ICP発光分光分析法及び熱伝導度法で分析した。
<Composition of magnetic powder>
The rare earth (R) composition (amount) and the nitrogen (N) composition (amount) of the magnetic powder were each analyzed by ICP emission spectrometry and thermal conductivity.
(2)希土類鉄窒素系磁性粉末の作製
実施例1~9及び比較例1~11につき、希土類鉄窒素系磁性粉末を作製してその特性を評価した。磁性粉末の製造条件と特性を表1及び表2に示す。
(2) Preparation of Rare Earth Iron Nitrogen Based Magnetic Powder For Examples 1 to 9 and Comparative Examples 1 to 11, rare earth iron nitrogen based magnetic powder was prepared and its properties were evaluated. Tables 1 and 2 show the manufacturing conditions and characteristics of the magnetic powder.
[実施例1]
<準備工程>
希土類鉄合金粉末としてSm2Fe17合金粉末を、希土類酸化物粉末として酸化サマリウム(Sm2O3)粉末を準備した。Sm2Fe17合金粉末(希土類鉄合金粉末)は以下の手順に従い作製した。
[Example 1]
<Preparation process>
Sm 2 Fe 17 alloy powder was prepared as the rare earth iron alloy powder, and samarium oxide (Sm 2 O 3 ) powder was prepared as the rare earth oxide powder. Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) was produced according to the following procedure.
平均粒径(D50)が2.3μmの酸化サマリウム(Sm2O3)粉末、平均粒径(D50)が40μmの鉄(Fe)粉及び粒状金属カルシウム(Ca)を準備した。次いで酸化サマリウム粉末0.44kg、鉄粉1.0kg及び粒状金属カルシウム0.23kgをミキサー混合した。得られた混合物を鉄るつぼに入れて、アルゴン(Ar)ガス雰囲気下1150℃×8時間の条件で加熱処理して、反応生成物を得た。 Samarium oxide (Sm 2 O 3 ) powder with an average particle size (D 50 ) of 2.3 μm, iron (Fe) powder with an average particle size (D 50 ) of 40 μm, and granular metallic calcium (Ca) were prepared. Next, 0.44 kg of samarium oxide powder, 1.0 kg of iron powder and 0.23 kg of granular metallic calcium were mixed with a mixer. The resulting mixture was placed in an iron crucible and heat-treated at 1150° C. for 8 hours under an argon (Ar) gas atmosphere to obtain a reaction product.
冷却後に取り出した反応生成物を2Lの水中に投入して、アルゴン(Ar)ガス雰囲気中で12時間放置してスラリー化した。このスラリーの上澄みを捨てた後に、新たに水2Lを加えて攪拌し、SmFe合金粉が沈降したところで、水酸化カルシウムが懸濁する上澄みを捨てた。水添加、攪拌及び上澄み除去の操作をpHが11以下になるまで繰り返した。次に合金粉と水2Lとが攪拌されている状態でpHが6になるまで酢酸を添加し、その状態で30分間攪拌を続けた後、上澄みを捨てた。再び水2Lを加えて攪拌し上澄みを捨てる操作を5回行い、最後にアルコールで水を置換した後、ヌッチェを用いて合金粉を回収した。回収した合金粉をミキサーに入れて、減圧しながら100℃×10時間の条件で攪拌乾燥し、1.3kgのSm2Fe17合金粉末(希土類鉄合金粉末)を得た。得られたSm2Fe17合金粉末の平均粒径は30μmであった。 The reaction product taken out after cooling was poured into 2 L of water and left in an argon (Ar) gas atmosphere for 12 hours to form a slurry. After discarding the supernatant of this slurry, 2 L of water was newly added and stirred, and when the SmFe alloy powder settled, the supernatant containing the suspended calcium hydroxide was discarded. The operations of adding water, stirring and removing the supernatant were repeated until the pH became 11 or less. Next, while the alloy powder and 2 L of water were being stirred, acetic acid was added until the pH reached 6. Stirring was continued in this state for 30 minutes, and then the supernatant was discarded. The operation of adding 2 L of water again, stirring, and discarding the supernatant was repeated five times. Finally, after replacing the water with alcohol, the alloy powder was recovered using a Nutsche. The collected alloy powder was put in a mixer and dried under the conditions of 100° C. for 10 hours while stirring under reduced pressure to obtain 1.3 kg of Sm 2 Fe 17 alloy powder (rare earth iron alloy powder). The average particle size of the obtained Sm 2 Fe 17 alloy powder was 30 μm.
得られた希土類鉄合金粉末は、サマリウム(Sm)が24.5質量%、酸素(O)が0.15質量%、水素(H)が0.54質量%、カルシウム(Ca)が0.01質量%未満、残部鉄(Fe)の組成をもち、Th2Zn17型結晶構造のSm2Fe17を主相としていた。 The obtained rare earth iron alloy powder contained 24.5% by mass of samarium (Sm), 0.15% by mass of oxygen (O), 0.54% by mass of hydrogen (H), and 0.01% by mass of calcium (Ca). The main phase was Sm 2 Fe 17 having a Th 2 Zn 17 -type crystal structure with a composition of less than mass % and the balance being iron (Fe).
<混合工程>
準備工程で得られたSm2Fe17合金粉末(希土類鉄合金粉末)1kgに対して、酸化サマリウム粉末(希土類酸化物粉末)100gをロッキングミキサーで予備混合した。用いた酸化サマリウム粉末の平均粒径(D50)は2.3μmであった。また酸化サマリウムの混合量は、Sm2Fe17合金粉末100質量部に対して10質量部に相当した。イソプロピルアルコール2.2kgと85%燐酸23.1gとの混合溶液を溶媒とし、得られた予備混合物を媒体攪拌ミルで粉砕して、スラリーを得た。
<Mixing process>
100 g of samarium oxide powder (rare earth oxide powder) was preliminarily mixed with 1 kg of Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) obtained in the preparation step with a rocking mixer. The average particle size (D 50 ) of the samarium oxide powder used was 2.3 μm. The amount of samarium oxide mixed was equivalent to 10 parts by mass with respect to 100 parts by mass of the Sm 2 Fe 17 alloy powder. Using a mixed solution of 2.2 kg of isopropyl alcohol and 23.1 g of 85% phosphoric acid as a solvent, the resulting premix was ground in a medium agitation mill to obtain a slurry.
得られたスラリーをミキサーに入れ、減圧しながら加温して溶媒を蒸発させ、室温まで冷却した。その後、ミキサーで攪拌を続けながら酸素濃度4体積%の窒素ガスをフローし、混合粉末の酸化発熱が40℃を超えないように注意しながら酸素濃度を徐々に10体積%まで高めた。発熱終了を確認してから粉砕混合物を回収した。回収した粉砕混合物を電気炉に入れて真空中210℃まで昇温加熱したところ、ガス放出による真空度の悪化が確認された。ガス発生が終わり、真空度が戻ったところで冷却して粉砕混合物(原料混合物)を取り出した。 The resulting slurry was placed in a mixer, heated under reduced pressure to evaporate the solvent, and cooled to room temperature. After that, nitrogen gas with an oxygen concentration of 4% by volume was flowed while stirring was continued with a mixer, and the oxygen concentration was gradually increased to 10% by volume while taking care that the oxidation heat of the mixed powder did not exceed 40°C. After confirming the end of heat generation, the pulverized mixture was recovered. When the recovered pulverized mixture was placed in an electric furnace and heated to 210° C. in a vacuum, deterioration of the degree of vacuum due to gas release was confirmed. When the gas generation ended and the degree of vacuum returned, the mixture was cooled and the pulverized mixture (raw material mixture) was taken out.
粉砕混合物をSEM反射電子像で観察したところ、Sm2Fe17合金粒子(Sm2Fe17微粉)の最大粒径は10μmであり、酸化サマリウム粒子(Sm2O3微粉)の最大粒径は1.0μmであった。粉砕混合物の組成は、サマリウム(Sm)が28.8質量%、燐(P)が0.54質量%、酸素(O)が3.7質量%、水素(H)が0.41質量%、残部鉄(Fe)であった。混合物全体の平均粒径(D50)は1.2μmであった。FIB断面加工後にTEM観察したところ、Sm2Fe17合金粒子表面にはSm、Fe、P、Oを含む燐酸系化合物被膜が形成されていた。この被膜の厚さは5~10nmであった。さらに粉砕混合物の加熱減量(α)は0.4質量%であった。 When the pulverized mixture was observed with an SEM backscattered electron image, the maximum particle size of the Sm 2 Fe 17 alloy particles (Sm 2 Fe 17 fine powder) was 10 µm, and the maximum particle size of the samarium oxide particles (Sm 2 O 3 fine powder) was 1 µm. 0 μm. The composition of the pulverized mixture is 28.8% by mass of samarium (Sm), 0.54% by mass of phosphorus (P), 3.7% by mass of oxygen (O), 0.41% by mass of hydrogen (H), The balance was iron (Fe). The average particle size (D 50 ) of the entire mixture was 1.2 μm. TEM observation after processing the FIB cross section revealed that a phosphoric acid-based compound film containing Sm, Fe, P, and O was formed on the surface of the Sm 2 Fe 17 alloy particles. The thickness of this coating was 5-10 nm. Furthermore, the heat loss (α) of the pulverized mixture was 0.4% by mass.
<還元拡散処理工程>
得られた粉砕混合物に還元拡散処理を施した。まず粉砕混合物200gに還元剤46.6gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量(当量)に対して2.5倍量とした。次いで混合物を鉄るつぼに入れて、アルゴン(Ar)ガス雰囲気下で加熱し、930℃で2時間保持した後に冷却した。これにより反応生成物(還元拡散反応生成物)を得た。
<Reduction diffusion treatment step>
The resulting pulverized mixture was subjected to reduction diffusion treatment. First, 46.6 g of a reducing agent was added to 200 g of the pulverized mixture and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 2.5 times the amount (equivalent) required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 930° C. for 2 hours, and then cooled. Thus, a reaction product (reduction-diffusion reaction product) was obtained.
<解砕処理工程>
回収した反応生成物を管状炉に入れて、炉内をアルゴン(Ar)ガスで置換した。その後、一旦炉内を-100kPaまで減圧してから大気圧まで水素(H2)ガスを導入し、流量1L/分の水素(H2)ガス気流中で150℃まで昇温し、30分間保持して冷却した。反応生成物は、昇温の80℃を超えたころから水素を吸収し、管状炉の内圧が最大-60kPaまで低下するとともに温度上昇が始まった。水素吸収による発熱が起こっている間は、炉内が負圧になるので管状炉の排気側のバルブを閉めて最大流量1L/分で水素ガスの供給を継続した。発熱による反応生成物の最大温度は170℃だった。冷却後、解砕処理した反応生成物を得た。
<Crushing treatment process>
The recovered reaction product was placed in a tubular furnace, and the interior of the furnace was replaced with argon (Ar) gas. After that, the pressure inside the furnace was once reduced to −100 kPa, hydrogen (H 2 ) gas was introduced to atmospheric pressure, and the temperature was raised to 150° C. in a hydrogen (H 2 ) gas stream at a flow rate of 1 L/min, and held for 30 minutes. and cooled. The reaction product absorbed hydrogen when the temperature exceeded 80° C., and the temperature began to rise as the internal pressure of the tubular furnace decreased to a maximum of -60 kPa. Since the inside of the furnace became negative pressure while heat was generated due to hydrogen absorption, the valve on the exhaust side of the tubular furnace was closed to continue supplying hydrogen gas at a maximum flow rate of 1 L/min. The maximum temperature of the exothermic reaction product was 170°C. After cooling, a pulverized reaction product was obtained.
<窒化熱処理工程>
解砕処理した反応生成物を流量200cc/分の窒素(N2)ガス気流中で昇温し、450℃で24時間保持した後に冷却した。これにより窒化反応生成物を得た。
<Nitriding heat treatment process>
The pulverized reaction product was heated in a nitrogen (N 2 ) gas stream at a flow rate of 200 cc/min, held at 450° C. for 24 hours, and then cooled. A nitriding reaction product was thus obtained.
<湿式処理工程>
回収した窒化反応生成物に湿式処理を施した。まず窒化反応生成物20gをイオン交換水200cc中に投入した。その後、アルゴン(Ar)ガス雰囲気中で1時間放置してスラリー化し、スラリーの上澄みを捨てた。新たにイオン交換水200cc加えて1分間攪拌し、窒化合金粉が沈降するまで静置して、カルシウム成分が懸濁する上澄みを捨てた。イオン交換水添加及び上澄み除去の操作を15回繰り返した。次にイソプロピルアルコール100ccを加えて攪拌し、ヌッチェを用いてろ過した。得られたケーキを静置乾燥機に入れて真空中150℃で1時間乾燥した。これにより希土類鉄窒素系磁性粉末を得た。
<Wet treatment process>
A wet treatment was applied to the recovered nitriding reaction product. First, 20 g of the nitriding reaction product was put into 200 cc of deionized water. After that, it was allowed to stand in an argon (Ar) gas atmosphere for 1 hour to form a slurry, and the supernatant of the slurry was discarded. 200 cc of ion-exchanged water was newly added, and the mixture was stirred for 1 minute. The operation of adding ion-exchanged water and removing the supernatant was repeated 15 times. Next, 100 cc of isopropyl alcohol was added, stirred, and filtered using a Nutsche. The resulting cake was placed in a stationary dryer and dried in vacuum at 150° C. for 1 hour. Thus, a rare earth iron nitrogen-based magnetic powder was obtained.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は3.6μmであった。SEM二次電子像で観察したところ、図2に示されるようにサイズ数100nmから5μmの球状粒子の凝集が確認された。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 3.6 μm. Observation with a SEM secondary electron image confirmed aggregation of spherical particles with sizes ranging from 100 nm to 5 μm, as shown in FIG.
磁性粉末の組成は、表2に示すようにSmが27.1質量%、Nが3.0質量%、Pが0.26質量%であった。また磁気特性は、残留磁化(σr)が101Am2/kg,保磁力(Hc)が1006kA/mであった。さらに耐熱性は、加熱後保磁力(Hc,300)が922kA/m、維持率(Hc,300/Hc)が92%であった。 The composition of the magnetic powder was, as shown in Table 2, 27.1% by mass of Sm, 3.0% by mass of N, and 0.26% by mass of P. As for the magnetic properties, the residual magnetization (σ r ) was 101 Am 2 /kg and the coercive force (H c ) was 1006 kA/m. Furthermore, regarding the heat resistance, the coercive force (H c,300 ) after heating was 922 kA/m, and the retention ratio (H c,300 /H c ) was 92%.
得られた磁性粉末の粒子表面をTEM観察した。その際、磁性粉末を熱硬化性樹脂に埋め込んだ後に加工して作製した断面薄片試料を観察試料に用いた。表面のHAADF(高角環状暗視野)像を図3に、またその厚み方向におけるEDS(エネルギー分散型X線分析)面分析結果のライン抽出図を図4に示す。図4は、図3の点Xから点Yに向かってEDS分析した組成をライン抽出したものを表し、横軸左端が図3の点X、右端が点Yに対応する。またSm、Fe、N、Ca、O、Pの合計量が100原子%になるように規格化している。 The particle surfaces of the obtained magnetic powder were observed by TEM. At that time, a cross-sectional thin piece sample prepared by embedding magnetic powder in a thermosetting resin and then processing it was used as an observation sample. FIG. 3 shows an HAADF (high angle annular dark field) image of the surface, and FIG. 4 shows a line extraction diagram of the EDS (energy dispersive X-ray spectroscopy) plane analysis result in the thickness direction. FIG. 4 shows line extraction of the EDS-analyzed composition from point X to point Y in FIG. Also, the total amount of Sm, Fe, N, Ca, O and P is normalized to 100 atomic %.
図3に示されるように、磁性粉末粒子表面に厚さ10nm程度のシェル層が形成されていた。またHAADF像のコントラストに注目すると、明るい外層と暗い内層がシェル層を構成していることが分かった。これらの厚みは、外層が4nm程度、内層が6nm程度であった。また図4に示されるように、外層のSm/Fe比(A)は最大2.5であった。コアである主相Sm2Fe17N3のSm/Fe比が約0.12であることから、外層はSmリッチであることが確認された。また外層はNを最大7原子%含んでおり、さらにOとCaを含んでいた。一方で主相側に近い内層のSm/Fe比(B)は0.2程度であり、主相に比べてSmリッチであることが分かった。内層はNを最大5原子%程度含んでおり、Oを含むがCaは含まなかった。外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 As shown in FIG. 3, a shell layer with a thickness of about 10 nm was formed on the surface of the magnetic powder particles. Focusing on the contrast of the HAADF image, it was found that a bright outer layer and a dark inner layer constitute the shell layer. The thickness of these layers was about 4 nm for the outer layer and about 6 nm for the inner layer. Also, as shown in FIG. 4, the maximum Sm/Fe ratio (A) of the outer layer was 2.5. Since the Sm/Fe ratio of the main phase Sm 2 Fe 17 N 3 which is the core is about 0.12, it was confirmed that the outer layer is Sm-rich. In addition, the outer layer contained N up to 7 atomic %, and further contained O and Ca. On the other hand, the Sm/Fe ratio (B) of the inner layer close to the main phase side was about 0.2, which was found to be richer in Sm than the main phase. The inner layer contained about 5 atomic % of N at the maximum, and contained O but no Ca. The outer layer Sm/Fe ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例2]
還元拡散処理、解砕処理、窒化熱処理及び湿式処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 2]
Reduction diffusion treatment, pulverization treatment, nitriding heat treatment and wet treatment were performed as follows. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<還元拡散処理工程>
実施例1で作製した粉砕混合物(原料混合物)200gに還元剤46.6gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量に対して2.5倍量とした。次いで混合物を鉄るつぼに入れてアルゴン(Ar)ガス雰囲気下で加熱し、900℃で2時間保持した後に冷却した。これにより還元拡散反応生成物を得た。
<Reduction diffusion treatment step>
46.6 g of a reducing agent was added to 200 g of the pulverized mixture (raw material mixture) prepared in Example 1 and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 2.5 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 900° C. for 2 hours, and then cooled. This gave a reduction diffusion reaction product.
<解砕処理工程>
回収した反応生成物を管状炉に入れて、炉内をアルゴン(Ar)ガスで置換した。その後、一旦炉内を-100kPaまで減圧してから大気圧まで水素(H2)ガスを導入し、流量1L/分の水素(H2)ガス気流中で300℃まで昇温し、30分間保持して冷却した。反応生成物は、昇温の110℃を超えたころから水素を吸収し、管状炉の内圧が最大-70kPaまで低下するとともに温度上昇が始まった。水素吸収による発熱が起こっている間は、炉内が負圧になるので管状炉の排気側のバルブを閉めて最大流量1L/分で水素ガスの供給を継続した。反応生成物の最大温度は300℃だった。冷却後、解砕処理した反応生成物を得た。
<Crushing treatment process>
The recovered reaction product was placed in a tubular furnace, and the interior of the furnace was replaced with argon (Ar) gas. After that, the pressure in the furnace was once reduced to −100 kPa, hydrogen (H 2 ) gas was introduced to atmospheric pressure, the temperature was raised to 300° C. in a hydrogen (H 2 ) gas stream at a flow rate of 1 L/min, and the temperature was maintained for 30 minutes. and cooled. The reaction product absorbed hydrogen when the temperature exceeded 110° C., and the temperature began to rise as the internal pressure of the tubular furnace decreased to a maximum of -70 kPa. Since the inside of the furnace became negative pressure while heat was generated due to hydrogen absorption, the valve on the exhaust side of the tubular furnace was closed to continue supplying hydrogen gas at a maximum flow rate of 1 L/min. The maximum temperature of the reaction product was 300°C. After cooling, a pulverized reaction product was obtained.
<窒化熱処理工程>
解砕処理した反応生成物を流量200cc/分の窒素(N2)ガス気流中で昇温し、450℃で24時間保持した後に冷却した。これにより窒化反応生成物を得た。
<Nitriding heat treatment process>
The pulverized reaction product was heated in a nitrogen (N 2 ) gas stream at a flow rate of 200 cc/min, held at 450° C. for 24 hours, and then cooled. A nitriding reaction product was thus obtained.
<湿式処理工程>
回収した窒化反応生成物10gをイオン交換水100cc中に投入した。その後、アルゴン(Ar)ガス雰囲気中で2時間放置してスラリー化し、スラリーの上澄みを捨てた。新たにイオン交換水100cc加えて1分間攪拌し、窒化合金粉が沈降するまで静置して、カルシウム成分が懸濁する上澄みを捨てた。イオン交換水添加及び上澄み除去の操作を15回繰り返した。次にイソプロピルアルコール50ccを加えて攪拌し、ヌッチェを用いてろ過した。得られたケーキを静置乾燥機に入れて真空中150℃×1時間の条件で乾燥した。これにより希土類鉄窒素系磁性粉末を得た。
<Wet treatment process>
10 g of the recovered nitriding reaction product was put into 100 cc of deionized water. After that, it was allowed to stand in an argon (Ar) gas atmosphere for 2 hours to form a slurry, and the supernatant of the slurry was discarded. 100 cc of ion-exchanged water was newly added, and the mixture was stirred for 1 minute. The operation of adding ion-exchanged water and removing the supernatant was repeated 15 times. Next, 50 cc of isopropyl alcohol was added, stirred, and filtered using a Nutsche. The resulting cake was placed in a stationary dryer and dried under vacuum conditions of 150° C. for 1 hour. Thus, a rare earth iron nitrogen-based magnetic powder was obtained.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、図5に示すようにTh2Zn17型結晶構造を有することが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は3.3μmであった。SEM反射電子像で観察したところ、図6に示されるようにサイズ数100nmから4μmの球状粒子の凝集が確認された。 When the obtained rare earth iron nitrogen magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure as shown in FIG. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 3.3 μm. Observation with a backscattered electron image of a SEM confirmed aggregation of spherical particles with sizes ranging from 100 nm to 4 μm, as shown in FIG.
図5に示されるように、XRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。Rietveld解析によればSmP相の含有量は3.3質量%であった。また図6の明るいコントラストで示される数100nmから2μmの粒子がSmP相であった。 As shown in FIG. 5, the XRD profile showed SmP phase peaks in addition to the Sm 2 Fe 17 N 3 peaks of the Th 2 Zn 17 -type crystal structure. According to Rietveld analysis, the SmP phase content was 3.3 mass %. Particles of several hundred nm to 2 μm shown in bright contrast in FIG. 6 were the SmP phase.
磁性粉末の組成は、表2に示すようにSmが27.5質量%、Nが3.1質量%、Pが0.27質量%であった。また磁気特性は、残留磁化が102Am2/kg,保磁力が1123kA/mであった。さらに耐熱性は、加熱後保磁力(Hc,300)が851kA/m、維持率(Hc,300/Hc)が76%であった。実施例1と同様に粒子表面をTEM観察したところ、厚さ2nmのシェル層が形成されていた。シェル層のSm/Fe比は最大0.5であり、N量は最大3原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 The composition of the magnetic powder, as shown in Table 2, was 27.5% by mass of Sm, 3.1% by mass of N, and 0.27% by mass of P. As for the magnetic properties, the residual magnetization was 102 Am 2 /kg and the coercive force was 1123 kA/m. Furthermore, regarding the heat resistance, the coercive force (H c,300 ) after heating was 851 kA/m, and the retention ratio (H c,300 /H c ) was 76%. When the particle surface was observed by TEM in the same manner as in Example 1, a shell layer with a thickness of 2 nm was formed. The maximum Sm/Fe ratio of the shell layer was 0.5, and the maximum amount of N was 3 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例3]
湿式処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 3]
Wet processing was carried out as indicated below. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<湿式処理工程>
実施例1で作製した窒化反応生成物20gを、水/(エチレングリコール+水)で規定される水含有率20質量%のエチレングリコール1L中に投入した。その後、アルゴン(Ar)ガス雰囲気中で3時間攪拌してスラリー化し、スラリーの上澄みを捨てた。新たに水含有率20質量%のエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置して、カルシウム成分が懸濁する上澄みを捨てた。エチレングリコール添加及び上澄み除去の操作をアルゴン(Ar)ガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し、窒化合金粉が沈降するまで静置して、上澄みを捨てた。脱水エタノール添加及び上澄み除去の操作をアルゴン(Ar)ガス雰囲気中で3回繰り返した。最後にヌッチェを用いてろ過し、得られたケーキをミキサーに入れて真空中150℃×1時間の条件で攪拌乾燥した。これにより希土類鉄窒素系磁性粉末を得た。
<Wet treatment process>
20 g of the nitriding reaction product prepared in Example 1 was put into 1 L of ethylene glycol having a water content of 20% by mass defined by water/(ethylene glycol+water). Then, it was stirred in an argon (Ar) gas atmosphere for 3 hours to form a slurry, and the supernatant of the slurry was discarded. 1 L of ethylene glycol having a water content of 20% by mass was newly added, stirred for 5 minutes, left to stand until the nitrided alloy powder settled, and the supernatant in which the calcium component was suspended was discarded. The operation of adding ethylene glycol and removing the supernatant was repeated three times in an argon (Ar) gas atmosphere. Next, 500 cc of dehydrated ethanol was added and the mixture was stirred, allowed to stand until the nitrided alloy powder settled, and the supernatant was discarded. The operation of adding dehydrated ethanol and removing the supernatant was repeated three times in an argon (Ar) gas atmosphere. Finally, it was filtered using a Nutsche, and the resulting cake was placed in a mixer and stirred and dried under vacuum conditions of 150° C. for 1 hour. Thus, a rare earth iron nitrogen-based magnetic powder was obtained.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は4.4μmであった。SEM観察したところ、実施例1と同様にサイズ数100nmから5μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚さ10nmのシェル層が形成されていた。シェル層のSm/Fe比は最大2.1であり、N量は最大5原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 4.4 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 100 nm to 5 μm was confirmed. TEM observation of the particle surface revealed that a 10 nm-thick shell layer having a two-layer structure was formed. The maximum Sm/Fe ratio of the shell layer was 2.1, and the maximum amount of N was 5 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例4]
湿式処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 4]
Wet processing was carried out as indicated below. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<湿式処理工程>
実施例1で作製した窒化反応生成物をエチレングリコール1L中に投入し、アルゴン(Ar)ガス雰囲気中で3時間攪拌してスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて10分間攪拌し、窒化合金粉が沈降するまで静置して、カルシウム成分が懸濁する上澄みを捨てた。エチレングルコール添加及び上澄み除去の操作をアルゴンガス雰囲気中で10回繰り返した。次に脱水エタノール500ccを加えて攪拌し、窒化合金粉が沈降するまで静置して上澄みを捨てた。脱水エタノール添加及び上澄み除去の操作をアルゴンガス雰囲気中で5回繰り返した。最後にアルゴン(Ar)ガス雰囲気中でヌッチェを用いてろ過し、得られたケーキをミキサーに入れて真空中150℃×1時間の条件で攪拌乾燥した。これにより希土類鉄窒素系磁性粉末を得た。
<Wet treatment process>
The nitriding reaction product prepared in Example 1 was put into 1 L of ethylene glycol and stirred for 3 hours in an argon (Ar) gas atmosphere to form a slurry. The supernatant liquid of this slurry was discarded, 1 L of ethylene glycol was newly added, and the mixture was stirred for 10 minutes. The operation of adding ethylene glycol and removing the supernatant was repeated 10 times in an argon gas atmosphere. Next, 500 cc of dehydrated ethanol was added, and the mixture was stirred, left to stand until the nitrided alloy powder settled, and the supernatant was discarded. The operation of adding dehydrated ethanol and removing the supernatant was repeated five times in an argon gas atmosphere. Finally, the cake was filtered using a Nutsche in an argon (Ar) gas atmosphere, and the resulting cake was placed in a mixer and stirred and dried under vacuum conditions of 150° C. for 1 hour. Thus, a rare earth iron nitrogen-based magnetic powder was obtained.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は4.8μmであった。SEM観察したところ、実施例1と同様にサイズ数100nmから5μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚さ22nmのシェル層が形成されていた。シェル層のSm/Fe比は最大3.7であり、N量は最大9原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 4.8 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 100 nm to 5 μm was confirmed. TEM observation of the particle surface revealed that a shell layer having a two-layer structure and a thickness of 22 nm was formed. The shell layer had a maximum Sm/Fe ratio of 3.7 and a maximum N content of 9 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例5]
混合及び還元拡散処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 5]
Mixing and reduction diffusion treatments were performed as described below. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<混合工程>
粉砕混合物を作製する際に媒体攪拌ミルの粉砕時間を調整した。それ以外は実施例1と同様にして混合を行った。粉砕混合物においてSm2Fe17合金粒子の最大粒径は7μm、酸化サマリウム粒子の最大粒径は0.6μmであった。粉砕混合物の組成は、Smが28.6質量%、Pが0.57質量%、Oが4.7質量%、Hが0.48質量%、残部Feであった。混合物全体の平均粒径(D50)は1.1μmであった。Sm2Fe17合金粒子表面には厚さ5~10nmの燐酸系化合物被膜が形成されていた。さらに粉砕混合物の加熱減量(α)は0.8質量%であった。
<Mixing process>
The milling time of the media agitation mill was adjusted when making the milling mixture. Mixing was carried out in the same manner as in Example 1 except for the above. The maximum particle size of the Sm 2 Fe 17 alloy particles in the pulverized mixture was 7 μm, and the maximum particle size of the samarium oxide particles was 0.6 μm. The composition of the pulverized mixture was 28.6 wt% Sm, 0.57 wt% P, 4.7 wt% O, 0.48 wt% H, and the balance Fe. The average particle size ( D50 ) of the whole mixture was 1.1 μm. A phosphoric acid compound film having a thickness of 5 to 10 nm was formed on the surface of the Sm 2 Fe 17 alloy particles. Furthermore, the heat loss (α) of the pulverized mixture was 0.8% by mass.
<還元拡散処理工程>
得られた粉砕混合物200gに還元剤70.6gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量に対して3.0倍量とした。次いで混合物を鉄るつぼに入れて、アルゴン(Ar)ガス雰囲気下で加熱し、730℃で10時間保持した後に冷却した。これにより反応生成物(還元拡散反応生成物)を得た。
<Reduction diffusion treatment step>
70.6 g of a reducing agent was added to 200 g of the resulting pulverized mixture and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 3.0 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 730° C. for 10 hours, and then cooled. Thus, a reaction product (reduction-diffusion reaction product) was obtained.
得られた反応生成物に対して、実施例1と同様にして窒化熱処理及び湿式処理を施して磁性粉末を作製した。 The resulting reaction product was subjected to nitriding heat treatment and wet treatment in the same manner as in Example 1 to produce magnetic powder.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は2.8μmであった。SEM観察したところ、実施例1と同様にサイズ数10nmから3μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚さ6nmのシェル層が形成されていた。シェル層のSm/Fe比は最大1.8であり、N量は最大6原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 2.8 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 10 nm to 3 μm was confirmed. TEM observation of the particle surface revealed that a shell layer having a two-layer structure and a thickness of 6 nm was formed. The shell layer had a maximum Sm/Fe ratio of 1.8 and a maximum N content of 6 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例6]
混合、還元拡散処理、解砕処理及び窒化熱処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 6]
Mixing, reduction diffusion treatment, crushing treatment and nitriding heat treatment were carried out as follows. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<混合工程>
粉砕混合物を作製する際に媒体攪拌ミルの粉砕時間を調整した。それ以外は実施例1と同様にして混合を行った。粉砕混合物においてSm2Fe17合金粒子の最大粒径は15μm、酸化サマリウム粒子の最大粒径は1.8μmであった。粉砕混合物の組成は、Smが29.1質量%、Pが0.52質量%、Oが2.5質量%、Hが0.28質量%、残部Feであった。混合物全体の平均粒径(D50)は2.7μmであった。Sm2Fe17合金粒子表面には厚さ5~10nmの燐酸系化合物被膜が形成されていた。さらに粉砕混合物の加熱減量(α)は0.2質量%であった。
<Mixing process>
The milling time of the media agitation mill was adjusted when making the milling mixture. Mixing was carried out in the same manner as in Example 1 except for the above. The maximum particle size of the Sm 2 Fe 17 alloy particles in the pulverized mixture was 15 μm, and the maximum particle size of the samarium oxide particles was 1.8 μm. The composition of the ground mixture was 29.1% by weight Sm, 0.52% by weight P, 2.5% by weight O, 0.28% by weight H, and the balance Fe. The average particle size ( D50 ) of the whole mixture was 2.7 μm. A phosphoric acid compound film having a thickness of 5 to 10 nm was formed on the surface of the Sm 2 Fe 17 alloy particles. Furthermore, the heat loss (α) of the pulverized mixture was 0.2% by mass.
<還元拡散処理工程>
得られた粉砕混合物200gに還元剤122.7gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量に対して9.8倍量とした。次いで混合物を鉄るつぼに入れて、アルゴン(Ar)ガス雰囲気下で加熱し、860℃で4時間保持した後に冷却した。これにより反応生成物(還元拡散反応生成物)を得た。
<Reduction diffusion treatment step>
122.7 g of a reducing agent was added to 200 g of the pulverized mixture obtained and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 9.8 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 860° C. for 4 hours, and then cooled. Thus, a reaction product (reduction-diffusion reaction product) was obtained.
<解砕処理>
回収した反応生成物を管状炉に入れて、炉内をアルゴン(Ar)ガスで置換した。その後、一旦炉内を-100kPaまで減圧してから大気圧まで水素(H2)ガスを導入し、流量1L/分の水素(H2)ガス気流中で150℃まで昇温し、30分間保持して冷却した。反応生成物は、昇温の90℃を超えたころから水素を吸収し、管状炉の内圧が最大-60kPaまで低下するとともに温度上昇が始まった。水素吸収による発熱が起こっている間は、炉内が負圧になるので管状炉の排気側のバルブを閉めて最大流量1L/分で水素ガスの供給を継続した。発熱による反応生成物の最大温度は200℃だった。冷却後、解砕処理した反応生成物を得た。
<Crushing treatment>
The recovered reaction product was placed in a tubular furnace, and the interior of the furnace was replaced with argon (Ar) gas. After that, the pressure inside the furnace was once reduced to −100 kPa, hydrogen (H 2 ) gas was introduced to atmospheric pressure, and the temperature was raised to 150° C. in a hydrogen (H 2 ) gas stream at a flow rate of 1 L/min, and held for 30 minutes. and cooled. The reaction product absorbed hydrogen when the temperature exceeded 90° C., and the temperature began to rise as the internal pressure of the tubular furnace decreased to a maximum of -60 kPa. Since the inside of the furnace became negative pressure while heat was generated due to hydrogen absorption, the valve on the exhaust side of the tubular furnace was closed to continue supplying hydrogen gas at a maximum flow rate of 1 L/min. The maximum temperature of the exothermic reaction product was 200°C. After cooling, a pulverized reaction product was obtained.
<窒化熱処理工程>
解砕処理した反応生成物を流量50cc/分のアンモニア(NH3)ガスと流量100cc/分の水素(H2)ガスとの混合ガス気流中で昇温し、420℃で2時間保持した後に冷却した。これにより窒化反応生成物を得た。
<Nitriding heat treatment process>
The pulverized reaction product was heated in a mixed gas stream of ammonia (NH 3 ) gas at a flow rate of 50 cc/min and hydrogen (H 2 ) gas at a flow rate of 100 cc/min, and held at 420° C. for 2 hours. cooled. A nitriding reaction product was thus obtained.
得られた窒化反応生成物に対して、実施例1と同様にして湿式処理を施して磁性粉末を作製した。 The obtained nitriding reaction product was subjected to a wet treatment in the same manner as in Example 1 to prepare a magnetic powder.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は9.1μmであった。SEM観察したところ、実施例1と同様にサイズ数100nmから4μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚さ8nmのシェル層が形成されていた。シェル層のSm/Fe比は最大2.9であり、N量は最大7原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 9.1 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 100 nm to 4 μm was confirmed. TEM observation of the particle surface revealed that a shell layer having a two-layer structure and a thickness of 8 nm was formed. The shell layer had a maximum Sm/Fe ratio of 2.9 and a maximum N content of 7 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例7]
混合、還元拡散処理、拡散処理及び窒化熱処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 7]
Mixing, reduction diffusion treatment, diffusion treatment and nitriding heat treatment were performed as follows. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<混合工程>
粉砕混合物を作製する際に媒体攪拌ミルの粉砕時間を調整した。それ以外は実施例1と同様にして混合を行った。粉砕混合物においてSm2Fe17合金粒子の最大粒径は3μm、酸化サマリウム粒子の最大粒径は0.2μmであった。粉砕混合物の組成は、Smが27.5質量%、Pが0.61質量%、Oが6.2質量%、Hが0.51質量%、残部Feであった。混合物全体の平均粒径(D50)は1.1μmであった。Sm2Fe17合金粒子表面には厚さ5~10nmの燐酸系化合物被膜が形成されていた。さらに粉砕混合物の加熱減量(α)は0.9質量%であった。
<Mixing process>
The milling time of the media agitation mill was adjusted when making the milling mixture. Mixing was carried out in the same manner as in Example 1 except for the above. The maximum particle size of the Sm 2 Fe 17 alloy particles in the pulverized mixture was 3 μm, and the maximum particle size of the samarium oxide particles was 0.2 μm. The composition of the ground mixture was 27.5% by weight Sm, 0.61% by weight P, 6.2% by weight O, 0.51% by weight H, and the balance Fe. The average particle size ( D50 ) of the whole mixture was 1.1 μm. A phosphoric acid compound film having a thickness of 5 to 10 nm was formed on the surface of the Sm 2 Fe 17 alloy particles. Furthermore, the heat loss (α) of the pulverized mixture was 0.9% by mass.
<還元拡散処理工程>
得られた粉砕混合物200gに還元剤217.4gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量に対して7.0倍量とした。次いで混合物を鉄るつぼに入れてアルゴン(Ar)ガス雰囲気下で加熱し、1050℃で0.5時間保持した後に冷却した。これにより反応生成物(還元拡散反応生成物)を得た。
<Reduction diffusion treatment step>
217.4 g of a reducing agent was added to 200 g of the resulting pulverized mixture and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 7.0 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 1050° C. for 0.5 hours, and then cooled. Thus, a reaction product (reduction-diffusion reaction product) was obtained.
<解砕処理工程>
回収した反応生成物を管状炉に入れて、炉内をアルゴン(Ar)ガスで置換した。その後、一旦炉内を-100kPaまで減圧してから大気圧まで水素(H2)ガスを導入し、流量1L/分の水素(H2)ガス気流中で150℃まで昇温し、30分間保持して冷却した。反応生成物は、昇温の100℃を超えたころから水素を吸収し、管状炉の内圧が最大-55kPaまで低下するとともに温度上昇が始まった。水素吸収による発熱が起こっている間は、炉内が負圧になるので管状炉の排気側のバルブを閉めて最大流量1L/分で水素ガスの供給を継続した。発熱による反応生成物の最大温度は160℃だった。冷却後、解砕処理した反応生成物を得た。
<Crushing treatment process>
The recovered reaction product was placed in a tubular furnace, and the interior of the furnace was replaced with argon (Ar) gas. After that, the pressure inside the furnace was once reduced to −100 kPa, hydrogen (H 2 ) gas was introduced to atmospheric pressure, and the temperature was raised to 150° C. in a hydrogen (H 2 ) gas stream at a flow rate of 1 L/min, and held for 30 minutes. and cooled. The reaction product absorbed hydrogen when the temperature exceeded 100° C., and the temperature began to rise as the internal pressure of the tubular furnace decreased to a maximum of −55 kPa. Since the inside of the furnace became negative pressure while heat was generated due to hydrogen absorption, the valve on the exhaust side of the tubular furnace was closed to continue supplying hydrogen gas at a maximum flow rate of 1 L/min. The maximum temperature of the exothermic reaction product was 160°C. After cooling, a pulverized reaction product was obtained.
<窒化熱処理工程>
解砕処理した反応生成物を流量50cc/分のアンモニア(NH3)ガスと流量100cc/分の水素(H2)ガスとの混合ガス気流中で昇温し、430℃で2時間保持した後に冷却した。これにより窒化反応生成物を得た。
<Nitriding heat treatment process>
The pulverized reaction product was heated in a mixed gas stream of ammonia (NH 3 ) gas at a flow rate of 50 cc/min and hydrogen (H 2 ) gas at a flow rate of 100 cc/min, and held at 430° C. for 2 hours. cooled. A nitriding reaction product was thus obtained.
得られた窒化反応生成物に対して、実施例1と同様にして湿式処理を施して磁性粉末を作製した。 The obtained nitriding reaction product was subjected to a wet treatment in the same manner as in Example 1 to prepare a magnetic powder.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は4.2μmであった。SEM観察したところ、実施例1と同様にサイズ数100nmから5μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚さ14nmのシェル層が形成されていた。シェル層のSm/Fe比は最大4.5であり、N量は最大8原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 4.2 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 100 nm to 5 μm was confirmed. TEM observation of the particle surface revealed that a 14 nm-thick shell layer having a two-layer structure was formed. The shell layer had a maximum Sm/Fe ratio of 4.5 and a maximum N content of 8 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例8]
混合、還元拡散処理、解砕処理及び窒化熱処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 8]
Mixing, reduction diffusion treatment, crushing treatment and nitriding heat treatment were carried out as follows. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<混合工程>
粉砕混合物を作製する際に酸化サマリウムの混合量を200gとし、媒体攪拌ミル粉砕時間を調整した。酸化サマリウムの混合量は、Sm2Fe17合金粉末100質量部に対して20質量部に相当した。それ以外は実施例1と同様にして混合を行った。粉砕混合物においてSm2Fe17合金粒子の最大粒径は12μm、酸化サマリウム粒子の最大は1.1μmであった。粉砕混合物の組成は、Smが33.8質量%、Pが0.52質量%、Oが3.5質量%、Hが0.38質量%、残部Feであった。混合物全体の平均粒径(D50)は1.7μmであった。Sm2Fe17合金粒子表面には厚さ5~10nmの燐酸系化合物被膜が形成されていた。さらに粉砕混合物の加熱減量(α)は0.5質量%であった。
<Mixing process>
When preparing the pulverized mixture, the mixed amount of samarium oxide was set to 200 g, and the medium stirring mill pulverization time was adjusted. The amount of samarium oxide mixed was equivalent to 20 parts by mass with respect to 100 parts by mass of the Sm 2 Fe 17 alloy powder. Mixing was carried out in the same manner as in Example 1 except for the above. The maximum particle size of the Sm 2 Fe 17 alloy particles was 12 μm and the maximum of the samarium oxide particles was 1.1 μm in the milled mixture. The composition of the pulverized mixture was 33.8% by weight Sm, 0.52% by weight P, 3.5% by weight O, 0.38% by weight H, and the balance Fe. The average particle size (D 50 ) of the whole mixture was 1.7 μm. A phosphoric acid compound film having a thickness of 5 to 10 nm was formed on the surface of the Sm 2 Fe 17 alloy particles. Furthermore, the heat loss (α) of the pulverized mixture was 0.5% by mass.
<還元拡散処理工程>
得られた粉砕混合物200gに還元剤31.6gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量に対して1.8倍量とした。次いで混合物を鉄るつぼに入れてアルゴン(Ar)ガス雰囲気下で加熱し、820℃で3時間保持した後に冷却した。これにより反応生成物(還元拡散反応生成物)を得た。
<Reduction diffusion treatment step>
31.6 g of a reducing agent was added to 200 g of the pulverized mixture obtained and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 1.8 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 820° C. for 3 hours, and then cooled. Thus, a reaction product (reduction-diffusion reaction product) was obtained.
<解砕処理工程>
回収した反応生成物を管状炉に入れて、炉内をアルゴン(Ar)ガスで置換した。その後、一旦炉内を-100kPaまで減圧してから大気圧まで水素(H2)ガスを導入し、流量1L/分の水素(H2)ガス気流中で150℃まで昇温し、30分保持して冷却した。反応生成物は、昇温の80℃を超えたころから水素を吸収し、管状炉の内圧が最大-87kPaまで低下するとともに温度上昇が始まった。水素吸収による発熱が起こっている間は、炉内が負圧になるので管状炉の排気側のバルブを閉めて最大流量1L/分で水素ガスの供給を継続した。発熱による反応生成物の最大温度は250℃だった。冷却後、解砕処理した反応生成物を得た。
<Crushing treatment process>
The recovered reaction product was placed in a tubular furnace, and the interior of the furnace was replaced with argon (Ar) gas. After that, the pressure inside the furnace was once reduced to −100 kPa, hydrogen (H 2 ) gas was introduced to atmospheric pressure, and the temperature was raised to 150° C. in a hydrogen (H 2 ) gas stream at a flow rate of 1 L/min, and held for 30 minutes. and cooled. The reaction product absorbed hydrogen when the temperature exceeded 80° C., and the temperature began to rise as the internal pressure of the tubular furnace decreased to a maximum of −87 kPa. Since the inside of the furnace became negative pressure while heat was generated due to hydrogen absorption, the valve on the exhaust side of the tubular furnace was closed to continue supplying hydrogen gas at a maximum flow rate of 1 L/min. The maximum temperature of the exothermic reaction product was 250°C. After cooling, a pulverized reaction product was obtained.
<窒化熱処理工程>
解砕処理した反応生成物を流量200cc/分の窒素(N2)ガス気流中で昇温し、450℃で24時間保持した後に冷却した。これにより窒化反応生成物を得た。
<Nitriding heat treatment process>
The pulverized reaction product was heated in a nitrogen (N 2 ) gas stream at a flow rate of 200 cc/min, held at 450° C. for 24 hours, and then cooled. A nitriding reaction product was thus obtained.
得られた窒化反応生成物に対して、実施例1と同様にして湿式処理を施して磁性粉末を作製した。 The obtained nitriding reaction product was subjected to a wet treatment in the same manner as in Example 1 to prepare a magnetic powder.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は5.2μmであった。SEM観察したところ、実施例1と同様にサイズ数100nmから5μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚さ17nmのシェル層が形成されていた。シェル層のSm/Fe比は最大4.9であり、N量は最大10原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 5.2 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 100 nm to 5 μm was confirmed. TEM observation of the particle surface revealed that a shell layer having a two-layer structure and a thickness of 17 nm was formed. The shell layer had a maximum Sm/Fe ratio of 4.9 and a maximum N content of 10 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[実施例9]
混合、還元拡散処理、解砕処理及び窒化熱処理を以下に示すように行った。それ以外は実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。
[Example 9]
Mixing, reduction diffusion treatment, crushing treatment and nitriding heat treatment were carried out as follows. A rare earth iron nitrogen-based magnetic powder was prepared in the same manner as in Example 1 except for the above.
<混合工程>
粉砕混合物を作製する際に酸化サマリウムの混合量を10gとし、媒体攪拌ミル粉砕時間を調整した。酸化サマリウムの混合量は、Sm2Fe17合金粉末100質量部に対して1質量部に相当した。それ以外は実施例1と同様にして混合を行った。粉砕混合物においてSm2Fe17合金粒子の最大粒径は4μm、酸化サマリウム粒子の最大粒径は0.3μmであった。粉砕混合物の組成は、Smが23.8質量%、Pが0.43質量%、Oが5.8質量%、Hが0.29質量%、残部Feであった。混合物全体の平均粒径(D50)は1.3μmであった。Sm2Fe17合金粒子表面には厚さ5~10nmの燐酸系化合物被膜が形成されていた。さらに粉砕混合物の加熱減量(α)は0.3質量%であった。
<Mixing process>
When preparing the pulverized mixture, the mixed amount of samarium oxide was set to 10 g, and the medium stirring mill pulverization time was adjusted. The amount of samarium oxide mixed was equivalent to 1 part by mass with respect to 100 parts by mass of the Sm 2 Fe 17 alloy powder. Mixing was carried out in the same manner as in Example 1 except for the above. The maximum particle size of the Sm 2 Fe 17 alloy particles in the pulverized mixture was 4 μm, and the maximum particle size of the samarium oxide particles was 0.3 μm. The composition of the ground mixture was 23.8 wt% Sm, 0.43 wt% P, 5.8 wt% O, 0.29 wt% H, and the balance Fe. The average particle size (D 50 ) of the whole mixture was 1.3 μm. A phosphoric acid compound film having a thickness of 5 to 10 nm was formed on the surface of the Sm 2 Fe 17 alloy particles. Furthermore, the heat loss (α) of the pulverized mixture was 0.3% by mass.
<還元拡散処理工程>
得られた粉砕混合物200gに還元剤34.9gを加えて混合した。還元剤として目開き1.0mm篩上かつ目開き2.0mm篩下の粒状金属カルシウム(Ca)を用いた。また還元剤の混合量は、粉砕混合物の酸素量から計算される還元必要量に対して1.2倍量とした。次いで混合物を鉄るつぼに入れてアルゴン(Ar)ガス雰囲気下で加熱し、1000℃で1時間保持した後に冷却した。これにより反応生成物(還元拡散反応生成物)を得た。
<Reduction diffusion treatment step>
34.9 g of a reducing agent was added to 200 g of the resulting pulverized mixture and mixed. Granular metallic calcium (Ca) above a 1.0 mm sieve and below a 2.0 mm sieve was used as a reducing agent. The amount of the reducing agent mixed was 1.2 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture. The mixture was then placed in an iron crucible, heated under an argon (Ar) gas atmosphere, held at 1000° C. for 1 hour, and then cooled. Thus, a reaction product (reduction-diffusion reaction product) was obtained.
<解砕処理工程>
回収した反応生成物を管状炉に入れて、炉内をアルゴン(Ar)ガスで置換した。その後、流量1L/分の水素(H2)ガス気流中で150℃まで昇温し、30分間保持して冷却した。反応生成物は、昇温の130℃を超えたころから水素を吸収し、管状炉の内圧が最大-40kPaまで低下するとともに温度上昇が始まった。水素吸収による発熱が起こっている間は、炉内が負圧になるので管状炉の排気側のバルブを閉めて最大流量1L/分で水素ガスの供給を継続した。反応生成物の最大温度は150℃だった。冷却後、解砕処理した反応生成物を得た。
<Crushing treatment process>
The recovered reaction product was placed in a tubular furnace, and the interior of the furnace was replaced with argon (Ar) gas. Thereafter, the temperature was raised to 150° C. in a hydrogen (H 2 ) gas stream at a flow rate of 1 L/min, and the temperature was maintained for 30 minutes to cool. The reaction product absorbed hydrogen when the temperature exceeded 130° C., and the temperature began to rise as the internal pressure of the tubular furnace decreased to a maximum of -40 kPa. Since the inside of the furnace became negative pressure while heat was generated due to hydrogen absorption, the valve on the exhaust side of the tubular furnace was closed to continue supplying hydrogen gas at a maximum flow rate of 1 L/min. The maximum temperature of the reaction product was 150°C. After cooling, a pulverized reaction product was obtained.
<窒化熱処理工程>
解砕処理した反応生成物を流量200cc/分の窒素(N2)ガス気流中で昇温し、470℃で20時間保持した後に冷却した。これにより窒化反応生成物を得た。
<Nitriding heat treatment process>
The pulverized reaction product was heated in a nitrogen (N 2 ) gas stream at a flow rate of 200 cc/min, held at 470° C. for 20 hours, and then cooled. A nitriding reaction product was thus obtained.
得られた窒化反応生成物に対して、実施例1と同様にして湿式処理を施して磁性粉末を作製した。 The obtained nitriding reaction product was subjected to a wet treatment in the same manner as in Example 1 to prepare a magnetic powder.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またXRDプロファイルにはTh2Zn17型結晶構造のSm2Fe17N3のピークに加えてSmP相のピークが見られた。レーザー回折粒度分布計で測定された平均粒径(D50)は3.7μmであった。SEM観察したところ、実施例1と同様にサイズ数100nmから7μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、二層構造を有する厚み5nmのシェル層が形成されていた。シェル層のSm/Fe比は最大1.3であり、N量は最大6原子%であった。さらにシェル層は外層と内層とから構成され、外層はSm、Fe、N、O及びCaを含むのに対し、内層はSm、Fe、N及びOを含むもののCaを含まず、外層Sm/Fe比(A)と内層Sm/Fe比(B)は、A>Bの関係を満足していた。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, in the XRD profile, in addition to the Sm 2 Fe 17 N 3 peak of the Th 2 Zn 17 -type crystal structure, the peak of the SmP phase was observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 3.7 μm. As a result of SEM observation, as in Example 1, aggregation of spherical particles with sizes ranging from 100 nm to 7 μm was confirmed. TEM observation of the particle surface revealed that a shell layer having a two-layer structure and a thickness of 5 nm was formed. The shell layer had a maximum Sm/Fe ratio of 1.3 and a maximum N content of 6 atomic %. Furthermore, the shell layer is composed of an outer layer and an inner layer, the outer layer containing Sm, Fe, N, O and Ca, whereas the inner layer containing Sm, Fe, N and O but not Ca, the outer layer Sm/Fe The ratio (A) and the inner layer Sm/Fe ratio (B) satisfied the relationship of A>B.
[比較例1]
還元拡散処理を710℃×2時間の条件で行った。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 1]
Reduction diffusion treatment was performed under the conditions of 710° C.×2 hours. A magnetic powder was produced in the same manner as in Example 1 except for the above.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。しかしながらそれ以外にα-Feの回折線も認められた。粒子表面をTEM観察したところ、シェル層は確認できなかった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. However, diffraction lines of α-Fe were also observed. When the particle surface was observed by TEM, no shell layer was confirmed.
[比較例2]
還元拡散処理を1100℃×1時間の条件で行った。また窒化熱処理の際に流量50cc/分のアンモニア(NH3)ガスと流量100cc/分の水素(H2)ガスとの混合ガスを使用し、窒化時間を3時間にした。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 2]
Reduction diffusion treatment was performed under the conditions of 1100° C.×1 hour. In the nitriding heat treatment, a mixed gas of ammonia (NH 3 ) gas at a flow rate of 50 cc/min and hydrogen (H 2 ) gas at a flow rate of 100 cc/min was used, and the nitriding time was set to 3 hours. A magnetic powder was produced in the same manner as in Example 1 except for the above.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。またSEM/EDS分析したところ、粒子間に粗大なSmFe3相が確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は10.4μmであった。粒子表面をTEM観察したところ、シェル層は確認できなかった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. Further, SEM/EDS analysis confirmed a coarse SmFe 3 phase between particles. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 10.4 μm. When the particle surface was observed by TEM, no shell layer was confirmed.
[比較例3]
粉砕混合物を作製する際に酸化サマリウムの混合量を220g(Sm2Fe17合金粉末100質量部に対して22質量部に相当)に増やした。また還元拡散処理の際に粒状金属カルシウム(還元剤)の混合量を64.5g(粉砕混合物の酸素量から計算される還元必要量に対して3.3倍)にした。さらに窒化熱処理の際に流量50cc/分のアンモニア(NH3)ガスと流量100cc/分の水素(H2)ガスとの混合ガスを使用し、窒化時間を3時間にした。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 3]
The amount of samarium oxide mixed was increased to 220 g (equivalent to 22 parts by mass with respect to 100 parts by mass of the Sm 2 Fe 17 alloy powder) when preparing the pulverized mixture. In addition, the mixed amount of granular metallic calcium (reducing agent) was set to 64.5 g (3.3 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture) during the reduction diffusion treatment. Furthermore, a mixed gas of ammonia (NH 3 ) gas at a flow rate of 50 cc/min and hydrogen (H 2 ) gas at a flow rate of 100 cc/min was used during the nitriding heat treatment, and the nitriding time was set to 3 hours. A magnetic powder was produced in the same manner as in Example 1 except for the above.
粉砕混合物をSEM反射電子像で観察したところ、Sm2Fe17合金粒子の最大粒径は12μm、酸化サマリウム粒子の最大粒径は1.4μmであった。粉砕混合物の組成は、Smが32.2質量%、Pが0.52質量%、Oが3.9質量%、Hが0.02質量%、残部Feであった。混合物全体の平均粒径(D50)は2.5μmであった。さらに粉砕混合物の加熱減量(α)は0.7質量%であった。 When the pulverized mixture was observed with an SEM backscattered electron image, the maximum particle size of the Sm 2 Fe 17 alloy particles was 12 μm, and the maximum particle size of the samarium oxide particles was 1.4 μm. The composition of the ground mixture was 32.2% by weight Sm, 0.52% by weight P, 3.9% by weight O, 0.02% by weight H, and the balance Fe. The average particle size (D 50 ) of the whole mixture was 2.5 μm. Furthermore, the heat loss (α) of the pulverized mixture was 0.7% by mass.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は3.3μmであった。SEM観察したところ、サイズ数100nmから8μmの球状粒子の凝集が確認された。またSEM観察ではSmP粒子に加えてSmFe3窒化物相が多量に観察された。粒子表面をTEM観察したところ、シェル層が認められた。シェル層の厚さは32nm、Sm/Fe比は最大5.3であり、N量は最大で16原子%であった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 3.3 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 8 μm was confirmed. Also, in SEM observation, a large amount of SmFe 3 nitride phase was observed in addition to SmP particles. When the particle surface was observed by TEM, a shell layer was recognized. The shell layer had a thickness of 32 nm, a maximum Sm/Fe ratio of 5.3, and a maximum N content of 16 atomic %.
[比較例4]
粉砕混合物を作製する際に酸化サマリウムの混合量を9g(Sm2Fe17合金粉末100質量部に対して0.9質量部に相当)に減らした。また還元拡散処理の際に粒状金属カルシウム(還元剤)の混合量を36.1g(粉砕混合物の酸素量から計算される還元必要量に対して3.0倍)にした。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 4]
When preparing the pulverized mixture, the amount of samarium oxide mixed was reduced to 9 g (corresponding to 0.9 parts by mass with respect to 100 parts by mass of Sm 2 Fe 17 alloy powder). In addition, the amount of granular metallic calcium (reducing agent) mixed was 36.1 g (3.0 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture) during the reduction diffusion treatment. A magnetic powder was produced in the same manner as in Example 1 except for the above.
粉砕混合物をSEM反射電子像で観察したところ、Sm2Fe17合金粒子の最大粒径は9μm、酸化サマリウム粒子の最大粒径は0.7μmであった。粉砕混合物の組成は、Smが24.4質量%、Pが0.51質量%、Oが2.4質量%、Hが0.01質量%、残部Feであった。混合物全体の平均粒径(D50)は2.1μmであった。さらに粉砕混合物の加熱減量(α)は0.3質量%であった。 When the pulverized mixture was observed with an SEM backscattered electron image, the maximum particle size of the Sm 2 Fe 17 alloy particles was 9 μm, and the maximum particle size of the samarium oxide particles was 0.7 μm. The composition of the ground mixture was 24.4% by weight Sm, 0.51% by weight P, 2.4% by weight O, 0.01% by weight H, and the balance Fe. The average particle size ( D50 ) of the whole mixture was 2.1 μm. Furthermore, the heat loss (α) of the pulverized mixture was 0.3% by mass.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。しかしながらそれ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は4.6μmであった。SEM観察したところ、サイズ数100nmから7μmの球状粒子の凝集が確認された。粒子表面をTEM観察したところ、シェル層は確認できなかった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. However, strong diffraction lines of α-Fe were also observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 4.6 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 7 μm was confirmed. When the particle surface was observed by TEM, no shell layer was confirmed.
[比較例5]
窒化熱処理を290℃×24時間の条件で行った。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 5]
A nitriding heat treatment was performed under the conditions of 290° C.×24 hours. A magnetic powder was produced in the same manner as in Example 1 except for the above.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は4.8μmであった。SEM観察したところ、サイズ数100nmから7μmの球状粒子の凝集が確認された。粒子表面をTEM観察したところ、二層構造のシェル層が形成されていたがN量はバックグラウンドレベルであった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 4.8 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 7 μm was confirmed. When the particle surface was observed with a TEM, a shell layer with a two-layer structure was formed, but the amount of N was at the background level.
[比較例6]
窒化熱処理を510℃×3時間の条件で行った。また窒化熱処理の際に流量50cc/分のアンモニア(NH3)ガスと流量100cc/分の水素(H2)ガスとの混合ガスを使用した。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 6]
A nitriding heat treatment was performed at 510° C. for 3 hours. A mixed gas of ammonia (NH 3 ) gas at a flow rate of 50 cc/min and hydrogen (H 2 ) gas at a flow rate of 100 cc/min was used during the nitriding heat treatment. A magnetic powder was produced in the same manner as in Example 1 except for the above.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型の結晶構造を有することが確認された。しかしながらそれ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は3.1μmであった。SEM観察したところ、サイズ数100nmから6μmの球状粒子の凝集が確認された。粉末中の粒子表面をTEM観察したところ、二層構造のシェル層が形成されていたがN量は最大で14原子%だった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. However, strong diffraction lines of α-Fe were also observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 3.1 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 6 μm was confirmed. When the surface of the particles in the powder was observed with a TEM, it was found that a shell layer with a two-layer structure was formed, but the maximum amount of N was 14 atomic %.
[比較例7]
粉砕混合物を作製する際に媒体攪拌ミルの粉砕時間を調整した。また還元拡散処理の際に粒状金属カルシウム(還元剤)の混合量を38.8g(粉砕混合物の酸素量から計算される還元必要量に対して2.5倍)とした。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 7]
The milling time of the media agitation mill was adjusted when making the milling mixture. Also, the amount of granular metallic calcium (reducing agent) mixed in the reduction diffusion treatment was set to 38.8 g (2.5 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture). A magnetic powder was produced in the same manner as in Example 1 except for the above.
粉砕混合物においてSm2Fe17合金粒子の最大粒径は18μm、酸化サマリウム粒子の最大粒径は2.8μmであった。粉砕混合物の組成は、Smが29.0質量%、Pが0.55質量%、Oが3.1質量%、Hが0.009質量%、残部Feであった。混合物全体の平均粒径(D50)は3.7μmであった。さらに粉砕混合物の加熱減量(α)は0.05質量%であった。 The maximum particle size of the Sm 2 Fe 17 alloy particles in the pulverized mixture was 18 μm, and the maximum particle size of the samarium oxide particles was 2.8 μm. The composition of the pulverized mixture was 29.0 wt% Sm, 0.55 wt% P, 3.1 wt% O, 0.009 wt% H, and the balance Fe. The average particle size (D 50 ) of the whole mixture was 3.7 μm. Furthermore, the heat loss (α) of the pulverized mixture was 0.05% by mass.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は8.1μmであった。SEM観察したところ、サイズ1μmから10μmの球状粒子の凝集が確認された。粒子表面をTEM観察したところ、シェル層の形成されている部分と形成されていない部分が見られた。そのためシェル層の形成にばらつきがあった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 8.1 μm. SEM observation confirmed aggregation of spherical particles with a size of 1 μm to 10 μm. When the particle surface was observed with a TEM, it was found that there were portions where the shell layer was formed and portions where the shell layer was not formed. Therefore, there were variations in the formation of the shell layer.
[比較例8]
還元拡散処理の際に粒状金属カルシウム(還元剤)の混合量を18.5g(粉砕混合物の酸素量から計算される還元必要量に対して1.0倍)にした。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 8]
The mixed amount of granular metallic calcium (reducing agent) was 18.5 g (1.0 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture) during the reduction diffusion treatment. A magnetic powder was produced in the same manner as in Example 1 except for the above.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。しかしながらそれ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は7.3μmであった。SEM観察したところ、サイズ数100nmから8μmの球状粒子の凝集が確認された。また粒子表面をTEM観察したところ、シェル層は確認できなかった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. However, strong diffraction lines of α-Fe were also observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 7.3 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 8 μm was confirmed. Further, when the particle surface was observed by TEM, no shell layer could be confirmed.
[比較例9]
還元拡散処理の際に粒状金属カルシウム(還元剤)の混合量を202.1g(粉砕混合物の酸素量から計算される還元必要量に対して10.9倍)にした。それ以外は実施例1と同様にして磁性粉末を作製した。
[Comparative Example 9]
The amount of granular metallic calcium (reducing agent) mixed during the reduction diffusion treatment was 202.1 g (10.9 times the amount required for reduction calculated from the amount of oxygen in the pulverized mixture). A magnetic powder was produced in the same manner as in Example 1 except for the above.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型結晶構造を有することが確認された。しかしながらそれ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は9.2μmであった。SEM観察したところ、サイズ数100nmから10μmの球状粒子の凝集が確認された。粒子表面をTEM観察したところ、シェル層は確認できなかった。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. However, strong diffraction lines of α-Fe were also observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 9.2 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 10 μm was confirmed. When the particle surface was observed by TEM, no shell layer was confirmed.
[比較例10]
市販のSm2Fe17N3磁性粉末(住友金属鉱山株式会社製、SFN合金 微粉B)を用意し、その特性を評価した。耐熱性を調べたところ、加熱前の保磁力(Hc)は844kA/m、加熱後の保磁力(Hc、300)は407kA/mであり、維持率(Hc,300/Hc)は48%であった。
[Comparative Example 10]
A commercially available Sm 2 Fe 17 N 3 magnetic powder (SFN alloy fine powder B manufactured by Sumitomo Metal Mining Co., Ltd.) was prepared and its properties were evaluated. When the heat resistance was examined, the coercive force (H c ) before heating was 844 kA/m, the coercive force (H c, 300 ) after heating was 407 kA/m, and the retention rate (H c, 300 /H c ). was 48%.
[比較例11]
解砕処理工程での水素ガス流量を10L/分とした。それ以外は実施例2と同様にして磁性粉末を作製した。解砕処理工程では、反応生成物は昇温の118℃を超えたころから水素を吸収したが、水素ガスの供給量を多くしているため炉内が負圧になることはなかった。反応生成物の発熱は激しく、その最大温度は370℃だった。
[Comparative Example 11]
The hydrogen gas flow rate in the crushing process was set to 10 L/min. A magnetic powder was produced in the same manner as in Example 2 except for the above. In the crushing process, the reaction product absorbed hydrogen when the temperature exceeded 118° C., but since the amount of hydrogen gas supplied was large, the pressure inside the furnace did not become negative. The exotherm of the reaction product was vigorous and its maximum temperature was 370°C.
得られた希土類鉄窒素系磁性粉末をXRD法により分析したところ、Th2Zn17型の結晶構造を有することが確認された。しかしながらそれ以外にα-Feの回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は2.9μmであった。SEM観察したところ、サイズ数100nmから5μmの球状粒子の凝集が確認された。粉末中の粒子表面をTEM観察したところ、二層構造のシェル層が形成されていたが、それとは別にコア部表面にα-Feと思われる微細析出物が確認された。 When the obtained rare earth iron nitrogen-based magnetic powder was analyzed by the XRD method, it was confirmed to have a Th 2 Zn 17 -type crystal structure. However, diffraction lines of α-Fe were also observed. The average particle size (D 50 ) measured with a laser diffraction particle size distribution meter was 2.9 μm. As a result of SEM observation, aggregation of spherical particles with sizes ranging from 100 nm to 5 μm was confirmed. When the surface of the particles in the powder was observed with a TEM, it was found that a shell layer with a two-layer structure was formed, but fine precipitates thought to be α-Fe were also confirmed on the surface of the core portion.
(3)評価結果
実施例1~12の希土類鉄窒素系磁性粉末は、サマリウム(Sm)、鉄(Fe)及び窒素(N)を主構成成分とし、サマリウム(Sm)量が23.2~29.9質量%、窒素(N)量が2.8~3.9質量%であった。この磁性粉末はTh2Zn17型結晶構造を有し、その平均粒径が2.8~9.1μmであった。さらにこの磁性粉末は、Sm/Fe原子比が0.5~4.9であり、窒素(N)を3~10原子%含み、かつ厚みが2~22nmのシェル層を粒子表面に有していた。この磁性粉末は90Am2/kg以上の残留磁化(σr)と754kA/m以上の保磁力(Hc)を有し、保磁力の維持率(Hc,300/Hc)が71%以上であった。この磁性粉末は高い耐熱性を示していた。
(3) Evaluation Results The rare earth iron nitrogen-based magnetic powders of Examples 1 to 12 are mainly composed of samarium (Sm), iron (Fe) and nitrogen (N), and the amount of samarium (Sm) is 23.2 to 29. .9% by mass, and the amount of nitrogen (N) was 2.8 to 3.9% by mass. This magnetic powder had a Th 2 Zn 17 -type crystal structure and an average particle size of 2.8 to 9.1 μm. Further, this magnetic powder has a Sm/Fe atomic ratio of 0.5 to 4.9, contains 3 to 10 atomic percent of nitrogen (N), and has a shell layer with a thickness of 2 to 22 nm on the particle surface. rice field. This magnetic powder has a residual magnetization (σ r ) of 90 Am 2 /kg or more, a coercive force (H c ) of 754 kA/m or more, and a coercive force retention rate (H c, 300 /H c ) of 71% or more. Met. This magnetic powder exhibited high heat resistance.
これに対して、比較例1の磁性粉末は、製造時の還元拡散温度(710℃)が730℃より低温であるため、シェル層が形成された部分が認められず、耐熱試験に基づく保磁力の維持率(43%)が70%より劣っていた。また、比較例2の磁性粉末は、製造時の還元拡散温度(1100℃)が1050℃より高温であるため、その平均粒径(10.4μm)が10μmを超え、保磁力(420kA/m)が低く、保磁力の維持率(55%)が70%より劣っていた。 In contrast, the magnetic powder of Comparative Example 1 had a reduction diffusion temperature (710° C.) lower than 730° C. at the time of production. retention rate (43%) was inferior to 70%. In addition, the magnetic powder of Comparative Example 2 has a reduction diffusion temperature (1100° C.) higher than 1050° C. at the time of production, so its average particle size (10.4 μm) exceeds 10 μm and coercive force (420 kA/m). was low, and the coercive force retention rate (55%) was inferior to 70%.
比較例3の磁性粉末は、製造時の酸化サマリウム混合量(Sm2Fe17合金粉末100質量部に対して22質量部)が20質量部を超えたものである。そのためサマリウム量(32.2質量%)が30質量%を超え、かつ窒素量(5.2質量%)が4.0質量%を超えていた。また粉末にはSmFe3相窒化物が多く観察された。その結果、シェル層の厚み(32nm)が30nmを超え、またSm/Fe原子比(5.3)が5.0を超えて、残留磁化(50Am2/kg)が低くかった。また比較例4の磁性粉末は、製造時の酸化サマリウム混合量(Sm2Fe17合金粉末100質量部に対して0.9質量部)が1質量部を下回ったものである。そのためサマリウム量(21.9質量%)が22質量%未満であった。その結果、シェル層は認められず、残留磁化(43Am2/kg)及び保磁力(283kA/m)が低くかった。 In the magnetic powder of Comparative Example 3, the mixed amount of samarium oxide (22 parts by mass with respect to 100 parts by mass of the Sm 2 Fe 17 alloy powder) at the time of production exceeded 20 parts by mass. Therefore, the amount of samarium (32.2% by mass) exceeded 30% by mass and the amount of nitrogen (5.2% by mass) exceeded 4.0% by mass. Also, many SmFe three- phase nitrides were observed in the powder. As a result, the shell layer thickness (32 nm) exceeded 30 nm, the Sm/Fe atomic ratio (5.3) exceeded 5.0, and the residual magnetization (50 Am 2 /kg) was low. In the magnetic powder of Comparative Example 4, the mixed amount of samarium oxide (0.9 parts by mass with respect to 100 parts by mass of the Sm 2 Fe 17 alloy powder) at the time of production was less than 1 part by mass. Therefore, the amount of samarium (21.9% by mass) was less than 22% by mass. As a result, no shell layer was observed, and the residual magnetization (43 Am 2 /kg) and coercive force (283 kA/m) were low.
比較例5の磁性粉末は、製造時の窒化温度(290℃)と300℃を下回ったものである。そのため窒素量(1.7質量%)が2.5質量%未満であった。またシェル層は認められたものの、シェル層中の窒素はTEM/EDS検出器のバックグラウンドレベルであった。その結果、磁性粉末の残留磁化(39Am2/kg)及び保磁力(109kA/m)が低くかった。比較例6の磁性粉末は、製造時の窒化温度(510℃)が500℃を超えたものである。磁性粉末の窒素量(5.3質量%)が4.0質量%を超え、残留磁化(48Am2/kg)及び保磁力(227kA/m)が低くかった。 The magnetic powder of Comparative Example 5 was below the nitriding temperature (290°C) and 300°C during production. Therefore, the nitrogen content (1.7% by mass) was less than 2.5% by mass. Also, although a shell layer was observed, the nitrogen in the shell layer was at background levels for the TEM/EDS detector. As a result, the residual magnetization (39 Am 2 /kg) and coercive force (109 kA/m) of the magnetic powder were low. In the magnetic powder of Comparative Example 6, the nitriding temperature (510°C) during production exceeded 500°C. The nitrogen content (5.3% by mass) of the magnetic powder exceeded 4.0% by mass, and the residual magnetization (48 Am 2 /kg) and coercive force (227 kA/m) were low.
比較例7の磁性粉末は、原料中のSm2Fe17合金粉末の最大粒径(18μm)が15μmを超え、また酸化サマリウム粉末の最大粒径(2.8μm)が2μmを超えたものである。そのためシェル層が観察された粒子と観察されない粒子があり、シェル層の形成にばらつきがあった。これは原料粉末のそれぞれの粒子径が粗く、還元拡散工程で還元されたサマリウムが原料中に浸透する際にムラが生じたためと考えられる。その結果、残留磁化(77Am2/kg)及び保磁力(491kA/m)が低くかった。保磁力の維持率(47%)は70%より低く、耐熱性に劣っていた。 In the magnetic powder of Comparative Example 7, the maximum particle size (18 μm) of the Sm 2 Fe 17 alloy powder in the raw material exceeded 15 μm, and the maximum particle size (2.8 μm) of the samarium oxide powder exceeded 2 μm. . Therefore, some particles had a shell layer observed and some did not, and there was variation in the formation of the shell layer. It is considered that this is because the raw material powder has a coarse particle size, and unevenness occurs when the samarium reduced in the reduction diffusion step penetrates into the raw material. As a result, the residual magnetization (77 Am 2 /kg) and coercive force (491 kA/m) were low. The coercive force retention rate (47%) was lower than 70%, indicating poor heat resistance.
比較例8の磁性粉末は、金属カルシウム配合量(当量に対して1.0倍)が1.1倍を下回った。そのため磁性粉末のサマリウム量(21.7質量%)が22質量%を下回り、窒素(N)量(2.3質量%)も2.5質量%を下回った。残留磁化(53Am2/kg)及び保磁力(173kA/m)が低くかった。またシェル層は認められなかった。保磁力の維持率(36%)が70%より大幅に低く、耐熱性に劣っていた。比較例9の磁性粉末は、金属カルシウムの配合量(当量に対して10.9倍)が10倍を超えた。そのため磁性粉末のサマリウム量(21.5質量%)が22質量%を下回り、窒素量(1.9質量%)も2.5質量%を下回った。カルシウム量が多すぎて、サマリウムの拡散が阻害されたものと思われる。残留磁化(48Am2/kg)及び保磁力(93kA/m)が低くかった。またシェル層は認められなかった。保磁力の維持率(43%)は70%より低く、耐熱性に劣っていた。 In the magnetic powder of Comparative Example 8, the amount of metallic calcium compounded (1.0 times the equivalent) was less than 1.1 times. Therefore, the samarium content (21.7% by mass) of the magnetic powder was less than 22% by mass, and the nitrogen (N) content (2.3% by mass) was also less than 2.5% by mass. Remanent magnetization (53 Am 2 /kg) and coercive force (173 kA/m) were low. No shell layer was observed. The coercive force retention rate (36%) was much lower than 70%, indicating poor heat resistance. The magnetic powder of Comparative Example 9 contained more than 10 times the amount of metallic calcium (10.9 times the equivalent). Therefore, the samarium content (21.5% by mass) of the magnetic powder was less than 22% by mass, and the nitrogen content (1.9% by mass) was also less than 2.5% by mass. It is thought that the amount of calcium was too large, and the diffusion of samarium was inhibited. Remanent magnetization (48 Am 2 /kg) and coercive force (93 kA/m) were low. No shell layer was observed. The coercive force retention rate (43%) was lower than 70%, indicating poor heat resistance.
従来例たる市販のSm2Fe17N3磁性粉末を用いた比較例10は、保磁力の維持率(48%)が70%より低かった。 Comparative Example 10, which uses commercially available Sm 2 Fe 17 N 3 magnetic powder as a conventional example, had a coercive force retention rate (48%) lower than 70%.
比較例11の磁性粉末は、解砕処理工程で、十分な水素供給によって炉内が負圧になることなく、また反応生成物が急激な水素吸収により激しく発熱し、その温度が300℃をはるかに超えて370℃に至ったものである。磁性粉末全体としてのサマリウム量、窒素(N)量、燐(P)量は実施例2と変わらないものの、平均粒径が2.9μmと小さくなり、磁化曲線の角形性が低下して残留磁化(85Am2/kg)、保磁力(1007kA/m)と実施例2に比べて低下した。これは析出が確認されたα-Feによるものと思われる。また保磁力の維持率(68%)は70%より低く、耐熱性に劣っていた。 In the magnetic powder of Comparative Example 11, in the pulverization process, sufficient hydrogen was supplied so that the inside of the furnace did not become negative pressure, and the reaction product rapidly absorbed hydrogen and generated heat violently, and the temperature of the reaction product exceeded 300°C. , and reached 370°C. Although the samarium content, nitrogen (N) content, and phosphorus (P) content of the magnetic powder as a whole were the same as in Example 2, the average particle size was as small as 2.9 μm, and the squareness of the magnetization curve was reduced, resulting in remanent magnetization. (85 Am 2 /kg) and coercive force (1007 kA/m), which were lower than those of Example 2. This is believed to be due to α-Fe whose precipitation was confirmed. Moreover, the coercive force retention rate (68%) was lower than 70%, indicating poor heat resistance.
Claims (14)
前記磁性粉末は、その平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)を2.5質量%以上4.0質量%以下の量で含み、
前記磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、前記コア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備え、
前記シェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上5.0以下となるように含み、さらに窒素(N)を0原子%超10原子%以下の量で含み、
前記磁性粉末は、希土類元素(R)及び燐(P)から構成される化合物粒子を含み、且つ残留磁化σrが90Am2/kg以上である、磁性粉末。 A rare earth iron nitrogen-based magnetic powder containing a rare earth element (R), iron (Fe) and nitrogen (N) as main constituents,
The magnetic powder has an average particle diameter of 1.0 μm or more and 10.0 μm or less, and contains 22.0% by mass or more and 30.0% by mass or less of a rare earth element (R) and 2.5% by mass of nitrogen (N). % or more and 4.0% by mass or less,
The magnetic powder comprises a core portion having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer having a thickness of 1 nm or more and 30 nm or less provided on the surface of the core portion. , and
The shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 5.0 or less, and nitrogen (N) is more than 0 atomic % and 10 atomic % or less. contains an amount of
The magnetic powder contains compound particles composed of a rare earth element (R) and phosphorus (P), and has a residual magnetization σr of 90 Am 2 /kg or more.
前記外層が、希土類元素(R)、鉄(Fe)及び窒素(N)に加えて、酸素(O)とカルシウム(Ca)とを含み、
前記内層が、希土類元素(R)、鉄(Fe)及び窒素(N)に加えて、酸素(O)を含むがカルシウム(Ca)を含まない、請求項1に記載の磁性粉末。 The shell layer has a two-layer structure consisting of an outer layer and an inner layer,
The outer layer contains oxygen (O) and calcium (Ca) in addition to rare earth elements (R), iron (Fe) and nitrogen (N),
The magnetic powder according to claim 1, wherein the inner layer contains oxygen (O) but no calcium (Ca) in addition to rare earth elements (R), iron (Fe) and nitrogen (N).
前記外層のR/Fe原子比(A)及び前記内層のR/Fe原子比(B)が、B<Aを満足する、請求項2に記載の磁性粉末。 The shell layer has a two-layer structure consisting of an outer layer and an inner layer,
3. The magnetic powder according to claim 2, wherein the R/Fe atomic ratio (A) of the outer layer and the R/Fe atomic ratio (B) of the inner layer satisfy B<A.
Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する希土類鉄合金粉末と希土類酸化物粉末とを準備する準備工程と、
前記希土類鉄合金粉末100質量部に前記希土類酸化物粉末1~20質量部を混合して、粒径15.0μm以下の希土類鉄合金粉末と粒径2.0μm以下の希土類酸化物粉末とを含む原料混合物にする混合工程と、
前記原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量の還元剤を前記原料混合物に添加及び混合し、さらに還元剤を添加した前記原料混合物を非酸化性雰囲気中730~1050℃の範囲内の温度で加熱処理して還元拡散反応生成物にする還元拡散処理工程と、
前記還元拡散反応生成物を、その温度が300℃を超えないように水素ガス雰囲気中に曝すことで前記還元拡散反応生成物に水素を吸収させ、それにより前記還元拡散反応生成物に解砕処理を施す解砕処理工程と、
解砕処理を施した前記還元拡散反応生成物を窒素及び/又はアンモニアを含むガス気流中300~500℃の範囲内の温度で窒化熱処理して窒化反応生成物にする窒化熱処理工程と、を含み、
前記準備工程及び混合工程のいずれか一方又は両方の工程で、希土類鉄合金粉末に燐酸系化合物被膜を形成する、方法。 A method for producing a rare earth iron nitrogen-based magnetic powder according to any one of claims 1 to 6, comprising the following steps;
a preparation step of preparing a rare earth iron alloy powder and a rare earth oxide powder having a crystal structure of one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type;
100 parts by mass of the rare earth iron alloy powder is mixed with 1 to 20 parts by mass of the rare earth oxide powder to contain a rare earth iron alloy powder having a particle size of 15.0 μm or less and a rare earth oxide powder having a particle size of 2.0 μm or less. A mixing step of forming a raw material mixture;
The raw material obtained by adding and mixing a reducing agent in an amount 1.1 to 10.0 times the equivalent required to reduce the oxygen component contained in the raw material mixture to the raw material mixture, and further adding the reducing agent. a reduction diffusion treatment step of heat-treating the mixture at a temperature within the range of 730 to 1050° C. in a non-oxidizing atmosphere to form a reduction diffusion reaction product;
The reduction-diffusion reaction product is exposed to a hydrogen gas atmosphere so that the temperature of the reduction-diffusion reaction product does not exceed 300° C., thereby causing the reduction-diffusion reaction product to absorb hydrogen, thereby disintegrating the reduction-diffusion reaction product. A crushing treatment step of applying
a nitriding heat treatment step of nitriding the crushed reduction-diffusion reaction product at a temperature within the range of 300 to 500° C. in a gas stream containing nitrogen and/or ammonia to form a nitriding reaction product. ,
A method, wherein a phosphoric acid-based compound coating is formed on the rare earth iron alloy powder in either one or both of the preparation step and the mixing step.
The method according to any one of claims 9 to 13, wherein the heat treatment for forming the diffusion reaction product is performed for 0 to 10 hours.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021084126A JP2022177699A (en) | 2021-05-18 | 2021-05-18 | Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder |
CN202210517893.1A CN115376773A (en) | 2021-05-18 | 2022-05-12 | Rare earth iron-nitrogen-based magnetic powder, composite for bonded magnet, and method for producing rare earth iron-nitrogen-based magnetic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021084126A JP2022177699A (en) | 2021-05-18 | 2021-05-18 | Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022177699A true JP2022177699A (en) | 2022-12-01 |
Family
ID=84060499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021084126A Pending JP2022177699A (en) | 2021-05-18 | 2021-05-18 | Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022177699A (en) |
CN (1) | CN115376773A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117275927A (en) * | 2023-11-20 | 2023-12-22 | 天通控股股份有限公司 | Rust-proof high-performance soft magnetic metal powder and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7364158B2 (en) * | 2019-12-26 | 2023-10-18 | 国立大学法人東北大学 | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder |
-
2021
- 2021-05-18 JP JP2021084126A patent/JP2022177699A/en active Pending
-
2022
- 2022-05-12 CN CN202210517893.1A patent/CN115376773A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117275927A (en) * | 2023-11-20 | 2023-12-22 | 天通控股股份有限公司 | Rust-proof high-performance soft magnetic metal powder and preparation method thereof |
CN117275927B (en) * | 2023-11-20 | 2024-01-26 | 天通控股股份有限公司 | Rust-proof high-performance soft magnetic metal powder and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN115376773A (en) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113053608B (en) | Rare earth ferrite-nitrogen magnetic powder, composite for bonded magnet, and method for producing rare earth ferrite-nitrogen magnetic powder | |
JP6963251B2 (en) | Rare earth iron nitrogen-based magnetic powder | |
JP6980207B2 (en) | Rare earth iron nitrogen-based magnetic powder and its manufacturing method | |
CN109982791B (en) | Rare earth iron-nitrogen-based magnetic powder and method for producing same | |
WO1999062081A1 (en) | Nitride type rare-earth permanent magnet material and bonded magnet using the same | |
JP2022177699A (en) | Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder | |
WO2004029995A1 (en) | R-t-b rare earth permanent magnet | |
WO2022004081A1 (en) | Rare earth-iron-nitrogen-based magnetic powder, compound for bond magnet, bond magnet, and method for producing rare earth-iron-nitrogen-based magnetic powder | |
JP2018056337A (en) | Method for manufacturing rare earth-iron-nitrogen based magnet powder, resin composition for bond magnet using the same, and bond magnet | |
JP3715573B2 (en) | Magnet material and manufacturing method thereof | |
JP2005272986A (en) | Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it | |
JP2017218623A (en) | Production method of rare earth-iron-nitrogen system alloy powder | |
KR20200144853A (en) | Manufacturing method of sintered magnet | |
JP4702522B2 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP4814856B2 (en) | Rare earth-iron-manganese-nitrogen magnet powder | |
JP4696798B2 (en) | Rare earth-iron-manganese-nitrogen magnet powder | |
JP4862269B2 (en) | Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet | |
JP7044304B2 (en) | Rare earth transition metal alloy powder manufacturing method | |
US12020835B2 (en) | Manufacturing method of sintered magnet | |
US20230039058A1 (en) | Sm-Fe-N MAGNET | |
JP2017212353A (en) | Method for manufacturing magnet alloy powder for bond magnet | |
JP3795694B2 (en) | Magnetic materials and bonded magnets | |
JP2023127785A (en) | Rare earth iron carbon boron magnetic powder and manufacturing method thereof | |
JP2006060049A (en) | Rare earth-iron-manganese-nitrogen based magnet powder and its production method | |
JP2009030149A (en) | Method for producing composite particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231018 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20240614 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240823 |