JP2017218623A - Production method of rare earth-iron-nitrogen system alloy powder - Google Patents

Production method of rare earth-iron-nitrogen system alloy powder Download PDF

Info

Publication number
JP2017218623A
JP2017218623A JP2016113257A JP2016113257A JP2017218623A JP 2017218623 A JP2017218623 A JP 2017218623A JP 2016113257 A JP2016113257 A JP 2016113257A JP 2016113257 A JP2016113257 A JP 2016113257A JP 2017218623 A JP2017218623 A JP 2017218623A
Authority
JP
Japan
Prior art keywords
powder
iron
rare earth
less
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016113257A
Other languages
Japanese (ja)
Inventor
松本 哲
Satoru Matsumoto
哲 松本
邦夫 渡辺
Kunio Watanabe
邦夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016113257A priority Critical patent/JP2017218623A/en
Publication of JP2017218623A publication Critical patent/JP2017218623A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a rare earth-iron-nitrogen system alloy powder having excellent magnetic characteristics by preparing single crystal particles having small crystal distortion, less fine powder and uniform particle sizes.SOLUTION: A production method of a rare earth-iron-nitrogen system alloy powder includes: a step 1 of preparing a mixture of a rare earth oxide powder and an iron powder as a starting raw material; a step 2 for performing a reduction diffusion treatment in an inert gas with a predetermined amount of calcium metal added; a step 3 of supplying a mixed gas of ammonia and hydrogen to perform a nitrogen treatment of reduction diffusion treated product in the air flow at a predetermined temperature; and a step 4 of charging a nitride treatment product block in water to treat in wet to break, the obtained magnet crude powder is cracked to obtain a cracked powder having a specific half-value width of a (113) plane and a specific rate of fine powder of less than 1 μm.SELECTED DRAWING: None

Description

本発明は、希土類−鉄−窒素系磁石粉末の製造方法に関し、さらに詳しくは、結晶歪みが小さく微粉末の少ない粒度の揃った、優れた磁気特性を有する希土類―鉄―窒素系磁石粉末の製造方法に関する。 The present invention relates to a method for producing a rare earth-iron-nitrogen magnet powder, and more particularly, to produce a rare earth-iron-nitrogen magnet powder having excellent magnetic properties with a small crystal distortion and a small particle size. Regarding the method.

近年、Sm−Fe−N磁石で代表される希土類−鉄−窒素系磁石は、高性能かつ安価な磁石として知られている。この磁石用原料粉末となるSm−Fe−N系磁石粉末は、SmFe17Nxであればx=3の組成で構成されることによって最大の飽和磁化を示すとされている(非特許文献1参照)。 In recent years, rare earth-iron-nitrogen based magnets represented by Sm—Fe—N magnets are known as high performance and inexpensive magnets. The Sm—Fe—N magnet powder used as the magnet raw material powder is said to exhibit the maximum saturation magnetization by being composed of a composition of x = 3 in the case of Sm 2 Fe 17 Nx (non-patent document). 1).

この希土類−鉄−窒素系磁石は、従来、FeとSm金属を用いて高周波炉、アーク炉などにより希土類−鉄合金を作製する溶解法や、FeあるいはFe、Sm等とCaを混合加熱処理により希土類−鉄−窒素を作製する還元拡散法によって得られた母合金を窒化することで得られている。このようにして得られた粉末状の希土類−鉄−窒素系磁石は、保磁力の発生機構がニュークリエーション型であることから、平均粒子径が数μmから5μm程度になるまで微粉砕処理され磁石粉として使用される。 This rare earth-iron-nitrogen based magnet has been conventionally used in a melting method in which a rare earth-iron alloy is produced using a high frequency furnace, an arc furnace or the like using Fe and Sm metal, Fe, Fe 2 O 3 , Sm 2 O 3, etc. It is obtained by nitriding a mother alloy obtained by a reduction diffusion method in which rare earth-iron-nitrogen is produced by mixing heat treatment of Ca. The powdered rare earth-iron-nitrogen magnet thus obtained is pulverized until the average particle size is about several μm to about 5 μm because the coercive force generation mechanism is a nucleation type magnet. Used as a powder.

溶解法では原料粉末を1500℃以上の高温での溶解、粉砕、組成均一化のための熱処理が必要であり(特許文献3参照)、工程が極めて煩雑であるとともに、各工程間において一旦大気中に曝されるために酸化により不純物が生成し、湿式処理後に窒化を行うが湿式処理時に表面が酸化しているため窒化が均一に進行できなくなり、磁気特性のうち飽和磁化、保磁力、角形性が低下し、結果として最大エネルギー積が低くなってしまうという問題がある。また、原料として必要とされる希土類金属が高価であるという理由から、希土類−鉄−窒素系磁石の製造方法としては、安価な希土類酸化物粉末を原料として利用できる還元拡散法に比べて高コストである。 The melting method requires heat treatment for melting, pulverizing, and homogenizing the composition of the raw material powder at a high temperature of 1500 ° C. or higher (see Patent Document 3), and the process is extremely complicated. Impurities are generated by oxidation because of exposure to the material, and nitriding is performed after wet processing. However, since the surface is oxidized during wet processing, nitriding cannot proceed uniformly, and among the magnetic properties, saturation magnetization, coercive force, squareness There is a problem that the maximum energy product is lowered as a result. In addition, because the rare earth metal required as a raw material is expensive, the method for producing a rare earth-iron-nitrogen based magnet is more expensive than the reduction diffusion method in which an inexpensive rare earth oxide powder can be used as a raw material. It is.

また、還元拡散法では、通常出発原料に数十μmの鉄粉末を用い、希土類金属もしくは希土類酸化物とアルカリ土類金属を混合した後、還元熱処理を行うことで母合金を作製するが、この方法の場合最終的な窒化処理の後、粒径を数十から数μmになるように強力に機械粉砕するため、逆軸の核となり得る破断面の突起や結晶歪みが発生し磁気特性を低下させるほか、微粉末の発生量が多いため、得られた粉砕粉末と樹脂とを混練する際に、流動性を確保出来ず、成形品に不具合が生じる恐れがある。   In the reduction diffusion method, iron powder of several tens of μm is usually used as a starting material, and after mixing a rare earth metal or rare earth oxide and an alkaline earth metal, a reduction heat treatment is performed to produce a master alloy. In the case of the method, after the final nitriding treatment, the mechanical pulverization is performed so that the particle size becomes several tens to several μm, so that the protrusion of the fracture surface and the crystal distortion that can become the core of the reverse axis occur and the magnetic properties are deteriorated. In addition, since a large amount of fine powder is generated, fluidity cannot be ensured when the obtained pulverized powder and resin are kneaded, and there is a risk that a molded product may be defective.

この様な問題を解消するために、出発原料として用いる粉末の粒子径をあらかじめ小さくすることにより粉砕処理を経ずに磁石粉末を得る方法(特許文献1、2、3参照)が提案されている。これらの方法は、いずれも粉砕工程を必要としない方法としているが、還元拡散反応時に起こる焼結を完全に防ぐことは出来ないため、多結晶の粒子が存在して異方性が低下してしまう。これらの方法で得られた粉末は、単結晶粒子ではないことから、焼結粒子は壊れやすく、微粉末が発生しやすいため、上記の問題を解消できたとは言えないのが実情であった。 In order to solve such problems, methods have been proposed (see Patent Documents 1, 2, and 3) in which magnet powder is obtained without pulverization by reducing the particle diameter of the powder used as a starting material in advance. . None of these methods require a pulverization step, but since the sintering that occurs during the reduction-diffusion reaction cannot be completely prevented, the presence of polycrystalline particles reduces anisotropy. End up. Since the powders obtained by these methods are not single crystal particles, the sintered particles are fragile and fine powders are likely to be generated. Therefore, it cannot be said that the above problem has been solved.

特開平11−310807号公報Japanese Patent Laid-Open No. 11-310807 特開2003−297660号公報JP 2003-297660 A 特開平11−189811号公報Japanese Patent Laid-Open No. 11-189811

T.Iriyama IEEE TRANSAACTIONS ON MAGNETICS,VOL.28,No.5(1992)T.A. Iriyama IEEE TRANSATIONS ON MAGNETICS, VOL. 28, no. 5 (1992)

本発明の目的は、このような状況に鑑み、結晶歪みが小さく、微粉末量が少なく、粒度の揃った、単結晶粒子を作製することにより、優れた磁気特性を有する希土類−鉄−窒素磁石粉末を得ることができる希土類−鉄−窒素系合金粉末の製造方法を提供することにある。   In view of such circumstances, an object of the present invention is a rare earth-iron-nitrogen magnet having excellent magnetic properties by producing single crystal particles with small crystal distortion, small amount of fine powder, and uniform particle size. An object of the present invention is to provide a method for producing a rare earth-iron-nitrogen alloy powder capable of obtaining a powder.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、希土類―鉄―窒素系磁石粉末を高性能化するためには、あらかじめ粒径の小さい粒子を出発原料として使用した還元拡散法により得られた希土類−鉄−窒素系磁石粉末を、媒体を使用した湿式解砕時に、結晶歪みが小さいまま、微粉末量の少ない粒度の揃った、単結晶粒子あるいはそれに近い粉末を得る条件に調整することにより、得られた成型体の磁気特性がきわめて高くなることを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above-mentioned problems, the present inventors have made a reduction using a particle having a small particle size as a starting material in advance in order to improve the performance of rare earth-iron-nitrogen based magnet powder. When the rare earth-iron-nitrogen based magnet powder obtained by the diffusion method is used for wet crushing using a medium, a single crystal particle having a small amount of fine powder and a powder having a small particle size or a powder close to it is obtained with a small crystal distortion. By adjusting to the conditions, it was found that the magnetic properties of the obtained molded body were extremely high, and the present invention was completed.

すなわち、本発明の第1の発明によれば、希土類−鉄−窒素系磁石用粉末の製造方法であって、
以下の工程1乃至工程4を含む希土類−鉄−窒素系合金粉末の製造方法が提供される。
工程1.希土類酸化物粉末と鉄粉末との混合物、もしくは、該混合物に希土類鉄複合酸化物、酸化鉄から選ばれる少なくとも一種をさらに含む混合物、を出発原料として調製する工程。
工程2.前記工程1で得られた混合物に金属カルシウムを所定量加え不活性ガス中にて還元拡散処理する工程。
工程3.工程2に引き続き、アンモニアと水素との混合ガスを供給し、この気流中で還元拡散処理物を所定の温度で窒化処理する工程。
工程4.前記工程3で得られた窒化処理物を水中に投入して湿式処理し崩壊させ磁石粗粉末として回収し、得られた磁石粗粉末を解砕処理し、解砕処理後の粉末X線回折による(113)面の半値幅が0.1deg.未満であり、かつレーザー回折型粒径分布測定による1μm未満の微粉末の累積体積百分率が10%未満である解砕処理粉末を得る。
That is, according to the first aspect of the present invention, there is provided a method for producing a rare earth-iron-nitrogen based magnet powder,
A method for producing a rare earth-iron-nitrogen alloy powder including the following steps 1 to 4 is provided.
Step 1. A step of preparing, as a starting material, a mixture of rare earth oxide powder and iron powder, or a mixture further containing at least one selected from rare earth iron composite oxide and iron oxide.
Step 2. A step of adding a predetermined amount of calcium metal to the mixture obtained in the step 1 and subjecting the mixture to a reduction diffusion treatment in an inert gas.
Step 3. Following the step 2, a step of supplying a mixed gas of ammonia and hydrogen and nitriding the reduced diffusion treatment product at a predetermined temperature in this air stream.
Step 4. The nitrided product obtained in Step 3 is put into water, wet-treated and disintegrated, and recovered as a magnet coarse powder. The obtained magnet coarse powder is crushed and subjected to powder X-ray diffraction after the pulverization treatment. (113) The half width of the surface is 0.1 deg. And a pulverized powder having a cumulative volume percentage of fine powder of less than 1 μm by laser diffraction type particle size distribution measurement of less than 10%.

本発明の第2の発明によれば、第1の発明において、工程1の鉄粉末、希土類鉄複合酸化物、酸化鉄の平均粒子径は3μm以下であることを特徴とする希土類−鉄−窒素系合金粉末の製造方法が提供される。 According to a second invention of the present invention, in the first invention, the average particle size of the iron powder, rare earth iron composite oxide, and iron oxide in step 1 is 3 μm or less. A method for producing a base alloy powder is provided.

本発明の第3の発明によれば、第1の発明において、工程2の金属カルシウムは、平均粒子径が4メッシュ以下であり、酸化物を全て還元するのに必要となる金属カルシウム量を1当量としたときに、1.5当量以上3.0当量以下であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法が提供される。 According to the third invention of the present invention, in the first invention, the metal calcium in step 2 has an average particle size of 4 mesh or less, and the amount of metal calcium required to reduce all oxides is 1 Provided is a method for producing a rare earth-iron-nitrogen based magnet powder characterized in that the equivalent weight is 1.5 equivalents or more and 3.0 equivalents or less.

本発明の第4の発明によれば、第1の発明において、工程4の解砕処理は、粉砕用ボールを媒体として使用する湿式解砕処理であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法が提供される。 According to a fourth invention of the present invention, in the first invention, the crushing process of step 4 is a wet crushing process using a ball for grinding as a medium. A method for producing magnet powder is provided.

本発明の第5の発明によれば、第1の発明において、合金粉末がSm−Fe−Nであることを特徴とする希土類−鉄−窒素系合金粉末の製造方法が提供される。 According to a fifth aspect of the present invention, there is provided a method for producing a rare earth-iron-nitrogen based alloy powder characterized in that, in the first aspect, the alloy powder is Sm-Fe-N.

本発明の製造方法により、粒径の小さな粉末原料を使用して還元拡散処理し、得られた還元拡散処理物を媒体を使用した湿式解砕処理により粒度をそろえる際に、結晶歪みが小さく、かつ微粉末の少ない、単結晶粒子あるいはそれに近い粉末を解砕処理粉末として得ることで、高性能な磁気特性を有する希土類−鉄−窒素系合金粉末を得ることができる。この希土類−鉄−窒素系磁石粉末を成型して得られる成形体もきわめて高性能の磁気特性を達成できる。 By the reduction diffusion treatment using a powder raw material having a small particle size by the production method of the present invention, when the obtained reduction diffusion treatment product is made uniform by wet crushing treatment using a medium, the crystal distortion is small, Further, by obtaining single crystal particles having a small amount of fine powder or powder close thereto as a pulverized powder, it is possible to obtain a rare earth-iron-nitrogen alloy powder having high-performance magnetic properties. A molded body obtained by molding this rare earth-iron-nitrogen based magnet powder can also achieve extremely high performance magnetic properties.

以下、本発明の希土類−鉄−窒素系磁石粉末の製造方法について、より詳しく説明する。 Hereinafter, the method for producing the rare earth-iron-nitrogen based magnet powder of the present invention will be described in more detail.

本発明の希土類−鉄−窒素系合金粉末の製造方法は、希土類酸化物粉末と鉄粉末の混合物、もしくは該混合物に希土類鉄複合酸化物、酸化鉄から選ばれる少なくとも一種をさらに含む混合物を出発原料として調製する工程1、金属カルシウムを所定量加え不活性ガス中にて還元拡散処理する工程2、還元拡散処理に引き続きアンモニアと水素との混合ガスを供給し、この気流中で還元拡散処理物を所定の温度で窒化処理する工程3、最後に得られた窒化処理物を水中に投入して湿式処理し崩壊させ、得られた磁石粗粉末を解砕処理し、特定の(113)面の半値幅、特定の1μm未満の微粉末割合を有する解砕処理粉末を得る工程4を含む製造方法である。 The method for producing a rare earth-iron-nitrogen alloy powder according to the present invention comprises a mixture of a rare earth oxide powder and an iron powder, or a mixture further containing at least one selected from a rare earth iron composite oxide and iron oxide in the mixture. Step 1 prepared as follows, Step 2 in which a predetermined amount of metallic calcium is added and reduction diffusion treatment in an inert gas, Following the reduction diffusion treatment, a mixed gas of ammonia and hydrogen is supplied. Step 3 of nitriding at a predetermined temperature, the finally obtained nitriding product is put into water and wet-treated to disintegrate, and the obtained magnet coarse powder is crushed to give a half of a specific (113) surface. It is a manufacturing method including step 4 of obtaining a pulverized powder having a value range and a specific fine powder ratio of less than 1 μm.

・ 希土類―鉄―窒素系合金粉末≫
まず、本発明の製造方法を適用する希土類―鉄―窒素系合金について説明する。
・ Rare earth-iron-nitrogen alloy powder >>
First, a rare earth-iron-nitrogen alloy to which the production method of the present invention is applied will be described.

本発明に係る希土類―鉄―窒素系合金は、希土類元素がSm、Gd、Tb、Ceから選ばれる少なくとも1種類の元素、あるいはさらにPr、Nd、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも1種類の元素である合金が挙げられるが、希土類元素がサマリウム(Sm)であるSm−Fe−N系合金やSm−Fe−Ti−N系合金が挙げられ、Sm−Fe−N系合金であることが好ましく、特に、Sm量が磁石粉末全体に対して23.2質量%以上23.6質量%以下を含むSmFe17の組成のものに好ましく適用することができる。 In the rare earth-iron-nitrogen alloy according to the present invention, the rare earth element is selected from at least one element selected from Sm, Gd, Tb, and Ce, or from Pr, Nd, Dy, Ho, Er, Tm, and Yb. Examples include alloys that are at least one element, and examples include Sm—Fe—N alloys and Sm—Fe—Ti—N alloys in which the rare earth element is samarium (Sm), and Sm—Fe—N alloys. In particular, the present invention can be preferably applied to a composition of Sm 2 Fe 17 N 3 containing 23.2% by mass or more and 23.6% by mass or less of the Sm amount with respect to the whole magnet powder.

・ 希土類―鉄―窒素系合金粉末の製造方法≫
本発明の製造方法について、工程順に説明する。
・ Manufacturing method of rare earth-iron-nitrogen alloy powder >>
The production method of the present invention will be described in the order of steps.

1.工程1:原料粉末の混合処理工程
(1)原料粉末
まず、希土類―鉄―窒素系磁石原料として、希土類酸化物粉末と鉄粉末との混合物、もしくは該混合物に希土類鉄複合酸化物、酸化鉄から選ばれる少なくとも一種をさらに含む混合物を出発原料として調製する。
1. Step 1: Raw material powder mixing treatment step (1) Raw material powder First, as a rare earth-iron-nitrogen magnet raw material, a mixture of rare earth oxide powder and iron powder, or a mixture of rare earth iron composite oxide and iron oxide. A mixture further containing at least one selected is prepared as a starting material.

原料粉末の一つの鉄粉末は、後に生成される希土類―鉄母合金を小さくするため、粒子径は、平均粒子径で3μm以下であることが好ましく、1.5μm以下であることがより好ましい。これは、平均粒子径が3μmを超えると後に生成される希土類―鉄母合金の粗粒が平均粒子径で20μm以上にまで成長してしまうため、保磁力が大きく低下するほか、窒化処理の際に粒子内の窒化不足が起きる要因となるためである。また、上記と同じ理由で鉄粉以外に鉄を含有する酸化鉄(Feのほか、FeOやFeなど)、更にサマリウムを含有するサマリウム鉄複合酸化物(SmFeOなど)についても、粒子径は平均粒子径で3μm以下であることが好ましく、1.5μm以下であることがより好ましい。 One iron powder of the raw material powder has a mean particle size of preferably 3 μm or less, more preferably 1.5 μm or less, in order to reduce the size of the rare earth-iron master alloy to be produced later. This is because when the average particle size exceeds 3 μm, the coarse particles of the rare earth-iron mother alloy produced later grow to an average particle size of 20 μm or more, so the coercive force is greatly reduced and the nitriding process This is because of insufficient nitridation in the grains. Further, the iron oxide containing iron in addition to the iron powder for the same reason as above (other Fe 2 O 3, etc. FeO and Fe 3 O 4), for further samarium iron composite oxide containing samarium (such SmFeO 3) However, the average particle size is preferably 3 μm or less, and more preferably 1.5 μm or less.

もう一方の原料粉末の希土類酸化物は、Sm、Gd、Tb、Ceから選ばれる少なくとも1種類の元素、あるいはさらにPr、Nd、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも1種類の元素が含まれるものを挙げることができる。中でもSmが含まれるものは、本発明の効果を顕著に発揮させることが可能になるので特に好ましい。Smが含まれる場合、高い保磁力を得るためにはSmを希土類元素全体の60質量%以上、好ましくは90質量%以上にすることが高い保磁力を得るためには好ましい。 The rare earth oxide of the other raw material powder is at least one element selected from Sm, Gd, Tb, Ce, or at least one element selected from Pr, Nd, Dy, Ho, Er, Tm, Yb. Can be mentioned. Among them, those containing Sm are particularly preferable because the effects of the present invention can be remarkably exhibited. When Sm is contained, in order to obtain a high coercive force, Sm is preferably 60% by mass or more, preferably 90% by mass or more of the entire rare earth element, in order to obtain a high coercive force.

希土類酸化物粉末の粒子径は、固相内拡散がしやすく、不均一な拡散が起こらないという点で、平均粒子径で5μm以下、さらに鉄粉末の粒子径より小さいことが好ましい。 The particle size of the rare earth oxide powder is preferably 5 μm or less in average particle size and smaller than the particle size of iron powder in that it is easy to diffuse in the solid phase and non-uniform diffusion does not occur.

(2)混合処理方法
混合粉末を得る方法としては、各粉末を水やアルコールを溶媒としたボールミル、ビーズミル、アトライターといった湿式混合あるいは、リボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、ハイスピードミキサー、振動ミルといった乾式混合のほか、反応晶析による共沈法によってすでに混ざり合った状態の水酸化物あるいはオキシ水酸化物を製造し熱処理によって酸化物を得るなど、その混合方法は様々の公知の方法を行うことができる。
(2) Mixing method As a method for obtaining a mixed powder, each powder is wet-mixed with a ball mill, a bead mill, or an attritor using water or alcohol as a solvent, or a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, or a nauter. In addition to dry mixing such as mixers, Henschel mixers, high-speed mixers, vibration mills, etc., hydroxides or oxyhydroxides that have already been mixed by the coprecipitation method by reaction crystallization are manufactured and oxides are obtained by heat treatment, etc. As the mixing method, various known methods can be used.

また、これらのように直接混合粉末を得る方法のほか、所望の物質の比率を得るために、一度高温での熱処理をすることや、サマリウム鉄複合酸化物を製造する、あるいは水素還元によって鉄粉を製造することを工程内に含ませる方法も行うことができる。 In addition to the method of directly obtaining a mixed powder as described above, in order to obtain a desired substance ratio, heat treatment at a high temperature is once performed, samarium iron composite oxide is manufactured, or iron powder is produced by hydrogen reduction. It is also possible to carry out a method of including the process in the process.

2.工程2:還元拡散処理工程
(1)還元拡散処理
次に、上記工程1により得られた混合原料粉末にさらに金属カルシウムを混合して、不活性ガス雰囲気中、所定の温度で熱処理し、還元拡散法でThZn17型結晶構造を有する希土類―鉄系母合金を得る。
2. Step 2: Reduction diffusion treatment step (1) Reduction diffusion treatment Next, the mixed raw material powder obtained in the above step 1 is further mixed with metallic calcium, heat-treated at a predetermined temperature in an inert gas atmosphere, and reduced diffusion. To obtain a rare earth-iron master alloy having a Th 2 Zn 17 type crystal structure.

一般的に、還元拡散法は、前記したように還元剤である金属カルシウムとの混合物を反応容器に充填し、一度真空に引いてから不活性ガスを導入することで不活性ガス雰囲気に置換し、例えばアルゴンガス雰囲気中にて950℃以上1200℃以下で加熱することによって、合金粉末を得る方法である。 In general, as described above, the reduction diffusion method is performed by filling a reaction vessel with a mixture of metallic calcium as a reducing agent, and evacuating the atmosphere, and then introducing an inert gas to replace the inert gas atmosphere. For example, the alloy powder is obtained by heating at 950 ° C. or more and 1200 ° C. or less in an argon gas atmosphere.

本発明においては、還元剤として使用する金属カルシウムは、取り扱いの安全性と反応性、コストの点で、4メッシュ以下に分級した粒状金属カルシウムが好ましい。原料の酸化物を全て還元するのに必要とする金属カルシウムの量を1当量とした際の金属カルシウムの添加量については1.5当量以上3.0当量以下が好ましく、1.5当量以上2.0当量以下がより好ましい。これは、1.5当量より少ないと熱処理時の蒸発水分や金属カルシウムの蒸発による不足するためであり、3.0当量より多いと過剰に存在する金属カルシウムが粒成長を阻害する要因となって本焼の温度を上げても大きくなりにくいほか、還元拡散後の窒化の際のガスの吸収が余剰の金属カルシウムによって阻害され窒化が不均一になりやすいという問題がある。なお、還元剤は上記原料粉末と混合するか、金属蒸気が原料粉末と接触しうるように分離しておくが、混合して還元拡散されれば反応生成物が多孔質となり、引き続き行われる窒化処理を効率的に行うことができる。 In the present invention, the metallic calcium used as the reducing agent is preferably granular metallic calcium classified to 4 mesh or less in terms of handling safety, reactivity, and cost. The amount of metallic calcium added when the amount of metallic calcium required to reduce all the raw material oxide is 1 equivalent is preferably 1.5 equivalents or more and 3.0 equivalents or less, and more preferably 1.5 equivalents or more and 2 equivalents or less. Less than 0.0 equivalent is more preferable. This is because if it is less than 1.5 equivalents, it will be insufficient due to evaporation of evaporated water and metallic calcium during heat treatment, and if it is more than 3.0 equivalents, excessive metal calcium will be a factor that hinders grain growth. There is a problem that even if the temperature of the main calcination is raised, it becomes difficult to increase, and gas absorption at the time of nitriding after reductive diffusion is hindered by excess metallic calcium, so that nitriding tends to be uneven. The reducing agent is mixed with the raw material powder or separated so that the metal vapor can come into contact with the raw material powder. However, if the reducing agent is mixed and reduced and diffused, the reaction product becomes porous, and the subsequent nitriding is performed. Processing can be performed efficiently.

原料粉末や還元剤とともに、窒化処理後の湿式処理工程において反応生成物の崩壊を促進させる添加物を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属の塩や酸化物を用いることができ、原料粉末などと同時に均一に混合することができる。ここで不活性ガスは、アルゴン、ヘリウムから選ばれた1種類以上が用いられる。 It is also effective to mix an additive that promotes the decay of the reaction product in the wet treatment step after the nitriding treatment, together with the raw material powder and the reducing agent. As the disintegration accelerator, an alkaline earth metal salt or oxide such as calcium chloride can be used, and can be uniformly mixed simultaneously with the raw material powder. Here, the inert gas is at least one selected from argon and helium.

本発明においては、原料粉末の粒度を特定の粒度に調製した出発原料を使用するため、還元拡散処理の熱処理温度を850℃以上1180℃以下の範囲とすることが好ましい。850℃未満では、鉄粉末に対して希土類元素の拡散が不均一となり、得られる希土類―鉄―窒素系合金粉末の保磁力や角形性が低下するほか、拡散に要する時間が非常に長くなり、生産性が悪くなる。また、1180℃を超えると、生成する希土類―鉄母合金が粒成長を起こすため、均一に窒化することが困難になり磁石粉末の飽和磁化と角形性、保磁力が低下する場合がある。また、Smの蒸発量が多くなり、所望の組成の磁石粗粉末が得られなくなる恐れがあり、また過剰な量が必要となり高コストにもなる。従って、850℃以上1180℃以下の範囲とすることによりこのような現象が起きないほか、1次粒子が小さく、焼結した2次粒子体となるが、粒子同士の焼結は弱く、窒化処理後の解砕のときに結晶歪みを起こしにくいという効果を奏する。 In the present invention, since the starting material prepared by adjusting the particle size of the raw material powder to a specific particle size is used, it is preferable that the heat treatment temperature of the reduction diffusion treatment is in the range of 850 ° C. or higher and 1180 ° C. or lower. Below 850 ° C, the diffusion of rare earth elements in the iron powder becomes non-uniform, the coercive force and squareness of the resulting rare earth-iron-nitrogen alloy powder are reduced, and the time required for diffusion becomes very long, Productivity deteriorates. When the temperature exceeds 1180 ° C., the generated rare earth-iron mother alloy undergoes grain growth, so that uniform nitriding becomes difficult, and the saturation magnetization, squareness, and coercive force of the magnet powder may decrease. Further, the amount of evaporation of Sm increases, and there is a possibility that a coarse magnet powder having a desired composition cannot be obtained, and an excessive amount is required, resulting in high cost. Therefore, by setting the temperature within the range of 850 ° C. or higher and 1180 ° C. or lower, such a phenomenon does not occur, and the primary particles are small and become a sintered secondary particle body. There is an effect that crystal distortion hardly occurs at the time of subsequent crushing.

ここで、還元拡散処理で得られる生成物は、例えば、還元剤として金属カルシウムを用いた場合には、ThZn17型結晶構造を有する希土類−鉄母合金と酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物である。さらに粒状金属カルシウムを原料粉末に混合して還元拡散処理した場合には、多孔質の塊状混合物が得られる。 Here, the product obtained by the reduction diffusion treatment, for example, when metallic calcium is used as the reducing agent, rare earth-iron mother alloy having a Th 2 Zn 17 type crystal structure and calcium oxide, unreacted surplus It is a massive mixture composed of metallic calcium and the like. Further, when the granular metal calcium is mixed with the raw material powder and subjected to the reduction diffusion treatment, a porous massive mixture is obtained.

これに対して、特許文献3で開示されている溶解法は、希土類原料として希土類金属が用いられ、これは還元拡散法で用いられる希土類酸化物原料に比べて高価である。特に、希土類元素が、優れた磁気特性をもたらすSmの場合による差は顕著である。また上記粒度調整で発生する不要な粉末は、製品収率を低下させ、粉末コストをさらに引き上げてしまう。また溶解法では、得られた合金中のα−Fe相などをなくすための均質化熱処理工程が必要になり、さらに窒素を導入する前に均質化熱処理した合金を粗粉砕する工程と、粗粉砕粉末を粒度調整する工程が必要になるので好ましくない。 In contrast, the melting method disclosed in Patent Document 3 uses a rare earth metal as the rare earth material, which is more expensive than the rare earth oxide material used in the reduction diffusion method. In particular, the difference in the case of Sm where the rare earth element provides excellent magnetic properties is significant. Moreover, the unnecessary powder generated by the particle size adjustment reduces the product yield and further increases the powder cost. In addition, the melting method requires a homogenization heat treatment step for eliminating the α-Fe phase in the obtained alloy, and further includes a step of coarsely pulverizing the alloy subjected to the homogenization heat treatment before introducing nitrogen, and a coarse pulverization step. This is not preferable because it requires a step of adjusting the particle size of the powder.

(2)反応生成物の冷却
本発明では、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま変えずに、引き続き、300℃以下、好ましくは50℃以上280℃以下、より好ましくは100℃以上250℃以下に冷却する。冷却後の温度が300°Cを越えていると、窒化の際に反応生成物との窒化反応が急激に進んでしまい、α−Fe相を増加させてしまうことがあるので、300°Cよりも低い温度まで冷却するのが望ましい。これは、300°Cを越える温度では、反応生成物が活性であるために合金が急激に窒化されて、ThZn17型結晶構造を有する金属間化合物がFeリッチ相とSmNとに分解するものと推測されるからである。
(2) Cooling of reaction product In the present invention, the reaction product after the reduction-diffusion reaction is continuously maintained at 300 ° C or lower, preferably 50 ° C or higher and 280 ° C without changing the atmospheric gas as an inert gas. Hereinafter, it is more preferably cooled to 100 ° C. or more and 250 ° C. or less. If the temperature after cooling exceeds 300 ° C, the nitridation reaction with the reaction product proceeds rapidly during nitriding, which may increase the α-Fe phase. It is desirable to cool to a lower temperature. This is because, at temperatures exceeding 300 ° C., the reaction product is active, so the alloy is rapidly nitrided, and the intermetallic compound having a Th 2 Zn 17 type crystal structure is decomposed into an Fe-rich phase and SmN. Because it is presumed.

冷却後に、多孔質の塊状混合物である反応生成物を湿式処理しないで、雰囲気ガスを不活性ガスから、少なくともアンモニアと水素とを含有する混合ガスに変えて、次工程の窒化工程に移る。このとき反応生成物が大気中に曝されると、反応生成物中の活性な希土類−鉄母合金粉末が酸化されて反応性が失活し、結果として窒化の度合いをばらつかせるので、大気(酸素)に曝されることのないように窒化工程に持ち込むことが重要である。 After cooling, the wet reaction is not performed on the reaction product, which is a porous massive mixture, and the atmosphere gas is changed from an inert gas to a mixed gas containing at least ammonia and hydrogen, and the process proceeds to the next nitriding step. If the reaction product is exposed to the atmosphere at this time, the active rare earth-iron mother alloy powder in the reaction product is oxidized and the reactivity is deactivated. It is important to bring it into the nitriding process so that it is not exposed to (oxygen).

3.工程3:窒化処理工程(1)窒化処理
窒化工程では、雰囲気ガスの不活性ガスを排出してから、少なくともアンモニアと水素とを含有する混合ガスに変えて昇温し、反応生成物を特定温度に加熱する。
3. Process 3: Nitriding process (1) Nitriding process In the nitriding process, after the inert gas of the atmospheric gas is discharged, the temperature is raised to a mixed gas containing at least ammonia and hydrogen, and the reaction product is heated to a specific temperature. Heat to.

窒化ガスとしては、少なくともアンモニアと水素とを含有していることが必要であり、反応をコントロールするためにアルゴン、窒素、ヘリウムなどを混合することができる。窒化ガスの量は、磁石粉末中の窒素量が3.3質量%以上3.7質量%以下となるに十分な量であることが好ましい。 The nitriding gas needs to contain at least ammonia and hydrogen, and argon, nitrogen, helium, etc. can be mixed to control the reaction. The amount of the nitriding gas is preferably an amount sufficient for the amount of nitrogen in the magnet powder to be 3.3% by mass or more and 3.7% by mass or less.

全気流圧力に対するアンモニアの比(アンモニア分圧)は、0.2以上0.6以下、好ましくは0.3以上0.5以下となるようにする。アンモニア分圧が0.2未満であると、長時間かけても母合金の窒化が進まず、窒素量を3.3質量%以上3.7質量%以下とすることができず、磁石粉末の飽和磁化と保磁力が低下する。0.6を超えると窒化が進みすぎるので好ましくない。   The ratio of ammonia to the total airflow pressure (ammonia partial pressure) is 0.2 or more and 0.6 or less, preferably 0.3 or more and 0.5 or less. If the ammonia partial pressure is less than 0.2, nitriding of the mother alloy does not proceed over a long period of time, and the amount of nitrogen cannot be made 3.3 mass% or more and 3.7 mass% or less. Saturation magnetization and coercivity are reduced. Exceeding 0.6 is not preferable because nitriding proceeds excessively.

アンモニアと水素とを含有する混合気流を窒化温度である350°C以上500°C以下、好ましくは400°C以上480°C以下で供給して、母合金を窒化熱処理することが重要である。温度が350°C未満であると、反応生成物中の希土類−鉄母合金に3.3質量%以上3.7質量%以下の窒素を導入するのに長時間を要するので工業的優位性がなくなる。一方、500°Cを超えると、主相であるSmFe17相が分解してα−Feが生成するので、最終的に得られる希土類−鉄−窒素系磁石粉末の減磁曲線の角形性が低下するので好ましくない。なお、冷却温度から窒化温度までは、毎分4℃以上10℃以下の速度で比較的急速に昇温することが生産効率を高める上で望ましい。また、冷却温度での保持時間は、特に必要はない。これは冷却温度で保持しても窒化に対する効果は認められないからである。 It is important that a mixed gas stream containing ammonia and hydrogen is supplied at a nitriding temperature of 350 ° C. or higher and 500 ° C. or lower, preferably 400 ° C. or higher and 480 ° C. or lower, and the mother alloy is subjected to a nitriding heat treatment. When the temperature is lower than 350 ° C., it takes a long time to introduce 3.3 mass% or more and 3.7 mass% or less of nitrogen into the rare earth-iron master alloy in the reaction product. Disappear. On the other hand, when the temperature exceeds 500 ° C., the Sm 2 Fe 17 phase, which is the main phase, is decomposed to produce α-Fe, and thus the squareness of the demagnetization curve of the finally obtained rare earth-iron-nitrogen based magnet powder. Is unfavorable because it decreases. From the cooling temperature to the nitriding temperature, it is desirable to raise the temperature relatively rapidly at a rate of 4 ° C. or more and 10 ° C. or less per minute in order to increase production efficiency. Further, the holding time at the cooling temperature is not particularly required. This is because no effect on nitriding is observed even if the temperature is kept at the cooling temperature.

窒化処理の保持時間は、窒化温度にもよるが、100分以上300分以下、好ましくは、140分以上250分以下とする。100分未満では、窒化が不十分になり、一方、300分を超えると窒化が進みすぎるので好ましくない。   The retention time of the nitriding treatment is 100 minutes to 300 minutes, preferably 140 minutes to 250 minutes, although it depends on the nitriding temperature. If it is less than 100 minutes, nitriding becomes insufficient, while if it exceeds 300 minutes, nitriding proceeds excessively, which is not preferable.

本発明においては、窒化処理に引き続いて、さらに水素ガス、または窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中で合金粉末を熱処理することが望ましい。特に好ましいのは、水素ガスで熱処理した後に窒素ガスまたはアルゴンガスで熱処理をすることである。 In the present invention, following the nitriding treatment, it is desirable to further heat-treat the alloy powder in an inert gas such as hydrogen gas, nitrogen gas, argon gas or helium gas. Particularly preferred is a heat treatment with nitrogen gas or argon gas after heat treatment with hydrogen gas.

これにより、磁石粉末を構成する個々の結晶セル内の窒素分布をさらに均一化することができ、角形性を向上させることができる。熱処理の保持時間は、30分以上200分以下、好ましくは60分以上250分以下が良い。   Thereby, the nitrogen distribution in the individual crystal cells constituting the magnet powder can be made more uniform, and the squareness can be improved. The holding time for the heat treatment is 30 minutes to 200 minutes, preferably 60 minutes to 250 minutes.

4.工程4:解砕処理工程
(1)湿式処理
本発明では、窒化後の処理生成物を湿式処理して、そこに含まれている還元剤成分の副生成物(酸化カルシウムや窒化カルシウムなど)を希土類−鉄−窒素系磁石粉末から分離除去する。
4). Step 4: Crushing treatment step (1) Wet treatment In the present invention, the treated product after nitriding is wet treated, and a by-product (such as calcium oxide or calcium nitride) of a reducing agent component contained therein is removed. Separate and remove from rare earth-iron-nitrogen magnet powder.

窒化終了後の磁石粉末に対して湿式処理を行うのは、前述したとおり、窒化する前に、反応生成物を湿式処理すると、この湿式処理過程で母合金表面が酸化されて窒化の度合いをばらつかせるからである。 As described above, the wet treatment is performed on the magnet powder after the nitridation. When the reaction product is wet-treated before nitriding, the surface of the mother alloy is oxidized during this wet treatment process, thereby varying the degree of nitridation. Because it can be used.

また、窒化後に処理生成物を長期間大気中に放置すると、カルシウムなどの還元剤成分の酸化物が生成し除去しにくくなったり、磁石粉末の表面の酸化によって、窒化が不均一になり主相の比率の低下とニュークリエーションの核の生成によって角形性が低下したりする。したがって、大気中に放置された窒化処理生成物は、反応器から取り出してから2週間以内に湿式処理するのがよい。   In addition, if the treatment product is left in the atmosphere for a long time after nitriding, an oxide of a reducing agent component such as calcium is generated and difficult to remove, or the surface of the magnet powder is oxidized, resulting in non-uniform nitriding. The squareness decreases due to the decrease in the ratio of nuclei and the formation of nuclei of new creation. Therefore, the nitriding product left in the atmosphere is preferably wet-treated within two weeks after being taken out from the reactor.

湿式処理は、まず崩壊した生成物を水中に投入し、デカンテーション−注水−デカンテーションを繰り返し行い、生成した水酸化Caの多くを除去する。さらに必要に応じて、残留する水酸化Caを除去するために、酢酸または塩酸を用いて酸洗浄する。このときの水溶液の水素イオン濃度はpH4以上7以下の範囲で実施するとよい。還元拡散時に過剰に投入したSmの影響で主相の周りに磁気特性の飽和磁化を低下させる非磁性相が存在している場合があり、Sm量が23.2質量%以上23.6質量%以下になるように酸洗を行うことが好ましい。 In the wet treatment, first, the disintegrated product is put into water, and decantation-water injection-decantation is repeated to remove most of the produced Ca hydroxide. Further, if necessary, acid cleaning is performed using acetic acid or hydrochloric acid in order to remove residual Ca hydroxide. The hydrogen ion concentration of the aqueous solution at this time is preferably in the range of pH 4 to 7. There may be a non-magnetic phase around the main phase that lowers the saturation magnetization of the magnetic properties due to the influence of Sm added excessively during reduction diffusion, and the Sm content is 23.2% by mass or more and 23.6% by mass. It is preferable to perform pickling so as to be as follows.

上記酸洗浄処理の終了後には、例えば水洗し、アルコールあるいはアセトン等の有機溶媒で脱水し、不活性ガス雰囲気中または真空中で乾燥することで希土類−鉄−窒素系磁石粗粉末を得ることができる。 After the completion of the acid cleaning treatment, for example, washing with water, dehydrating with an organic solvent such as alcohol or acetone, and drying in an inert gas atmosphere or vacuum can obtain a rare earth-iron-nitrogen based magnet coarse powder. it can.

(2)解砕および乾燥
得られた希土類−鉄−窒素系磁石粗粉末は、粒子径が小さい多数の粒子が焼結した2次粒子のほか、単独の1次粒子の2種類から形成されている。このような磁石粗粉末を溶媒とともに粉砕機に入れ、2次粒子からなる希土類−鉄−窒素系磁石粉末の焼結部が外れる程度に弱く解砕し、その後所定の目開きのフィルターを用いて、ろ過、乾燥して希土類−鉄−窒素系磁石微粉末を得る。
(2) Crushing and drying The obtained rare earth-iron-nitrogen based magnet coarse powder is formed from two types of primary particles in addition to secondary particles obtained by sintering a large number of particles having a small particle size. Yes. Such a magnet coarse powder is put into a pulverizer together with a solvent and crushed so weakly that the sintered portion of the rare earth-iron-nitrogen based magnet powder composed of secondary particles is removed, and then using a filter with a predetermined opening. Filtration and drying give a rare earth-iron-nitrogen magnet fine powder.

本発明で希土類−鉄−窒素系合金粉末を解砕するには、固体を取り扱う各種の化学工業において広く使用され、種々の材料を所望の程度に粉砕するための粉砕装置の中でも、粉末の粒子径制御に優れたボールミル,ビーズミルまたは媒体撹拌ミル等の湿式粉砕方式が好適であるが、一次粒子が壊れるほどの強い粉砕とならずに解砕程度とすることが特に重要である。 The pulverization of rare earth-iron-nitrogen based alloy powder in the present invention is widely used in various chemical industries that handle solids, and among the pulverizers for pulverizing various materials to a desired degree, powder particles A wet pulverization method such as a ball mill, a bead mill, or a medium agitation mill excellent in diameter control is suitable, but it is particularly important that the pulverization level is set to a level that does not cause strong pulverization to break the primary particles.

粉砕に用いる溶媒としては、イソプロピルアルコール、エタノール、トルエン、メタノール、ヘキサン等が使用できるが、特にイソプロピルアルコールが好ましい。また、媒体としては窒化ケイ素、ジルコニア、アルミナ、ガラス、SUJ2、ステンレス等いずれの材質でも良いが、特に窒化ケイ素が望ましい。これは、媒体の比重が小さいことから充填しても粉末にかかる力が小さく済むうえ、摩耗が非常に少ない利点があるからである。   As a solvent used for pulverization, isopropyl alcohol, ethanol, toluene, methanol, hexane, or the like can be used, and isopropyl alcohol is particularly preferable. The medium may be any material such as silicon nitride, zirconia, alumina, glass, SUJ2, and stainless steel, but silicon nitride is particularly desirable. This is because, since the specific gravity of the medium is small, the force applied to the powder can be reduced even when the medium is filled, and the wear is very small.

本発明の希土類−鉄−窒素系合金粉末は、解砕後、その粉末X線回折による(113)面の半値幅は0.1deg.未満であり、さらにレーザー回折型粒径分布測定による1μm未満の微粒子が累積体積百分率で10%未満である事が重要である。このとき、粉末X線回折による(113)面の半値幅が0.1deg.以上の粉末になるまで粉砕してしまうと、結晶歪みが大きくなり保磁力が低下する。またレーザー回折型粒径分布測定による1μm未満の粒子量が累積体積百分率において10%以上であると微粉末が多すぎるため、成形品を製造する際の加熱に弱く保磁力が急激に低下したり、また樹脂との混練時に流動性が悪くなって、成形自体が出来なくなる恐れがある。 The rare earth-iron-nitrogen based alloy powder of the present invention, after pulverization, has a half width of 0.1 deg. It is important that fine particles of less than 1 μm are less than 10% in cumulative volume percentage by laser diffraction type particle size distribution measurement. At this time, the half width of the (113) plane by powder X-ray diffraction was 0.1 deg. If the powder is pulverized until it becomes the above powder, the crystal distortion increases and the coercive force decreases. In addition, if the amount of particles less than 1 μm by laser diffraction particle size distribution measurement is 10% or more in cumulative volume percentage, too much fine powder is present, so that the coercive force decreases sharply because of weakness to heating when manufacturing a molded product. Moreover, there is a possibility that the molding itself cannot be performed due to poor fluidity during kneading with the resin.

以下、本発明を実施例により詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。なお、本発明のおいては、得られた磁石粉末は以下の方法で測定し評価した。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples at all. In the present invention, the obtained magnet powder was measured and evaluated by the following method.

≪評価≫
(1)磁気特性(保磁力(iHc、単位kA/m))
合金粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600A/mの配向磁界をかけてステアリン酸中で希土類−鉄−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定した。磁石合金粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、保磁力(iHc、単位kA/m)を測定した。
≪Evaluation≫
(1) Magnetic properties (coercivity (iHc, unit kA / m))
The magnetic properties of the alloy powder are rare earth-iron-nitrogen based in stearic acid by applying an orientation magnetic field of 1600 A / m according to Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. A sample was prepared by orienting magnet powder, and measurement was performed by magnetizing with a magnetic field of 4000 kA / m. The specific gravity of the magnetic alloy powder was 7.67 g / cm 3, and the coercive force (iHc, unit kA / m) was measured using a vibrating sample magnetometer with a maximum magnetic field of 1200 kA / m without correcting the demagnetizing field.

(2)粉末X線回折による(113)面の半値幅 解砕後の希土類−鉄−窒素系合金粉末の結晶性を粉末X線回折装置(XRD:マックサイエンス社 M03XHF)で測定し、測定結果から(113)面の半値幅(deg.)を算出した。 (2) Half width of (113) plane by powder X-ray diffraction The crystallinity of the pulverized rare earth-iron-nitrogen alloy powder was measured with a powder X-ray diffractometer (XRD: Mac Science M03XHF), and the measurement results From (113) plane, the half width (deg.) Was calculated.

(3)レーザー回折型粒度分布
Sympatec社製レーザー回折型粒径分布測定装置:ヘロス・ロードスにて測定し、1μm未満の粒子の累積体積百分率を算出した。
(3) Laser diffraction type particle size distribution Laser diffraction type particle size distribution measuring apparatus manufactured by Sympatec: Measured with Heros Rhodes, and the cumulative volume percentage of particles less than 1 μm was calculated.

(4)粒子形状
希土類−鉄−窒素系磁石粉末の粒子表面形状、断面を走査型電子顕微鏡(SEM:カールツァイス社、ULTRA55)で観察した。
(4) Particle shape The particle surface shape and cross section of the rare earth-iron-nitrogen magnet powder were observed with a scanning electron microscope (SEM: Carl Zeiss, ULTRA55).

(5)流動性(メルトインデックスMI法)
得られた磁石合金粉試料とナイロン12を、200℃のラボプラストミル中で30分混練し作製したボンド磁石用組成物は、プラスチック粉砕機により粉砕して、成形用ペレットとした。これをメルトインデクサーを用い、測定温度:250℃、荷重:21.6kgで、ダイスウェル:直径2.1mm×厚さ8mmの中を所定重量のコンパウンドが通過する所要時間から、流動性(cm/秒)を評価した。この値が大きいほど流動性が高く、射出成形性が良好である。
(5) Fluidity (Melt index MI method)
The obtained magnet alloy powder sample and nylon 12 were kneaded for 30 minutes in a 200 ° C. lab plast mill, and the composition for a bonded magnet was pulverized by a plastic pulverizer to form a pellet for molding. This was measured using a melt indexer, measuring temperature: 250 ° C., load: 21.6 kg, die swell: diameter 2.1 mm × thickness 8 mm, and the flowability (cm 3 / second). The larger this value, the higher the fluidity and the better the injection moldability.

(6)射出成形性
得られたペレットを方締め圧50トンの射出成形機にて、シリンダー温度230℃、金型温度80℃として7mm方向に560kA/mの配向磁界をかけながら、直径10mm×厚さ7mmの円柱状希土類系磁石を製造した。この際に、成形品に充填不足、フローマーク、ジェッティング等不良が出るかどうかの判定を行った。不良なき場合を良好とした。
(6) Injection moldability The obtained pellets were subjected to a cylinder temperature of 230 ° C. and a mold temperature of 80 ° C. by applying an orientation magnetic field of 560 kA / m in the 7 mm direction with an injection molding machine with a clamping pressure of 50 tons, and a diameter of 10 mm × A cylindrical rare earth magnet having a thickness of 7 mm was manufactured. At this time, it was determined whether the molded product had defects such as insufficient filling, flow mark, jetting, and the like. The case where there was no defect was considered good.

(実施例1)
出発原料粉末として、反応晶析法で製造された、平均粒子径が0.7μmの酸化鉄Fe粉末(純度99%)100.0gと、平均粒子径が2.8μmの酸化サマリウムSm粉末(純度99.5%)31.8gを秤量し、次に500mlのポリ容器中にて秤量した酸化鉄を純水130gに分散させスラリー化し、さらに酸化サマリウムを投入し、これにSUJ2製の直径5/32inchの金属ボールを追加して20時間ボールミル混合を行った。その後、ポリ容器からスラリーを排出し、金属ボールと分離した後定置式真空凍結乾燥器にて40℃設定で20時間乾燥した。
Example 1
As a starting material powder, 100.0 g of iron oxide Fe 2 O 3 powder (purity 99%) having an average particle size of 0.7 μm, produced by a reaction crystallization method, and samarium oxide Sm having an average particle size of 2.8 μm 31.8 g of 2 O 3 powder (purity 99.5%) was weighed, then iron oxide weighed in a 500 ml plastic container was dispersed in 130 g of pure water to form a slurry, and further samarium oxide was added to this. Ball mill mixing was carried out for 20 hours by adding a 5/32 inch diameter metal ball made by SUJ2. Thereafter, the slurry was discharged from the plastic container, separated from the metal balls, and then dried at 40 ° C. for 20 hours in a stationary vacuum freeze dryer.

乾燥した混合粉末100.0gを箱型雰囲気炉にて水素を25ml/分・g流し、昇温速度5℃/分で700℃まで加熱して4時間保持した後、室温まで冷却し、内部を空気に置換して水素還元物を回収した。 100.0 g of the dried mixed powder was flowed at 25 ml / min · g in a box-type atmosphere furnace, heated to 700 ° C. at a heating rate of 5 ° C./min and held for 4 hours, then cooled to room temperature, The hydrogen reduction product was recovered by replacing with air.

この水素還元物16gに粒度4メッシュ(タイラーメッシュ)以下の金属カルシウム粒(純度99%)3.6gを、コンデショニングミキサー(MX−201:シンキー製)で30秒間混合した。これをステンレススチール反応容器に挿入し、容器内をロータリーポンプで真空引きしてArガス置換した後、Arガスを流しながら850℃まで昇温し10時間保持後、さらに1050℃まで昇温し1時間保持し還元熱処理した後250℃まで炉内でArガスを流通しながら冷却した。 3.6 g of metal calcium particles (purity 99%) having a particle size of 4 mesh (Tyler mesh) or less were mixed with 16 g of this hydrogen reduction product with a conditioning mixer (MX-201: manufactured by Sinky) for 30 seconds. This was inserted into a stainless steel reaction vessel, and the inside of the vessel was evacuated with a rotary pump to replace Ar gas. Then, while flowing Ar gas, the temperature was raised to 850 ° C., held for 10 hours, and further raised to 1050 ° C. After holding for a time and carrying out a reduction heat treatment, it was cooled to 250 ° C. while circulating Ar gas in the furnace.

次に、Arガスをアンモニア分圧が0.33のアンモニア−水素混合ガスに切り替えて昇温し、420℃で200分保持し、その後、同温度で水素ガスに切り替えて30分保持し、さらに窒素ガスに切り替えて30分保持し冷却した。 Next, the Ar gas is switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.33, the temperature is raised, held at 420 ° C. for 200 minutes, then switched to hydrogen gas at the same temperature and held for 30 minutes, It switched to nitrogen gas, hold | maintained for 30 minutes, and cooled.

取り出した多孔質塊状の反応生成物を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、水酸化Ca懸濁物をデカンテーションによって分離し、純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返し、Sm−Fe−N合金粉末スラリーを得た。   The taken porous mass reaction product was immediately poured into pure water, and collapsed to obtain a slurry. From this slurry, the Ca hydroxide suspension was separated by decantation, the operation of stirring pure water for 1 minute after pouring and then decanting was repeated 5 times to obtain an Sm—Fe—N alloy powder slurry.

得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。その後純水で6回掛水洗浄し、さらにイソプロピルアルコールで溶媒置換した後合金粉末をろ過し、150℃で真空乾燥することによって、1次粒子および1次粒子同士が焼結した2次粒子からなる平均粒子径5.5μmのSm−Fe−N粗粉末を得た。   While stirring the obtained alloy powder slurry, dilute acetic acid was added dropwise, and the pH was maintained at pH 5.0 for 7 minutes. After washing with water 6 times with pure water and further solvent substitution with isopropyl alcohol, the alloy powder is filtered and vacuum-dried at 150 ° C., whereby primary particles and secondary particles obtained by sintering the primary particles are sintered. Sm—Fe—N coarse powder having an average particle size of 5.5 μm was obtained.

解砕処理装置として回転式ボールミルを用い、粉末10g、イソプロピルアルコール100g、SUJ2ボール(4mm)1kgを入れた300cc容器で、回転周波数30Hz、45分間解砕し、リン酸による表面処理後、常温真空乾燥してSm−Fe−N微粉末を得た。   Using a rotary ball mill as a crushing treatment device, crushing in a 300 cc container containing 10 g of powder, 100 g of isopropyl alcohol and 1 kg of SUJ2 balls (4 mm), crushing at a rotational frequency of 30 Hz for 45 minutes, surface treatment with phosphoric acid, and vacuum at room temperature It dried and the Sm-Fe-N fine powder was obtained.

得られた磁石粉末の磁気特性として、合金粉末の保持力を、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600A/mの配向磁界をかけてステアリン酸中で希土類−鉄−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定した。磁石合金粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、保磁力(iHc、単位kA/m)を測定した。 As magnetic properties of the obtained magnet powder, the holding power of the alloy powder was applied with an orientation magnetic field of 1600 A / m according to the Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. A sample was prepared by orienting rare earth-iron-nitrogen magnet powder in stearic acid, and magnetized with a magnetic field of 4000 kA / m. The specific gravity of the magnetic alloy powder was 7.67 g / cm 3, and the coercive force (iHc, unit kA / m) was measured using a vibrating sample magnetometer with a maximum magnetic field of 1200 kA / m without correcting the demagnetizing field.

分析組成とThZn17型結晶構造の格子定数から算出された粉末のX線密度は7.67g/cmで、この値で飽和磁束密度4πImを換算した。その結果、保磁力(iHc)は1061kA/mと高特性が得られた。 The X-ray density of the powder calculated from the analytical composition and the lattice constant of the Th 2 Zn 17 type crystal structure was 7.67 g / cm 3 , and the saturation magnetic flux density 4πIm was converted with this value. As a result, the coercive force (iHc) was as high as 1061 kA / m.

また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.082deg.であり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は8.4%であった。 Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.082 deg. Further, the cumulative volume percentage of particles less than 1 μm by laser diffraction type particle size distribution measurement was 8.4%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.68cm/秒で、射出成形性は良好であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.68 cm. The injection moldability was good at 3 / sec.

(実施例2)
工程4の解砕処理で、回転式ボールミルの媒体をSUJ2から窒化ケイ素に変えた以外は全て実施例1と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Example 2)
In the crushing process of Step 4, all the processes were performed in the same manner as in Example 1 except that the medium of the rotary ball mill was changed from SUJ2 to silicon nitride to obtain Sm—Fe—N fine powder.

得られた微粉末の磁気特性評価した結果、保磁力(iHc)は、1093kA/mと高特性が得られた。   As a result of evaluating magnetic characteristics of the obtained fine powder, coercive force (iHc) was as high as 1093 kA / m.

また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.071deg.であり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は6.8%であった。 Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.071 deg. Further, the cumulative volume percentage of particles less than 1 μm by laser diffraction type particle size distribution measurement was 6.8%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.88cm/秒で、射出成形性は良好であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.88 cm. The injection moldability was good at 3 / sec.

(実施例3)
工程4の解砕処理で、解砕処理装置を回転式ボールミルからビーズミルに変更し、粉末1kg、イソプロピルアルコール2kg、窒化ケイ素ボール(3mm)220gを入れた容器で、回転周波数30Hz、20分間解砕することに変えた以外は全て実施例2と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Example 3)
In the crushing process of Step 4, the crushing processing device was changed from a rotary ball mill to a bead mill, and crushing for 20 minutes at a rotational frequency of 30 Hz in a container containing 1 kg of powder, 2 kg of isopropyl alcohol, and 220 g of silicon nitride balls (3 mm). Except for the change, the same treatment as in Example 2 was performed to obtain Sm—Fe—N fine powder.

磁気特性を求めた結果、保磁力(iHc)は、1093kA/mと高特性が得られた。   As a result of obtaining the magnetic characteristics, the coercive force (iHc) was as high as 1093 kA / m.

また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.068deg.であり、さらに粒度分布測定による1μm未満の割合は5.7%であった。 Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.068 deg. Furthermore, the ratio of less than 1 μm by the particle size distribution measurement was 5.7%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.92cm/秒で、射出成形性は良好であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.92 cm. The injection moldability was good at 3 / sec.

(実施例4)
工程4の解砕処理で、媒体を窒化ケイ素から安定化ジルコニアに変えた以外は全て実施例3と同様にして処理を行い、Sm−Fe−N微粉末を得た。
Example 4
Except that the medium was changed from silicon nitride to stabilized zirconia in the crushing process of step 4, the same process as in Example 3 was performed to obtain Sm—Fe—N fine powder.

磁気特性を評価した結果、保磁力(iHc)は1109kA/mと高特性が得られた。 As a result of evaluating the magnetic characteristics, the coercive force (iHc) was as high as 1109 kA / m.

また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.074deg.であり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は7.5%であった。 Further, the half width of the (113) plane by XRD measured for the strain of the crushed magnet powder was 0.074 deg. Furthermore, the cumulative volume percentage of particles less than 1 μm by laser diffraction particle size distribution measurement was 7.5%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.80cm/秒で、射出成形性は良好であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.80 cm. The injection moldability was good at 3 / sec.

(実施例5)
工程4の解砕処理で、解砕処理装置をボールミルから媒体撹拌ミルに変更し、粉末1kg、イソプロピルアルコール2kg、SUJ2ボール(4mm)10kgを入れた容器で、周速100rpm、35分間解砕することに変えた以外は全て実施例1と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Example 5)
In the pulverization process of Step 4, the pulverization apparatus is changed from a ball mill to a medium agitation mill, and pulverized in a container containing 1 kg of powder, 2 kg of isopropyl alcohol and 10 kg of SUJ2 balls (4 mm) for 35 minutes at a peripheral speed of 100 rpm. Except for the change, the treatment was performed in the same manner as in Example 1 to obtain Sm-Fe-N fine powder.

磁気特性を評価した結果、保磁力(iHc)は1045kA/mと高特性が得られた。   As a result of evaluating the magnetic characteristics, the coercive force (iHc) was as high as 1045 kA / m.

また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.093deg.であり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は9.6%であった。 Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.093 deg. Further, the cumulative volume percentage of particles less than 1 μm by laser diffraction particle size distribution measurement was 9.6%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.53cm/秒で、射出成形性は良好であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.53 cm. The injection moldability was good at 3 / sec.

(比較例1)
工程4の解砕処理工程において、媒体のボール径を実施例1の4mmから6mmに、解砕処理時間を45分から40分に変えた以外は全て実施例1と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Comparative Example 1)
In the crushing treatment step of Step 4, all the treatments were performed in the same manner as in Example 1 except that the ball diameter of the medium was changed from 4 mm of Example 1 to 6 mm and the crushing treatment time was changed from 45 minutes to 40 minutes. -Fe-N fine powder was obtained.

磁気特性を評価した結果、保磁力(iHc)は901kA/mと実施例1に比較して大幅に低下した。また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.120deg.と実施例1に比較してブロードになり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は16.5%と大幅に増加した。   As a result of evaluating the magnetic characteristics, the coercive force (iHc) was 901 kA / m, which was significantly lower than that of Example 1. Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.120 deg. In comparison with Example 1, the particle volume distribution was broader, and the cumulative volume percentage of particles less than 1 μm by laser diffraction particle size distribution measurement was greatly increased to 16.5%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.21cm/秒まで低下し、射出成形性も不良であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.21 cm. It decreased to 3 / second and the injection moldability was poor.

(比較例2)
工程4の解砕処理条件の解砕処理時間を実施例3の20分から45分に延長し、回転周波数を30Hzから25Hzに変えた以外は全て実施例3と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Comparative Example 2)
Except that the crushing time of the crushing treatment conditions in Step 4 was extended from 20 minutes to 45 minutes in Example 3 and the rotation frequency was changed from 30 Hz to 25 Hz, all the treatments were carried out in the same manner as in Example 3, and Sm- Fe-N fine powder was obtained.

磁気特性を評価した結果、保磁力(iHc)は925kA/mと実施例3に比較して大幅に低下した。また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.118deg.と実施例3に比較してブロードになり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は9.5%と大幅に増加した。   As a result of evaluating the magnetic properties, the coercive force (iHc) was 925 kA / m, which was significantly lower than that of Example 3. Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.118 deg. In comparison with Example 3, the particle volume distribution was broader, and the cumulative volume percentage of particles less than 1 μm by laser diffraction particle size distribution measurement was significantly increased to 9.5%.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.57cm/秒まで低下したが、射出成形性は良好であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.57 cm. Although it decreased to 3 / sec, the injection moldability was good.

(比較例3)
工程4の解砕処理条件の、媒体の窒化ケイ素ボール径を実施例3の3mmから2mmに変更し、また解砕処理時間を20分から30分に変えた以外は全て実施例3と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Comparative Example 3)
Except that the silicon nitride ball diameter of the medium in the crushing treatment condition of step 4 was changed from 3 mm of Example 3 to 2 mm, and the crushing treatment time was changed from 20 minutes to 30 minutes, all the same as in Example 3. The treatment was performed to obtain Sm—Fe—N fine powder.

磁気特性を評価した結果、保磁力(iHc)は1117kA/mと実施例3と同等の高特性が得られた。また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.092deg.であったが、レーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は18.7%と微粒子が大幅に増加した。   As a result of evaluating the magnetic characteristics, the coercive force (iHc) was 1117 kA / m, which was as high as that of Example 3. Further, the half width of the (113) plane by XRD measured for the strain of the crushed magnet powder was 0.092 deg. However, the cumulative volume percentage of particles less than 1 μm by laser diffraction type particle size distribution measurement was 18.7%, and the number of fine particles increased significantly.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.13cm/秒と実施例3に比較して大幅に悪化し、射出成形性も不良であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.13 cm. 3 / sec, which was significantly worse than Example 3, and the injection moldability was also poor.

(比較例4)
工程4の解砕処理条件の、媒体撹拌ミルのSUJ2ボールのボール径を実施例5の4mmから6mmに変更し、解砕処理時間を30分から25分に変えた以外は全て実施例5と同様にして処理を行い、Sm−Fe−N微粉末を得た。
(Comparative Example 4)
All the same as Example 5 except that the diameter of the SUJ2 ball of the medium agitating mill in Step 4 was changed from 4 mm to 6 mm in Example 5 and the crushing time was changed from 30 minutes to 25 minutes. The treatment was carried out to obtain Sm—Fe—N fine powder.

磁気特性を評価した結果、保磁力(iHc)は853kA/mと実施例5と比較して大幅に低下した。また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.135deg.と実施例5と比較してブロードであり、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率は20.1%と大幅に微粒子が増加した。   As a result of evaluating the magnetic characteristics, the coercive force (iHc) was 853 kA / m, which was significantly lower than that of Example 5. Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.135 deg. In comparison with Example 5, the cumulative volume percentage of particles less than 1 μm by laser diffraction type particle size distribution measurement was 20.1%, and the number of fine particles increased significantly.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.09cm/秒と実施例5に比較して大幅に悪化しで、射出成形性も不良であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.09 cm. 3 / sec, which was significantly worse than Example 5, and the injection moldability was also poor.

(比較例5)
出発原料粉末として、平均粒子径が40μmの鉄粉末10.97gと、平均粒子径が2.8μmの酸化サマリウムSm粉末(純度99.5%)5.03gを秤量し、乾式混合機で混合後、粒度4メッシュ(タイラーメッシュ)以下の金属カルシウム粒(純度99%)3.6gと、コンデショニングミキサー(MX−201:シンキー製)で30秒間混合した。
(Comparative Example 5)
As a starting material powder, 10.97 g of iron powder having an average particle diameter of 40 μm and 5.03 g of samarium oxide Sm 2 O 3 powder (purity 99.5%) having an average particle diameter of 2.8 μm are weighed and dried. After mixing, 3.6 g of metal calcium particles (purity 99%) having a particle size of 4 mesh (Tyler mesh) or less were mixed for 30 seconds with a conditioning mixer (MX-201: manufactured by Sinky).

これをステンレススチール反応容器に挿入し、容器内をロータリーポンプで真空引きしてArガス置換した後、Arガスを流しながら850℃まで昇温し10時間保持後、さらに1050℃まで昇温し1時間保持し還元熱処理した後250℃まで炉内でArガスを流通しながら冷却した。次に、Arガスをアンモニア分圧が0.50のアンモニア−水素混合ガスに切り替えて昇温し、420℃で140分保持し、その後、同温度で水素ガスに切り替えて30分保持し、さらに窒素ガスに切り替えて30分保持し冷却した。   This was inserted into a stainless steel reaction vessel, and the inside of the vessel was evacuated with a rotary pump to replace Ar gas. Then, while flowing Ar gas, the temperature was raised to 850 ° C., held for 10 hours, and further raised to 1050 ° C. After holding for a time and carrying out a reduction heat treatment, it was cooled to 250 ° C. while circulating Ar gas in the furnace. Next, the Ar gas is switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.50 and the temperature is raised, held at 420 ° C. for 140 minutes, then switched to hydrogen gas at the same temperature and held for 30 minutes, It switched to nitrogen gas, hold | maintained for 30 minutes, and cooled.

取り出した多孔質塊状の反応生成物を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、水酸化Ca懸濁物をデカンテーションによって分離し、純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返し、Sm−Fe−N合金粉末スラリーを得た。   The taken porous mass reaction product was immediately poured into pure water, and collapsed to obtain a slurry. From this slurry, the Ca hydroxide suspension was separated by decantation, the operation of stirring pure water for 1 minute after pouring and then decanting was repeated 5 times to obtain an Sm—Fe—N alloy powder slurry.

得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。その後純水で6回掛水洗浄し、さらにイソプロピルアルコールで溶媒置換した後合金粉末をろ過し、150℃で真空乾燥することによって、1次粒子および1次粒子同士が焼結した2次粒子からなる平均粒子径21μmのSm−Fe−N粗粉末を得た。   While stirring the obtained alloy powder slurry, dilute acetic acid was added dropwise, and the pH was maintained at pH 5.0 for 7 minutes. After washing with water 6 times with pure water and further solvent substitution with isopropyl alcohol, the alloy powder is filtered and vacuum-dried at 150 ° C., whereby primary particles and secondary particles obtained by sintering the primary particles are sintered. Sm—Fe—N coarse powder having an average particle diameter of 21 μm was obtained.

ビーズミルを用い、粉末1kg、イソプロピルアルコール2kg、窒化ケイ素ボール(3mm)220gを入れた容器で、回転周波数30Hz、120分間解砕し、リン酸による表面処理後、常温真空乾燥してSm−Fe−N微粉末を得た。   Using a bead mill, in a container containing 1 kg of powder, 2 kg of isopropyl alcohol, and 220 g of silicon nitride balls (3 mm), the powder was crushed for 120 minutes at a rotational frequency of 30 Hz, surface-treated with phosphoric acid, and vacuum-dried at room temperature and then Sm-Fe- N fine powder was obtained.

磁気特性を評価した結果、保磁力(iHc)は877kA/mと実施例3に比較して大幅に低い保持力であった。また、この解砕した磁石粉末の歪みについて測定したXRDによる(113)面の半値幅は0.124deg.で実施例3と比較してブロードで、さらにレーザー回折型粒度分布測定による1μm未満の粒子の累積体積百分率も17.3%と微粒子が大幅に増加していた。 As a result of evaluating the magnetic properties, the coercive force (iHc) was 877 kA / m, which was significantly lower than that of Example 3. Further, the half width of the (113) plane by XRD measured for strain of the crushed magnet powder was 0.124 deg. In comparison with Example 3, it was broader, and the cumulative volume percentage of particles of less than 1 μm by laser diffraction type particle size distribution measurement was 17.3%, and the fine particles were greatly increased.

次に磁粉体積率が60%となるように、ナイロン12を添加し、ラボプラストミルで混練を行った後、230℃にて射出成形してボンド磁石を作製したところ、流動性は0.15cm/秒と実施例3と比較して大幅に悪化し、射出成形性も不良であった。 Next, nylon 12 was added so that the magnetic powder volume ratio was 60%, kneaded with a lab plast mill, and then injection molded at 230 ° C. to produce a bonded magnet. The fluidity was 0.15 cm. 3 / sec, which was significantly worse than Example 3, and the injection moldability was also poor.

上記したように、実施例1〜5では、ボールミル、ビーズミル、媒体撹拌ミルそれぞれにおいて解砕条件を適正に調整することで、微粉の発生を抑え、且つ結晶歪みを抑える事により、高い保磁力(iHc)が得られ、この粉末を使用した成形体の良好な流動性及び射出成形性を達成している。 As described above, in Examples 1 to 5, by appropriately adjusting the crushing conditions in each of the ball mill, the bead mill, and the medium agitation mill, by suppressing the generation of fine powder and suppressing the crystal distortion, a high coercive force ( iHc) is obtained, and good flowability and injection moldability of a molded body using this powder are achieved.

なお、本発明の条件から外れた比較例1〜5では、作製した成形体において流動性、射出成型性を両立することができないことがわかる。 In addition, in Comparative Examples 1-5 which deviated from the conditions of this invention, it turns out that fluidity | liquidity and injection moldability cannot be made compatible in the produced molded object.

比較例1と4では、媒体ボール径を6mmと大きくすることで同じ平均粒子径を狙っても、結晶歪みが大きく、解砕から粉砕に移行する位力がかかり微粉量の増加が起きるため、保磁力、流動性、射出成形性が全て低下している。 In Comparative Examples 1 and 4, even if the same average particle diameter is aimed at by increasing the medium ball diameter to 6 mm, the crystal distortion is large, and the amount of fine powder increases due to the potential to shift from crushing to pulverization. The coercive force, fluidity, and injection moldability are all reduced.

比較例2では、周速を下げることで衝撃を緩和し、時間をかけて解砕をするようにしたため、結晶歪みは最終的に大きくなったが、微粉量は抑えることが出来ている。そのため、保磁力は低くなったが流動性と射出成形性は良好である。 In Comparative Example 2, since the impact was eased by lowering the peripheral speed and the powder was crushed over time, the crystal distortion finally increased, but the amount of fine powder could be suppressed. Therefore, the coercive force is low, but the fluidity and injection moldability are good.

比較例3では、媒体ボール径を2mmと小さくし解砕をしたためかかる力は弱まり結晶歪みは小さくなったが、微粉量は媒体が小さくなったため増える方向に進み保磁力は高いが、流動性と射出成形性は不良である。 In Comparative Example 3, since the media ball diameter was reduced to 2 mm and crushed, the applied force was weakened and the crystal distortion was reduced. However, the amount of fine powder increased in the direction of the media and increased in coercive force. Injection moldability is poor.

比較例5では、製造過程を大きく変え大粒径から出発したため、Sm−Fe−N粗粉末の粒径が21μmと大きく、多結晶の二次粒子ではなく単一粒子からなる粉末であり、弱い力では壊れにくい。そのため、同じ条件で粉砕するにも時間を多く必要とし、結晶歪みが大きくかつ微粉量も多くなり、保磁力、流動性、射出成形性全てが低下している。
In Comparative Example 5, since the manufacturing process was changed greatly and started from a large particle size, the particle size of the Sm—Fe—N coarse powder was as large as 21 μm, and it was a powder composed of single particles instead of polycrystalline secondary particles, and was weak. Hard to break with force. Therefore, it takes a lot of time to grind under the same conditions, the crystal distortion is large and the amount of fine powder is increased, and the coercive force, fluidity and injection moldability are all lowered.

Claims (5)

希土類−鉄−窒素系磁石用粉末の製造方法であって、
以下の工程1乃至工程4を含むことを特徴とする希土類−鉄−窒素系合金粉末の製造方法。
工程1.希土類酸化物粉末と鉄粉末との混合物、もしくは、該混合物に希土類鉄複合酸化物、酸化鉄から選ばれる少なくとも一種をさらに含む混合物、を出発原料として調製する工程。
工程2.前記工程1で得られた混合物に金属カルシウムを所定量加え不活性ガス中にて還元拡散処理する工程。
工程3.工程2に引き続き、アンモニアと水素との混合ガスを供給し、この気流中で還元拡散処理物を所定の温度で窒化処理する工程。
工程4.前記工程3で得られた窒化処理物を水中に投入して湿式処理し崩壊させ磁石粗粉末として回収し、得られた磁石粗粉末を解砕処理し、解砕処理後の粉末X線回折による(113)面の半値幅が0.1deg.未満であり、かつレーザー回折型粒径分布測定による1μm未満の微粒子の累積体積百分率が10%未満である解砕処理粉末を得る。
A method for producing a rare earth-iron-nitrogen magnet powder,
A method for producing a rare earth-iron-nitrogen based alloy powder comprising the following steps 1 to 4.
Step 1. A step of preparing, as a starting material, a mixture of rare earth oxide powder and iron powder, or a mixture further containing at least one selected from rare earth iron composite oxide and iron oxide.
Step 2. A step of adding a predetermined amount of calcium metal to the mixture obtained in the step 1 and subjecting the mixture to a reduction diffusion treatment in an inert gas.
Step 3. Following the step 2, a step of supplying a mixed gas of ammonia and hydrogen and nitriding the reduced diffusion treatment product at a predetermined temperature in this air stream.
Step 4. The nitrided product obtained in Step 3 is put into water, wet-treated and disintegrated, and recovered as a magnet coarse powder. The obtained magnet coarse powder is crushed and subjected to powder X-ray diffraction after the pulverization treatment. (113) The half width of the surface is 0.1 deg. And a pulverized powder having a cumulative volume percentage of fine particles of less than 1 μm by laser diffraction type particle size distribution measurement of less than 10%.
前記工程1の鉄粉末、希土類鉄複合酸化物、酸化鉄の平均粒子径は3μm以下であることを特徴とする請求項1に記載の希土類―鉄―窒素系磁石粉末の製造方法。 2. The method for producing a rare earth-iron-nitrogen based magnet powder according to claim 1, wherein the average particle size of the iron powder, rare earth iron composite oxide, and iron oxide in Step 1 is 3 μm or less. 前記工程2の金属カルシウムは、平均粒子径が4メッシュ以下であり、酸化物を全て還元するのに必要となる金属カルシウム量を1当量としたときに、1.5当量以上3.0当量以下であることを特徴とする請求項1記載の希土類−鉄−窒素系磁石粉末の製造方法。 The metal calcium in the step 2 has an average particle diameter of 4 mesh or less, and 1.5 equivalents or more and 3.0 equivalents or less when the amount of metal calcium required to reduce all oxides is 1 equivalent. The method for producing a rare earth-iron-nitrogen based magnet powder according to claim 1. 前記工程4の解砕処理は、媒体である粉砕用ボールを使用する湿式解砕処理であることを特徴とする請求項1記載の希土類−鉄−窒素系磁石粉末の製造方法。 The method for producing a rare earth-iron-nitrogen based magnet powder according to claim 1, wherein the crushing treatment in the step 4 is a wet crushing treatment using a grinding ball as a medium. 前記合金粉末がSm−Fe−Nであることを特徴とする請求項1記載の希土類―鉄―窒素系合金粉末の製造方法。





The method for producing a rare earth-iron-nitrogen based alloy powder according to claim 1, wherein the alloy powder is Sm-Fe-N.





JP2016113257A 2016-06-07 2016-06-07 Production method of rare earth-iron-nitrogen system alloy powder Pending JP2017218623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016113257A JP2017218623A (en) 2016-06-07 2016-06-07 Production method of rare earth-iron-nitrogen system alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016113257A JP2017218623A (en) 2016-06-07 2016-06-07 Production method of rare earth-iron-nitrogen system alloy powder

Publications (1)

Publication Number Publication Date
JP2017218623A true JP2017218623A (en) 2017-12-14

Family

ID=60657369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016113257A Pending JP2017218623A (en) 2016-06-07 2016-06-07 Production method of rare earth-iron-nitrogen system alloy powder

Country Status (1)

Country Link
JP (1) JP2017218623A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648907A (en) * 2018-05-14 2018-10-12 广州新莱福磁电有限公司 A method of preparing anisotropy SmFeN permanent-magnet alloy powders
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same
CN113053608A (en) * 2019-12-26 2021-06-29 国立大学法人东北大学 Rare earth iron-nitrogen-based magnetic powder, composite for bonded magnet, and method for producing rare earth iron-nitrogen-based magnetic powder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108648907A (en) * 2018-05-14 2018-10-12 广州新莱福磁电有限公司 A method of preparing anisotropy SmFeN permanent-magnet alloy powders
JP2020045544A (en) * 2018-09-21 2020-03-26 住友金属鉱山株式会社 Polycrystal rare earth transition metal alloy powder and method for producing the same
CN110935873A (en) * 2018-09-21 2020-03-31 住友金属矿山株式会社 Polycrystalline rare earth transition metal alloy powder and method for producing same
JP7187920B2 (en) 2018-09-21 2022-12-13 住友金属鉱山株式会社 Polycrystalline rare earth transition metal alloy powder and method for producing the same
CN110935873B (en) * 2018-09-21 2023-08-11 住友金属矿山株式会社 Polycrystalline rare earth transition metal alloy powder and method for producing same
CN113053608A (en) * 2019-12-26 2021-06-29 国立大学法人东北大学 Rare earth iron-nitrogen-based magnetic powder, composite for bonded magnet, and method for producing rare earth iron-nitrogen-based magnetic powder

Similar Documents

Publication Publication Date Title
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP6947490B2 (en) Ferrite powder for bonded magnets, their manufacturing methods, and ferrite-based bonded magnets
JP6980207B2 (en) Rare earth iron nitrogen-based magnetic powder and its manufacturing method
JP7364158B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP5974975B2 (en) Rare earth-transition metal-nitrogen based magnet fine powder and method for producing the same
JP2017218623A (en) Production method of rare earth-iron-nitrogen system alloy powder
JP6146269B2 (en) Method for producing rare earth-transition metal-nitrogen based magnet powder
JP2022177699A (en) Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder
JP6555197B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
JP7385868B2 (en) Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder
JP4241461B2 (en) Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same
JP4814856B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2007327101A (en) Method for producing rare earth-iron-nitrogen based magnet fine powder
WO2018101409A1 (en) Rare-earth sintered magnet
JP4696798B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2018014341A (en) Method for producing rare earth-iron-nitrogen based magnet powder for bonded magnet
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP7006156B2 (en) Rare earth-iron-nitrogen magnet powder manufacturing method
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP2012089774A (en) Rare earth-transition metal-nitrogen magnet powder, method and apparatus for producing the same, composition for bond magnet using the same and bond magnet
JP2016037611A (en) Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder
JPH0845718A (en) Magnetic material and its manufacture