JP7044304B2 - Rare earth transition metal alloy powder manufacturing method - Google Patents

Rare earth transition metal alloy powder manufacturing method Download PDF

Info

Publication number
JP7044304B2
JP7044304B2 JP2018103404A JP2018103404A JP7044304B2 JP 7044304 B2 JP7044304 B2 JP 7044304B2 JP 2018103404 A JP2018103404 A JP 2018103404A JP 2018103404 A JP2018103404 A JP 2018103404A JP 7044304 B2 JP7044304 B2 JP 7044304B2
Authority
JP
Japan
Prior art keywords
rare earth
alloy powder
transition metal
powder
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018103404A
Other languages
Japanese (ja)
Other versions
JP2019206742A (en
Inventor
諭 杉本
昌志 松浦
尚 石川
幸伸 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Original Assignee
Tohoku University NUC
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Sumitomo Metal Mining Co Ltd filed Critical Tohoku University NUC
Priority to JP2018103404A priority Critical patent/JP7044304B2/en
Publication of JP2019206742A publication Critical patent/JP2019206742A/en
Application granted granted Critical
Publication of JP7044304B2 publication Critical patent/JP7044304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、希土類遷移金属合金粉末の製造方法に関し、より詳しくは、湿式処理の際に合金表面の酸化劣化を抑えることができる希土類遷移金属合金粉末の製造方法に関する。 The present invention relates to a method for producing a rare earth transition metal alloy powder, and more particularly to a method for producing a rare earth transition metal alloy powder capable of suppressing oxidative deterioration of the alloy surface during wet treatment.

希土類遷移金属合金粉末は、希土類磁石、水素吸蔵合金、磁歪合金、光磁気記録合金、磁気冷凍材料などの原料粉末として用いられる。
希土類遷移金属合金粉末を製造する方法として、還元拡散法が知られており、還元拡散で得られた塊状の反応生成物を崩壊させ余剰の還元剤を除去するために、水洗浄や酸洗浄が行われている。この方法は、希土類酸化物粉末と遷移金属粉末に、アルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種の還元剤を混合し、この混合物を不活性ガス雰囲気中で加熱し還元拡散した後、得られた塊状の反応生成物を水中に投入して崩壊させ、得られたスラリーを塩酸や酢酸による洗浄と水洗浄で湿式処理し副生した還元剤成分を除去している。
The rare earth transition metal alloy powder is used as a raw material powder for rare earth magnets, hydrogen storage alloys, magnetic strain alloys, photomagnetic recording alloys, magnetic refrigeration materials, and the like.
The reduction diffusion method is known as a method for producing a rare earth transition metal alloy powder, and water washing or acid washing is used to disintegrate the massive reaction product obtained by reduction diffusion and remove excess reducing agent. It is done. In this method, a rare earth oxide powder and a transition metal powder are mixed with at least one reducing agent selected from alkali metals, alkaline earth metals and hydrides thereof, and the mixture is heated in an inert gas atmosphere. After reduction and diffusion, the obtained massive reaction product is put into water to disintegrate it, and the obtained slurry is wet-treated by washing with hydrochloric acid or acetic acid and washing with water to remove the by-produced reducing agent component. ..

たとえば、還元拡散法によって希土類-遷移金属-窒素磁石粗粉末を製造した後、燐酸とともに粉砕装置で微粉砕する方法では、還元拡散後の反応生成物に水素を吸蔵させ崩壊した焙焼物を純水中に投じ、水素イオン濃度pHが10以下となるまで、攪拌とデカンテーションとを繰り返して、pHが5になるまで水中に酢酸を添加し、この状態で攪拌を行っている(特許文献1参照)。 For example, in the method of producing a rare earth-transition metal-nitrogen magnet coarse powder by the reduction diffusion method and then finely pulverizing it with phosphoric acid in a pulverizer, the reaction product after reduction diffusion occludes hydrogen and disintegrates the roasted product into pure water. It is poured into the water, stirring and decantation are repeated until the hydrogen ion concentration pH becomes 10 or less, acetic acid is added to water until the pH becomes 5, and stirring is performed in this state (see Patent Document 1). ).

また、還元拡散による希土類鉄合金を冷却後に窒化熱処理し、得られた窒化反応生成物を水中に投入して湿式処理する希土類-鉄-窒素系磁石微粉末の製造方法でも、水と酸を用いた湿式処理により窒化反応生成物からCaOなどの不純物が洗浄除去されている(特許文献2参照)。これらの方法では、湿式処理を行うことにより、還元反応生成物から余剰の還元剤が効果的に除去され優れた磁気特性を有する粉末が得られている。 In addition, water and acid are also used in the method for producing rare earth-iron-nitrogen magnet fine powder, in which a rare earth iron alloy by reduction diffusion is cooled and then subjected to nitriding heat treatment, and the obtained nitriding reaction product is put into water for wet treatment. By the wet treatment, impurities such as CaO are washed and removed from the nitriding reaction product (see Patent Document 2). In these methods, by performing a wet treatment, excess reducing agent is effectively removed from the reduction reaction product, and a powder having excellent magnetic properties is obtained.

しかしながら、一般に湿式処理で塊状の反応生成物を水中に投入して崩壊させると、合金粉末表面に酸化物や水酸化物が生成して、合金粉末の酸素濃度を高めてしまう。また水とともに塩酸や酢酸を用いた酸洗浄では、洗浄中にスラリーの攪拌が不足すると、局所的に高濃度の酸が合金表面を腐食させてしまうことがあった。 However, in general, when a lumpy reaction product is put into water and disintegrated by wet treatment, oxides and hydroxides are generated on the surface of the alloy powder, and the oxygen concentration of the alloy powder is increased. Further, in pickling using hydrochloric acid or acetic acid together with water, if the stirring of the slurry is insufficient during washing, a high concentration of acid may locally corrode the surface of the alloy.

特開2017-011276号公報Japanese Unexamined Patent Publication No. 2017-011276 特開2017-147434号公報Japanese Unexamined Patent Publication No. 2017-147434

本発明の目的は、上記した従来技術の問題点に鑑み、還元拡散法で直接製造される希土類遷移金属合金粉末において、湿式処理の際に合金表面の酸化劣化を抑えることができる希土類遷移金属合金粉末の製造方法を提供することにある。 In view of the above-mentioned problems of the prior art, an object of the present invention is to suppress oxidative deterioration of the alloy surface during wet treatment in a rare earth transition metal alloy powder directly produced by a reduction diffusion method. The purpose is to provide a method for producing a powder.

本発明者らは、希土類遷移金属合金粉末の酸素量と湿式処理工程での処理条件との関係について鋭意検討を重ねた結果、還元拡散法で製造された合金の酸素量が高くなる現象は、従来から一般的に行われてきた水洗浄に誘発されることを究明し、湿式処理工程において、グリコールを洗浄剤として使用することによって合金の酸素量が大幅に低減できることを見出し、本発明を完成させた。 As a result of diligent studies on the relationship between the oxygen content of the rare earth transition metal alloy powder and the treatment conditions in the wet treatment process, the present inventors have found that the phenomenon that the oxygen content of the alloy produced by the reduction diffusion method increases is We have investigated that it is induced by water washing, which has been generally performed conventionally, and found that the amount of oxygen in the alloy can be significantly reduced by using glycol as a cleaning agent in the wet treatment step, and completed the present invention. I let you.

すなわち、本発明の第1の態様によれば、希土類酸化物粉末と遷移金属粉末を含む原料物質に、アルカリ金属、アルカリ土類金属、及びこれらの水素化物から選ばれる少なくとも1種の還元剤を所定の割合で混合する第1の工程と、この混合物を不活性ガス雰囲気中で加熱し還元拡散する第2の工程と、得られた反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、反応生成物から還元剤を低減させた後、洗浄液の合金スラリーに酸と洗浄液を添加する酸洗浄を行い、その後、洗浄液を投入し酸を除去する第3の工程を含む、希土類遷移金属合金粉末の製造方法であって、洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 That is, according to the first aspect of the present invention, an alkali metal, an alkaline earth metal, and at least one reducing agent selected from these hydrides are added to the raw material containing the rare earth oxide powder and the transition metal powder. A first step of mixing at a predetermined ratio, a second step of heating the mixture in an inert gas atmosphere to reduce and diffuse it, and a wet treatment of putting the obtained reaction product into a washing liquid to disintegrate it. After reducing the reducing agent from the reaction product, the rare earth transition metal comprises a third step of adding an acid and a cleaning liquid to the alloy slurry of the cleaning liquid for acid cleaning, and then adding the cleaning liquid to remove the acid. A method for producing an alloy powder, wherein the cleaning liquid is a glycol having a water content of 0 to 50% by mass defined by water / (glycol + water). Provided.

また、本発明の第2の態様によれば、第1の態様において、希土類酸化物粉末は、Y、La、Ce、Pr、Nd,Sm、Eu、Gd、Tb,Dy、Ho、及びYbから選ばれる1種以上の希土類元素を含有することを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the second aspect of the present invention, in the first aspect, the rare earth oxide powder is derived from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Yb. Provided is a method for producing a rare earth transition metal alloy powder, which comprises one or more selected rare earth elements.

また、本発明の第3の態様によれば、第1又は2の態様において、遷移金属粉末は、Fe、Co、Ni、Cu、Cr、及びMnから選ばれる1種以上の遷移元素を含有することを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the third aspect of the present invention, in the first or second aspect, the transition metal powder contains one or more transition elements selected from Fe, Co, Ni, Cu, Cr, and Mn. Provided is a method for producing a rare earth transition metal alloy powder, which is characterized by the above.

また、本発明の第4の態様によれば、第1~3のいずれかの態様において、洗浄液は、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、及びトリプロピレングリコールから選ばれる1種以上のアルキレングリコールであることを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the fourth aspect of the present invention, in any one of the first to third aspects, the cleaning liquid is selected from ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol. Provided is a method for producing a rare earth transition metal alloy powder, which is characterized by being one or more kinds of alkylene glycol.

また、本発明の第5の態様によれば、第1~4のいずれかの態様において、酸は、塩酸、酢酸、硝酸、及び硫酸から選ばれる1種以上であることを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the fifth aspect of the present invention, in any one of the first to the fourth aspects, the acid is one or more selected from hydrochloric acid, acetic acid, nitric acid, and sulfuric acid. A method for producing a metal alloy powder is provided.

また、本発明の第6の態様によれば、第1~5のいずれかの態様において、第3の工程で得られた希土類遷移金属合金粉末が、さらに窒素及び/又はアンモニア含有雰囲気で加熱され窒化されることを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the rare earth transition metal alloy powder obtained in the third step is further heated in an atmosphere containing nitrogen and / or ammonia. A method for producing a rare earth transition metal alloy powder, which is characterized by being nitrided, is provided.

また、本発明の第7の態様によれば、希土類酸化物粉末と遷移金属粉末を含む原料物質に、アルカリ金属、アルカリ土類金属、及びこれらの水素化物から選ばれる少なくとも1種の還元剤を所定の割合で混合する第1の工程と、この混合物を不活性ガス雰囲気中で加熱し還元拡散する第2の工程と、得られた反応生成物を窒素及び/又はアンモニア含有雰囲気で加熱し窒化する第4の工程と、得られた窒化反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、窒化反応生成物から還元剤を低減させた後、窒化合金スラリーに酸を添加し、その後、洗浄液を投入し酸を除去する第5の工程を含む、希土類遷移金属合金粉末の製造方法であって、洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the seventh aspect of the present invention, an alkali metal, an alkaline earth metal, and at least one reducing agent selected from these hydrides are added to the raw material containing the rare earth oxide powder and the transition metal powder. The first step of mixing at a predetermined ratio, the second step of heating the mixture in an inert gas atmosphere to reduce and diffuse it, and heating the obtained reaction product in a nitrogen and / or ammonia-containing atmosphere to nitrid. In the fourth step of After that, it is a method for producing a rare earth transition metal alloy powder, which comprises a fifth step of adding a cleaning liquid to remove acid, and the cleaning liquid has a water content of 0 to 50 defined by water / (glycol + water). Provided is a method for producing a rare earth transition metal alloy powder, which is characterized by being glycol by mass.

さらに、本発明の第8の態様によれば、SmとFeを含む希土類遷移金属合金粉末に対して、Smを含む希土類酸化物粉末と、Mn及び/又はCrを含む遷移金属酸化物粉末と、アルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種の還元剤とを所定の割合で混合し、この混合物を不活性ガス雰囲気中で加熱し還元拡散した後、得られた還元拡散反応生成物を、窒素及び/又はアンモニア含有雰囲気で加熱して窒化し、引き続き、得られた窒化反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、窒化反応生成物から還元剤を低減させる工程を含む希土類遷移金属合金粉末の製造方法であって、洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする希土類遷移金属合金粉末の製造方法が提供される。 Further, according to the eighth aspect of the present invention, for the rare earth transition metal alloy powder containing Sm and Fe, the rare earth oxide powder containing Sm and the transition metal oxide powder containing Mn and / or Cr are provided. An alkali metal, an alkaline earth metal, and at least one reducing agent selected from these hydrides are mixed at a predetermined ratio, and this mixture is heated in an inert gas atmosphere to reduce and diffuse the mixture, and then the obtained reduction is performed. The diffusion reaction product is heated and nitrided in an atmosphere containing nitrogen and / or ammonia, and subsequently, the obtained nitride reaction product is put into a washing liquid to perform a wet treatment to disintegrate it, and a reducing agent is obtained from the nitride reaction product. A method for producing a rare earth transition metal alloy powder, which comprises a step of reducing the amount of water, wherein the cleaning liquid is glycol having a water content of 0 to 50% by mass defined by water / (glycol + water). A method for producing a rare earth transition metal alloy powder is provided.

本発明の態様によれば、希土類遷移金属合金粉末の製造において、還元拡散生成物あるいはその窒化反応生成物を湿式処理する際に洗浄剤としてグリコールを用いるので、処理後の希土類遷移金属合金粉末に含まれる酸素量を大幅に低減でき、酸洗浄で合金粉末に対する溶解反応が緩和され、収率を向上させることができる。また、得られる希土類遷移金属合金粉末に含まれる酸素量が大幅に低減するので、磁気特性や水素吸蔵性能であるPCT(圧力一組成一等温線)特性が改善される。 According to the aspect of the present invention, in the production of the rare earth transition metal alloy powder, glycol is used as a cleaning agent when the reduction diffusion product or the nitriding reaction product thereof is wet-treated, so that the rare earth transition metal alloy powder after the treatment can be used. The amount of oxygen contained can be significantly reduced, the dissolution reaction to the alloy powder can be alleviated by acid washing, and the yield can be improved. Further, since the amount of oxygen contained in the obtained rare earth transition metal alloy powder is significantly reduced, the magnetic properties and the PCT (pressure one composition first temperature ray) property, which is the hydrogen storage performance, are improved.

以下、本実施形態の希土類遷移金属合金粉末の製造方法について詳細に説明する。希土類遷移金属合金粉末の製造では、少なくとも原料物質混合工程、還元拡散工程、湿式処理工程を有し、SmFe17合金粉末の場合は、さらに窒化熱処理工程を含む本発明の方法で製造される。 Hereinafter, the method for producing the rare earth transition metal alloy powder of the present embodiment will be described in detail. The production of rare earth transition metal alloy powder has at least a raw material mixing step, a reduction diffusion step, and a wet treatment step, and in the case of Sm 2 Fe 17 alloy powder, it is manufactured by the method of the present invention further including a nitride heat treatment step. ..

≪希土類遷移金属合金粉末≫
本発明の製造方法で目的とする希土類遷移金属合金粉末は、希土類元素R、遷移金属TMを主構成成分とする合金粉末であって、CaCu型、ThZn17型、ThNi17型、TbCu型、ThMn12型、NaZn13型、NdFe14B型、MgCu型などの結晶構造を有する金属間化合物を含有する合金粉末である。希土類遷移金属合金粉末は、平均粒径や粒度分布によって制限されないが、平均粒径が1~100μmであるものが好ましい。
≪Rare earth transition metal alloy powder≫
The rare earth transition metal alloy powder intended by the production method of the present invention is an alloy powder containing the rare earth element R and the transition metal TM as main constituents, and is CaCu 5 type, Th 2 Zn 17 type, Th 2 Ni 17 type. , TbCu 7 type, ThMn 12 type, NaZn 13 type, Nd 2 Fe 14 B type, MgCu 2 type and other alloy powders containing intermetallic compounds having a crystalline structure. The rare earth transition metal alloy powder is not limited by the average particle size and the particle size distribution, but preferably has an average particle size of 1 to 100 μm.

具体的には、SmFe17合金粉末、NdFe14B合金粉末、SmCo合金粉末、LaNi合金粉末、SmCo17系合金粉末、Sm(Fe,Ti)12合金粉末、La(Fe,Si)13合金粉末、TbFe合金粉末、DyFe合金粉末、SmFe17合金粉末、これらの希土類元素や遷移金属元素を別の元素で置換した合金粉末、例えばSmFe17合金をコアとし、Sm(Fe、M)17(M=Cr、Mn)をシェル層とした磁性粉末などが挙げられる。 Specifically, Sm 2 Fe 17 alloy powder, Nd 2 Fe 14 B alloy powder, Sm Co 5 alloy powder, LaNi 5 alloy powder, Sm 2 Co 17 alloy powder, Sm (Fe, Ti) 12 alloy powder, La ( Fe, Si) 13 alloy powder, TbFe 2 alloy powder, DyFe 2 alloy powder, Sm 2 Fe 17 N 3 alloy powder, alloy powder in which these rare earth elements and transition metal elements are replaced with other elements, for example, Sm 2 Fe 17 Examples thereof include magnetic powder having an N 3 alloy as a core and Sm 2 (Fe, M) 17 N x (M = Cr, Mn) as a shell layer.

このうちSmFe17合金粉末は、Smが23~25質量%、Oが0.1質量%以下、Caが0.01質量%以下、残部が鉄であり、主相がThZn17型菱面体晶のSmFe17合金粉末であり、平均粒径が10~40μmである。 Of these, the Sm 2 Fe 17 alloy powder has Sm of 23 to 25% by mass, O of 0.1% by mass or less, Ca of 0.01% by mass or less, the balance of iron, and the main phase is Th 2 Zn 17 type. It is a Sm 2 Fe 17 alloy powder of rhombic crystal, and has an average particle size of 10 to 40 μm.

NdFe14B合金粉末は、Ndが32~35質量%、Bが1~3質量%、Oが0.1質量%以下、Caが0.1質量%以下、残部が鉄であり、主相の結晶構造はNdFe14B型正方晶で、平均粒径が5~50μmである。 The Nd 2 Fe 14 B alloy powder is mainly composed of 32 to 35% by mass of Nd, 1 to 3% by mass of B, 0.1% by mass or less of O, 0.1% by mass or less of Ca, and the balance is iron. The crystal structure of the phase is Nd 2 Fe 14 B type square crystal, and the average particle size is 5 to 50 μm.

SmCo合金粉末は、Smが32~38質量%、Oが0.1質量%以下、Caが0.1質量%以下、残部がコバルトであり、主相の結晶構造はCaCu型六方晶で、平均粒径が5~50μmである。Sm組成と結晶構造は異なるものの、SmCo17系合金粉末も同様である。 The SmCo 5 alloy powder has Sm of 32 to 38% by mass, O of 0.1% by mass or less, Ca of 0.1% by mass or less, the balance of cobalt, and the crystal structure of the main phase is CaCu 5 type hexagonal crystal. The average particle size is 5 to 50 μm. Although the Sm composition and crystal structure are different, the same applies to the Sm 2 Co 17 -based alloy powder.

LaNi合金粉末は、Laが31~37質量%、Oが0.1質量%以下、Caが0.1質量%以下、残部がニッケルであり、主相の結晶構造はCaCu型六方晶のものが例示される。平均粒径は10~50μmである。 The LaNi 5 alloy powder has La of 31 to 37% by mass, O of 0.1% by mass or less, Ca of 0.1% by mass or less, the balance of nickel, and the crystal structure of the main phase is CaCu 5 type hexagonal crystal. Things are illustrated. The average particle size is 10 to 50 μm.

SmFe17合金粉末は、Smが23~24質量%、Nが3~5質量%、Oは平均粒径によるが0.8質量%以下、Caが0.5質量%以下、残部が鉄で、主相がThZn17型菱面体晶のSmFe17合金粉末である。平均粒径が1~40μmで、粒径分布のピークが1~5μmにあるものが好ましい。 In the Sm 2 Fe 17 N 3 alloy powder, Sm is 23 to 24% by mass, N is 3 to 5% by mass, O is 0.8% by mass or less depending on the average particle size, Ca is 0.5% by mass or less, and the balance. Is iron, and the main phase is Th 2 Zn 17 type rhombic body crystal Sm 2 Fe 17 N 3 alloy powder. It is preferable that the average particle size is 1 to 40 μm and the peak of the particle size distribution is 1 to 5 μm.

また、SmFe17合金をコアとし、Sm(Fe、M)17(M=Mn、Cr)をシェル層とした磁性粉末は、全体の平均的な組成として、Smが23~29質量%、Mn又はCrが1~3質量%、Nが3~5質量%、Oは平均粒径によるが0.8質量%以下、Caが0.5質量%以下、残部が鉄で、平均粒径が1~20μmである。そしてNが4質量%を超える場合には、このシェル層には、セル状微結晶粒とアモルファス境界層とからなる金属組織と、Sm(Fe,M)17化合物結晶相の内部にMn又はCrおよびNの濃度が高く長短のあるワイヤー状形態をしたアモルファス相がランダムないし規則的に存在する金属組織とが観察される。 Further, the magnetic powder having Sm 2 Fe 17 N 3 alloy as a core and Sm 2 (Fe, M) 17 N x (M = Mn, Cr) as a shell layer has an overall average composition of 23 Sm. ~ 29% by mass, Mn or Cr is 1 to 3% by mass, N is 3 to 5% by mass, O is 0.8% by mass or less depending on the average particle size, Ca is 0.5% by mass or less, and the balance is iron. The average particle size is 1 to 20 μm. When N exceeds 4% by mass, the shell layer contains a metal structure composed of cellular fine crystal grains and an amorphous boundary layer, and the inside of the Sm 2 (Fe, M) 17 N y compound crystal phase. A metal structure in which a wire-like amorphous phase having a high concentration of Mn or Cr and N and having a long and short shape is randomly or regularly present is observed.

上記希土類遷移金属合金粉末の酸素量は、いずれも0.8質量%以下であり、0.1質量%以下であることが好ましく、0.08質量%以下であることがより好ましい。酸素量は、合金粉末の平均粒径や粒度分布に依存するが、湿式処理の洗浄剤として、還元拡散反応生成物や窒化反応生成物を水単独で洗浄していた従来の湿式処理に比べて、30~70質量%に低減されている。 The oxygen content of the rare earth transition metal alloy powder is 0.8% by mass or less, preferably 0.1% by mass or less, and more preferably 0.08% by mass or less. The amount of oxygen depends on the average particle size and particle size distribution of the alloy powder, but as a cleaning agent for wet treatment, it is compared with the conventional wet treatment in which the reduction diffusion reaction product and the nitrided reaction product are washed with water alone. , 30-70% by mass.

≪希土類遷移金属合金粉末の製造方法≫
本実施形態では、原料物質と還元剤を混合し、還元拡散して得た還元拡散生成物を水含有率が0~50質量%のグリコールで湿式処理して希土類遷移金属合金粉末を製造する。希土類遷移金属合金粉末を磁石合金粉末とするために、さらに窒化熱処理を行う場合もある。以下、原料物質混合工程、還元拡散工程、湿式処理工程、窒化熱処理工程の各工程について説明する。なお窒化熱処理は、湿式処理の前に行うこともできる。
≪Manufacturing method of rare earth transition metal alloy powder≫
In the present embodiment, the raw material and the reducing agent are mixed, and the reduction diffusion product obtained by reduction diffusion is wet-treated with glycol having a water content of 0 to 50% by mass to produce a rare earth transition metal alloy powder. In order to convert the rare earth transition metal alloy powder into a magnet alloy powder, further nitriding heat treatment may be performed. Hereinafter, each step of the raw material mixing step, the reduction diffusion step, the wet treatment step, and the nitriding heat treatment step will be described. The nitriding heat treatment can also be performed before the wet treatment.

すなわち、本実施形態の希土類遷移金属合金粉末の製造方法は、希土類酸化物粉末と遷移金属粉末を含む原料物質に、アルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種の還元剤を所定の割合で混合する第1の工程と、この混合物を不活性ガス雰囲気中で加熱し還元拡散する第2の工程と、得られた反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、反応生成物から還元剤を低減させた後、洗浄液の合金スラリーに酸と洗浄液を添加する酸洗浄を行い、その後、洗浄液を投入し酸を除去する第3の工程を含む、希土類遷移金属合金粉末の製造方法であって、洗浄液として、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールを用いることを特徴とする。 That is, in the method for producing a rare earth transition metal alloy powder of the present embodiment, at least one reduction selected from an alkali metal, an alkaline earth metal, and a hydride thereof is used as a raw material containing a rare earth oxide powder and a transition metal powder. A first step of mixing the agents at a predetermined ratio, a second step of heating the mixture in an inert gas atmosphere to reduce and diffuse it, and a wet method in which the obtained reaction product is put into a washing liquid to disintegrate it. Rare earths including a third step of performing a treatment to reduce the reducing agent from the reaction product, then performing acid cleaning by adding an acid and a cleaning liquid to the alloy slurry of the cleaning liquid, and then adding the cleaning liquid to remove the acid. It is a method for producing a transition metal alloy powder, and is characterized by using glycol having a water content of 0 to 50% by mass defined by water / (glycol + water) as a cleaning liquid.

(原料物質)
まず、原料物質として、希土類酸化物粉末、遷移金属粉末を用意する。希土類酸化物粉末は、Y、La、Ce、Pr、Nd,Sm、Eu、Gd、Tb,Dy、Ho、及びYbから選ばれる1種以上の希土類元素を含有する酸化物である。中でもSm、Nd、又はLaが含まれるものは、本実施形態の効果を顕著に発揮させるので特に好ましく、ボンド磁石に応用される場合には、その50原子%以上がSmであること、高周波磁性材料に応用される場合には、その50原子%以上がNdであることが望ましい。
(Raw material)
First, rare earth oxide powder and transition metal powder are prepared as raw material. The rare earth oxide powder is an oxide containing one or more rare earth elements selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Yb. Among them, those containing Sm, Nd, or La are particularly preferable because they exert the effect of the present embodiment remarkably, and when applied to a bonded magnet, 50 atomic% or more thereof is Sm, and high frequency magnetism. When applied to materials, it is desirable that 50 atomic% or more of them is Nd.

希土類酸化物粉末の平均粒径は、50μm以下、好ましくは20μm以下、さらに好ましくは10μm以下がよく、最終的に作製される合金組成に応じて、遷移金属粒子の近傍に希土類酸化物粒子が均一に存在するように平均粒径を決めるのがよい。また、希土類酸化物粉末には不純物として水や有機物などが含まれており、これら不純物は得られる希土類遷移金属合金粉末の酸素量を増加させる。この不純物の量は、1000℃まで加熱してから冷却したときの、加熱前後の質量減量で評価することができ、本実施形態では、質量減量が2%以下、好ましくは1%以下である希土類酸化物粉末が好ましい。 The average particle size of the rare earth oxide powder is preferably 50 μm or less, preferably 20 μm or less, more preferably 10 μm or less, and the rare earth oxide particles are uniform in the vicinity of the transition metal particles depending on the final alloy composition. It is better to determine the average particle size so that it is present in. Further, the rare earth oxide powder contains water, organic substances and the like as impurities, and these impurities increase the amount of oxygen in the obtained rare earth transition metal alloy powder. The amount of this impurity can be evaluated by the mass loss before and after heating when heated to 1000 ° C. and then cooled. In the present embodiment, the mass loss is 2% or less, preferably 1% or less. Oxide powder is preferred.

一方、遷移金属粉末は、Fe、Co、Ni、Cu、Cr、及びMnから選ばれる1種以上の遷移元素を含有する金属あるいは金属化合物である。代表的な遷移金属である鉄粉末は、例えば還元鉄粉、ガスアトマイズ粉、水アトマイズ粉、電解鉄粉などが使用でき、必要に応じて最適な粒度になるように分級する。 On the other hand, the transition metal powder is a metal or a metal compound containing one or more transition elements selected from Fe, Co, Ni, Cu, Cr, and Mn. As the iron powder which is a typical transition metal, for example, reduced iron powder, gas atomizing powder, water atomizing powder, electrolytic iron powder and the like can be used, and the powder is classified so as to have an optimum particle size as needed.

遷移金属粉末の平均粒径は、100μm以下、好ましくは80μm以下、さらに好ましくは60μm以下、特に好ましくは50μm以下がよい。平均粒径が100μmを超えると、還元剤によって還元された希土類成分が遷移金属粒子の内部まで拡散せず未拡散部が芯として残る。ただし、得られた合金粉末の後工程によって、未拡散部の残留が問題ない場合には、この限りではない。また合金粉末の目標とする平均粒径があれば、それに対して1/2~1倍の遷移金属粉末を使うとよい。なお還元拡散反応はテルミット反応であることから、その発熱反応を昇温に利用する目的で遷移金属粉末の20質量%以下を酸化物粉末の形で用いることができる。 The average particle size of the transition metal powder is 100 μm or less, preferably 80 μm or less, more preferably 60 μm or less, and particularly preferably 50 μm or less. When the average particle size exceeds 100 μm, the rare earth component reduced by the reducing agent does not diffuse to the inside of the transition metal particles, and the undiffused portion remains as a core. However, this does not apply if there is no problem in the residual undiffused portion due to the post-process of the obtained alloy powder. If there is a target average particle size of the alloy powder, it is advisable to use a transition metal powder that is 1/2 to 1 times the target average particle size. Since the reduction diffusion reaction is a thermite reaction, 20% by mass or less of the transition metal powder can be used in the form of an oxide powder for the purpose of utilizing the exothermic reaction for raising the temperature.

また遷移金属粉末に代えて、又はその一部として、希土類と遷移金属との合金粉末や、それらの複合酸化物粉末も用いることができる。ただし複合酸化物粉末を用いるときには、テルミット発熱が過剰にならないよう複合酸化物粉末の量を遷移金属粉末の20質量%以下に抑えるか、一旦水素ガス等で還元してから原料物質として用いるのがよい。これらの平均粒径は、遷移金属粉末あるいは希土類酸化物粉末の平均粒径に準ずる。またNdFeB合金粉末を構成するBのような添加元素は、単独の粉末として使用することもできるが、FeB合金粉末の形で使用してもよい。その場合の平均粒径は、遷移金属粉末の粒径と同じ範囲を選択する。 Further, instead of or as a part of the transition metal powder, an alloy powder of a rare earth and a transition metal or a composite oxide powder thereof can also be used. However, when using composite oxide powder, the amount of composite oxide powder should be suppressed to 20% by mass or less of the transition metal powder so that thermite heat generation does not become excessive, or it should be reduced once with hydrogen gas or the like and then used as a raw material. good. These average particle sizes are based on the average particle sizes of transition metal powders or rare earth oxide powders. Further, the additive element such as B constituting the NdFeB alloy powder can be used as a single powder, but may be used in the form of FeB alloy powder. In that case, the average particle size is selected in the same range as the particle size of the transition metal powder.

(1)原料物質の混合
上記原料物質の希土類酸化物粉末と遷移金属粉末は、目的とする合金粉末の組成となるよう所定量を混合機の容器に採り、偏在しないように不活性ガス雰囲気中で十分に攪拌混合する。還元拡散法は、局所的な混合組成が得られる合金組成に反映されるので、それぞれの遷移金属粒子の周囲に合金組成を反映する希土類酸化物粒子やその他の添加元素が存在する必要がある。
(1) Mixing of raw materials The rare earth oxide powder and transition metal powder of the raw materials are prepared in a predetermined amount in the container of the mixer so as to have the composition of the target alloy powder, and in an inert gas atmosphere so as not to be unevenly distributed. Stir and mix well with. Since the reduction diffusion method is reflected in the alloy composition in which the local mixed composition is obtained, it is necessary that rare earth oxide particles and other additive elements reflecting the alloy composition are present around each transition metal particle.

この工程で用いられる混合機には、乾式と湿式のものがあるが、乾式の混合機としては、Vブレンダー、ロッキングミキサー、Sブレンダー、ヘンシェルミキサー、コンピックス、メカノハイブリッド、メカノフュージョン、ノビルタ、ハイブリダイゼーションシステム、ミラーロ、タンブラーミキサー、シータ・コンポーザ、スパルタンミキサーなどが用いられる。原料物質は、酸化を避けるために窒素ガスやアルゴンガスなどの不活性ガス雰囲気中で混合するのがよい。一方、湿式の混合機としては、ビーズミル、ボールミル、ナノマイザー、湿式サイクロン、ホモジナイザー、ディゾルバー、フィルミックスなどが用いられる。湿式の混合機の場合には、最終的に得られる合金粉末の酸素量が増大するのを防ぐために、水、アルコールなどの有機溶媒、あるいは両者の混合溶媒の乾燥を十分にする必要がある。この場合にも、希土類酸化物粉末と同様、混合物を質量減量が2%以下、好ましくは1%以下、さらに好ましくは0.5%以下になるよう乾燥するのがよい。 The mixer used in this process includes a dry type and a wet type. The dry type mixers include V blender, locking mixer, S blender, Henshell mixer, Compix, mechano hybrid, mechanofusion, nobilta, and high. A hybridization system, a mirroro, a tumbler mixer, a theta composer, a spartan mixer, etc. are used. The raw material should be mixed in an atmosphere of an inert gas such as nitrogen gas or argon gas to avoid oxidation. On the other hand, as the wet mixer, a bead mill, a ball mill, a nanomizer, a wet cyclone, a homogenizer, a dissolver, a fill mix and the like are used. In the case of a wet mixer, it is necessary to sufficiently dry an organic solvent such as water or alcohol, or a mixed solvent of both, in order to prevent an increase in the amount of oxygen in the finally obtained alloy powder. In this case as well, it is preferable to dry the mixture so that the mass loss is 2% or less, preferably 1% or less, and more preferably 0.5% or less, as in the case of the rare earth oxide powder.

(2)還元拡散処理
この工程は、上記希土類酸化物を希土類元素に還元するとともに、希土類元素が鉄粉など遷移金属に拡散した希土類遷移金属合金を合成する工程である。
(2) Reduction and Diffusion Treatment This step is a step of reducing the rare earth oxide to a rare earth element and synthesizing a rare earth transition metal alloy in which the rare earth element is diffused into a transition metal such as iron powder.

還元拡散処理では、希土類酸化物粉末の還元剤として、アルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種を使用する。具体的には、Li、Na、K、Mg、Ca、Sr又はBa金属、あるいは水素化物が使用される。これらは原料物質に遷移金属の酸化物粉末が含まれる場合には、その還元剤としても作用する。還元剤は、粒状又は粉末状で供給され、平均粒径が10mm以下、好ましくは0.1~7mm、さらに好ましくは0.2~5mmのものを使用するのが望ましい。これらの中では特にCaが有用であるので、以下Caを例に記述する。 In the reduction diffusion treatment, at least one selected from alkali metals, alkaline earth metals and hydrides thereof is used as the reducing agent for the rare earth oxide powder. Specifically, Li, Na, K, Mg, Ca, Sr or Ba metal, or hydride is used. When the raw material contains an oxide powder of a transition metal, they also act as a reducing agent. The reducing agent is supplied in the form of granules or powder, and it is desirable to use a reducing agent having an average particle size of 10 mm or less, preferably 0.1 to 7 mm, and more preferably 0.2 to 5 mm. Of these, Ca is particularly useful, so Ca will be described below as an example.

還元剤であるCaの量は、希土類酸化物粉末、遷移金属酸化物粉末を含む場合には、それら酸化物粉末の還元に必要な量に対して1.1~5倍とするのが望ましい。Caが1.1倍未満であると酸化物が還元された後に拡散が進みにくく、5倍を超えるとCaに起因する残留物が多くなり、その除去に手間がかかるために好ましくない。またCaは純度が95質量%以上のものを用いるのが好ましい。95質量%未満であると、還元後の拡散反応が進みにくい。 When the amount of Ca as a reducing agent is contained in a rare earth oxide powder or a transition metal oxide powder, it is desirable that the amount of Ca be 1.1 to 5 times the amount required for reduction of the oxide powder. If Ca is less than 1.1 times, diffusion does not proceed easily after the oxide is reduced, and if it exceeds 5 times, the residue caused by Ca increases and it takes time to remove it, which is not preferable. Further, it is preferable to use Ca having a purity of 95% by mass or more. If it is less than 95% by mass, the diffusion reaction after reduction is difficult to proceed.

前記の原料物質およびCa粒は、混合機に入れて均一に混合することが重要である。混合機としてはVブレンダー、Sブレンダー、リボンミキサ、ボールミル、ヘンシェルミキサー、メカノフュージョン、ノビルタ、ハイブリダイゼーションシステム、ミラーロなどが使用できる。 It is important that the raw material and Ca particles are placed in a mixer and mixed uniformly. As the mixer, a V blender, an S blender, a ribbon mixer, a ball mill, a Henschel mixer, a mechanofusion, a novirta, a hybridization system, a mirrorro and the like can be used.

混合物は、るつぼに装填し反応容器に入れ電気炉に設置する。混合から電気炉への設置まで、可能な限り大気や水蒸気との接触を避けるのが好ましい。また混合物内に残留する大気や水を除去するため、反応容器内を真空引きしてHe、Arなどの不活性ガスで置換することが好ましい。 The mixture is loaded into a crucible, placed in a reaction vessel and installed in an electric furnace. From mixing to installation in an electric furnace, it is preferable to avoid contact with air and water vapor as much as possible. Further, in order to remove the air and water remaining in the mixture, it is preferable to evacuate the inside of the reaction vessel and replace it with an inert gas such as He or Ar.

還元拡散処理では、これらの不活性ガスを容器内に流通させながら昇温し、所定温度で加減された希土類元素が遷移金属粒子内に拡散するのに十分な時間保持する。保持温度は、目的とする希土類遷移金属合金相の融点以下であって還元剤であるアルカリ金属又はアルカリ土類金属の融点以上が目安になる。ただし蒸気圧の高い還元剤であれば融点以下で、還元剤の蒸気により希土類酸化物粉末を還元することも可能である。たとえば原料物質の酸化サマリウムと鉄粉末からSmFe17合金粉末を製造する場合で、還元剤が金属Caの場合には、通常は金属Caの融点近傍800℃からSmFe17金属間化合物の包晶温度1280℃の範囲で保持温度が設定される。
ここで、Ca蒸気を利用するなら600℃以上に保持温度を低めに設定することもできる。保持時間は、原料物質である遷移金属粉末の粒子サイズを考慮し、その保持温度において還元された希土類元素が粒子内部まで拡散するのに十分な時間とする。SmFe17合金粉末の製造であれば、上記の温度範囲で1~8時間保持するのが好ましい。NdFe14B合金粉末やSmCo17合金粉末、LaNi合金粉末を製造する場合は、900~1100℃の範囲で、1~5時間保持すればよい。所定時間保持した後は、室温まで不活性ガス雰囲気を保ったまま冷却する
In the reduction diffusion treatment, the temperature of these inert gases is raised while flowing in the container, and the rare earth elements adjusted at a predetermined temperature are held for a sufficient time to diffuse into the transition metal particles. The holding temperature is equal to or lower than the melting point of the target rare earth transition metal alloy phase and is equal to or higher than the melting point of the reducing agent, alkali metal or alkaline earth metal. However, if the reducing agent has a high vapor pressure, the rare earth oxide powder can be reduced by the vapor of the reducing agent at the melting point or lower. For example, in the case of producing Sm 2 Fe 17 alloy powder from raw materials such as samarium oxide and iron powder, when the reducing agent is metallic Ca, it is usually from 800 ° C. near the melting point of metallic Ca to Sm 2 Fe 17 intermetallic compound. The holding temperature is set in the range of the peritectic temperature of 1280 ° C.
Here, if Ca steam is used, the holding temperature can be set lower than 600 ° C. The holding time is set to a sufficient time for the reduced rare earth element to diffuse into the inside of the particles at the holding temperature in consideration of the particle size of the transition metal powder which is the raw material. For the production of Sm 2 Fe 17 alloy powder, it is preferable to keep it in the above temperature range for 1 to 8 hours. When producing Nd 2 Fe 14 B alloy powder, Sm 2 Co 17 alloy powder, or LaNi 5 alloy powder, the temperature may be maintained in the range of 900 to 1100 ° C. for 1 to 5 hours. After holding for a predetermined time, cool to room temperature while maintaining the inert gas atmosphere.

冷却後、るつぼから回収される反応生成物は、目的とする希土類遷移金属合金粉末と副生したアルカリ金属又はアルカリ土類金属の酸化物粒子、そして過剰に投入されて残ったアルカリ金属又はアルカリ土類金属成分、からなる複合物である。 After cooling, the reaction products recovered from the pot are the target rare earth transition metal alloy powder, by-produced alkali metal or alkaline earth metal oxide particles, and the alkali metal or alkaline soil remaining after being excessively charged. It is a composite composed of similar metal components.

次の工程に進む前に、得られた反応生成物に対して、水素ガス、窒素やアンモニアなどの窒素を含有するガス、COガス、炭化水素ガス等を供給し、このガス雰囲気中で熱処理し、反応生成物中の希土類遷移金属合金粒子を水素化、窒化、炭化することもできる。希土類遷移金属合金粒子を水素化すれば、塊状で得られた反応生成物が水素を吸蔵して崩壊しやすくなる。なお、窒素を含有するガスを用いた窒化については、項を改めて詳述する。 Before proceeding to the next step, hydrogen gas, a gas containing nitrogen such as nitrogen or ammonia, CO gas, a hydrocarbon gas, etc. are supplied to the obtained reaction product, and heat treatment is performed in this gas atmosphere. The rare earth transition metal alloy particles in the reaction product can also be hydrogenated, nitrided and carbonized. When the rare earth transition metal alloy particles are hydrogenated, the reaction product obtained in the form of agglomerates easily occludes hydrogen and disintegrates. Regarding nitriding using a gas containing nitrogen, the section will be described in detail again.

(3)湿式処理
本実施形態において湿式処理は、前記還元拡散処理工程で得られた反応生成物をグリコール、又は水含有率が50質量%以下のグリコール液、すなわち水含有率が0~50質量%のグリコールへ投入、攪拌し合金スラリー化して不純物を洗浄する操作である。
(3) Wet Treatment In the wet treatment, in the wet treatment, the reaction product obtained in the reduction / diffusion treatment step is glycol or a glycol solution having a water content of 50% by mass or less, that is, a water content of 0 to 50% by mass. This is an operation in which impurities are washed by adding to% glycol, stirring and forming an alloy slurry.

還元拡散処理により得られた反応生成物は、還元剤がCaの場合、希土類遷移金属合金とCaO、および余剰のCaからなる多孔質焼結体であるため、CaO、Caおよび異相を除去しなければならない。この湿式処理工程は、この多孔質焼結体を第1の洗浄剤に投入しスラリー化する崩壊と、第1の洗浄剤で還元剤を除去する洗浄と、第2の洗浄剤に酸を投入して残留する還元剤をさらに低減させる酸洗浄と、還元剤が低減した合金スラリーに第3の洗浄液を投入し酸を除去する操作を含んでいる。第1の洗浄剤、第2の洗浄剤、第3の洗浄剤は同一でも異なっていてもよい。 When the reducing agent is Ca, the reaction product obtained by the reduction diffusion treatment is a porous sintered body consisting of a rare earth transition metal alloy, CaO, and excess Ca, so CaO, Ca, and different phases must be removed. Must be. In this wet treatment step, the porous sintered body is put into the first cleaning agent to form a slurry, the cleaning is performed by removing the reducing agent with the first cleaning agent, and the acid is added to the second cleaning agent. This includes an acid cleaning that further reduces the residual reducing agent, and an operation of adding a third cleaning liquid to the alloy slurry in which the reducing agent is reduced to remove the acid. The first cleaning agent, the second cleaning agent, and the third cleaning agent may be the same or different.

グリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール及びトリプロピレングリコールから選ばれる1種以上のアルキレングリコールが使用できる。これらグリコールおよびその混合物をそのまま使用するのが好ましい。しかし、アルキレングリコールは粘度が高いため、スラリー化した後に希土類遷移金属粉末と還元剤成分を分離し還元剤成分を除去しにくい場合がある。
そのため、水で希釈してグリコール液として用いることができる。ただし、グリコールの水含有率が50質量%以下になるようにする。ここで、水含有率とは、水/(グリコール+水)の質量比を百分率で示したものである。水が50質量%を超えると希土類遷移金属粒子の酸化が顕著になるので好ましくない。好ましい水含有率は30質量%以下、より好ましいのは10質量%以下、特に好ましいのは5質量%以下のグリコール液である。
As the glycol, one or more alkylene glycols selected from ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol and tripropylene glycol can be used. It is preferable to use these glycols and their mixtures as they are. However, since alkylene glycol has a high viscosity, it may be difficult to separate the rare earth transition metal powder and the reducing agent component after slurry formation to remove the reducing agent component.
Therefore, it can be diluted with water and used as a glycol solution. However, the water content of glycol should be 50% by mass or less. Here, the water content is a percentage of the mass ratio of water / (glycol + water). If the amount of water exceeds 50% by mass, the oxidation of rare earth transition metal particles becomes remarkable, which is not preferable. A glycol solution having a preferable water content of 30% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less is preferable.

この工程では、まず還元拡散処理工程で得られた反応生成物を、第1の洗浄剤であるグリコール又は水含有率が50質量%以下のグリコール液に投入し、スラリー化する。このとき反応生成物の形態は任意であるが、塊状の場合には、あらかじめ機械解砕してから投入すると速やかに反応が進行する。反応生成物が水素脆性を示す場合には水素雰囲気とし、機械解砕ではなく水素の吸収に適した温度で熱処理することにより解砕できることがある。またスラリーを攪拌しながら処理すると反応が進行しやすいので、処理時間を短縮しうる。また、処理時間は、希土類遷移金属合金の種類にもよるが、初回は2~15時間の範囲とし、6~12時間が好ましい。 In this step, first, the reaction product obtained in the reduction / diffusion treatment step is put into a glycol solution as a first detergent or a glycol solution having a water content of 50% by mass or less to form a slurry. At this time, the form of the reaction product is arbitrary, but in the case of a lump, the reaction proceeds rapidly if it is mechanically crushed in advance and then charged. If the reaction product exhibits hydrogen embrittlement, it may be crushed by creating a hydrogen atmosphere and heat-treating at a temperature suitable for absorbing hydrogen instead of mechanical crushing. Further, if the slurry is treated while stirring, the reaction tends to proceed, so that the treatment time can be shortened. The treatment time depends on the type of the rare earth transition metal alloy, but the initial treatment time is in the range of 2 to 15 hours, preferably 6 to 12 hours.

第1の洗浄剤であるグリコールの投入量は、特に制限されないが、1回当たり、反応生成物中の還元剤成分がグリコールと反応する当量に対して2~10倍のグリコールを使用することができる。好ましいのは反応生成物の質量に対して3~8倍のグリコールを使用することである。 The amount of glycol to be added as the first cleaning agent is not particularly limited, but it is possible to use 2 to 10 times as much glycol as the equivalent amount of the reducing agent component in the reaction product reacting with glycol at one time. can. It is preferable to use 3 to 8 times as much glycol as the mass of the reaction product.

ここで、SmFe17合金粉末の製造で金属カルシウムを還元剤として使用し、グリコールとしてエチレングリコール(HOCOH)を使った場合について、反応メカニズムを説明する。反応生成物中に残留した酸化カルシウムCaOは、エチレングリコールとの間で式(1)の反応が進行してスラリー化し、また反応生成物中に金属Caが残留している場合には、エチレングリコールと式(2)の反応が進行してスラリー化が進む。 Here, the reaction mechanism will be described in the case where metallic calcium is used as a reducing agent and ethylene glycol (HOC 2 H 4 OH) is used as the glycol in the production of the Sm 2 Fe 17 alloy powder. The calcium oxide CaO remaining in the reaction product proceeds to form a slurry by the reaction of the formula (1) with ethylene glycol, and when metallic Ca remains in the reaction product, ethylene glycol is used. And the reaction of the formula (2) progresses, and the slurry formation proceeds.

CaO+HOCOH→CaC+HO ・・・(1)
Ca+4HOCOH→Ca(OCOH)・2HOCOH+H(ガス)・・・(2)
CaO + HOC 2 H 4 OH → CaC 2 H 4 O 2 + H 2 O ... (1)
Ca + 4HOC 2 H 4 OH → Ca (OC 2 H 4 OH) 2.2 HOC 2 H 4 OH + H 2 (gas) ... ( 2 )

こうしてスラリー化した反応生成物は、静置すると比重の大きい希土類遷移金属合金粉末が沈降するので、デカンテーションして還元剤成分を含む上澄みを除去する。そこに、再び第1の洗浄剤であるグリコール、又は水含有率が50質量%以下のグリコール液を投入し攪拌-静置-デカンテーションを2~8回繰り返す。繰り返し回数は、還元剤の残存量によるが5回以内が望ましい。この操作で還元剤成分を可能な限り除去させる。また、2回目以降の攪拌-静置-デカンテーションについては、初回よりも短時間でよく、3~15分間とし、5~10分間で処理するのが好ましい。 When the reaction product thus slurried is allowed to stand, the rare earth transition metal alloy powder having a large specific gravity is settled, so that the supernatant containing the reducing agent component is removed by decantation. Glycol, which is the first detergent, or a glycol solution having a water content of 50% by mass or less is added thereto again, and stirring-standing-decantation is repeated 2 to 8 times. The number of repetitions depends on the residual amount of the reducing agent, but is preferably 5 times or less. This operation removes the reducing agent component as much as possible. Further, the second and subsequent stirring-standing-decantation may be performed in a shorter time than the first time, preferably 3 to 15 minutes, and preferably 5 to 10 minutes.

次に、上記洗浄後の合金スラリーに酸を添加し、上記洗浄で残留する還元剤成分を溶解除去する酸洗浄を行い、その後、還元剤が低減した合金に洗浄液を投入し合金スラリーから酸を除去する操作を行う。合金粉末に、目的とする希土類遷移金属合金相より希土類リッチな副相が生成する場合には、必要に応じてこの酸洗浄により希土類リッチ相も溶解除去することができる。 Next, an acid is added to the alloy slurry after the cleaning, acid cleaning is performed to dissolve and remove the reducing agent component remaining in the cleaning, and then a cleaning liquid is added to the alloy having a reduced reducing agent to remove the acid from the alloy slurry. Perform the removal operation. When a rare earth-rich subphase is formed in the alloy powder from the target rare earth transition metal alloy phase, the rare earth-rich phase can also be dissolved and removed by this acid cleaning, if necessary.

酸としては、塩酸、硝酸、硫酸等の無機酸や、酢酸等の有機酸が使用できるが、コスト等の面から塩酸又は酢酸が好ましい。使用に先立ち第2の洗浄剤であるグリコール又は水を含むグリコール液で希釈するのが好ましい。従来のように酸洗浄で水だけを媒体として用いると、添加された酸が水中に迅速に電離してしまい、結果として該粉末に強力な溶解反応が起こるためである。本実施形態では、酸洗浄の際に、水/(グリコール+水)の百分率で規定される水含有率が50質量%以下のグリコール液を用いるようにする。水が50質量%を超えると希土類遷移金属粒子の酸濃度が低下して酸洗浄効果が低下するので好ましくない。好ましい水含有率は30質量%以下、より好ましいのは10質量%以下、特に好ましいのは5質量%以下のグリコール液である。 As the acid, an inorganic acid such as hydrochloric acid, nitric acid or sulfuric acid or an organic acid such as acetic acid can be used, but hydrochloric acid or acetic acid is preferable from the viewpoint of cost and the like. Prior to use, it is preferably diluted with glycol containing a second cleaning agent or water. This is because when only water is used as a medium in pickling as in the conventional case, the added acid is rapidly ionized in water, and as a result, a strong dissolution reaction occurs in the powder. In the present embodiment, a glycol solution having a water content of 50% by mass or less, which is defined by the percentage of water / (glycol + water), is used for pickling. If the amount of water exceeds 50% by mass, the acid concentration of the rare earth transition metal particles decreases and the pickling effect decreases, which is not preferable. A glycol solution having a preferable water content of 30% by mass or less, more preferably 10% by mass or less, and particularly preferably 5% by mass or less is preferable.

また酸の使用量は、希土類元素の量や還元拡散生成物の量によって決定される。グリコール液で希釈した酸は、合金粉末に対して少量ずつ滴下し、pH3~6で3~20分間維持するのが好ましい。合金に除去しにくい還元剤が残留し、目的組成よりも希土類リッチな相が合金粉中に含まれていても、スラリーを攪拌しながら塩酸又は酢酸等を投入し処理すれば、還元剤や希土類リッチ相を溶解除去することができる。第2の洗浄液の温度は特に制限されない。ただ、グリコール中の還元剤成分の溶解度は、洗浄液の温度上昇と共に低下するため、湿式処理全工程において洗浄液の温度は50℃以下、好ましくは40℃以下、より好ましくは30℃以下にする。 The amount of acid used is determined by the amount of rare earth elements and the amount of reduction diffusion products. The acid diluted with the glycol solution is preferably added dropwise to the alloy powder little by little and maintained at pH 3 to 6 for 3 to 20 minutes. Even if a reducing agent that is difficult to remove remains in the alloy and a phase richer in rare earth than the target composition is contained in the alloy powder, if the reducing agent or rare earth is treated by adding hydrochloric acid or acetic acid while stirring the slurry. The rich phase can be dissolved and removed. The temperature of the second cleaning liquid is not particularly limited. However, since the solubility of the reducing agent component in the glycol decreases as the temperature of the cleaning solution rises, the temperature of the cleaning solution is set to 50 ° C. or lower, preferably 40 ° C. or lower, more preferably 30 ° C. or lower in the entire wet treatment step.

酸洗浄した後は、酸が合金スラリーに残留しないように再度、水含有率が50質量%以下のグリコール液を第3の洗浄液として投入し、攪拌-静置-デカンテーションを繰り返して酸を除去するのが好ましい。
このようにして洗浄を終えた希土類遷移金属合金粉末スラリーは、最後にろ過、乾燥することで目的の合金粉末を得ることができる。グリコールの粘性が高く乾燥しにくい場合には、メチルアルコール、エチルアルコール、イソプロピルアルコールなどのアルコール類、アセトンなどのケトン類を用いれば、グリコールを置換しやすく効率的に乾燥することができる。好ましいのは、エチルアルコール、イソプロピルアルコールなどのアルコール類である。乾燥条件は、含まれるグリコールやアルコール、希釈剤の種類にもよるが、減圧下、100~200℃で1~8時間の範囲とすることができる。
After acid cleaning, a glycol solution having a water content of 50% by mass or less is added again as a third cleaning solution so that the acid does not remain in the alloy slurry, and stirring, standing, and decantation are repeated to remove the acid. It is preferable to do so.
The rare earth transition metal alloy powder slurry that has been washed in this way can finally be filtered and dried to obtain the desired alloy powder. When the glycol is highly viscous and difficult to dry, alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol and ketones such as acetone can be used to easily replace the glycol and dry the glycol efficiently. Alcohols such as ethyl alcohol and isopropyl alcohol are preferred. The drying conditions may be in the range of 1 to 8 hours at 100 to 200 ° C. under reduced pressure, although it depends on the type of glycol, alcohol and diluent contained.

上記した一連の工程を経て、酸素量が低減した希土類遷移金属合金粉末が製造される。希土類遷移金属合金粉末の酸素量は、平均粒径や粒度分布に依存するが、同じ反応生成物を水単独で洗浄した場合に比べて30~70質量%に低減できる。 Through the series of steps described above, a rare earth transition metal alloy powder having a reduced oxygen content is produced. The amount of oxygen in the rare earth transition metal alloy powder depends on the average particle size and particle size distribution, but can be reduced to 30 to 70% by mass as compared with the case where the same reaction product is washed with water alone.

希土類遷移金属合金粉末のうち、LaNi合金粉末は、所望の形状に成形した後、高温に加熱して焼結することで水素吸蔵合金として使用できる。酸素量が低減しているので表面の活性が低下せず、PCT特性への悪影響が回避された水素吸蔵合金用の粉末となる。 Among the rare earth transition metal alloy powders, the LaNi 5 alloy powder can be used as a hydrogen storage alloy by forming it into a desired shape and then heating it to a high temperature for sintering. Since the amount of oxygen is reduced, the activity of the surface is not reduced, and the powder is used for hydrogen storage alloys in which adverse effects on PCT characteristics are avoided.

また、SmCo合金粉末、SmCo17合金粉末、NdFe14B合金粉末は、所望の形状に成形した後、希土類リッチな合金粉末、あるいはCoなどを焼結助剤として添加し、高温に加熱して焼結することで焼結磁石として使用できる。酸素量が低減したことで焼結密度が上がり、磁気特性が改善された焼結磁石用の粉末となる。ところが、希土類遷移金属合金粉末のうちSmFe17合金粉末は、そのままでは機能が発揮されないため、窒素及び/又はアンモニア含有雰囲気で加熱し窒化してSmFe17合金粉末とする。窒化熱処理の条件は次項に詳述するとおりである。
一方、HoCo17合金粉末、Sm(Fe,Ti)12合金粉末、La(Fe,Si)13合金粉末、La(Fe,Si)13合金粉末、TbFe合金粉末、DyFe合金粉末の中には、磁歪合金、光磁気記録合金、磁気冷凍材料などに用いられるものがある。
Further, the SmCo 5 alloy powder, the Sm 2 Co 17 alloy powder, and the Nd 2 Fe 14 B alloy powder are formed into a desired shape, and then a rare earth-rich alloy powder or Co is added as a sintering aid to obtain a high temperature. It can be used as a sintered magnet by heating to and sintering. As the amount of oxygen is reduced, the sintering density is increased, and the powder for sintered magnets has improved magnetic properties. However, among the rare earth transition metal alloy powders, the Sm 2 Fe 17 alloy powder does not exhibit its function as it is, so it is heated in an atmosphere containing nitrogen and / or ammonia and nitrided to obtain the Sm 2 Fe 17 N 3 alloy powder. The conditions for the nitriding heat treatment are as described in detail in the next section.
On the other hand, Ho 2 Co 17 alloy powder, Sm (Fe, Ti) 12 alloy powder, La (Fe, Si) 13 alloy powder, La (Fe, Si) 13H X alloy powder, TbFe 2 alloy powder, DyFe 2 alloy powder. Some of them are used for magnetic strain alloys, photomagnetic recording alloys, magnetic refrigeration materials, and the like.

(4)窒化熱処理
前記方法では、還元拡散処理した反応生成物に対して、湿式処理すると述べてきたが、反応生成物は湿式処理する前に窒化熱処理することもできる。
(4) Nitriding heat treatment In the above method, it has been described that the reaction product subjected to the reduction / diffusion treatment is subjected to a wet treatment, but the reaction product can also be subjected to a nitriding heat treatment before the wet treatment.

すなわち、この希土類遷移金属合金粉末の製造方法は、希土類酸化物粉末と遷移金属粉末を含む原料物質に、アルカリ金属、アルカリ土類金属、及びこれらの水素化物から選ばれる少なくとも1種の還元剤を所定の割合で混合する第1の工程と、この混合物を不活性ガス雰囲気中で加熱し還元拡散する第2の工程と、得られた反応生成物を窒素及び/又はアンモニア含有雰囲気で加熱し窒化する第4の工程と、得られた窒化反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、窒化反応生成物から還元剤を低減させた後、窒化合金スラリーに酸を添加し、その後、洗浄液を投入し酸を除去する第5の工程を含む、希土類遷移金属合金粉末の製造方法であって、洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする。 That is, in this method for producing a rare earth transition metal alloy powder, an alkali metal, an alkaline earth metal, and at least one reducing agent selected from these hydrides are added to the raw material containing the rare earth oxide powder and the transition metal powder. The first step of mixing at a predetermined ratio, the second step of heating the mixture in an inert gas atmosphere to reduce and diffuse it, and heating the obtained reaction product in a nitrogen and / or ammonia-containing atmosphere for nitriding. The fourth step is to perform a wet treatment in which the obtained nitriding reaction product is put into a cleaning liquid to cause disintegration, the reducing agent is reduced from the nitriding reaction product, and then an acid is added to the nitriding alloy slurry. After that, it is a method for producing a rare earth transition metal alloy powder, which comprises a fifth step of adding a cleaning liquid to remove acid, and the cleaning liquid has a water content of 0 to 50 defined by water / (glycol + water). It is characterized by being a mass% glycol.

この窒化熱処理では、得られた反応生成物を窒素及び/又はアンモニア含有雰囲気で加熱し窒化反応生成物とする。窒素及び/又はアンモニア含有雰囲気としては、例えば、窒素ガス雰囲気、窒素ガスと水素ガスの混合雰囲気、アンモニアガス雰囲気、アンモニアガスと水素ガスの混合雰囲気、アンモニアガスと窒素ガスの混合ガス雰囲気、アンモニアガスと窒素ガスと水素ガスの混合ガス雰囲気が挙げられる。アンモニアガスと水素ガスの混合雰囲気を用いる場合は、流量比を1:1~3とするのが好ましい。
好ましいのは窒素ガスを含む雰囲気、及び/又はアンモニアガスと水素ガスの混合雰囲気中であり、窒化後も十分な量のアルゴンガスを供給して、300~500℃の温度範囲で反応生成物を加熱することである。加熱温度が300℃未満では窒化が進まず、一方、500℃を超えると合金が希土類元素の窒化反応生成物と鉄に分解するので好ましくない。より好ましいのは、300~450℃である。
また、処理時間は、加熱温度、各ガス流量、反応生成物の大きさなどに関係するが、アンモニアガスと水素ガスの混合雰囲気の場合、例えば100分~10時間が好ましく、2~8時間がより好ましい。
In this nitriding heat treatment, the obtained reaction product is heated in an atmosphere containing nitrogen and / or ammonia to obtain a nitriding reaction product. Examples of the nitrogen and / or ammonia-containing atmosphere include a nitrogen gas atmosphere, a mixed atmosphere of nitrogen gas and hydrogen gas, an ammonia gas atmosphere, a mixed atmosphere of ammonia gas and hydrogen gas, a mixed gas atmosphere of ammonia gas and nitrogen gas, and an ammonia gas. And the atmosphere of a mixed gas of nitrogen gas and hydrogen gas. When a mixed atmosphere of ammonia gas and hydrogen gas is used, the flow rate ratio is preferably 1: 1 to 3.
It is preferable to use an atmosphere containing nitrogen gas and / or a mixed atmosphere of ammonia gas and hydrogen gas, and a sufficient amount of argon gas is supplied even after nitriding to produce a reaction product in a temperature range of 300 to 500 ° C. Is to heat. If the heating temperature is less than 300 ° C, nitriding does not proceed, while if it exceeds 500 ° C, the alloy decomposes into the nitriding reaction product of the rare earth element and iron, which is not preferable. More preferably, it is 300 to 450 ° C.
The treatment time is related to the heating temperature, the flow rate of each gas, the size of the reaction product, etc., but in the case of a mixed atmosphere of ammonia gas and hydrogen gas, for example, 100 minutes to 10 hours is preferable, and 2 to 8 hours is preferable. More preferred.

こうして、窒化熱処理を行ってから湿式処理を行う。窒化反応生成物への湿式処理方法、処理条件は前記還元拡散生成物に対して行う湿式処理と同様である。すなわち、窒化工程で得られた窒化反応生成物を第1の洗浄剤へ投入、攪拌してスラリー化して洗浄する操作である。通常は洗浄後の合金スラリーに第2の洗浄剤と酸を添加し、合金から還元剤を溶解し、その後、還元剤が低減した合金に第3の洗浄液を投入し酸を除去する操作を行う。本実施形態は、洗浄剤として水含有率が0~50質量%のグリコールを用いることを特徴としている。第1の洗浄剤、第2の洗浄剤、第3の洗浄剤は同一でも異なっていてもよい。 In this way, the nitriding heat treatment is performed and then the wet treatment is performed. The wet treatment method and treatment conditions for the nitriding reaction product are the same as those for the wet treatment for the reduction diffusion product. That is, it is an operation of putting the nitriding reaction product obtained in the nitriding step into the first cleaning agent, stirring the mixture to form a slurry, and cleaning. Normally, a second cleaning agent and an acid are added to the alloy slurry after cleaning, the reducing agent is dissolved from the alloy, and then a third cleaning liquid is added to the alloy in which the reducing agent is reduced to remove the acid. .. The present embodiment is characterized in that glycol having a water content of 0 to 50% by mass is used as a cleaning agent. The first cleaning agent, the second cleaning agent, and the third cleaning agent may be the same or different.

グリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール及びトリプロピレングリコールから選ばれる1種以上のアルキレングリコールが使用できる。これらグリコールおよびその混合物をそのまま使用するのが好ましい。しかし、粘度が高いためスラリー化した後に希土類遷移金属粉末と還元剤成分の分離除去がしにくい場合、水で希釈して使用することができる。グリコールを希釈する場合には、水含有率が50質量%以下とする。水が50質量%を超えると希土類遷移金属粒子の酸化が顕著になるので好ましくない。 As the glycol, one or more alkylene glycols selected from ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol and tripropylene glycol can be used. It is preferable to use these glycols and their mixtures as they are. However, if it is difficult to separate and remove the rare earth transition metal powder and the reducing agent component after slurrying due to its high viscosity, it can be diluted with water before use. When diluting glycol, the water content should be 50% by mass or less. If the amount of water exceeds 50% by mass, the oxidation of rare earth transition metal particles becomes remarkable, which is not preferable.

グリコールの使用量は、特に制限されないが、窒化反応生成物中の還元剤成分がグリコールと反応する当量に対して2~10倍のグリコールを使用することができる。好ましいのは窒化反応生成物の質量に対して3~8倍のグリコールを使用することである。 The amount of glycol used is not particularly limited, but 2 to 10 times as much glycol as the equivalent amount at which the reducing agent component in the nitriding reaction product reacts with glycol can be used. It is preferable to use 3 to 8 times as much glycol as the mass of the nitriding reaction product.

これにより、SmFe17磁石合金粉末を得ることができる。磁石粉末の物性は、樹脂組成物をバインダーとして用い、成形されたボンド磁石の磁気特性を測定することで評価できる。SmFe17合金粉末では、従来法で水単独で洗浄した場合に比べて、保磁力(MA/m)が5%以上向上し、角形性も10%以上向上することが確認されている。 Thereby, Sm 2 Fe 17 N 3 magnet alloy powder can be obtained. The physical characteristics of the magnet powder can be evaluated by using the resin composition as a binder and measuring the magnetic properties of the molded bonded magnet. It was confirmed that the Coercive force (MA / m) of the Sm 2 Fe 17 N 3 alloy powder was improved by 5% or more and the squareness was improved by 10% or more as compared with the case of washing with water alone by the conventional method. There is.

なお、希土類遷移金属合金粉末には、さらに湿式表面処理を行い、例えばリン酸塩系化合物被膜を形成して耐酸化性、耐候性を高めることができる。また、めっき処理などにより粉末表面にCrやMnのほか、Zn、CuやNiなどの金属層を形成することもできる。 The rare earth transition metal alloy powder can be further subjected to a wet surface treatment to form, for example, a phosphate-based compound film to enhance oxidation resistance and weather resistance. Further, in addition to Cr and Mn, a metal layer such as Zn, Cu and Ni can be formed on the powder surface by a plating treatment or the like.

(SmFe17合金へのシェル層の形成)
次に、本実施形態により、SmFe17合金をコアとし、Sm(Fe、M)17(M=Cr、Mn)をシェル層とした合金粉末の製造方法を説明する。
(Formation of shell layer on Sm 2 Fe 17 N 3 alloy)
Next, a method for producing an alloy powder having Sm 2 Fe 17 N 3 alloy as a core and Sm 2 (Fe, M) 17 N x (M = Cr, Mn) as a shell layer will be described according to the present embodiment.

SmFe17合金へシェル層が形成された合金粉末を製造するには、SmとFeを含む希土類遷移金属合金粉末に対して、Smを含む希土類酸化物粉末と、Mn及び/又はCrを含む遷移金属酸化物粉末と、アルカリ金属、アルカリ土類金属、及びこれらの水素化物から選ばれる少なくとも1種の還元剤とを所定の割合で混合し、この混合物を不活性ガス雰囲気中で加熱し還元拡散した後、得られた還元拡散反応生成物を、窒素及び/又はアンモニア含有雰囲気で加熱して窒化し、引き続き、得られた窒化反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、窒化反応生成物から還元剤を低減させる工程を含んでいる。そして、洗浄液としては、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールを用いるようにする。 In order to produce an alloy powder in which a shell layer is formed on a Sm 2 Fe 17 N 3 alloy, a rare earth oxide powder containing Sm and Mn and / or Cr are used as opposed to a rare earth transition metal alloy powder containing Sm and Fe. The transition metal oxide powder containing the above is mixed with an alkali metal, an alkaline earth metal, and at least one reducing agent selected from these hydrides at a predetermined ratio, and the mixture is heated in an inert gas atmosphere. After reduction and diffusion, the obtained reduction and diffusion reaction product is heated in a nitrogen and / or ammonia-containing atmosphere to be nitrided, and then the obtained nitride reaction product is put into a washing liquid to cause disintegration. The step of reducing the reducing agent from the nitrided reaction product is included. Then, as the cleaning liquid, glycol having a water content of 0 to 50% by mass defined by water / (glycol + water) is used.

希土類遷移金属合金粉末であるSmFe17合金粉末は、製造方法によって制限されない。例えば、前記(1)~(3)の要領で希土類酸化物粉末であるSm粉末と遷移金属酸化物粉末である鉄粉末に還元剤を混合して還元拡散し、その還元拡散反応生成物をグリコールに投入し湿式処理して還元剤を除去して得ることができる。これを平均粒径が5μm以下の希土類酸化物粉末であるSm粉末、平均粒径が3μm以下の遷移金属酸化物粉末であるMnのようなMn酸化物粉末又はCrのようなCr酸化物粉末と混合し、微粉砕して混合物の平均粒径を5μm以下、さらに好ましくは3μm以下にするのが好ましい。 The Sm 2 Fe 17 alloy powder, which is a rare earth transition metal alloy powder, is not limited by the production method. For example, a reducing agent is mixed with Sm 2 O3 powder , which is a rare earth oxide powder, and iron powder, which is a transition metal oxide powder, and reduced and diffused in the same manner as in (1) to (3) above to generate a reduction and diffusion reaction. It can be obtained by putting a substance into glycol and performing a wet treatment to remove the reducing agent. This is a Mn oxide powder such as Sm 2 O 3 powder, which is a rare earth oxide powder having an average particle size of 5 μm or less, and Mn 3 O 4 , which is a transition metal oxide powder having an average particle size of 3 μm or less, or Cr 2 O. It is preferable to mix with a Cr oxide powder such as 3 and finely grind to make the average particle size of the mixture 5 μm or less, more preferably 3 μm or less.

混合割合は、合金粉末の100質量部に対して、Sm粉末が5~20質量部と、Mn酸化物粉末又はCr酸化物粉末が1~10質量部の割合となることが好ましい。還元剤であるCaは、Sm粉末とMn酸化物粉末又はCr酸化物粉末の還元に必要な量に対して1.1~10倍とするのが望ましい。またSmFe17希土類鉄合金粉末、Sm粉末、Mn酸化物粉末又はCr酸化物粉末の混合粉末の含有水分量が1質量%未満であることが望ましい。 The mixing ratio is preferably 5 to 20 parts by mass for the Sm 2 O 3 powder and 1 to 10 parts by mass for the Mn oxide powder or Cr oxide powder with respect to 100 parts by mass of the alloy powder. It is desirable that the amount of Ca as the reducing agent is 1.1 to 10 times the amount required for reduction of the Sm 2 O 3 powder and the Mn oxide powder or the Cr oxide powder. Further, it is desirable that the water content of the mixed powder of Sm 2 Fe 17 rare earth iron alloy powder, Sm 2 O 3 powder, Mn oxide powder or Cr oxide powder is less than 1% by mass.

その後、反応容器内を再度真空引きするか、He、Arなどの不活性ガスを容器内にフローしながら混合物を還元拡散熱処理する。この熱処理は、前記第2の工程での還元拡散条件と若干異なり、650~1000℃の温度範囲で、好ましくは700~1000℃とし、かつCaによって還元されたMn又はCrがSmFe17合金粉末内部まで拡散しない条件とする。650℃より低い温度ではCaでSmやMn酸化物やCr酸化物の還元は進んでも、SmFe17合金粉末表面での拡散反応によるシェル層の形成が進み難く、最終的に得られる磁性粉末の耐熱性が向上しない。一方、1000℃を超えると、還元されたMn又はCrがSmFe17合金粉末の中心部にまで拡散してしまい所期の厚みを持ったシェル層が得られず耐熱性の向上が望めない。 Then, the inside of the reaction vessel is evacuated again, or the mixture is reduced and diffused by heat treatment while flowing an inert gas such as He or Ar into the vessel. This heat treatment is slightly different from the reduction / diffusion conditions in the second step, and is preferably 700 to 1000 ° C. in a temperature range of 650 to 1000 ° C., and Mn or Cr reduced by Ca is a Sm 2 Fe 17 alloy. The condition is that it does not diffuse into the powder. At temperatures lower than 650 ° C, even if the reduction of Sm 2 O 3 and Mn oxide and Cr oxide progresses with Ca, it is difficult to proceed with the formation of the shell layer by the diffusion reaction on the surface of the Sm 2 Fe 17 alloy powder, and the final result is obtained. The heat resistance of the magnetic powder is not improved. On the other hand, if the temperature exceeds 1000 ° C., the reduced Mn or Cr diffuses to the center of the Sm 2 Fe 17 alloy powder, and a shell layer having the desired thickness cannot be obtained, and improvement in heat resistance cannot be expected. ..

また、混合物の加熱保持時間も、Mn又はCrの拡散によるシェル層の厚みを調整するように設定される。混合物を設定温度で8時間以下保持する。保持時間は、5時間以下が好ましく、より好ましくは1時間以下とする。8時間を超えるとMn又はCrの拡散によるシェル層の厚みが増大し目的とする粒子性状を得ることが難しくなることがある。 The heating retention time of the mixture is also set so as to adjust the thickness of the shell layer due to the diffusion of Mn or Cr. The mixture is kept at the set temperature for 8 hours or less. The holding time is preferably 5 hours or less, more preferably 1 hour or less. If it exceeds 8 hours, the thickness of the shell layer increases due to the diffusion of Mn or Cr, and it may be difficult to obtain the desired particle properties.

次に、窒素ガスを含む気流中で、該反応生成物を300~500℃の温度で、50分~24時間かけて窒化熱処理し、必要に応じてアンモニアと水素ガスの混合雰囲気に切り替え、30分~120分間窒化熱処理するのが好ましい。 Next, the reaction product is subjected to a nitriding heat treatment at a temperature of 300 to 500 ° C. for 50 minutes to 24 hours in an air stream containing nitrogen gas, and if necessary, the atmosphere is switched to a mixed atmosphere of ammonia and hydrogen gas. It is preferable to carry out a nitriding heat treatment for 1 to 120 minutes.

こうして、窒化熱処理を行ってから湿式処理を行う。窒化反応生成物への湿式処理方法、処理条件は還元拡散生成物に対して行う前記湿式処理と同様である。すなわち、窒化熱処理工程で得られた窒化反応生成物を第1の洗浄剤であるグリコール又はグリコール液へ投入、攪拌してスラリー化して洗浄する操作である。グリコールの種類、使用量は前記と同様であり、グリコール液を用いる場合、窒化合金粉末の酸化を抑制するため、水/(グリコール+水)で規定される水含有率が50質量%以下のものとする。水含有率は、30質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。 In this way, the nitriding heat treatment is performed and then the wet treatment is performed. The wet treatment method and treatment conditions for the nitriding reaction product are the same as those for the wet treatment performed on the reduction diffusion product. That is, it is an operation in which the nitriding reaction product obtained in the nitriding heat treatment step is put into a glycol or a glycol liquid which is a first cleaning agent, and stirred to form a slurry for cleaning. The type and amount of glycol used are the same as above, and when a glycol solution is used, the water content specified by water / (glycol + water) is 50% by mass or less in order to suppress the oxidation of the nitride alloy powder. And. The water content is preferably 30% by mass or less, more preferably 10% by mass or less, still more preferably 5% by mass or less.

得られるSmFe17合金へシェル層が形成された粉末は、酸素量が低減している。酸素量は、平均粒径や粒度分布に依存するが、同じ反応生成物を水単独で洗浄した場合に比べて30~70質量%に低減される。 The powder in which the shell layer is formed on the obtained Sm 2 Fe 17 N 3 alloy has a reduced amount of oxygen. The amount of oxygen depends on the average particle size and the particle size distribution, but is reduced to 30 to 70% by mass as compared with the case where the same reaction product is washed with water alone.

磁石粉末の物性は、樹脂組成物をバインダーとして用い、成形されたボンド磁石の磁気特性を測定することで評価できる。SmFe17合金をコアとしSm(Fe、M)17(M=Cr、Mn)をシェル層とした合金粉末では、従来法で水単独で洗浄した場合に比べて、保磁力(MA/m)、角形性が倍近くに向上するという顕著な効果が確認されている。 The physical characteristics of the magnet powder can be evaluated by using the resin composition as a binder and measuring the magnetic properties of the molded bonded magnet. The alloy powder with Sm 2 Fe 17 N 3 alloy as the core and Sm 2 (Fe, M) 17 N x (M = Cr, Mn) as the shell layer is more durable than the conventional method of washing with water alone. It has been confirmed that the magnetic force (MA / m) and squareness are nearly doubled, which is a remarkable effect.

以下、実施例について、比較例も示してより具体的に説明するが、本発明は以下の実施例によって何ら限定されるものではない。 Hereinafter, Examples will be described in more detail with reference to Comparative Examples, but the present invention is not limited to the following Examples.

[実施例1]
平均粒径(D50)が2.3μmで質量減量が1%以下の酸化サマリウムSm粉末44g、平均粒径(D50)が40μmの鉄粉100g、1~2mmの粒状金属カルシウム23gを小型ミキサーで混合し、鉄るつぼに入れて、アルゴンガス雰囲気下、1100℃で7時間加熱処理した。
冷却後に取り出した反応生成物100gを550gのエチレングリコールに投入し、攪拌しながら12時間放置しスラリー化した。このスラリーの攪拌をやめて2分静置した後、その上澄みを捨て、新たにエチレングリコールを500g加えて5分攪拌し、2分静置しSmFe合金粉が沈降したところで上澄みを捨てる。この操作を5回繰り返した。
再びエチレングリコール500gを加えて合金粉が攪拌されている状態で、酢酸15gを水含有率が40質量%のエチレングリコールと水の混合液65gで希釈した溶液を用意し、スポイトで40分かけて滴下した。その後、上澄みを捨てて再びエチレングリコール500gを加え攪拌し、上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gでエチレングリコールを置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら150℃で6時間攪拌・乾燥し、平均粒径が28μmのSmFe17合金粉末118gを得た。
実施例1で使用した洗浄液において、水含有率が最も高くなるのは、エチレングリコールに、酢酸とエチレングリコールと水の混合溶液を全量滴下した後であり、このときの洗浄液の水含有率は4.6質量%である。
この合金粉の組成は、Smが24.5質量%、Oが0.04質量%、Caが0.01質量%未満、残部が鉄であり、主相がThZn17型結晶構造のSmFe17だった。
この合金粉を管状炉に入れて、アンモニアガス:水素ガス=1:2の流量比で流通させながら450℃で8時間窒化熱処理し、その後雰囲気をアルゴンガスに切り代えて1時間熱処理してSmFe17粉末を作製した。この粉末を樹脂に埋め込み断面を研磨してSEM反射電子像観察したところ、粒子内部まで均一に窒化されていることを確認した。また得られた粉末は、エチルアルコールを溶媒とし媒体攪拌ミルでD50が2.2μmになるまで微粉砕し真空乾燥して振動試料型磁力計で磁気特性を測定したところ、表1に示すように保磁力HcJは0.89MA/m、角形性Hkは0.48MA/mと良好だった。
[Example 1]
44 g of samarium oxide Sm 2 O 3 powder with an average particle size (D 50 ) of 2.3 μm and a mass loss of 1% or less, 100 g of iron powder with an average particle size (D 50 ) of 40 μm, and 23 g of granular metallic calcium with an average particle size (D 50) of 1 to 2 mm. Was mixed with a small mixer, placed in an iron pot, and heat-treated at 1100 ° C. for 7 hours under an atmosphere of argon gas.
100 g of the reaction product taken out after cooling was put into 550 g of ethylene glycol and left to stand for 12 hours with stirring to form a slurry. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, the supernatant is discarded, 500 g of ethylene glycol is newly added, the mixture is stirred for 5 minutes, and the mixture is allowed to stand for 2 minutes, and the supernatant is discarded when the SmFe alloy powder has settled. This operation was repeated 5 times.
With 500 g of ethylene glycol added again and the alloy powder stirred, a solution prepared by diluting 15 g of acetic acid with 65 g of a mixture of ethylene glycol having a water content of 40% by mass and water was prepared, and a dropper was used for 40 minutes. Dropped. Then, the supernatant was discarded, 500 g of ethylene glycol was added again and the mixture was stirred, and the operation of removing the supernatant was performed three times. Finally, after replacing the ethylene glycol with 500 g of dehydrated ethyl alcohol, the alloy powder was recovered by filtration through a nutche. This was placed in a small mixer, stirred and dried at 150 ° C. for 6 hours while reducing the pressure to obtain 118 g of Sm 2 Fe 17 alloy powder having an average particle size of 28 μm.
In the cleaning liquid used in Example 1, the water content is highest after the entire amount of the mixed solution of acetic acid, ethylene glycol and water is added dropwise to ethylene glycol, and the water content of the cleaning liquid at this time is 4. It is 0.6% by mass.
The composition of this alloy powder is Sm of 24.5% by mass, O of 0.04% by mass, Ca of less than 0.01% by mass, the balance of iron, and the main phase is Th 2 Zn 17 type crystal structure Sm. It was 2 Fe 17 .
This alloy powder is placed in a tubular furnace and subjected to nitriding heat treatment at 450 ° C. for 8 hours while flowing at a flow rate ratio of ammonia gas: hydrogen gas = 1: 2, and then the atmosphere is switched to argon gas and heat treated for 1 hour to Sm. 2 Fe 17 N 3 powder was prepared. When this powder was embedded in a resin, the cross section was polished, and the SEM reflected electron image was observed, it was confirmed that the inside of the particles was uniformly nitrided. The obtained powder was finely pulverized with an ethyl alcohol solvent in a medium stirring mill until D50 became 2.2 μm, vacuum dried, and the magnetic characteristics were measured with a vibration sample magnetometer. As shown in Table 1. The coercive force HcJ was 0.89 MA / m, and the angular Hk was 0.48 MA / m, which were good.

[比較例1]
実施例1と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物を得た。
この反応生成物100gを1Lの水中に投入し攪拌しながら、12時間かけてスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たに水を1L加えて5分攪拌し、2分静置してSmFe合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作を5回繰り返した。
再び水1Lを加えて合金粉が攪拌されている状態で、酢酸15gを水65gで希釈した溶液を用意し、スポイトで40分かけて滴下した。その後、上澄みを捨てて再び水1Lを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gで水を置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら150℃で6時間攪拌・乾燥し、平均粒径が26μmのSmFe17合金粉末120gを得た。
この合金粉の組成は、Smが24.3質量%、Oが0.17質量%、Caが0.01質量%未満、残部が鉄であり、主相がThZn17型結晶構造のSmFe17だった。
得られた合金粉を実施例1と同様に管状炉に入れてSmFe17粉末を作製した。この粉末を樹脂に埋め込み断面を研磨してSEM反射電子像観察したところ、粒子内部に未窒化相を示す明るいコントラストのある粒子が1割ほどの粒子で確認された。また微粉砕した後の微粉末の磁気特性を測定したところ、表1に示すように保磁力HcJは0.81MA/m、未窒化相のために角形性Hkは0.31MA/mと低い値を示した。
[Comparative Example 1]
In the same manner as in Example 1, the raw material and the reducing agent were blended in the same amount and heat-treated under the same conditions to obtain a reduction-diffusion reaction product.
100 g of this reaction product was put into 1 L of water and stirred for 12 hours to form a slurry. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, discard the supernatant, add 1 L of water, stir for 5 minutes, and let stand for 2 minutes to suspend calcium hydroxide when the SmFe alloy powder has settled. Discard the supernatant. This operation was repeated 5 times.
A solution prepared by diluting 15 g of acetic acid with 65 g of water was prepared by adding 1 L of water again and stirring the alloy powder, and the solution was added dropwise over 40 minutes with a dropper. Then, the supernatant was discarded, 1 L of water was added again, and the mixture was stirred to remove the supernatant three times. Finally, the water was replaced with 500 g of dehydrated ethyl alcohol, and then filtered through a nutche to recover the alloy powder. This was placed in a small mixer, stirred and dried at 150 ° C. for 6 hours while reducing the pressure to obtain 120 g of Sm 2 Fe 17 alloy powder having an average particle size of 26 μm.
The composition of this alloy powder is Sm of 24.3% by mass of Sm, 0.17% by mass of O, less than 0.01% by mass of Ca, the balance is iron, and the main phase is Th 2 Zn 17 type crystal structure Sm. It was 2 Fe 17 .
The obtained alloy powder was placed in a tube furnace in the same manner as in Example 1 to prepare a Sm 2 Fe 17 N 3 powder. When this powder was embedded in a resin and the cross section was polished and the SEM reflected electron image was observed, about 10% of the particles had a bright contrast showing an unnitrided phase inside the particles. The magnetic properties of the fine powder after fine pulverization were measured. As shown in Table 1, the coercive force HcJ was 0.81 MA / m, and the angular Hk was 0.31 MA / m due to the unnitrided phase. showed that.

Figure 0007044304000001
Figure 0007044304000001

「評価」
実施例1と比較例1とを対比すると、表1に示した合金粉末の磁気特性結果から、実施例1では保磁力HcJ、角形性Hkともに比較例1よりも高い値を示している。実施例1では湿式処理でエチレングリコールを用いたので、水洗浄している比較例1よりも粉末の酸素量が低減していることから、湿式処理でエチレングリコールを用いたことの顕著な作用効果が分かる。
"evaluation"
Comparing Example 1 and Comparative Example 1, the magnetic property results of the alloy powder shown in Table 1 show that in Example 1, both the coercive force HcJ and the angular Hk are higher than those in Comparative Example 1. Since ethylene glycol was used in the wet treatment in Example 1, the amount of oxygen in the powder was reduced as compared with Comparative Example 1 which was washed with water. I understand.

[実施例2]
(1) まず、実施例1と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物を得た。ここで湿式処理せずに、この反応生成物を管状炉に入れて、アンモニアガス:水素ガス=1:2の流量比で流通させながら450℃で6時間かけて窒化熱処理し、その後雰囲気をアルゴンガスに切り代えて1時間熱処理した。
冷却後に取り出した窒化反応生成物100gを550gのプロピレングリコールに投入し攪拌しながら12時間かけてスラリー化した。このスラリーの攪拌をやめて2分静置した後、その上澄みを捨て、新たにプロピレングリコールを500g加えて5分攪拌し、2分静置し合金粉が沈降したところで上澄みを捨てる。この操作を5回繰り返した。
再びプロピレングリコール500gを加えて合金粉が攪拌されている状態で、酢酸10gを水含有率が10質量%のプロピレングリコールと水の混合液100gで希釈した溶液を用意し、スポイトで40分かけて滴下した。その後、上澄みを捨てて再びプロピレングリコール500gを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gでプロピレングリコールを置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら180℃で2時間攪拌・乾燥し、平均粒径が19μmのSmFe17合金粉末121gを得た。
ここで使用した洗浄液において、水含有率が最も高くなるのは、エチレングリコールに、酢酸とエチレングリコールと水の混合溶液を全量滴下した後であり、このときの洗浄液の水含有率は1.7質量%である。
この合金粉の組成は、Smが23.3質量%、Nが3.5質量%、Oが0.09質量%、Caが0.01質量%未満、残部が鉄であり、主相がThZn17型結晶構造のSmFe17だった。
この粉末を樹脂に埋め込み断面を研磨してSEM反射電子像観察したところ、粒子内部まで均一に窒化されていることを確認した。また得られた粉末は、エチルアルコールを溶媒とし媒体攪拌ミルでD50が2.3μmになるまで微粉砕し真空乾燥して振動試料型磁力計で磁気特性を測定したところ、表2に示すように保磁力HcJは0.94MA/m、角形性Hkは0.57MA/mと良好だった。
[Example 2]
(1) First, the raw material and the reducing agent were mixed in the same amount in the same manner as in Example 1, and heat-treated under the same conditions to obtain a reduction-diffusion reaction product. Here, without wet treatment, this reaction product is placed in a tube furnace and subjected to nitriding heat treatment at 450 ° C. for 6 hours while flowing at a flow rate ratio of ammonia gas: hydrogen gas = 1: 2, and then the atmosphere is changed to argon. It was switched to gas and heat-treated for 1 hour.
100 g of the nitriding reaction product taken out after cooling was put into 550 g of propylene glycol and slurryed over 12 hours with stirring. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, the supernatant is discarded, 500 g of propylene glycol is newly added, the mixture is stirred for 5 minutes, and the mixture is allowed to stand for 2 minutes, and the supernatant is discarded when the alloy powder has settled. This operation was repeated 5 times.
With 500 g of propylene glycol added again and the alloy powder stirred, a solution prepared by diluting 10 g of acetic acid with 100 g of a mixture of propylene glycol having a water content of 10% by mass and water was prepared, and a dropper was used for 40 minutes. Dropped. Then, the supernatant was discarded, 500 g of propylene glycol was added again, and the mixture was stirred to remove the supernatant three times. Finally, 500 g of dehydrated ethyl alcohol was used to replace the propylene glycol, and then the mixture was filtered through a nutche to recover the alloy powder. This was placed in a small mixer, stirred and dried at 180 ° C. for 2 hours while reducing the pressure to obtain 121 g of Sm 2 Fe 17 N 3 alloy powder having an average particle size of 19 μm.
In the cleaning liquid used here, the water content is highest after dropping the entire mixed solution of acetic acid, ethylene glycol and water into ethylene glycol, and the water content of the cleaning liquid at this time is 1.7. It is mass%.
The composition of this alloy powder is 23.3% by mass for Sm, 3.5% by mass for N, 0.09% by mass for O, less than 0.01% by mass for Ca, the balance is iron, and the main phase is Th. It was Sm 2 Fe 17 N 3 with a 2 Zn 17 type crystal structure.
When this powder was embedded in a resin, the cross section was polished, and the SEM reflected electron image was observed, it was confirmed that the inside of the particles was uniformly nitrided. The obtained powder was finely pulverized with an ethyl alcohol solvent in a medium stirring mill until D50 became 2.3 μm, vacuum dried, and the magnetic characteristics were measured with a vibration sample magnetometer. As shown in Table 2. The coercive force HcJ was 0.94 MA / m, and the angular Hk was 0.57 MA / m, which were good.

(2) 次に、湿式処理におけるすべての洗浄液を、イオン交換水を40質量%含むプロピレングリコール500gとした以外は上記(1)と同様にして、平均粒径が18μmのSmFe17合金粉末119gを得た。
ここで使用した洗浄液において、水含有率が最も高くなるのは、プロピレングリコールに、酢酸とプロピレングリコールと水の混合溶液を全量滴下した後であり、このときの洗浄液の水含有率は35質量%である。
この合金粉の組成は、Smが23.2質量%、Nが3.5質量%、Oが0.11質量%、Caが0.01質量%、残部が鉄であり、主相がThZn17型結晶構造のSmFe17だった。
この粉末を樹脂に埋め込み断面を研磨してSEM反射電子像観察したところ、粒子内部まで均一に窒化されていることを確認した。また得られた粉末は、エチルアルコールを溶媒とし媒体攪拌ミルでD50が2.3μmになるまで微粉砕し真空乾燥して振動試料型磁力計で磁気特性を測定したところ、表2に示すように保磁力HcJは0.90MA/m、角形性Hkは0.55MA/mと良好だった。
(2) Next, in the same manner as in (1) above, all the cleaning liquids in the wet treatment were Sm 2 Fe 17 N 3 having an average particle size of 18 μm, except that 500 g of propylene glycol containing 40% by mass of ion-exchanged water was used. 119 g of alloy powder was obtained.
In the cleaning liquid used here, the water content is highest after the total amount of a mixed solution of acetic acid, propylene glycol and water is added dropwise to propylene glycol, and the water content of the cleaning liquid at this time is 35% by mass. Is.
The composition of this alloy powder is 23.2% by mass for Sm, 3.5% by mass for N, 0.11% by mass for O, 0.01% by mass for Ca, the balance is iron, and the main phase is Th 2 . It was Sm 2 Fe 17 N 3 with a Zn 17 type crystal structure.
When this powder was embedded in a resin, the cross section was polished, and the SEM reflected electron image was observed, it was confirmed that the inside of the particles was uniformly nitrided. The obtained powder was finely pulverized with an ethyl alcohol solvent in a medium stirring mill until D50 became 2.3 μm, vacuum dried, and the magnetic characteristics were measured with a vibration sample magnetometer. As shown in Table 2. The coercive force HcJ was 0.90 MA / m, and the angular Hk was 0.55 MA / m, which were good.

[比較例2]
(1) まず、実施例2と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物とし、ここで湿式処理せずに、引き続き窒化熱処理し窒化反応生成物を得た。
この窒化反応生成物100gを1Lの水中に投入し攪拌しながら、12時間かけてスラリー化した。このスラリーを2分静置した後、その上澄みを捨て、新たに水を1L加えて5分攪拌し、2分静置してSmFeN合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作を5回繰り返した。再び水1Lを加えて合金粉が攪拌されている状態で、酢酸10gを水100gで希釈した溶液を用意し、スポイトで40分かけて滴下した。その後、上澄みを捨てて再び水1Lを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gで水を置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら180℃で2時間攪拌・乾燥し、平均粒径が20μmのSmFe17合金粉末119gを得た。
この合金粉の組成は、Smが23.1質量%、Nが3.5質量%、Oが0.18質量%、Caが0.01質量%未満、残部が鉄であり、主相がThZn17型結晶構造のSmFe17だった。
この粉末を樹脂に埋め込み断面を研磨してSEM反射電子像観察したところ、未窒化相を有する粒子が個数基準で12%ほどあるのを確認した。得られた粉末は、エチルアルコールを溶媒とし媒体攪拌ミルでD50が2.3μmになるまで微粉砕し真空乾燥して振動試料型磁力計で磁気特性を測定したところ、表2に示すように保磁力HcJは0.78MA/m、角形性Hkは0.40MA/mだった。
[Comparative Example 2]
(1) First, the same amount of the raw material and the reducing agent are blended in the same manner as in Example 2, and heat-treated under the same conditions to obtain a reduction-diffusion reaction product. The product was obtained.
100 g of this nitriding reaction product was put into 1 L of water and stirred for 12 hours to form a slurry. After allowing this slurry to stand for 2 minutes, discard the supernatant, add 1 L of water, stir for 5 minutes, leave for 2 minutes, and discard the supernatant in which calcium hydroxide is suspended when the SmFeN alloy powder has settled. .. This operation was repeated 5 times. A solution prepared by diluting 10 g of acetic acid with 100 g of water was prepared by adding 1 L of water again and stirring the alloy powder, and the solution was added dropwise over 40 minutes with a dropper. Then, the supernatant was discarded, 1 L of water was added again, and the mixture was stirred to remove the supernatant three times. Finally, the water was replaced with 500 g of dehydrated ethyl alcohol, and then filtered through a nutche to recover the alloy powder. This was placed in a small mixer, stirred and dried at 180 ° C. for 2 hours while reducing the pressure to obtain 119 g of Sm 2 Fe 17 N 3 alloy powder having an average particle size of 20 μm.
The composition of this alloy powder is 23.1% by mass for Sm, 3.5% by mass for N, 0.18% by mass for O, less than 0.01% by mass for Ca, the balance is iron, and the main phase is Th. It was Sm 2 Fe 17 N 3 with a 2 Zn 17 type crystal structure.
When this powder was embedded in a resin and the cross section was polished and the SEM reflected electron image was observed, it was confirmed that the number of particles having an unnitrided phase was about 12%. The obtained powder was finely pulverized with an ethyl alcohol solvent in a medium stirring mill until D50 became 2.3 μm, vacuum dried, and the magnetic characteristics were measured with a vibration sample magnetometer. As shown in Table 2. The coercive force HcJ was 0.78 MA / m, and the angular Hk was 0.40 MA / m.

(2) 次に、湿式処理におけるすべての洗浄液を、イオン交換水を60質量%含むプロピレングリコール500gとした以外は上記(1)と同様にして、平均粒径が21μmのSmFe17合金粉末120gを得た。
この合金粉の組成は、Smが23.2質量%、Nが3.5質量%、Oが0.15質量%、Caが0.01質量%未満、残部が鉄であり、主相がThZn17型結晶構造のSmFe17だった。
この粉末を樹脂に埋め込み断面を研磨してSEM反射電子像観察したところ、未窒化相を有する粒子が個数基準で4%ほどあるのを確認した。得られた粉末は、エチルアルコールを溶媒とし媒体攪拌ミルでD50が2.3μmになるまで微粉砕し真空乾燥して振動試料型磁力計で磁気特性を測定したところ、表2に示すように保磁力HcJは0.83MA/m、角形性Hkは0.44MA/mだった。
(2) Next, in the same manner as in (1) above, all the cleaning liquids in the wet treatment were Sm 2 Fe 17 N 3 having an average particle size of 21 μm, except that 500 g of propylene glycol containing 60% by mass of ion-exchanged water was used. 120 g of alloy powder was obtained.
The composition of this alloy powder is 23.2% by mass for Sm, 3.5% by mass for N, 0.15% by mass for O, less than 0.01% by mass for Ca, the balance is iron, and the main phase is Th. It was Sm 2 Fe 17 N 3 with a 2 Zn 17 type crystal structure.
When this powder was embedded in a resin and the cross section was polished and the SEM reflected electron image was observed, it was confirmed that the number of particles having an unnitrided phase was about 4% based on the number of particles. The obtained powder was finely pulverized with an ethyl alcohol solvent in a medium stirring mill until D50 became 2.3 μm, vacuum dried, and the magnetic characteristics were measured with a vibration sample magnetometer. As shown in Table 2. The coercive force HcJ was 0.83 MA / m, and the angular Hk was 0.44 MA / m.

Figure 0007044304000002
Figure 0007044304000002

「評価」
実施例2(1)と比較例2(1)とを対比すると、表2に示した合金粉末の磁気特性結果から、湿式処理でプロピレングリコールを用いた実施例2(1)では保磁力HcJ、角形性Hkともに、水を用いた比較例2(1)よりも高い値を示している。また、実施例2(2)では、水含有率が60質量%以上のプロピレングリコール液で洗浄している比較例2(2)よりも粉末の酸素量が低減していることから、湿式処理で水含有率が40質量%以下のプロピレングリコールを用いたことの顕著な作用効果が分かる。
"evaluation"
Comparing Example 2 (1) and Comparative Example 2 (1), from the magnetic property results of the alloy powder shown in Table 2, in Example 2 (1) using propylene glycol in the wet treatment, the coercive force HcJ, Both square Hk show higher values than Comparative Example 2 (1) using water. Further, in Example 2 (2), since the oxygen content of the powder is smaller than that of Comparative Example 2 (2) washed with a propylene glycol solution having a water content of 60% by mass or more, the wet treatment is performed. It can be seen that the use of propylene glycol having a water content of 40% by mass or less has a remarkable effect.

[実施例3]
実施例1の操作を同様の条件で繰り返して、SmFe17合金粉末600gを得た。この合金粉は、平均で、粒径(D50)が29μmで、Smが24.5質量%、Oが0.07質量%、Caが0.01質量%未満、残部が鉄の組成を持ち、主相がThZn17型結晶構造のSmFe17である。
次に、このSmFe17合金粉末500gに対して、平均粒径(D50)が1.5μmで質量減量が1%以下の酸化サマリウムSm粉末33.0gと、平均粒径(D50)が0.3μmのMn粉末13.0gを加え、n-ヘプタンを溶媒とする媒体攪拌ミルで混合しながら微粉砕し、その後減圧乾燥した。得られた混合粉末の平均粒径(D50)は2.1μmだった。
この混合粉末に対してArガス雰囲気中で1~2mmの粒状金属カルシウム153gを加えてロッキングミキサーで30min混合し、還元拡散処理として、鉄るつぼに入れてArガス雰囲気下で加熱し、860℃で1.5時間保持して冷却した。
回収された反応生成物を10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れてNガス3.6L/minの気流中で昇温し400℃で22h保持し、温度を維持したままNHガス1.5L/min、Hガス2.1L/minの混合ガスに切り代えて60min保持し、さらに同じ温度でArガス3.6L/minに切り代えて60min保持して冷却した。
冷却後に取り出した窒化反応生成物100gを500gのエチレングリコールに投入し攪拌しながら12時間かけてスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たにエチレングリコールを500g加えて5分攪拌し、2分静置し合金粉が沈降したところで上澄みを捨てる。この操作を8回繰り返した。続いて脱水エチルアルコール500gでエチレングリコールを置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら150℃で2時間攪拌・乾燥し、平均粒径(D50)が3.2μmの希土類鉄窒素系磁性粉末71gを得た。
前記実施例1の操作では還元拡散反応生成物を酸洗浄しているものの、この実施例3では、窒化反応生成物に対して酸洗浄を行っていない。そのため湿式処理で使用した洗浄液には水が含まれていない(水含有率は0質量%である)。
この希土類鉄窒素系磁性粉末は、主相がThZn17型の結晶構造で、TEM観察により、粒子表面にSm(Fe,Mn)17シェル層、その内部にMnがほとんど拡散していないSmFe17コアを有するコアシェル構造を有するものであることが確認された。そしてこのシェル層には、セル状微結晶粒とアモルファス境界層とからなる金属組織と、Sm(Fe,Mn)17化合物結晶相の内部にMnおよびNの濃度が高く長短のあるワイヤー状形態をしたアモルファス相がランダムないし規則的に存在する金属組織とが観察された。この磁性粉末の全体を分析すると、平均組成は、Smが28.1質量%、Mnが1.7質量%、Nが3.6質量%、Oが0.38質量%、Caが0.17質量%、残部が鉄であった。また、磁性粉末の磁気特性を振動試料型磁力計で測定したところ、表3に示すように保磁力HcJは1.18MA/m、角形性Hkは0.27MA/mだった。
[Example 3]
The operation of Example 1 was repeated under the same conditions to obtain 600 g of Sm 2 Fe 17 alloy powder. This alloy powder has an average particle size (D 50 ) of 29 μm, Sm of 24.5% by mass, O of 0.07% by mass, Ca of less than 0.01% by mass, and the balance of iron. The main phase is Sm 2 Fe 17 having a Th 2 Zn 17 type crystal structure.
Next, with respect to 500 g of this Sm 2 Fe 17 alloy powder, 33.0 g of samarium oxide Sm 2 O 3 powder having an average particle size (D 50 ) of 1.5 μm and a mass loss of 1% or less, and an average particle size (D 50). 13.0 g of Mn 3 O 4 powder having a D50 ) of 0.3 μm was added, and the mixture was finely ground while mixing with a medium stirring mill using n-heptane as a solvent, and then dried under reduced pressure. The average particle size (D 50 ) of the obtained mixed powder was 2.1 μm.
To this mixed powder, 153 g of granular metallic calcium of 1 to 2 mm is added in an Ar gas atmosphere and mixed for 30 minutes with a locking mixer. As a reduction diffusion treatment, the mixture is placed in an iron crucible and heated in an Ar gas atmosphere at 860 ° C. It was held for 1.5 hours and cooled.
The recovered reaction product is crushed to a size of 10 mm or less, placed in a tubular furnace as a nitriding heat treatment, heated in a stream of N 2 gas 3.6 L / min, maintained at 400 ° C. for 22 hours, and maintained at a temperature. While still, switch to a mixed gas of NH 3 gas 1.5 L / min and H 2 gas 2.1 L / min and hold for 60 min, and then switch to Ar gas 3.6 L / min and hold for 60 min at the same temperature to cool. did.
100 g of the nitriding reaction product taken out after cooling was put into 500 g of ethylene glycol and slurryed over 12 hours with stirring. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, the supernatant is discarded, 500 g of ethylene glycol is newly added, the mixture is stirred for 5 minutes, and the mixture is allowed to stand for 2 minutes, and the supernatant is discarded when the alloy powder has settled. This operation was repeated 8 times. Subsequently, after replacing ethylene glycol with 500 g of dehydrated ethyl alcohol, the alloy powder was recovered by filtration through Nuche. This was placed in a small mixer, stirred and dried at 150 ° C. for 2 hours while reducing the pressure to obtain 71 g of a rare earth iron nitrogen-based magnetic powder having an average particle size (D 50 ) of 3.2 μm.
In the operation of Example 1, the reduction / diffusion reaction product is pickled, but in Example 3, the nitriding reaction product is not pickled. Therefore, the cleaning liquid used in the wet treatment does not contain water (water content is 0% by mass).
This rare earth iron nitride-based magnetic powder has a crystal structure of Th 2 Zn 17 type as the main phase, and by TEM observation, Sm 2 (Fe, Mn) 17 Ny shell layer on the particle surface, and Mn is almost diffused inside. It was confirmed that it had a core-shell structure having a non-Sm 2 Fe 17 N 3 core. In this shell layer, a metal structure composed of cellular microcrystal grains and an amorphous boundary layer, and a wire having high and short concentrations of Mn and N inside the Sm 2 (Fe, Mn) 17 Ny compound crystal phase. It was observed that the amorphous phase had a random or regular presence in the metal structure. Analyzing the whole of this magnetic powder, the average composition is 28.1% by mass for Sm, 1.7% by mass for Mn, 3.6% by mass for N, 0.38% by mass for O, and 0.17 for Ca. Mass%, the balance was iron. When the magnetic properties of the magnetic powder were measured with a vibration sample magnetometer, the coercive force HcJ was 1.18 MA / m and the square Hk was 0.27 MA / m as shown in Table 3.

[比較例3]
実施例3と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物とし、さらに窒化熱処理し窒化反応生成物を得た。
冷却後に取り出した窒化反応生成物100gを1Lの水中に投入し攪拌しながら、12時間かけてスラリー化した。このスラリーの攪拌をやめて2分静置した後、その上澄みを捨て、新たに水を1L加えて5分攪拌し、2分静置してSmFe合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作を8回繰り返した。続いて脱水エチルアルコール500gで水を置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら150℃で2時間攪拌・乾燥し、平均粒径(D50)が3.0μmの希土類鉄窒素系磁性粉末68gを得た。
この希土類鉄窒素系磁性粉末においても、主相がThZn17型の結晶構造で、TEM観察により、粒子表面にSm(Fe,Mn)17シェル層、その内部にMnがほとんど拡散していないSmFe17コアを有するコアシェル構造を有するものであることが確認され、このシェル層には、セル状微結晶粒とアモルファス境界層とからなる金属組織と、Sm(Fe,Mn)17化合物結晶相の内部にMnおよびNの濃度が高く長短のあるワイヤー状形態をしたアモルファス相がランダムないし規則的に存在する金属組織とが観察された。この磁性粉末の全体を分析すると、平均組成は、Smが27.9質量%、Mnが1.7質量%、Nが3.5質量%、Oが1.5質量%、Caが0.36質量%、残部が鉄であり、OとCaが実施例3に比べて高いことから酸化が進んだものと考えられる。また、磁性粉末の磁気特性を振動試料型磁力計で測定したところ、表3に示すように保磁力HcJは0.61MA/m、角形性Hkは0.14MA/mとかなり低い値だった。
[Comparative Example 3]
In the same manner as in Example 3, the raw material and the reducing agent were blended in the same amount, heat-treated under the same conditions to obtain a reduction diffusion reaction product, and further subjected to nitriding heat treatment to obtain a nitriding reaction product.
100 g of the nitriding reaction product taken out after cooling was put into 1 L of water and stirred for 12 hours to form a slurry. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, discard the supernatant, add 1 L of water, stir for 5 minutes, and let stand for 2 minutes to suspend calcium hydroxide when the SmFe alloy powder has settled. Discard the supernatant. This operation was repeated 8 times. Subsequently, after replacing the water with 500 g of dehydrated ethyl alcohol, the alloy powder was recovered by filtration through Nutche. This was placed in a small mixer, stirred and dried at 150 ° C. for 2 hours while reducing the pressure to obtain 68 g of a rare earth iron nitrogen-based magnetic powder having an average particle size (D 50 ) of 3.0 μm.
Even in this rare earth iron nitrogen-based magnetic powder, the main phase is a Th 2 Zn 17 -type crystal structure, and by TEM observation, the Sm 2 (Fe, Mn) 17 Ny shell layer is almost diffused inside the particle surface. It was confirmed that the shell layer had a core-shell structure having a non-Sm 2 Fe 17 N 3 core, and the shell layer had a metal structure composed of cellular fine crystal grains and an amorphous boundary layer, and Sm 2 (Fe). , Mn) A metal structure was observed in which a wire-like amorphous phase having a high concentration of Mn and N and long and short was randomly or regularly present inside the 17 Ny compound crystal phase. Analyzing the whole of this magnetic powder, the average composition is 27.9% by mass for Sm, 1.7% by mass for Mn, 3.5% by mass for N, 1.5% by mass for O, and 0.36 for Ca. It is considered that the oxidation proceeded because the mass% was iron, the balance was iron, and O and Ca were higher than those in Example 3. When the magnetic properties of the magnetic powder were measured with a vibration sample magnetometer, the coercive force HcJ was 0.61 MA / m and the square Hk was 0.14 MA / m, which are quite low values, as shown in Table 3.

Figure 0007044304000003
Figure 0007044304000003

「評価」
実施例3と比較例3とを対比すると、表3に示した合金粉末の磁気特性結果から、実施例3では保磁力HcJ、角形性Hkともに比較例3よりも高い値を示している。実施例3では湿式処理でエチレングリコールを用いたので、水洗浄している比較例3よりも粉末の酸素量やCa量が低減していることから、湿式処理でエチレングリコールを用いたことの顕著な作用効果が分かる。
"evaluation"
Comparing Example 3 and Comparative Example 3, from the magnetic property results of the alloy powder shown in Table 3, in Example 3, both the coercive force HcJ and the angular Hk show higher values than in Comparative Example 3. Since ethylene glycol was used in the wet treatment in Example 3, the amount of oxygen and Ca in the powder was lower than that in Comparative Example 3 washed with water. Therefore, it is remarkable that ethylene glycol was used in the wet treatment. You can see the effects.

[実施例4]
平均粒径(D50)が4.7μmで質量減量が1%以下の酸化ネオジムNd粉末405g、平均粒径(D50)が40μmの鉄粉405g、平均粒径(D50)が63μmのフェロボロン粉(B含量18.7質量%)65g、1~2mmの粒状金属カルシウム217g、および無水塩化カルシウム20gを小型ミキサーで混合し、鉄るつぼに入れて、アルゴンガス雰囲気下、1000℃で3時間加熱処理した。
冷却後に取り出した反応生成物100gを500gのエチレングリコールに投入し攪拌しながら12時間かけてスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たにエチレングリコールを500g加えて5分攪拌し、2分静置しNdFeB合金粉が沈降したところで上澄みを捨てる。この操作を5回繰り返した。再びエチレングリコール500gを加えて合金粉が攪拌されている状態で、酢酸20gを水含有率が50質量%のエチレングリコールと水の混合液20gで希釈した溶液を用意し、スポイトで滴下しながらpH=6.0を5分間維持した。その後、上澄みを捨てて再びエチレングリコール500gを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gでエチレングリコールを置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら100℃で5時間攪拌・乾燥し、平均粒径が20μmのNdFeB合金粉末58gを得た。
実施例4で使用した洗浄液において、水含有率が最も高くなるのは、エチレングリコールに、酢酸とエチレングリコールと水の混合溶液を全量滴下した後であり、このときの洗浄液の水含有率は1.9質量%である。
この合金粉の組成は、Ndが33.5質量%、Bが1.3質量%、Oが0.07質量%、Caが0.01質量%、残部が鉄であり、主相の結晶構造はNdFe14B型正方晶だった。
[Example 4]
405 g of neodymium oxide Nd 2 O 3 powder with an average particle size (D 50 ) of 4.7 μm and a mass loss of 1% or less, 405 g of iron powder with an average particle size (D 50 ) of 40 μm, and an average particle size (D 50 ). 65 g of 63 μm ferroboron powder (B content 18.7% by mass), 217 g of granular metallic calcium of 1 to 2 mm, and 20 g of anhydrous calcium chloride are mixed with a small mixer, placed in an iron pot, and placed at 1000 ° C. under an argon gas atmosphere. It was heat-treated for 3 hours.
100 g of the reaction product taken out after cooling was put into 500 g of ethylene glycol and slurryed over 12 hours with stirring. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, the supernatant is discarded, 500 g of ethylene glycol is newly added, the mixture is stirred for 5 minutes, and the mixture is allowed to stand for 2 minutes, and the supernatant is discarded when the NdFeB alloy powder has settled. This operation was repeated 5 times. With 500 g of ethylene glycol added again and the alloy powder stirred, a solution prepared by diluting 20 g of acetic acid with 20 g of a mixture of ethylene glycol having a water content of 50% by mass and water was prepared, and the pH was added dropwise with a dropper. = 6.0 was maintained for 5 minutes. Then, the supernatant was discarded, 500 g of ethylene glycol was added again, and the mixture was stirred to remove the supernatant three times. Finally, after replacing the ethylene glycol with 500 g of dehydrated ethyl alcohol, the alloy powder was collected by filtration through a nutche. This was placed in a small mixer, stirred and dried at 100 ° C. for 5 hours while reducing the pressure to obtain 58 g of NdFeB alloy powder having an average particle size of 20 μm.
In the cleaning liquid used in Example 4, the water content is highest after the entire amount of the mixed solution of acetic acid, ethylene glycol and water is added dropwise to ethylene glycol, and the water content of the cleaning liquid at this time is 1. It is 9.9% by mass.
The composition of this alloy powder is 33.5% by mass of Nd, 1.3% by mass of B, 0.07% by mass of O, 0.01% by mass of Ca, and the balance is iron, and the crystal structure of the main phase. Was an Nd 2 Fe 14 B-type tetragonal crystal.

[比較例4]
実施例4と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物を得た。
この反応生成物100gを1Lの水中に投入し攪拌しながら、12時間かけてスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たに水を1L加えて5分攪拌し、2分静置してSmFe合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作を5回繰り返した。再び水1Lを加えて合金粉が攪拌されている状態で、酢酸20gを水20gで希釈した溶液を用意し、スポイトで滴下しながらpH=6.0を5分間維持した。その後、上澄みを捨てて再び水1Lを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gで水を置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら100℃で5時間攪拌・乾燥し、平均粒径が21μmのNdFeB合金粉末63gを得た。
この合金粉の組成は、Ndが33.4質量%、Bが1.3質量%、Oが0.17質量%、Caが0.02質量%、残部が鉄であり、主相の結晶構造はNdFe14B型正方晶だった。実施例4に比べてO量が高いのが分かる。
[Comparative Example 4]
In the same manner as in Example 4, the raw material and the reducing agent were blended in the same amount and heat-treated under the same conditions to obtain a reduction-diffusion reaction product.
100 g of this reaction product was put into 1 L of water and stirred for 12 hours to form a slurry. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, discard the supernatant, add 1 L of water, stir for 5 minutes, and let stand for 2 minutes to suspend calcium hydroxide when the SmFe alloy powder has settled. Discard the supernatant. This operation was repeated 5 times. With 1 L of water added again and the alloy powder stirred, a solution prepared by diluting 20 g of acetic acid with 20 g of water was prepared, and pH = 6.0 was maintained for 5 minutes while dropping with a dropper. Then, the supernatant was discarded, 1 L of water was added again, and the mixture was stirred to remove the supernatant three times. Finally, the water was replaced with 500 g of dehydrated ethyl alcohol, and then filtered through a nutche to recover the alloy powder. This was placed in a small mixer, stirred and dried at 100 ° C. for 5 hours while reducing the pressure to obtain 63 g of NdFeB alloy powder having an average particle size of 21 μm.
The composition of this alloy powder is 33.4% by mass of Nd, 1.3% by mass of B, 0.17% by mass of O, 0.02% by mass of Ca, and the balance is iron, and the crystal structure of the main phase. Was an Nd 2 Fe 14 B-type tetragonal crystal. It can be seen that the amount of O is higher than that of Example 4.

「評価」
実施例4と比較例4とを対比すると、表4に示した合金粉末の酸素量の結果から、実施例4では比較例4よりも粉末の酸素量が低減している。実施例4では湿式処理でエチレングリコールを用いており、水洗浄している比較例4に対する顕著な作用効果が得られている。
"evaluation"
Comparing Example 4 and Comparative Example 4, the oxygen content of the alloy powder shown in Table 4 shows that the oxygen content of the powder in Example 4 is smaller than that in Comparative Example 4. In Example 4, ethylene glycol is used in the wet treatment, and a remarkable effect on Comparative Example 4 washed with water is obtained.

[実施例5]
平均粒径(D50)が2.3μmで質量減量が1%以下の酸化サマリウムSm粉末157g、平均粒径(D50)が62μmのコバルト粉264g、1~2mmの粒状金属カルシウム76gを小型ミキサー混合し、鉄るつぼに入れて、アルゴンガス雰囲気下、950℃で2時間加熱処理した。
冷却後に取り出した反応生成物100gを500gのエチレングリコールに投入し攪拌しながら6時間かけてスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たにエチレングリコールを500g加えて5分攪拌し、2分静置しSmFe合金粉が沈降したところで上澄みを捨てる。この操作を5回繰り返した。再びエチレングリコール500gを加えて合金粉が攪拌されている状態で、酢酸20gを水含有率が50質量%のエチレングリコールと水の混合液20gで希釈した溶液を用意し、スポイトで滴下しながらpH=4.0を5分間維持した。その後、上澄みを捨てて再びエチレングリコール500gを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gでエチレングリコールを置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら100℃で5時間攪拌・乾燥し、平均粒径が20μmのSmCo合金粉末58gを得た。
実施例5で使用した洗浄液において、水含有率が最も高くなるのは、エチレングリコールに、酢酸とエチレングリコールと水の混合溶液を全量滴下した後であり、このときの洗浄液の水含有率は1.9質量%である。
この合金粉の組成は、Smが33.8質量%、Oが0.06質量%、Caが0.01質量%、残部がコバルトであり、主相の結晶構造はCaCu型六方晶だった。
[Example 5]
157 g of samarium oxide Sm 2 O 3 powder with an average particle size (D 50 ) of 2.3 μm and a mass loss of 1% or less, 264 g of cobalt powder with an average particle size (D 50 ) of 62 μm, and 76 g of granular metallic calcium with an average particle size (D 50) of 1 to 2 mm. Was mixed with a small mixer, placed in an iron crucible, and heat-treated at 950 ° C. for 2 hours under an atmosphere of argon gas.
100 g of the reaction product taken out after cooling was put into 500 g of ethylene glycol and slurryed over 6 hours with stirring. After stopping the stirring of this slurry and allowing it to stand for 2 minutes, the supernatant is discarded, 500 g of ethylene glycol is newly added, the mixture is stirred for 5 minutes, and the mixture is allowed to stand for 2 minutes, and the supernatant is discarded when the SmFe alloy powder has settled. This operation was repeated 5 times. With 500 g of ethylene glycol added again and the alloy powder stirred, a solution prepared by diluting 20 g of acetic acid with 20 g of a mixture of ethylene glycol having a water content of 50% by mass and water was prepared, and the pH was added dropwise with a dropper. = 4.0 was maintained for 5 minutes. Then, the supernatant was discarded, 500 g of ethylene glycol was added again, and the mixture was stirred to remove the supernatant three times. Finally, after replacing the ethylene glycol with 500 g of dehydrated ethyl alcohol, the alloy powder was collected by filtration through a nutche. This was placed in a small mixer, stirred and dried at 100 ° C. for 5 hours while reducing the pressure to obtain 58 g of SmCo 5 alloy powder having an average particle size of 20 μm.
In the cleaning liquid used in Example 5, the water content is highest after the entire amount of the mixed solution of acetic acid, ethylene glycol and water is added dropwise to ethylene glycol, and the water content of the cleaning liquid at this time is 1. It is 9.9% by mass.
The composition of this alloy powder was 33.8% by mass of Sm, 0.06% by mass of O, 0.01% by mass of Ca, the balance was cobalt, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

[比較例5]
実施例5と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物を得た。
この反応生成物100gを1Lの水中に投入し攪拌しながら、6時間放置しスラリー化した。このスラリーを攪拌をやめて2分静置した後、その上澄みを捨て、新たに水を1L加えて5分攪拌し、2分静置してSmFe合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作を5回繰り返した。再び水1Lを加えて合金粉が攪拌されている状態で、酢酸20gを水20gで希釈した溶液を用意し、スポイトで滴下しながらpH=4.0を5分間維持した。その後、上澄みを捨てて再び水1Lを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gで水を置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら100℃で5時間攪拌・乾燥し、平均粒径が19μmのSmCo合金粉末55gを得た。
この合金粉の組成は、Smが33.6質量%、Oが0.18質量%、Caが0.04質量%、残部がコバルトであり、主相の結晶構造はCaCu型六方晶だった。
[Comparative Example 5]
In the same manner as in Example 5, the raw material and the reducing agent were blended in the same amount and heat-treated under the same conditions to obtain a reduction-diffusion reaction product.
100 g of this reaction product was put into 1 L of water and left for 6 hours while stirring to form a slurry. After stopping stirring this slurry and letting it stand for 2 minutes, discard the supernatant, add 1 L of water, stir for 5 minutes, and let stand for 2 minutes to suspend calcium hydroxide when the SmFe alloy powder has settled. Discard the supernatant. This operation was repeated 5 times. With 1 L of water added again and the alloy powder stirred, a solution prepared by diluting 20 g of acetic acid with 20 g of water was prepared, and pH = 4.0 was maintained for 5 minutes while dropping with a dropper. Then, the supernatant was discarded, 1 L of water was added again, and the mixture was stirred to remove the supernatant three times. Finally, the water was replaced with 500 g of dehydrated ethyl alcohol, and then filtered through a nutche to recover the alloy powder. This was placed in a small mixer, stirred and dried at 100 ° C. for 5 hours while reducing the pressure to obtain 55 g of SmCo 5 alloy powder having an average particle size of 19 μm.
The composition of this alloy powder was 33.6% by mass of Sm, 0.18% by mass of O, 0.04% by mass of Ca, the balance was cobalt, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

Figure 0007044304000004
Figure 0007044304000004

「評価」
実施例5と比較例5とを対比すると、表4に示した合金粉末の酸素量の結果から、実施例5では比較例5よりも粉末の酸素量とCa量が低減している。実施例5では湿式処理でエチレングリコールを用いており、水洗浄している比較例5に対する顕著な作用効果が得られている。
"evaluation"
Comparing Example 5 and Comparative Example 5, from the results of the oxygen content of the alloy powder shown in Table 4, the oxygen content and the Ca amount of the powder in Example 5 are smaller than those in Comparative Example 5. In Example 5, ethylene glycol is used in the wet treatment, and a remarkable effect on Comparative Example 5 washed with water is obtained.

[実施例6]
平均粒径(D50)が3.8μmで質量減量が1%以下の酸化ランタンLa粉末67g、粒度53μm以下のニッケル粉100g、1~2mmの粒状金属カルシウム30gを小型ミキサー混合し、鉄るつぼに入れて、アルゴンガス雰囲気下、1000℃で4時間加熱処理した。
冷却後に取り出した反応生成物100gを、イオン交換水を50質量%含むエチレングリコール500gに投入し攪拌しながら6時間放置しスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たにイオン交換水を50質量%含むエチレングリコールを500g加えて5分攪拌し、2分静置しLaNi合金粉が沈降したところで上澄みを捨てる。この操作を5回繰り返した。再びイオン交換水を45質量%含むエチレングリコール500gを加えて合金粉が攪拌されている状態で、酢酸8gを水含有率が50質量%のエチレングリコールと水の混合液20gで希釈した溶液を用意し、スポイトで滴下しながらpH=4.0を10分間維持した。その後、上澄みを捨てて再びイオン交換水を50質量%含むエチレングリコール500gを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gでエチレングリコールを置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら100℃で5時間攪拌・乾燥し、平均粒径が32μmのLaNi合金粉末73gを得た。
実施例6で使用した洗浄液において、水含有率が最も高いのは、イオン交換水を50質量%含むエチレングリコールでデカンテーションしているときであり、このときの洗浄液の水含有率は50質量%である。
この合金粉の組成は、Laが36.6質量%、Oが0.05質量%、Caが0.02質量%、残部がニッケルであり、主相の結晶構造はCaCu型六方晶だった。
[Example 6]
67 g of lanthanum oxide La 2 O 3 powder having an average particle size (D 50 ) of 3.8 μm and a mass loss of 1% or less, 100 g of nickel powder having a particle size of 53 μm or less, and 30 g of granular metallic calcium having a particle size of 1 to 2 mm are mixed in a small mixer. It was placed in an iron crucible and heat-treated at 1000 ° C. for 4 hours under an atmosphere of argon gas.
100 g of the reaction product taken out after cooling was put into 500 g of ethylene glycol containing 50% by mass of ion-exchanged water and left to stand for 6 hours with stirring to form a slurry. After stopping the stirring of this slurry and letting it stand for 2 minutes, discard the supernatant, add 500 g of ethylene glycol containing 50% by mass of ion-exchanged water, stir for 5 minutes, and let stand for 2 minutes to settle the LaNi alloy powder. Discard the supernatant at that point. This operation was repeated 5 times. Prepare a solution obtained by diluting 8 g of acetic acid with 20 g of a mixture of ethylene glycol having a water content of 50% by mass and water in a state where 500 g of ethylene glycol containing 45% by mass of ion-exchanged water is added again and the alloy powder is stirred. Then, pH = 4.0 was maintained for 10 minutes while dropping with a dropper. After that, discard the supernatant, add 500 g of ethylene glycol containing 50% by mass of ion-exchanged water again, stir to remove the supernatant three times, and finally replace the ethylene glycol with 500 g of dehydrated ethyl alcohol, and then filter with Nuche. The alloy powder was recovered. This was placed in a small mixer, stirred and dried at 100 ° C. for 5 hours while reducing the pressure to obtain 73 g of LaNi alloy powder having an average particle size of 32 μm.
In the cleaning liquid used in Example 6, the water content is highest when decanting with ethylene glycol containing 50% by mass of ion-exchanged water, and the water content of the cleaning liquid at this time is 50% by mass. Is.
The composition of this alloy powder was 36.6% by mass of La, 0.05% by mass of O, 0.02% by mass of Ca, the balance was nickel, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

[実施例7]
湿式処理におけるすべての洗浄液を、イオン交換水を25質量%含むエチレングリコール500gとした以外は実施例6と同様にして、平均粒径が33μmのLaNi合金粉末74gを得た。ここで使用した洗浄液の水含有率は25質量%である。
この合金粉の組成は、Laが36.8質量%、Oが0.04質量%、Caが0.06質量%、残部がニッケルであり、主相の結晶構造はCaCu型六方晶だった。
[Example 7]
74 g of LaNi alloy powder having an average particle size of 33 μm was obtained in the same manner as in Example 6 except that all the cleaning liquids in the wet treatment were ethylene glycol containing 25% by mass of ion-exchanged water. The water content of the cleaning liquid used here is 25% by mass.
The composition of this alloy powder was 36.8% by mass of La, 0.04% by mass of O, 0.06% by mass of Ca, the balance was nickel, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

[実施例8]
湿式処理におけるすべての洗浄液を、イオン交換水を5質量%含むエチレングリコール500gとした以外は実施例6と同様にして、平均粒径が35μmのLaNi合金粉末77gを得た。ここで使用した洗浄液の水含有率は5質量%である。
この合金粉の組成は、Laが37.0質量%、Oが0.03質量%、Caが0.07質量%、残部がニッケルであり、主相の結晶構造はCaCu型六方晶だった。
[Example 8]
77 g of LaNi alloy powder having an average particle size of 35 μm was obtained in the same manner as in Example 6 except that all the cleaning liquids in the wet treatment were 500 g of ethylene glycol containing 5% by mass of ion-exchanged water. The water content of the cleaning liquid used here is 5% by mass.
The composition of this alloy powder was 37.0% by mass of La, 0.03% by mass of O, 0.07% by mass of Ca, the balance was nickel, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

[実施例9]
湿式処理におけるすべての洗浄液を、水を含まないエチレングリコール500gとした以外は実施例6と同様にして、平均粒径が37μmのLaNi合金粉末78gを得た。ここで使用した洗浄液の水含有率は0質量%である。
この合金粉の組成は、Laが37.2質量%、Oが0.02質量%、Caが0.1質量%、残部がニッケルであり、主相の結晶構造はCaCu型六方晶だった。
[Example 9]
78 g of LaNi alloy powder having an average particle size of 37 μm was obtained in the same manner as in Example 6 except that all the cleaning liquids in the wet treatment were 500 g of ethylene glycol containing no water. The water content of the cleaning liquid used here is 0% by mass.
The composition of this alloy powder was 37.2% by mass of La, 0.02% by mass of O, 0.1% by mass of Ca, the balance was nickel, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

[比較例6]
実施例6と同様にして原料物質と還元剤を同量配合し、同一条件で加熱処理し還元拡散反応生成物を得た。
この反応生成物100gを0.5Lのイオン交換水中に投入し攪拌しながら6時間かけてスラリー化した。このスラリーの攪拌を止めて2分静置した後、その上澄みを捨て、新たにイオン交換水を0.5L加えて5分攪拌し、2分静置してLaNi合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作を5回繰り返した。再び水0.5Lを加えて合金粉が攪拌されている状態で、酢酸8gをイオン交換水20gで希釈した溶液を用意し、スポイトで滴下しながらpH=4.0を10分間維持した。その後、上澄みを捨てて再びイオン交換水0.5Lを加え攪拌し上澄みを除去する操作を3回行い、最後に脱水エチルアルコール500gで水を置換した後、ヌッチェでろ過して合金粉を回収した。これを小型ミキサーに入れて、減圧しながら100℃で5時間攪拌・乾燥し、平均粒径が34μmのLaNi合金粉末75gを得た。
この合金粉の組成は、Laが36.9質量%、Oが0.13質量%、Caが0.02質量%、残部がニッケルであり、主相の結晶構造はCaCu型六方晶だった。
[Comparative Example 6]
In the same manner as in Example 6, the raw material and the reducing agent were blended in the same amount and heat-treated under the same conditions to obtain a reduction-diffusion reaction product.
100 g of this reaction product was put into 0.5 L of ion-exchanged water and slurryed over 6 hours with stirring. After stopping the stirring of this slurry and letting it stand for 2 minutes, discard the supernatant, add 0.5 L of ion-exchanged water, stir for 5 minutes, leave it for 2 minutes, and hydroxylate when the LaNi alloy powder has settled. Discard the supernatant on which calcium is suspended. This operation was repeated 5 times. With 0.5 L of water added again and the alloy powder stirred, a solution prepared by diluting 8 g of acetic acid with 20 g of ion-exchanged water was prepared, and pH = 4.0 was maintained for 10 minutes while dropping with a dropper. After that, the supernatant was discarded, 0.5 L of ion-exchanged water was added again, and the mixture was stirred to remove the supernatant three times. Finally, the water was replaced with 500 g of dehydrated ethyl alcohol, and then filtered through a nutche to recover the alloy powder. .. This was placed in a small mixer, stirred and dried at 100 ° C. for 5 hours while reducing the pressure to obtain 75 g of LaNi alloy powder having an average particle size of 34 μm.
The composition of this alloy powder was 36.9% by mass of La, 0.13% by mass of O, 0.02% by mass of Ca, the balance was nickel, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

[比較例7]
湿式処理におけるすべての洗浄液を、イオン交換水を60質量%含むエチレングリコール500gを用いた以外は比較例6と同様にして、平均粒径が31μmのLaNi合金粉末76gを得た。ここで使用した洗浄液の水含有率は60質量%である。
この合金粉の組成は、Laが36.5質量%、Oが0.10質量%、Caが0.03質量%、残部がニッケルであり、主相の結晶構造はCaCu型六方晶だった。
[Comparative Example 7]
76 g of LaNi alloy powder having an average particle size of 31 μm was obtained in the same manner as in Comparative Example 6 except that 500 g of ethylene glycol containing 60% by mass of ion-exchanged water was used for all the cleaning liquids in the wet treatment. The water content of the cleaning liquid used here is 60% by mass.
The composition of this alloy powder was 36.5% by mass of La, 0.10% by mass of O, 0.03% by mass of Ca, the balance was nickel, and the crystal structure of the main phase was CaCu 5 type hexagonal crystal. ..

Figure 0007044304000005
Figure 0007044304000005

「評価」
表5に示した合金粉末の酸素量の結果から、実施例6~9では比較例6、7よりも粉末の酸素量が低減している。実施例6、9と比較例7とを対比すれば、湿式処理でエチレングリコール、又は水含有率50質量%以下のエチレングリコール液を用いることによる顕著な作用効果が分かる。
"evaluation"
From the results of the oxygen content of the alloy powder shown in Table 5, the oxygen content of the powder in Examples 6 to 9 is lower than that in Comparative Examples 6 and 7. By comparing Examples 6 and 9 with Comparative Example 7, it can be seen that the use of ethylene glycol or an ethylene glycol solution having a water content of 50% by mass or less in the wet treatment has a remarkable effect.

本発明の希土類遷移金属合金粉末は、含有する酸素量を従来よりも低く抑えることができるため、希土類磁石合金、水素吸蔵合金、磁歪合金、光磁気記録合金、磁気冷凍材料など幅広い分野の原料合金として、あるいは希土類焼結磁石又はボンド磁石として極めて有用である。 Since the rare earth transition metal alloy powder of the present invention can contain less oxygen than before, it is a raw material alloy in a wide range of fields such as rare earth magnet alloys, hydrogen storage alloys, magnetic strain alloys, photomagnetic recording alloys, and magnetic refrigeration materials. Or as a rare earth sintered magnet or a bonded magnet.

Claims (8)

希土類酸化物粉末と遷移金属粉末を含む原料物質に、アルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種の還元剤を所定の割合で混合する第1の工程と、この混合物を不活性ガス雰囲気中で加熱し還元拡散する第2の工程と、得られた反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、反応生成物から還元剤を低減させた後、洗浄液の合金スラリーに酸と洗浄液を添加する酸洗浄を行い、その後、洗浄液を投入し酸を除去する第3の工程を含む、希土類遷移金属合金粉末の製造方法であって、
洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする希土類遷移金属合金粉末の製造方法。
A first step of mixing a raw material containing a rare earth oxide powder and a transition metal powder with at least one reducing agent selected from an alkali metal, an alkaline earth metal and a hydride thereof at a predetermined ratio, and a mixture thereof. In the second step of heating and reducing and diffusing in an inert gas atmosphere, and a wet treatment in which the obtained reaction product is put into a washing liquid to disintegrate the reaction product, the reducing agent is reduced from the reaction product, and then the reaction product is subjected to a wet treatment. A method for producing a rare earth transition metal alloy powder, which comprises a third step of adding an acid and a cleaning liquid to an alloy slurry of a cleaning liquid to perform acid cleaning, and then adding a cleaning liquid to remove the acid.
A method for producing a rare earth transition metal alloy powder, wherein the cleaning liquid is a glycol having a water content of 0 to 50% by mass defined by water / (glycol + water).
前記希土類酸化物粉末は、Y、La、Ce、Pr、Nd,Sm、Eu、Gd、Tb,Dy、Ho、及びYbから選ばれる1種以上の希土類元素を含有することを特徴とする請求項1に記載の希土類遷移金属合金粉末の製造方法。 The rare earth oxide powder is characterized by containing one or more rare earth elements selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Yb. The method for producing a rare earth transition metal alloy powder according to 1. 前記遷移金属粉末は、Fe、Co、Ni、Cu、Cr、及びMnから選ばれる1種以上の遷移元素を含有することを特徴とする請求項1又は2に記載の希土類遷移金属合金粉末の製造方法。 The production of the rare earth transition metal alloy powder according to claim 1 or 2, wherein the transition metal powder contains one or more transition elements selected from Fe, Co, Ni, Cu, Cr, and Mn. Method. 前記洗浄液は、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、及びトリプロピレングリコールから選ばれる1種以上のアルキレングリコールと水を含む液であることを特徴とする請求項1~3のいずれか1項に記載の希土類遷移金属合金粉末の製造方法。 Claims 1 to 3 are characterized in that the cleaning liquid is a liquid containing one or more alkylene glycols selected from ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol and water. The method for producing a rare earth transition metal alloy powder according to any one of the above items. 前記酸は、塩酸、酢酸、硝酸、及び硫酸から選ばれる1種以上であることを特徴とする請求項1~4のいずれか1項に記載の希土類遷移金属合金粉末の製造方法。 The method for producing a rare earth transition metal alloy powder according to any one of claims 1 to 4, wherein the acid is one or more selected from hydrochloric acid, acetic acid, nitric acid, and sulfuric acid. 前記第3の工程で得られた希土類遷移金属合金粉末が、さらに窒素及び/又はアンモニア含有雰囲気で加熱され窒化されることを特徴とする請求項1~5のいずれか1項に記載の希土類遷移金属合金粉末の製造方法。 The rare earth transition according to any one of claims 1 to 5, wherein the rare earth transition metal alloy powder obtained in the third step is further heated and nitrided in an atmosphere containing nitrogen and / or ammonia. Method for manufacturing metal alloy powder. 希土類酸化物粉末と遷移金属粉末を含む原料物質に、アルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種の還元剤を所定の割合で混合する第1の工程と、この混合物を不活性ガス雰囲気中で加熱し還元拡散する第2の工程と、得られた反応生成物を窒素及び/又はアンモニア含有雰囲気で加熱し窒化する第4の工程と、得られた窒化反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、窒化反応生成物から還元剤を低減させた後、窒化合金スラリーに酸を添加し、その後、洗浄液を投入し酸を除去する第5の工程を含む、希土類遷移金属合金粉末の製造方法であって、
洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする希土類遷移金属合金粉末の製造方法。
A first step of mixing a raw material containing a rare earth oxide powder and a transition metal powder with at least one reducing agent selected from an alkali metal, an alkaline earth metal and a hydride thereof at a predetermined ratio, and a mixture thereof. A second step of heating and reducing and diffusing in an inert gas atmosphere, a fourth step of heating and nitriding the obtained reaction product in a nitrogen and / or ammonia-containing atmosphere, and the obtained nitriding reaction product. A fifth step of adding an acid to the nitride alloy slurry after performing a wet treatment of adding the metal to the cleaning liquid to disintegrate it to reduce the reducing agent from the nitriding reaction product, and then adding the cleaning liquid to remove the acid. A method for producing a rare earth transition metal alloy powder, including
A method for producing a rare earth transition metal alloy powder, wherein the cleaning liquid is a glycol having a water content of 0 to 50% by mass defined by water / (glycol + water).
SmとFeを含む希土類遷移金属合金粉末に対して、Smを含む希土類酸化物粉末と、Mn及び/又はCrを含む遷移金属酸化物粉末と、アルカリ金属、アルカリ土類金属、及びこれらの水素化物から選ばれる少なくとも1種の還元剤とを所定の割合で混合し、この混合物を不活性ガス雰囲気中で加熱し還元拡散した後、得られた還元拡散反応生成物を、窒素及び/又はアンモニア含有雰囲気で加熱して窒化し、引き続き、得られた窒化反応生成物を洗浄液中に投入して崩壊させる湿式処理を行い、窒化反応生成物から還元剤を低減させる工程を含む希土類遷移金属合金粉末の製造方法であって、
洗浄液は、水/(グリコール+水)で規定される水含有率が0~50質量%のグリコールであることを特徴とする希土類遷移金属合金粉末の製造方法。

Rare earth transition metal alloy powder containing Sm and Fe, rare earth oxide powder containing Sm, transition metal oxide powder containing Mn and / or Cr, alkali metal, alkaline earth metal, and hydrides thereof. After mixing at least one reducing agent selected from the above in a predetermined ratio, heating the mixture in an inert gas atmosphere for reduction and diffusion, the obtained reduction and diffusion reaction product contains nitrogen and / or ammonia. A rare earth transition metal alloy powder including a step of heating in an atmosphere to nitrid the metal, followed by a wet treatment in which the obtained nitriding reaction product is put into a cleaning liquid to cause disintegration, and the reducing agent is reduced from the nitriding reaction product. It ’s a manufacturing method,
A method for producing a rare earth transition metal alloy powder, wherein the cleaning liquid is a glycol having a water content of 0 to 50% by mass defined by water / (glycol + water).

JP2018103404A 2018-05-30 2018-05-30 Rare earth transition metal alloy powder manufacturing method Active JP7044304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018103404A JP7044304B2 (en) 2018-05-30 2018-05-30 Rare earth transition metal alloy powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103404A JP7044304B2 (en) 2018-05-30 2018-05-30 Rare earth transition metal alloy powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2019206742A JP2019206742A (en) 2019-12-05
JP7044304B2 true JP7044304B2 (en) 2022-03-30

Family

ID=68767465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103404A Active JP7044304B2 (en) 2018-05-30 2018-05-30 Rare earth transition metal alloy powder manufacturing method

Country Status (1)

Country Link
JP (1) JP7044304B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022234865A1 (en) * 2021-05-07 2022-11-10

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184431A (en) 2006-01-06 2007-07-19 Tohoku Univ Metallic magnetic powder and its production method
JP2013106016A (en) 2011-11-17 2013-05-30 Hitachi Chemical Co Ltd Alcoholic solution and sintered magnet
JP2017011276A (en) 2012-06-20 2017-01-12 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnet fine powder and bond magnet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226805A (en) * 1997-02-14 1998-08-25 Sumitomo Metal Mining Co Ltd Production of metal powder and its producing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184431A (en) 2006-01-06 2007-07-19 Tohoku Univ Metallic magnetic powder and its production method
JP2013106016A (en) 2011-11-17 2013-05-30 Hitachi Chemical Co Ltd Alcoholic solution and sintered magnet
JP2017011276A (en) 2012-06-20 2017-01-12 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnet fine powder and bond magnet

Also Published As

Publication number Publication date
JP2019206742A (en) 2019-12-05

Similar Documents

Publication Publication Date Title
KR101355685B1 (en) Method for preparing rare-earth permanent magnet
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP5910437B2 (en) Cu-containing rare earth-iron-boron alloy powder and method for producing the same
JP7364158B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP7187920B2 (en) Polycrystalline rare earth transition metal alloy powder and method for producing the same
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP7385868B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP7044304B2 (en) Rare earth transition metal alloy powder manufacturing method
JP2022177699A (en) Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder
JP5104391B2 (en) Method for producing rare earth-transition metal-nitrogen based magnet powder, obtained rare earth-transition metal-nitrogen based magnet powder, composition for bonded magnet using the same, and bonded magnet
JP2011214113A (en) Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby
JP2014080653A (en) Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JP7006156B2 (en) Rare earth-iron-nitrogen magnet powder manufacturing method
JP2016037611A (en) Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder
US20220199321A1 (en) Rare-earth magnet and method of manufacturing the same
JP2014122392A (en) Method for producing rare earth-iron-nitrogen-based magnet powder
JP4306389B2 (en) Method for producing alloy powder
JP2008001953A (en) Method for producing rare earth-iron-nitrogen-based alloy powder
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP2024070333A (en) Method for manufacturing rare earth-transition metal-nitrogen magnetic powder, and rare earth-transition metal-nitrogen magnetic powder
JP2023138344A (en) Manufacturing method for rare earth transition metal alloy powder
JP2022177730A (en) Method for producing rare earth transition metal alloy powder
CN118577800A (en) Method for producing rare earth transition metal alloy powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7044304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150