JP5609783B2 - Method for producing rare earth-transition metal alloy powder - Google Patents
Method for producing rare earth-transition metal alloy powder Download PDFInfo
- Publication number
- JP5609783B2 JP5609783B2 JP2011136941A JP2011136941A JP5609783B2 JP 5609783 B2 JP5609783 B2 JP 5609783B2 JP 2011136941 A JP2011136941 A JP 2011136941A JP 2011136941 A JP2011136941 A JP 2011136941A JP 5609783 B2 JP5609783 B2 JP 5609783B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- powder
- transition metal
- metal alloy
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末の製造方法に関するものである。 The present invention relates to a method for producing a rare earth-transition metal alloy powder capable of improving the squareness of the demagnetization curve of the rare earth-transition metal alloy powder obtained by the reduction diffusion method and enhancing the permanent magnet performance. .
近年のさまざまな電気機器類、例えば携帯電話やデジタルカメラ、デジタルビデオなどほとんどの家電製品などにおいて、小型化、軽量化、高性能化が要求されており、その要求は高まるばかりである。このような小型化、軽量化を実現するためには、上記家電製品に用いられている永久磁石の小型化、高特性化が重要な課題の一つとなっている。さらに、上記家電製品では、コスト競争も激しさを増しており、用いられる永久磁石に要求される事項として、軽量化、高特性化に、さらに価格(安価)が加えられるようになってきている。
永久磁石材料として、価格面では従来から使われているフェライト磁石が最も有利であるが、最大エネルギー積(BH)maxが15〜20kJ・m−3(数MGOe)と非常に低く、軽量化、高特性化の要求には到底応えきれていない。特性面では、フェライト磁石などの低特性磁石に比較し数10倍の磁気特性を有する希土類磁石が知られている。該希土類磁石も上記背景のもと重要が伸びており、1993年にはフェライト磁石を抜いて使用量が最も多い磁石となっている。このうちNd−Fe−B系焼結磁石は、440kJ・m−3(55MGOe)を超える最大エネルギー積(BH)maxを有し、希土類磁石の中でも最も需要が高い。
Various electric appliances in recent years, for example, most home electric appliances such as mobile phones, digital cameras, and digital videos, are required to be smaller, lighter, and have higher performance, and the demand is increasing. In order to achieve such a reduction in size and weight, one of the important issues is to reduce the size and improve the characteristics of the permanent magnets used in the home appliances. Furthermore, in the above-mentioned home appliances, the cost competition is intensifying, and as a matter required for the permanent magnets to be used, further price (low price) is added to weight reduction and high performance. .
As a permanent magnet material, a ferrite magnet that has been conventionally used is the most advantageous in terms of price, but the maximum energy product (BH) max is as low as 15 to 20 kJ · m −3 (several MGOe), and the weight is reduced. The demand for higher performance has not been fully met. In terms of characteristics, rare earth magnets having a magnetic property several tens of times greater than that of low-character magnets such as ferrite magnets are known. The rare earth magnets are also gaining importance based on the above background, and in 1993, the magnets were the most used by removing the ferrite magnets. Among these, the Nd—Fe—B based sintered magnet has a maximum energy product (BH) max exceeding 440 kJ · m −3 (55 MGOe), and is most in demand among rare earth magnets.
ただし、Nd−Fe−B系焼結磁石は、高性能なボンド磁石用とするには結晶粒を微細化する必要があり、スタンプミルで粗粉砕し、さらに振動ボールミルで微粉砕することが行われている。また、HDDR法(Hydrogenation‐Decomposition‐Desorption‐Recombination)と呼ばれる、希土類−遷移金属系合金への水素の吸収・放出反応を利用して、結晶粒を微細化する技術が知られている。たとえば希土類−遷移金属系合金として、溶解鋳造法で製造されたNd2Fe14B系金属間化合物にHDDR法を適用することによって、微細な再結晶組織を有する高性能なボンド磁石用粉末を得ることが提案されている(例えば、非特許文献1、特許文献1,2)。 However, Nd-Fe-B sintered magnets need to have finer crystal grains to be used for high-performance bonded magnets, and are roughly pulverized with a stamp mill and further pulverized with a vibration ball mill. It has been broken. In addition, a technique known as HDDR method (Hydrogenation-Decomposition-Desorption-Recombination) for refining crystal grains by utilizing hydrogen absorption / release reaction to rare earth-transition metal alloys is known. For example, as a rare earth-transition metal alloy, by applying the HDDR method to an Nd 2 Fe 14 B intermetallic compound produced by a melt casting method, a high-performance bonded magnet powder having a fine recrystallized structure is obtained. (For example, Non-Patent Document 1, Patent Documents 1 and 2).
具体的な粉末の製造方法を例示すると、特許文献1の実施例1では、まず高周波溶解炉で溶解鋳造したNd15Fe77B8を主成分とするNd2Fe14B相の平均結晶粒径が110μmの希土類合金インゴットを、スタンプミルで粗粉砕し、さらに振動ボールミルで平均3.7μmの微粉末を作製し、原料合金としている。この微粉末を熱処理炉に入れ、1atmの水素ガスを流入しながら850°Cに昇温し、850°Cになった時点で、この温度を保ちながら30分排気して炉内雰囲気を1.0×10−5Torrの真空とし、炉内をアルゴンガス置換してから急冷し回収するものである。このようにして得られた平均粒度5.6μmの粉末は11.5kOeと極めて高い保磁力を有するとされている。 To illustrate a specific powder production method, in Example 1 of Patent Document 1, first, the average crystal grain size of the Nd 2 Fe 14 B phase mainly composed of Nd 15 Fe 77 B 8 melted and cast in a high-frequency melting furnace. Is roughly pulverized with a stamp mill, and a fine powder with an average of 3.7 μm is produced with a vibration ball mill to form a raw material alloy. This fine powder was put into a heat treatment furnace, heated to 850 ° C. while flowing 1 atm of hydrogen gas, and when the temperature reached 850 ° C., it was evacuated for 30 minutes while maintaining this temperature. A vacuum of 0 × 10 −5 Torr is set, and the inside of the furnace is purged with argon gas, and then rapidly cooled and recovered. The powder having an average particle size of 5.6 μm thus obtained is said to have a very high coercive force of 11.5 kOe.
また特許文献2の実施例1を例示すれば、プラズマアーク炉で溶解鋳造したNd12.1Fe60.6Co20.0B5.7Ba1.6組成の合金インゴットをアルゴンガス雰囲気中1100°Cで20時間均質化熱処理し、アルゴンガス雰囲気中で35〜40mmまで機械的粉砕し、これを1.3kgf/cm2に加圧した水素ガス雰囲気炉に入れ、250°Cで1時間保持し水素を吸蔵させ、次いで0.5Torrの真空雰囲気になるまで脱水素して粗粒子集合体としたものを原料合金としている。そして、この合金を水素雰囲気中で800°Cに加熱し、1.3kgf/cm2の圧力で5時間保持し、次いで800°Cで1時間かけて1.0×10−5Torrの真空雰囲気になるまで脱水素処理し、その後1.2kgf/cm2のアルゴンガスで10分かけて常温まで急冷するものである。回収された粉末集合体を解砕し、平均粒径74〜105μmにした粉末は34MGOeの最大エネルギー積を有している。
このようなプロセスでは、原料合金の表面酸化層を極力低減する必要がある。粉末表面が酸化していると、水素の吸収によって金属組織が分解不均化する度合いがばらつき、水素放出反応後に得られる再結晶化組織の結晶粒径がまちまちで、減磁曲線の角形性が低下するからである。
Further, in Example 1 of Patent Document 2, an alloy ingot having a composition of Nd 12.1 Fe 60.6 Co 20.0 B 5.7 Ba 1.6 melt-cast in a plasma arc furnace in an argon gas atmosphere 1100 Homogenized heat treatment at ° C for 20 hours, mechanically pulverized to 35 to 40 mm in an argon gas atmosphere, placed in a hydrogen gas atmosphere furnace pressurized to 1.3 kgf / cm 2 and held at 250 ° C for 1 hour Hydrogen is occluded and then dehydrogenated to a vacuum atmosphere of 0.5 Torr to obtain a coarse particle aggregate is used as a raw material alloy. The alloy was heated to 800 ° C. in a hydrogen atmosphere, held at a pressure of 1.3 kgf / cm 2 for 5 hours, and then at a vacuum atmosphere of 1.0 × 10 −5 Torr over 1 hour at 800 ° C. Then, dehydrogenation treatment is performed, and thereafter, it is rapidly cooled to room temperature with 1.2 kgf / cm 2 of argon gas over 10 minutes. The recovered powder aggregate is pulverized to have an average particle size of 74 to 105 μm, and has a maximum energy product of 34 MGOe.
In such a process, it is necessary to reduce the surface oxide layer of the raw material alloy as much as possible. When the powder surface is oxidized, the degree of decomposition and disproportionation of the metal structure varies due to the absorption of hydrogen, the crystal grain size of the recrystallized structure obtained after the hydrogen release reaction varies, and the squareness of the demagnetization curve is It is because it falls.
ところで希土類−遷移金属系合金の製造法として、上述した溶解鋳造するプロセスとは別に、希土類酸化物粉末と遷移金属粉末との混合物にアルカリ金属、アルカリ土類金属及びこれらの水素化物から選ばれる少なくとも1種とを希土類酸化物の還元剤として加えて850〜1200°Cに加熱熱処理する還元拡散法が知られている(たとえば特許文献3)。
還元剤として代表的なものは金属Caである。金属Caは834°Cで溶融し周りの希土類酸化物を還元、還元された希土類金属が遷移金属粉末表面から拡散し金属間化合物を形成するものである。形成される金属間化合物は、熱処理条件に影響されるが、概ね遷移金属粉末程度の大きさの粒子となっている。このとき希土類酸化物の還元に伴い酸化カルシウムが副生し、反応生成物は、希土類―遷移金属系合金粒子と酸化カルシウム粒子とからなる多孔質焼結体となっている。これを水中に投入すると、酸化カルシウムは水酸化カルシウムとなって崩壊し、希土類−遷移金属系合金粉末のスラリとなる。スラリを攪拌し静置すると比重の大きな合金粉末は速やかに沈降し水酸化カルシウムは上澄みに浮遊する。デカンテーションの繰り返しによって上澄みの水酸化カルシウムを除去する湿式処理を行った後、乾燥することで、目的の希土類−遷移金属系合金が粉末として製造される。溶解鋳造法では合金を粉末化するために機械的な粉砕が必要であるのに対して、還元拡散法は、直接粒度の揃った粉末が得られることから、低コストで省エネルギーの特徴を有するプロセスである。
By the way, as a method for producing a rare earth-transition metal alloy, apart from the above-described process of melting and casting, at least a mixture of rare earth oxide powder and transition metal powder is selected from alkali metals, alkaline earth metals and hydrides thereof. There is known a reduction diffusion method in which one kind is added as a reducing agent for a rare earth oxide and heated to 850 to 1200 ° C. (for example, Patent Document 3).
A typical reducing agent is metallic Ca. Metal Ca melts at 834 ° C. to reduce the surrounding rare earth oxide, and the reduced rare earth metal diffuses from the surface of the transition metal powder to form an intermetallic compound. Although the formed intermetallic compound is influenced by the heat treatment conditions, the particles are approximately the size of a transition metal powder. At this time, calcium oxide is by-produced with the reduction of the rare earth oxide, and the reaction product is a porous sintered body composed of rare earth-transition metal alloy particles and calcium oxide particles. When this is put into water, the calcium oxide is disintegrated as calcium hydroxide and becomes a slurry of rare earth-transition metal alloy powder. When the slurry is stirred and allowed to stand, the alloy powder having a large specific gravity quickly settles and the calcium hydroxide floats in the supernatant. The target rare earth-transition metal alloy is produced as a powder by performing a wet treatment to remove the supernatant calcium hydroxide by repeated decantation and then drying. The melt casting method requires mechanical pulverization to pulverize the alloy, while the reduction diffusion method provides a powder with a uniform particle size, which is a low-cost and energy-saving process. It is.
還元拡散法による合金製造は、上記のように熱処理によって得られた反応生成物を、湿式処理することでカルシウム成分を除去し、乾燥することで完結する。換言すれば、還元拡散法は、熱処理と湿式処理が1セットである粉末状希土類−遷移金属系合金の製造法である。この還元拡散法で製造された原料合金粉末にHDDR法を適用する例として、特許文献4,5が挙げられる。
この特許文献5には、平均粒度1μm〜10μmの少なくとも1種の希土類酸化物粉末、平均粒度1μm〜150μmの少なくとも1種のB粉末および/あるいはB合金粉末、ならびに平均粒度200μm〜400μmのFe粉末を、R12at%〜20at%、B4at%〜20at%、Fe65at%〜81at%を主成分とする磁石組成になる如く配合混合後、Ca還元拡散法にて磁石粉末を得た後、前記粉末を水素化処理して、R2Fe14B相を主相とする粒子径が200μm〜400μmの特定の結晶方位を有した単一粒子を主体とし、残部は粒子径が250μm〜500μmの特定の結晶方位を有した単一粒子の凝集した粒子からなる粉末を得る異方性ボンド磁石用原料粉末の製造方法が記載されている。これにより、凝集粒子が少なくそれを粉砕する必要がなく、また、酸化し難く、ボンド磁石化工程での成形性が良好で高密度化でき、高磁気特性が得られる異方性ボンド磁石用原料粉末を得ることができる。
The alloy production by the reduction diffusion method is completed by removing the calcium component by wet-treating the reaction product obtained by the heat treatment as described above and drying it. In other words, the reduction diffusion method is a method for producing a powdered rare earth-transition metal alloy in which heat treatment and wet treatment are one set. Patent Documents 4 and 5 are examples of applying the HDDR method to the raw material alloy powder produced by the reduction diffusion method.
Patent Document 5 discloses at least one rare earth oxide powder having an average particle size of 1 μm to 10 μm, at least one B powder and / or B alloy powder having an average particle size of 1 μm to 150 μm, and Fe powder having an average particle size of 200 μm to 400 μm. Are mixed and mixed so as to have a magnet composition mainly composed of R12 at% to 20 at%, B4 at% to 20 at%, Fe65 at% to 81 at%, and then magnet powder is obtained by a Ca reduction diffusion method. The main component is a single particle having a specific crystal orientation of 200 μm to 400 μm with a R 2 Fe 14 B phase as the main phase, and the remainder is a specific crystal orientation with a particle size of 250 μm to 500 μm A method for producing a raw material powder for anisotropic bonded magnets for obtaining a powder composed of agglomerated single particles having a particle is described. As a result, the material for anisotropic bonded magnets has few agglomerated particles, does not need to be pulverized, is hardly oxidized, has good formability in the bonded magnetizing process, can be densified, and has high magnetic properties. A powder can be obtained.
また、本出願人は、希土類酸化物粉末、遷移金属粉末、その他の原料粉末を秤量して混合し、さらに前記希土類酸化物粉末を還元するのに十分な還元剤を添加混合し、該混合物を酸素が実質的に存在しない雰囲気中で還元剤が溶融する温度以上でかつ所望の合金が溶解しない温度まで昇温保持することにより焼成を行い、前記希土類酸化物を希土類金属に還元した後、これを前記遷移金属粉末に拡散させて所望の合金とし、室温まで冷却した後得られた焼成物を水中に投入して残留還元剤および生成した酸化還元剤を溶解させ、撹拌とデカンテーションを繰り返し行って水洗し、沈殿した合金粉末を分離回収し、乾燥することにより所望の希土類、遷移金属を含む合金粉末を製造する方法において、前記焼成後に焼成物を水素処理することを特徴とする希土類、遷移金属を含む合金粉末の還元拡散法による製造方法を提案した(特許文献6)。
これにより、焼成物の水中崩壊性を向上させることによって粉砕工程を省略し、これによって製品の収率を向上させるとともに品質の高い合金製品を得ることができるようになった。
しかしながら本発明者の検討によれば、これらの公知文献で提案されている方法で作製した合金粉末では、減磁曲線の角形性Hkを高めにくい問題があった。
In addition, the present applicant weighs and mixes rare earth oxide powder, transition metal powder, and other raw material powders, and further adds and mixes a reducing agent sufficient to reduce the rare earth oxide powder. After heating and reducing the rare earth oxide to a rare earth metal by firing at a temperature not lower than the temperature at which the reducing agent melts in an atmosphere in which oxygen is substantially absent and not melting the desired alloy, Is diffused into the transition metal powder to obtain a desired alloy, and the fired product obtained after cooling to room temperature is poured into water to dissolve the residual reducing agent and the generated redox agent, and stirring and decantation are repeated. In the method of producing the alloy powder containing the desired rare earth and transition metal by separating and recovering the precipitated alloy powder and drying, the fired product is hydrotreated after the firing. Rare earth and symptoms was proposed a manufacturing method by reduction diffusion method of the alloy powder containing a transition metal (Patent Document 6).
Thereby, the pulverization step is omitted by improving the disintegration property of the fired product in water, thereby improving the yield of the product and obtaining a high quality alloy product.
However, according to the study by the present inventor, the alloy powder produced by the method proposed in these known documents has a problem that it is difficult to increase the squareness Hk of the demagnetization curve.
そこで、本出願人は、希土類酸化物粉末と鉄及びマンガンを必須成分として含有する遷移金属粉末とから還元拡散法によって得られる母合金粉末を窒化して優れた耐酸化性と高磁気特性を有する希土類−鉄−マンガン−窒素系磁石粉末を製造するために、窒化後に形成される希土類−鉄−マンガン−窒素系磁石粉末を、解砕後の磁石粉末の結晶歪(積分幅)が0.09deg.以下にするに十分な程度にまで解砕し、その後、引き続いて分級し、粒径20μm未満の磁石粉末を17重量%以下にすることを提案している(特許文献7)。
これにより、優れた耐酸化性、高磁気特性を発揮し、特に減磁曲線の角形性が大きく高残留磁束密度を有する希土類−鉄−マンガン−窒素系磁石粉末を得ることができるようになった。しかしながら、その角形性はまだ200〜300kA/mであり十分とはいえなかった。
Therefore, the present applicant has excellent oxidation resistance and high magnetic properties by nitriding a mother alloy powder obtained by a reduction diffusion method from a rare earth oxide powder and a transition metal powder containing iron and manganese as essential components. In order to produce a rare earth-iron-manganese-nitrogen based magnet powder, a rare earth-iron-manganese-nitrogen based magnet powder formed after nitriding has a crystal distortion (integral width) of the pulverized magnet powder of 0.09 deg. . It has been proposed that the powder is crushed to a degree sufficient to make it below, and subsequently classified so that the magnet powder having a particle size of less than 20 μm is made 17% by weight or less (Patent Document 7).
As a result, it has become possible to obtain rare earth-iron-manganese-nitrogen based magnet powders that exhibit excellent oxidation resistance and high magnetic properties, in particular, have a large demagnetization curve squareness and a high residual magnetic flux density. . However, the squareness is still 200 to 300 kA / m, which is not sufficient.
本発明の目的は、前述した背景技術に鑑み、還元拡散法により得られる希土類−遷移金属系合金粉末の減磁曲線の角形性を改善し、永久磁石性能を高めることができる希土類−遷移金属系合金粉末の製造方法を提供することにある。 In view of the background art described above, an object of the present invention is to improve the squareness of the demagnetization curve of the rare earth-transition metal alloy powder obtained by the reduction diffusion method, and improve the permanent magnet performance. The object is to provide a method for producing an alloy powder.
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、還元拡散法の熱処理後に得られる希土類−遷移金属系合金を含む反応生成物に対して、湿式処理する前に水素ガスを供給し特定条件で熱処理(HDDR)を施した後、さらに真空もしくは希薄水素ガス雰囲気下の特定条件で熱処理を施し、その後、水で湿式処理してから特定条件で乾燥することにより、希土類−遷移金属系合金粉末の減磁曲線の角形性を改善できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention have made hydrogen gas before wet treatment of a reaction product containing a rare earth-transition metal alloy obtained after heat treatment of the reduction diffusion method. And then heat-treating under specific conditions (HDDR), further heat-treating under specific conditions in a vacuum or dilute hydrogen gas atmosphere, then wet-treating with water and then drying under specific conditions, It has been found that the squareness of the demagnetization curve of the transition metal alloy powder can be improved, and the present invention has been completed.
すなわち、本発明の第1の発明によれば、希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cの温度で1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、第2の工程で得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程とを含むことを特徴とする希土類−遷移金属系合金粉末の製造方法が提供される。 That is, according to the first invention of the present invention, from rare earth oxide powder, transition metal powder and / or oxide powder thereof, granular or powdery alkali metal, alkaline earth metal and hydrides thereof. A reaction product mixture containing a rare earth-transition metal alloy is obtained by mixing at least one selected reducing agent and holding the mixture in an inert atmosphere at a temperature of 850 to 1200 ° C. for 1 to 10 hours. Step 1, after cooling the reaction product mixture to 300 ° C. or lower, hydrogen gas is introduced, and maintained at 700 to 900 ° C. for 1 to 20 hours in an atmosphere having a hydrogen gas partial pressure of 20 to 40 kPa. A third step of heat-treating the reaction product mixture obtained in the second step in a vacuum or an atmosphere of hydrogen gas partial pressure of less than 10 kPa at 500 to 900 ° C. for 10 minutes to 20 hours, A fourth step of washing the heat-treated product with water to remove the by-product containing the reducing agent and recovering the rare earth-transition metal alloy, and removing the washed rare earth-transition metal alloy at 150 to 400 ° C. And a fifth step of drying in an oxidizing atmosphere. A method for producing a rare earth-transition metal alloy powder is provided.
また、本発明の第2の発明によれば、第1の発明において、第1の工程で用いる遷移金属粉末および/またはその酸化物粉末の平均粒径が、50μm以下であることを特徴とする希土類−遷移金属系合金粉末の製造方法が提供される。
According to the second invention of the present invention, in the first invention, the average particle size of the transition metal powder and / or its oxide powder used in the first step is 50 μm or less. A method for producing a rare earth-transition metal alloy powder is provided.
本発明により得られる希土類−遷移金属系合金粉末は、還元拡散法を採用しているので原料コストを低減でき、かつ反応生成物の水素処理と湿式処理後の乾燥処理を特定の条件で行うので、従来技術で課題だった角形性を改善することができる。また、この方法によれば、水素や湿式処理での水の使用量を削減できるから省エネルギーの特徴を活かすこともでき、その工業的価値は極めて大きい。 Since the rare earth-transition metal alloy powder obtained by the present invention employs the reduction diffusion method, raw material costs can be reduced, and the reaction product is subjected to hydrogen treatment and drying treatment after wet treatment under specific conditions. Thus, the squareness which has been a problem in the prior art can be improved. In addition, according to this method, the amount of water used in hydrogen or wet processing can be reduced, so that the feature of energy saving can be utilized, and its industrial value is extremely large.
以下、本発明の希土類−遷移金属系合金粉末の製造方法について詳細に説明する。 Hereinafter, the method for producing the rare earth-transition metal alloy powder of the present invention will be described in detail.
1.希土類−遷移金属系合金粉末の製造方法
本発明の希土類−遷移金属系合金粉末の製造方法は、(1)希土類酸化物粉末と、遷移金属粉末および/またはその酸化物粉末と、粒状または粉末状の、アルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤とを混合し、不活性雰囲気中で該混合物を850〜1200°Cで1〜10時間保持して希土類−遷移金属系合金を含む反応生成混合物を得る第1の工程、(2)この反応生成混合物を300℃以下に冷却した後、水素ガスを導入し、水素ガス分圧20〜40kPaの雰囲気中において700〜900°Cの温度で1〜20時間保持する第2の工程、(3)得られた反応生成混合物を真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで10分〜20時間熱処理する第3の工程、(4)得られた熱処理物を水で洗浄し、還元剤を含む副生物を除去して希土類−遷移金属系合金を回収する第4の工程、及び(5)洗浄後の希土類−遷移金属系合金を150〜400°Cの非酸化性雰囲気下で乾燥する第5の工程を含んでいる。
1. Method for Producing Rare Earth-Transition Metal Alloy Powder The method for producing the rare earth-transition metal alloy powder of the present invention includes (1) rare earth oxide powder, transition metal powder and / or oxide powder thereof, and granular or powdery form. And at least one reducing agent selected from alkali metals, alkaline earth metals and hydrides thereof, and the mixture is maintained in an inert atmosphere at 850 to 1200 ° C. for 1 to 10 hours to form a rare earth. -A first step of obtaining a reaction product mixture containing a transition metal alloy, (2) after cooling the reaction product mixture to 300 ° C or lower, introducing hydrogen gas, and in an atmosphere of hydrogen gas partial pressure of 20 to 40 kPa 2nd process hold | maintained for 1 to 20 hours at the temperature of 700-900 degreeC, (3) 500-900 degree in the atmosphere of less than 10 kPa of the reaction product mixture obtained by vacuum or hydrogen gas A third step of heat-treating for 10 minutes to 20 hours at C; (4) a fourth step of washing the obtained heat-treated product with water to remove a by-product containing a reducing agent and recovering a rare earth-transition metal alloy; And (5) a fifth step of drying the washed rare earth-transition metal alloy in a non-oxidizing atmosphere at 150 to 400 ° C.
(1)第1の工程(反応生成混合物の製造)
本発明では、希土類酸化物粉末、遷移金属粉末、及び該希土類酸化物を還元するための還元剤を混合した後、該混合物を不活性雰囲気中で加熱焼成して、希土類−遷移金属系合金を含む反応生成混合物を得る還元拡散法を採用する。
(1) First step (production of reaction product mixture)
In the present invention, a rare earth oxide powder, a transition metal powder, and a reducing agent for reducing the rare earth oxide are mixed, and then the mixture is heated and fired in an inert atmosphere to obtain a rare earth-transition metal alloy. A reduction diffusion method is used to obtain a reaction product mixture.
(希土類酸化物)
希土類酸化物は、希土類元素、すなわち、例えば、Y、La、Ce、Pr、Nd、およびSmの群から選ばれる少なくとも1種以上の元素の酸化物である。
希土類元素の中では、Nd、およびSm、特に、Ndが好ましく、Ndが希土類元素の50原子%以上含むと高い保磁力を持つ材料が得られる。
希土類酸化物粉末は、目標組成より5〜30質量%程度多く入れることが好ましい。これは希土類元素の投入量が少ないと還元剤を除去する湿式処理時に希土類元素成分がより多く溶け出てしまうため、希土類元素量が目標組成以下となって希土類が不足し軟磁性相が出現してしまい保磁力を下げてしまうからである。一方、希土類成分が上記範囲より多すぎると非磁性相が多くなり磁化が下がってしまうため好ましくない。
(Rare earth oxide)
The rare earth oxide is an oxide of a rare earth element, that is, an element of at least one element selected from the group of, for example, Y, La, Ce, Pr, Nd, and Sm.
Among the rare earth elements, Nd and Sm, particularly Nd are preferable, and a material having a high coercive force can be obtained when Nd contains 50 atomic% or more of the rare earth elements.
The rare earth oxide powder is preferably added in an amount of about 5 to 30% by mass more than the target composition. This is because when the amount of rare earth elements is small, more of the rare earth elements are dissolved during wet processing to remove the reducing agent, so the amount of rare earth elements is below the target composition and the rare earth is insufficient and a soft magnetic phase appears. This is because the coercive force is lowered. On the other hand, if the rare earth component is more than the above range, the nonmagnetic phase increases and the magnetization decreases, which is not preferable.
(遷移金属粉末)
遷移金属粉末は、鉄の金属粉末を必須として、鉄酸化物粉末、コバルト粉末、ニッケル粉末などの鉄含有粉末を混合することができる。鉄粉末としては、例えば還元鉄粉、ガスアトマイズ粉、水アトマイズ粉、電解鉄粉などが使用でき、必要に応じて最適な粒度になるように分級する。
ここで遷移金属粉末の30質量%までを鉄酸化物粉末として投入し、還元拡散反応の発熱量を調整することもできる。
この他、最終的に得られる希土類−遷移金属系合金粉末の磁気特性、温度特性、耐蝕性などの物性を改善するために、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Re、Pt、Au、B、C、Al、Si、P、Sなど公知の添加元素を含有させることができる。この場合、それら添加元素は、その単体粉末、酸化物粉末、他の構成元素との合金粉末や複合酸化物粉末などの形態で、希土類酸化物粉末と遷移金属粉末とからなる原料粉末に混合される。
(Transition metal powder)
The transition metal powder can be mixed with iron-containing powders such as iron oxide powder, cobalt powder, and nickel powder, with iron metal powder being essential. As the iron powder, for example, reduced iron powder, gas atomized powder, water atomized powder, electrolytic iron powder, and the like can be used, and classification is performed so as to obtain an optimum particle size as necessary.
Here, up to 30% by mass of the transition metal powder can be added as iron oxide powder to adjust the calorific value of the reduction diffusion reaction.
In addition, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn are used to improve physical properties such as magnetic properties, temperature properties, and corrosion resistance of the finally obtained rare earth-transition metal alloy powder. , Ga, Ge, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Re, Pt, Au, B, C, Al, Si, P, and S may be added. it can. In this case, these additive elements are mixed with the raw material powder composed of rare earth oxide powder and transition metal powder in the form of its simple substance powder, oxide powder, alloy powder with other constituent elements, composite oxide powder, etc. The
(還元剤)
還元剤には、希土類酸化物を還元する機能を有するアルカリ金属又はアルカリ土類金属及びこれらの水素化物が用いられる。例えば、Li及び/又はCa、あるいはこれらの元素とNa、K、Mg、Sr又はBaから選ばれる少なくとも1種が使用できる。取扱いやすいのは粒状の金属カルシウムである。その粒度としては、1〜5mm程度のものが望ましい。
これら還元剤は、その投入量と粉体性状、希土類酸化物の粉体性状、各種原料粉末の混合状態、還元拡散反応の温度と時間を注意深く制御して使用することが望ましい。なお、上記還元剤の中では、取り扱いの安全性とコストの点から、金属Li又はCaが好ましく、特にCaが好ましい。
(Reducing agent)
As the reducing agent, an alkali metal or alkaline earth metal having a function of reducing a rare earth oxide and a hydride thereof are used. For example, Li and / or Ca, or at least one selected from these elements and Na, K, Mg, Sr or Ba can be used. Easy to handle is granular metallic calcium. The particle size is preferably about 1 to 5 mm.
These reducing agents are desirably used with carefully controlled amounts and powder properties, powder properties of rare earth oxides, mixed state of various raw material powders, and temperature and time of the reduction diffusion reaction. Among the reducing agents, metal Li or Ca is preferable, and Ca is particularly preferable from the viewpoints of handling safety and cost.
還元剤の投入量は、該希土類酸化物を還元するに足るように、反応当量よりも若干過剰とすることが好ましい。還元剤を当量より過剰にしないと容器内の残存酸素や水分により還元剤が酸化し、希土類酸化物を十分還元できなくなり磁石粉末特性を低下させてしまう。
混合方法としては、乾式、湿式いずれの方法でもよいが、湿式ボールミルなどの利用が均一性の点で望ましい。なお湿式混合においては、その後の乾燥等の取扱いで比重差による分離が起こらないような注意が必要である。なお湿式混合の場合には、還元剤となるアルカリ金属、アルカリ土類金属及びこれらの水素化物は最後に乾式で混合する。
上記混合物を、還元拡散を行うための反応容器に移す際には、希土類酸化物などは平均粒径が数μmと細かく粉が飛散しやすく、飛散を防止するためにカバー等を取り付けることが好ましい。この操作により合金粉に組成ずれを起こすことが抑制できる。その後、上記混合物を投入した反応容器を還元拡散炉に入れ、酸素が実質的に存在しない非酸化性雰囲気とすることが好ましい。
It is preferable that the amount of the reducing agent added is slightly more than the reaction equivalent so that the rare earth oxide can be reduced. If the reducing agent is not made more than the equivalent amount, the reducing agent is oxidized by residual oxygen and moisture in the container, and the rare earth oxide cannot be sufficiently reduced, resulting in a decrease in the magnet powder characteristics.
The mixing method may be either a dry method or a wet method, but use of a wet ball mill or the like is desirable in terms of uniformity. In wet mixing, care must be taken so that separation due to a difference in specific gravity does not occur during subsequent handling such as drying. In the case of wet mixing, the alkali metal, alkaline earth metal, and hydride thereof as a reducing agent are finally mixed in a dry manner.
When the above mixture is transferred to a reaction vessel for reducing diffusion, the rare earth oxide and the like are fine particles with an average particle diameter of several μm and the powder is likely to be scattered, and it is preferable to attach a cover or the like to prevent the scattering. . By this operation, it is possible to suppress the composition deviation in the alloy powder. After that, it is preferable that the reaction vessel charged with the above mixture is put into a reduction diffusion furnace to make a non-oxidizing atmosphere substantially free of oxygen.
第1の工程では、希土類酸化物粉末と遷移金属粉末あるいはその酸化物粉末を含む混合原料を、金属Caを還元剤として混合し熱処理する。
混合物は、アルゴンガスなどの不活性雰囲気中で加熱される。このとき炉内を一旦減圧してから置換するのが望ましい。加熱温度は850〜1200°Cとし、原料の粒度を考慮し、還元されて生成した希土類金属が遷移金属原料粉末内部まで十分拡散する時間保持する。加熱温度が850°C未満では還元反応と拡散反応が不均一で生成した希土類−遷移金属系合金粒子に希土類元素未拡散部ができやすい。また1200°Cを超えると、反応生成物中の希土類−遷移金属系合金粒子同士が焼結し、第4の工程で湿式処理しても崩壊性が悪く粉末化しにくい。加熱時間は、1〜10時間とし、4〜8時間が好ましい。
In the first step, a rare earth oxide powder and a transition metal powder or a mixed raw material containing the oxide powder is mixed with metal Ca as a reducing agent and heat-treated.
The mixture is heated in an inert atmosphere such as argon gas. At this time, it is desirable to depressurize the inside of the furnace for replacement. The heating temperature is set to 850 to 1200 ° C., taking into consideration the particle size of the raw material, and the time for which the rare earth metal produced by reduction is sufficiently diffused into the transition metal raw material powder is maintained. When the heating temperature is less than 850 ° C., rare earth element non-diffusion parts are likely to be formed in the rare earth-transition metal alloy particles produced by non-uniform reduction reaction and diffusion reaction. When the temperature exceeds 1200 ° C., the rare earth-transition metal alloy particles in the reaction product are sintered with each other, and even if wet-treated in the fourth step, the disintegration is poor and powdering is difficult. The heating time is 1 to 10 hours, preferably 4 to 8 hours.
還元拡散法の熱処理によって形成される希土類−遷移金属系合金粒子の粒径は、熱処理条件にも左右されるが、原料である遷移金属粉末の粒径に大きく影響される。本発明では遷移金属粉末原料の平均粒度は100μm以下であり、50μm以下であることが望ましく、30μm以下であることがさらに望ましい。平均粒度が100μmを超えると、Caで還元された希土類金属が遷移金属粒子の中心部まで拡散するのに時間がかかり、未拡散部が生成し合金粉末の磁気特性を低下させる。平均粒度が50μm以下、さらには30μm以下になると、最終的に得られた合金粉末の角形性がより向上する。これは、第2の工程の水素を含む熱処理において、希土類−遷移金属系合金粒子が小さいほど、合金粒子が水素を吸収し化合物の格子定数が大きくなる際にクラックが入りにくいことが効いているものと推測される。それ以外の原料粉末については、混合後の原料の均一性を高めるために平均粒度を10μm以下にすることが望ましく、特に微量添加元素となる原料粉末については5μm以下、さらに望ましくは1μm以下にして混合するのが望ましい。 The particle size of the rare earth-transition metal alloy particles formed by the heat treatment of the reduction diffusion method is greatly affected by the particle size of the transition metal powder as a raw material, although it depends on the heat treatment conditions. In the present invention, the average particle size of the transition metal powder raw material is 100 μm or less, desirably 50 μm or less, and more desirably 30 μm or less. When the average particle size exceeds 100 μm, it takes time for the rare earth metal reduced by Ca to diffuse to the center of the transition metal particles, and an undiffused portion is generated, which deteriorates the magnetic properties of the alloy powder. When the average particle size is 50 μm or less, further 30 μm or less, the squareness of the finally obtained alloy powder is further improved. This is because, in the heat treatment containing hydrogen in the second step, the smaller the rare earth-transition metal alloy particles, the harder the cracks are caused when the alloy particles absorb hydrogen and the lattice constant of the compound increases. Presumed to be. For the other raw material powders, it is desirable to make the average particle size 10 μm or less in order to improve the uniformity of the raw materials after mixing, especially 5 μm or less, and more desirably 1 μm or less, for the raw material powder that is a trace additive element. It is desirable to mix.
(2)第2の工程(HDDR処理)
第1工程の熱処理が終了したら炉内で反応生成物を300°C以下に冷却し、水素を含む雰囲気ガスを導入する。
(2) Second step (HDDR processing)
When the heat treatment in the first step is completed, the reaction product is cooled to 300 ° C. or lower in the furnace, and an atmosphere gas containing hydrogen is introduced.
第1の工程で得られた反応生成物中の希土類−遷移金属系合金粒子は、その表面が極めて活性であり、その活性を維持するために可能な限り反応生成物は大気に触れさせないことが望ましい。なお冷却温度は200°C以下が望ましく、100°C以下がさらに望ましい。300°Cを超えると、水素を含む雰囲気ガスの導入によって、反応生成物中の希土類−遷移金属系合金粒子が発熱しながら水素と急激に反応し、最終的に得られる合金粉末の角形性が低下する。100°C以下で水素を含む雰囲気ガスを導入すると合金粒子が徐々に水素を吸収し、金属間化合物の格子定数が増大する。この格子定数の増大に伴い、希土類−遷移金属系合金粒子にはクラックが入るが、第1の工程で遷移金属粉末原料の平均粒径が50μm以下、さらには30μm以下の小さなものを選択した場合には、格子定数増大による歪みが緩和され、クラックが入りにくい。 The surface of the rare earth-transition metal alloy particles in the reaction product obtained in the first step is extremely active, and the reaction product should not be exposed to the atmosphere as much as possible in order to maintain its activity. desirable. The cooling temperature is preferably 200 ° C. or lower, and more preferably 100 ° C. or lower. When the temperature exceeds 300 ° C, the introduction of the atmospheric gas containing hydrogen causes the rare earth-transition metal alloy particles in the reaction product to react rapidly with hydrogen while generating heat, and the squareness of the finally obtained alloy powder is reduced. descend. When an atmospheric gas containing hydrogen is introduced at 100 ° C. or lower, the alloy particles gradually absorb hydrogen, and the lattice constant of the intermetallic compound increases. As the lattice constant increases, cracks occur in the rare earth-transition metal alloy particles, but when the average particle size of the transition metal powder raw material is selected to be 50 μm or less, further 30 μm or less in the first step The strain due to the increase in lattice constant is relieved and cracks are difficult to enter.
水素吸収が安定した後、第2の工程として、700〜900°Cに昇温し保持する。これにより希土類−遷移金属系合金が、希土類水素化物相、遷移金属リッチ相に分解する。Nd2Fe14B系合金の場合には、水素化ネオジム相、α鉄相、フェロボロン相に分解する。温度が700°C未満では分解が進まず、900°Cを超えると分解した組織の大きさにばらつきが生じる。いずれも最終的な合金粉末の角形性を低下させる。昇温及び保持時の雰囲気ガスは、アルゴンやヘリウムガスなどの不活性ガスとの混合ガスとするのが望ましく、この混合ガスを炉内に流通させ、水素分圧を20〜40kPaとする。水素分圧は30〜40kPaとするのが好ましい。20kPa未満では分解が進行せず、40kPaを超えると分解した組織の大きさがばらつく。保持時間は、組織の分解進行状況により適宜選択されるが、1時間から20時間の間で選択する。保持時間は、1〜15時間が好ましく、1〜10時間がより好ましい。 After hydrogen absorption is stabilized, the temperature is raised to 700 to 900 ° C. and held as the second step. As a result, the rare earth-transition metal alloy is decomposed into a rare earth hydride phase and a transition metal rich phase. In the case of an Nd2Fe14B alloy, it decomposes into a neodymium hydride phase, an α iron phase, and a ferroboron phase. When the temperature is lower than 700 ° C, the decomposition does not proceed. When the temperature exceeds 900 ° C, the size of the decomposed tissue varies. Either of these reduces the squareness of the final alloy powder. The atmosphere gas at the time of temperature rising and holding is desirably a mixed gas with an inert gas such as argon or helium gas, and this mixed gas is circulated in the furnace so that the hydrogen partial pressure is 20 to 40 kPa. The hydrogen partial pressure is preferably 30 to 40 kPa. If it is less than 20 kPa, decomposition does not proceed, and if it exceeds 40 kPa, the size of the decomposed tissue varies. The holding time is appropriately selected depending on the progress of tissue degradation, but is selected between 1 hour and 20 hours. The holding time is preferably 1 to 15 hours, and more preferably 1 to 10 hours.
ところで、前記特許文献6には、還元拡散法の焼成物を水素処理した後、水中に投入して洗浄し、乾燥することによりSm−Co系またはNd−Fe−B系合金粉末を製造する技術が開示されている。しかしながら、この特許文献6における水素処理の目的は、洗浄による収率向上であり、水素処理の温度範囲も100〜600℃とされている。600℃を超えると目的の合金化合物が分解したり副生成物が生じると記載されていて、本発明の700〜900℃の温度は不適当であることが示唆されていることから、全く別の技術思想によるものである。 By the way, Patent Document 6 discloses a technique for producing an Sm—Co-based or Nd—Fe—B-based alloy powder by treating a fired product of the reduction diffusion method with hydrogen, washing it into water, and drying it. Is disclosed. However, the purpose of the hydrogen treatment in Patent Document 6 is to improve the yield by washing, and the temperature range of the hydrogen treatment is also set to 100 to 600 ° C. Since it is described that the target alloy compound is decomposed or a by-product is formed when the temperature exceeds 600 ° C., it is suggested that the temperature of 700 to 900 ° C. of the present invention is inappropriate. This is due to technical thought.
(3)第3の製造工程(熱処理)
第2の工程で得られた分解した金属組織を有する希土類−遷移金属系合金粒子は、真空もしくは水素ガス分圧10kPa未満の雰囲気下500〜900°Cで熱処理する。これにより、分解した組織が再結合し元の金属間化合物相が形成され、その結晶粒径は500nm未満となる。
(3) Third manufacturing process (heat treatment)
The rare earth-transition metal alloy particles having the decomposed metal structure obtained in the second step are heat-treated at 500 to 900 ° C. in an atmosphere of vacuum or hydrogen gas partial pressure of less than 10 kPa. Thereby, the decomposed | disassembled structure | tissue recombines and the original intermetallic compound phase is formed, The crystal grain diameter will be less than 500 nm.
ここで水素ガス分圧が10kPa以上あるいは温度が500°C未満では、再結合した金属組織の形成が不十分で合金粉末の角形性が改善しない。また900°Cを超えると、再結合組織の結晶粒径が粗大化し、保磁力及び角形性が改善しない。したがって、水素ガス分圧が100Pa以下、かつ600〜900°Cで熱処理することが好ましく、水素ガス分圧が80Pa以下、かつ700〜900°Cで熱処理することがより好ましい。
熱処理の保持時間は、再結合組織の形成状況により適宜選択されるが、10分から20時間の間で選択される。保持時間は、30分〜10時間が好ましく、30分〜5時間がより好ましい。その後、その雰囲気を保ったまま室温まで冷却し、第4の工程に投入する。
Here, when the hydrogen gas partial pressure is 10 kPa or more or the temperature is less than 500 ° C., the recombined metal structure is not sufficiently formed, and the squareness of the alloy powder is not improved. On the other hand, if it exceeds 900 ° C, the crystal grain size of the recombination structure becomes coarse, and the coercive force and the squareness are not improved. Therefore, it is preferable to perform heat treatment at a hydrogen gas partial pressure of 100 Pa or less and 600 to 900 ° C., and more preferably a heat treatment at a hydrogen gas partial pressure of 80 Pa or less and 700 to 900 ° C.
The heat treatment holding time is appropriately selected depending on the recombination structure formation state, but is selected between 10 minutes and 20 hours. The holding time is preferably 30 minutes to 10 hours, and more preferably 30 minutes to 5 hours. Then, it cools to room temperature, maintaining the atmosphere, and throws into a 4th process.
(4)第4の製造工程(湿式処理)
第4の工程では、冷却後の反応生成物を水中に投入し、デカンテーションを繰り返しながら還元剤として用いたCa成分を除去し、希土類−遷移金属系合金粒子を回収する。第3の工程で冷却後の反応生成物は、数mmから数10mm程度に崩壊しており、これを水中に投入すると速やかにスラリ化する。攪拌と静置、上澄み除去を繰り返し、Ca成分を除去する。さらにCa成分を除去するために、塩酸や酢酸などの希薄水溶液を投入してもよい。洗浄後の合金粉末を濾過して回収し、アルコールで水分を置換して、次の第5の工程で乾燥する。
(4) Fourth manufacturing process (wet process)
In the fourth step, the cooled reaction product is poured into water, the Ca component used as a reducing agent is removed while repeating decantation, and rare earth-transition metal alloy particles are recovered. The reaction product after cooling in the third step has collapsed from several millimeters to several tens of millimeters, and when it is put into water, it quickly becomes a slurry. Stirring, standing, and removal of the supernatant are repeated to remove the Ca component. Further, a dilute aqueous solution such as hydrochloric acid or acetic acid may be added to remove the Ca component. The washed alloy powder is recovered by filtration, water is replaced with alcohol, and the alloy powder is dried in the next fifth step.
(5)第5の製造工程(乾燥処理)
第5の工程では、回収された合金粉末を150〜400°Cの非酸化性雰囲気下で乾燥する。この工程では、水分と第4の工程で合金粉末表面層に拡散した水素を除去し、0.20重量%以下にすることが必要である。
(5) Fifth manufacturing process (drying process)
In the fifth step, the recovered alloy powder is dried in a non-oxidizing atmosphere at 150 to 400 ° C. In this step, it is necessary to remove moisture and hydrogen diffused in the surface layer of the alloy powder in the fourth step to make it 0.20% by weight or less.
ここで乾燥温度が150°C未満では水素の除去が不完全となり0.20重量%以下にすることができず、また400°Cを超えると非酸化性雰囲気でも合金粉末が酸化して、角形性が低下する。また、乾燥時間は、粉末の処理量、静置乾燥か、攪拌乾燥かなどにより、水分と水素除去に必要な時間として、合金粉末の不純物水素量が0.20重量%以下になるように設定される。第2の工程によって合金粉末表面にクラックが形成された場合には、クラック内部に浸入した水分や水素が十分除去され、合金粉末の不純物水素量が0.20重量%以下になるように、乾燥温度や時間を調整する必要がある。合金粉末に残留する不純物水素量が0.20重量%を超えると、角形性が低下する。乾燥温度は、200〜300°Cが好ましく、非酸化性雰囲気下で乾燥する前に50〜100°Cの真空下で事前乾燥することがより好ましい。 Here, if the drying temperature is less than 150 ° C., the removal of hydrogen is incomplete and cannot be reduced to 0.20% by weight or less. If the drying temperature exceeds 400 ° C., the alloy powder is oxidized even in a non-oxidizing atmosphere. Sex is reduced. The drying time is set so that the amount of impurity hydrogen in the alloy powder is 0.20% by weight or less as the time required for moisture and hydrogen removal depending on the processing amount of the powder, whether it is stationary drying or stirring drying. Is done. When cracks are formed on the surface of the alloy powder by the second step, the moisture and hydrogen that have entered the cracks are sufficiently removed, and the amount of impurity hydrogen in the alloy powder is 0.20% by weight or less. It is necessary to adjust the temperature and time. If the amount of impurity hydrogen remaining in the alloy powder exceeds 0.20% by weight, the squareness deteriorates. The drying temperature is preferably 200 to 300 ° C., and more preferably pre-dried under a vacuum of 50 to 100 ° C. before drying in a non-oxidizing atmosphere.
2.希土類−遷移金属系合金粉末
本発明に係る希土類−遷移金属系合金粉末は、上記の製造方法で得られるものであり、希土類元素と遷移金属元素とを含む金属間化合物合金を主相とするものであれば、特に制限されない。例えば、正方晶のNd2Fe14B系の合金、Th2Zn17型構造を有するSm2Co17系の合金やSm2Fe17N3系の合金、CaCu5型構造を有するSmCo5系の合金などの各種合金に適用できる。
これらの合金には、その磁気特性、温度特性、耐蝕性などの物性を改善するために、Ga及びNbなど公知の添加元素を含有させることができる。添加元素は、その単体粉末、酸化物粉末、他の構成元素との合金粉末や複合酸化物粉末などの形態で、希土類酸化物粉末と遷移金属粉末とからなる原料粉末に混合される。
2. Rare earth-transition metal alloy powder The rare earth-transition metal alloy powder according to the present invention is obtained by the above-described manufacturing method, and has an intermetallic compound alloy containing a rare earth element and a transition metal element as a main phase. If it is, it will not be restrict | limited in particular. For example, tetragonal Nd 2 Fe 14 B alloy, Sm 2 Co 17 alloy with Th 2 Zn 17 type structure, Sm 2 Fe 17 N 3 alloy, SmCo 5 type alloy with CaCu 5 type structure Applicable to various alloys such as alloys.
These alloys can contain known additive elements such as Ga and Nb in order to improve physical properties such as magnetic properties, temperature properties, and corrosion resistance. The additive element is mixed with the raw material powder composed of the rare earth oxide powder and the transition metal powder in the form of its simple powder, oxide powder, alloy powder with other constituent elements, composite oxide powder, and the like.
その組成は、25〜35重量%の希土類元素と、3重量%以下のGa及びNbと、5重量%以下のBと、残部が実質的にFeであるか又はFeの20重量%以下をCoで置換したFeおよびCoからなり、かつ不純物である水素が0.20重量%以下であることが好ましい。 Its composition is 25-35 wt% rare earth elements, 3 wt% or less Ga and Nb, 5 wt% or less B, and the balance is substantially Fe or 20 wt% or less of Fe is Co. It is preferable that the hydrogen content of Fe and Co substituted with is 0.20% by weight or less.
本発明に係る希土類−遷移金属系合金粉末は、上記の組成を有し、平均粒径が5〜50μmであり、減磁曲線の角形性が向上している。これは、第2の工程の水素を含む熱処理において、希土類−遷移金属系合金粒子が小さいほど、合金粒子が水素を吸収し化合物の格子定数が大きくなる際にクラックが入りにくいことが効いているものと推測される。また、第5の工程で、合金粉末が150〜400°Cの非酸化性雰囲気下で十分に乾燥され、水分と第4の工程で合金粉末表面層に拡散した水素が除去されるためと推測される。
Rare earth according to the present invention - transition metal alloy powder has the composition described above, an average particle diameter of 5 to 50 [mu] m, has improved the loop squareness of the demagnetization curve. This is because, in the heat treatment containing hydrogen in the second step, the smaller the rare earth-transition metal alloy particles, the harder the cracks are caused when the alloy particles absorb hydrogen and the lattice constant of the compound increases. Presumed to be. In addition, the alloy powder is sufficiently dried in a non-oxidizing atmosphere of 150 to 400 ° C. in the fifth step, and it is assumed that moisture and hydrogen diffused in the alloy powder surface layer in the fourth step are removed. Is done.
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。得られた合金粉末は次の方法で測定した。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated concretely, this invention is not limited at all by these Examples. The obtained alloy powder was measured by the following method.
<平均粒径の測定>
合金粉末の平均粒径は、レーザー回折式粒度分布計(Sympatec社製)を用いて測定を行った。
<磁気特性評価>
合金粉末の磁気特性は、最大印加磁界1200kA/mの振動試料型磁力計(東英工業株式会社製、VSM−3)で測定した。この測定では、日本ボンド磁石工業協会ボンド磁石試験法ガイドブックBMG−2005に準じて1600kA/mの配向磁界をかけて試料を作製し、4000kA/mの磁界で着磁してから評価した。
<Measurement of average particle size>
The average particle diameter of the alloy powder was measured using a laser diffraction particle size distribution meter (manufactured by Sympatec).
<Evaluation of magnetic properties>
Magnetic properties of the alloy powder was measured at the maximum mark pressure field 1200 kA / m vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd., VSM-3). In this measurement, a sample was prepared by applying an orientation magnetic field of 1600 kA / m according to the Bond Magnet Testing Method Guide Book BMG-2005 of Japan Bond Magnet Industry Association, and evaluation was performed after magnetizing with a magnetic field of 4000 kA / m.
[実施例1]
第1の工程として、平均粒度8μmの酸化ネオジム粉末(Nd2O3純度99.5%)400g、平均粒度5μmの酸化ニオブ粉末(Nb2O5純度99.9%)4.7g、平均粒度22μmの酸化ガリウム粉末(Ga2O3純度99.9%)5.0gを、水を溶媒として回転ボールミルにより18時間かけて粉砕混合した。回収された混合物を水分量が1重量%以下になるまで乾燥し、これに粒度325メッシュ以下の電解鉄粉720g、粒度200メッシュ以下のフェロボロン(B含量19.8%)62g、金属Ca粒(Ca純度99%)175gを加えて、Vブレンダで混合した。この混合物を鋼製反応容器に挿入して電気炉に入れ、炉内を5kPaまで減圧した後にアルゴンガスで置換し、その後アルゴンガスを1L/minで流通させながら1050°Cまで昇温し、1050°Cで4時間保持した。
その後、28°Cまで冷却し容器内部を10kPaまで減圧した後、水素ガスを101kPaまで導入し、その圧力を保ちながら3時間保持した。次に第2の工程として、容器内に水素ガスとアルゴンガスの混合ガスを、水素分圧が36kPaとなるように流通させながら800°Cまで昇温し、3時間保持した。
その後、第3の工程として、800°Cを維持したまま容器内をアルゴンガスで置換した後、50Paまで減圧して30分保持し、その後室温まで冷却した。
冷却後に反応容器から回収された反応生成混合物は、第1の工程でできた焼結塊が数10mm以下に崩壊した状態となっていた。次に第4の工程として、これを10Lの水中に投入したところ、1時間以内にほぼ完全に崩壊した。デカンテーションを繰り返しながら、生じたスラリから水酸化カルシウム懸濁物を分離し、さらに注水するとスラリpHは10まで低下した。さらに希酢酸を滴下してpH 6.5に調整しながら10分間保持し、濾過してエタノールを掛けて脱水置換し、合金粉末を回収した。さらに第5の工程として、回収された合金粉末をミキサ乾燥機に入れ、10Paの真空中80°C1時間保持した後、温度を250°Cに上げて2時間保持し、その後冷却した。
回収された合金粉末の平均粒径は28μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.21wt%、Ca0.01wt%、H0.06wt%、残部がFeだった。また、この合金粉末の磁気特性は、残留磁束密度Br1.27T、保磁力Hc1030kA/m、角形性Hk430kA/mだった。
[Example 1]
As a first step, 400 g of neodymium oxide powder having an average particle size of 8 μm (Nd 2 O 3 purity 99.5%), niobium oxide powder having an average particle size of 5 μm (Nb 2 O 5 purity 99.9%), 4.7 g, average particle size 5.0 g of 22 μm gallium oxide powder (Ga 2 O 3 purity 99.9%) was pulverized and mixed for 18 hours with a rotating ball mill using water as a solvent. The collected mixture was dried until the water content became 1% by weight or less, and 720 g of electrolytic iron powder having a particle size of 325 mesh or less, 62 g of ferroboron (B content 19.8%) having a particle size of 200 mesh or less, and metal Ca particles ( 175 g of Ca purity 99%) was added and mixed with a V blender. This mixture was inserted into a steel reaction vessel and placed in an electric furnace. After the pressure in the furnace was reduced to 5 kPa and replaced with argon gas, the temperature was raised to 1050 ° C. while circulating argon gas at 1 L / min, and 1050 Hold at 4 ° C. for 4 hours.
Then, after cooling to 28 degreeC and depressurizing the inside of a container to 10 kPa, hydrogen gas was introduce | transduced to 101 kPa, and it hold | maintained for 3 hours, maintaining the pressure. Next, as a second step, the temperature of the mixed gas of hydrogen gas and argon gas was raised to 800 ° C. and kept for 3 hours while flowing a mixed gas of hydrogen gas and argon gas so that the hydrogen partial pressure was 36 kPa.
Thereafter, as a third step, the inside of the container was replaced with argon gas while maintaining 800 ° C., and then the pressure was reduced to 50 Pa and held for 30 minutes, and then cooled to room temperature.
The reaction product mixture recovered from the reaction vessel after cooling had a state in which the sintered ingot formed in the first step collapsed to several tens of mm or less. Next, as a fourth step, this was poured into 10 L of water and almost completely disintegrated within 1 hour. While repeating the decantation, the calcium hydroxide suspension was separated from the resulting slurry, and further water injection reduced the slurry pH to 10. Further, dilute acetic acid was added dropwise to maintain the pH at 6.5 for 10 minutes, followed by filtration, dehydration and substitution with ethanol, and the alloy powder was recovered. Further, as a fifth step, the recovered alloy powder was put into a mixer dryer and maintained in a vacuum of 10 Pa at 80 ° C. for 1 hour, then the temperature was raised to 250 ° C. and maintained for 2 hours, and then cooled.
The average particle diameter of the recovered alloy powder is 28 μm, and the composition is Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.21 wt%, Ca 0.01 wt%, H 0.06 wt. %, The balance was Fe. The magnetic properties of the alloy powder were a residual magnetic flux density Br of 1.27 T, a coercive force Hc of 1030 kA / m, and a squareness of Hk 430 kA / m.
[比較例1]
実施例1において、第1の工程の後、28°Cまで冷却された反応生成混合物を容器から回収し、10Lの水中に投入した。実施例1と同様に、デカンテーションを繰り返して水酸化カルシウム懸濁物を分離し、pH 10となったスラリに希酢酸を滴下してpH 6.0を維持しながら10分保持し、濾過、エタノールによる脱水置換した後、ミキサ乾燥機に入れて、10Paの真空中80°Cで1時間保持した。得られた合金粉末の平均粒径は34μmであり、組成は、Nd29.7wt%、B1.08wt%、Ga0.33wt%、Nb0.28wt%、O0.20wt%、Ca0.03wt%、残部がFeだった。
この合金粉末を、再び反応容器に入れて容器内部を10kPaまで減圧した後、水素ガスを101kPaまで導入し、その圧力を保ちながら3時間保持した。次に、容器内に水素ガスとアルゴンガスの混合ガスを、水素分圧が36kPaとなるように流通させながら800°Cまで昇温し、3時間保持した。次に800°Cを維持したまま容器内をアルゴンガスで置換した後、5kPaまで減圧して30分保持し、さらに10Paまで減圧してから室温まで冷却した。冷却後に回収された粉末の磁気特性は、Br1.23T、Hc920kA/m、Hk250kA/mであり、不純物水素量は0.02wt%だった。
[Comparative Example 1]
In Example 1, after the first step, the reaction product mixture cooled to 28 ° C. was recovered from the container and poured into 10 L of water. As in Example 1, decantation was repeated to separate the calcium hydroxide suspension, and diluted acetic acid was added dropwise to the slurry that had reached pH 10, and maintained for 10 minutes while maintaining pH 6.0, filtered, After dehydration substitution with ethanol, the mixture was put into a mixer dryer and kept at 80 ° C. in a vacuum of 10 Pa for 1 hour. The average particle diameter of the obtained alloy powder is 34 μm, and the composition is Nd 29.7 wt%, B 1.08 wt%, Ga 0.33 wt%, Nb 0.28 wt%, O 0.20 wt%, Ca 0.03 wt%, and the balance is Fe. was.
This alloy powder was put in the reaction vessel again, and the inside of the vessel was decompressed to 10 kPa. Then, hydrogen gas was introduced to 101 kPa, and the pressure was maintained for 3 hours. Next, the temperature of the mixed gas of hydrogen gas and argon gas was raised to 800 ° C. while maintaining the hydrogen partial pressure to be 36 kPa and held for 3 hours. Next, after the inside of the container was replaced with argon gas while maintaining 800 ° C., the pressure was reduced to 5 kPa and held for 30 minutes, and the pressure was further reduced to 10 Pa and then cooled to room temperature. The magnetic properties of the powder recovered after cooling were Br1.23T, Hc920 kA / m, Hk250 kA / m, and the amount of impurity hydrogen was 0.02 wt%.
[実施例2]
第1の工程での熱処理温度を900°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は24μmであり、組成は、Nd29.3wt%、B1.05wt%、Ga0.31wt%、Nb0.30wt%、O0.18wt%、Ca0.01wt%、H0.05wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.25T、保磁力Hc1080kA/m、角形性Hk400kA/mだった。
[Example 2]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the first step was set to 900 ° C. The average particle diameter of the recovered alloy powder is 24 μm, and the composition is Nd 29.3 wt%, B 1.05 wt%, Ga 0.31 wt%, Nb 0.30 wt%, O 0.18 wt%, Ca 0.01 wt%, H 0.05 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.25T, coercive force Hc 1080 kA / m, and squareness Hk 400 kA / m.
[実施例3]
第1の工程での熱処理温度を1150°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は33μmであり、組成は、Nd29.7wt%、B1.07wt%、Ga0.28wt%、Nb0.30wt%、O0.22wt%、Ca0.02wt%、H0.04wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.30T、保磁力Hc980kA/m、角形性Hk440kA/mだった。
[Example 3]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the first step was 1150 ° C. The average particle size of the recovered alloy powder is 33 μm, and the composition is Nd 29.7 wt%, B 1.07 wt%, Ga 0.28 wt%, Nb 0.30 wt%, O 0.22 wt%, Ca 0.02 wt%, H 0.04 wt. %, The balance was Fe. The magnetic properties of the powder were a residual magnetic flux density Br of 1.30 T, a coercive force Hc of 980 kA / m, and a squareness of Hk 440 kA / m.
[比較例2]
第1の工程での熱処理温度を800°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造したが、希土類酸化物の還元が進まず未拡散の鉄も多い粉末であった。
[Comparative Example 2]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the first step was set to 800 ° C., but the reduction of the rare earth oxide did not proceed and there was much undiffused iron. It was a powder.
[比較例3]
第1の工程での熱処理温度を1250°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。反応生成混合物中の粒子の焼結が進み、第4の工程での崩壊性も悪く、回収された合金粉末の平均粒径は80μmであり、組成は、Nd29.3wt%、B1.05wt%、Ga0.31wt%、Nb0.30wt%、O2.2wt%、Ca3.0wt%、H0.23wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.02T、保磁力Hc520kA/m、角形性Hk40kA/mだった。
[Comparative Example 3]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the first step was 1250 ° C. Sintering of the particles in the reaction product mixture progressed, the disintegration in the fourth step was poor, the average particle size of the recovered alloy powder was 80 μm, and the composition was Nd 29.3 wt%, B 1.05 wt%, Ga 0.31 wt%, Nb 0.30 wt%, O 2.2 wt%, Ca 3.0 wt%, H 0.23 wt%, and the balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.02T, coercive force Hc520 kA / m, and squareness Hk40 kA / m.
[実施例4]
第2の工程での熱処理温度を750°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は30μmであり、組成は、Nd29.5wt%、B1.06wt%、Ga0.30wt%、Nb0.28wt%、O0.21wt%、Ca0.01wt%、H0.09wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.25T、保磁力Hc990kA/m、角形性Hk390kA/mだった。
[Example 4]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the second step was 750 ° C. The average particle size of the recovered alloy powder is 30 μm, and the composition is Nd 29.5 wt%, B 1.06 wt%, Ga 0.30 wt%, Nb 0.28 wt%, O 0.21 wt%, Ca 0.01 wt%, H 0.09 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.25T, coercive force Hc990 kA / m, and squareness Hk390 kA / m.
[実施例5]
第2の工程での熱処理温度を850°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は25μmであり、組成は、Nd29.1wt%、B1.06wt%、Ga0.28wt%、Nb0.28wt%、O0.20wt%、Ca0.01wt%、H0.11wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.27T、保磁力Hc1010kA/m、角形性Hk420kA/mだった。
[Example 5]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the second step was 850 ° C. The recovered alloy powder has an average particle size of 25 μm and a composition of Nd 29.1 wt%, B 1.06 wt%, Ga 0.28 wt%, Nb 0.28 wt%, O 0.20 wt%, Ca 0.01 wt%, H 0.11 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br 1.27T, coercive force Hc 1010 kA / m, and squareness Hk 420 kA / m.
[比較例4]
第2の工程での熱処理温度を650°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は35μmであり、組成は、Nd29.8wt%、B1.06wt%、Ga0.30wt%、Nb0.29wt%、O0.18wt%、Ca0.01wt%、H0.65wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.21T、保磁力Hc690kA/m、角形性Hk130kA/mだった。
[Comparative Example 4]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the second step was 650 ° C. The average particle size of the recovered alloy powder is 35 μm, and the composition is Nd 29.8 wt%, B 1.06 wt%, Ga 0.30 wt%, Nb 0.29 wt%, O 0.18 wt%, Ca 0.01 wt%, H 0.65 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.21T, coercive force Hc690 kA / m, and squareness Hk130 kA / m.
[比較例5]
第2の工程での熱処理温度を950°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は29μmであり、組成は、Nd29.8wt%、B1.06wt%、Ga0.30wt%、Nb0.29wt%、O0.18wt%、Ca0.01wt%、H0.05重量%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.18T、保磁力Hc730kA/m、角形性Hk160kA/mだった。
[Comparative Example 5]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the heat treatment temperature in the second step was 950 ° C. The average particle size of the recovered alloy powder is 29 μm, and the composition is Nd 29.8 wt%, B 1.06 wt%, Ga 0.30 wt%, Nb 0.29 wt%, O 0.18 wt%, Ca 0.01 wt%, H 0.05 % By weight, the balance being Fe. The magnetic properties of the powder were residual magnetic flux density Br1.18T, coercive force Hc730 kA / m, and squareness Hk160 kA / m.
[実施例6]
第2の工程終了後、第3の工程での熱処理温度を550°Cまで下げてから容器内をアルゴンガスで置換し、その後5kPaまで減圧して30分保持し、室温まで冷却した。それ以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は27μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.21wt%、Ca0.01wt%、H0.18wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.24T、保磁力Hc920kA/m、角形性Hk380kA/mだった。
[Example 6]
After the completion of the second step, the heat treatment temperature in the third step was lowered to 550 ° C., and the inside of the container was replaced with argon gas. Thereafter, the pressure was reduced to 5 kPa, maintained for 30 minutes, and cooled to room temperature. Except for this, a rare earth-transition metal alloy powder was produced in the same manner as in Example 1. The average particle diameter of the recovered alloy powder is 27 μm, and the composition is Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.21 wt%, Ca 0.01 wt%, H 0.18 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.24T, coercive force Hc920 kA / m, and squareness Hk380 kA / m.
[実施例7]
第2の工程終了後、第3の工程での熱処理温度を850°Cまで上げてから容器内をアルゴンガスで置換し、その後5kPaまで減圧して30分保持し、室温まで冷却した。それ以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は28μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.31wt%、Nb0.28wt%、O0.20wt%、Ca0.01wt%、H0.04wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.28T、保磁力Hc1000kA/m、角形性Hk400kA/mだった。
[Example 7]
After completion of the second step, the heat treatment temperature in the third step was raised to 850 ° C., and the inside of the container was replaced with argon gas. Thereafter, the pressure was reduced to 5 kPa, maintained for 30 minutes, and cooled to room temperature. Except for this, a rare earth-transition metal alloy powder was produced in the same manner as in Example 1. The average particle diameter of the recovered alloy powder is 28 μm, and the composition is Nd 29.5 wt%, B 1.08 wt%, Ga 0.31 wt%, Nb 0.28 wt%, O 0.20 wt%, Ca 0.01 wt%, H 0.04 wt. %, The balance was Fe. The magnetic properties of the powder were a residual magnetic flux density Br of 1.28 T, a coercive force Hc of 1000 kA / m, and a squareness of Hk of 400 kA / m.
[比較例6]
第2の工程終了後、第3の工程での熱処理温度を450°Cまで下げてから容器内をアルゴンガスで置換し、その後5kPaまで減圧して30分保持し、室温まで冷却した。それ以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は25μmであり、組成は、Nd28.2wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.63wt%、Ca0.06wt%、H0.23wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br0.81T、保磁力Hc90kA/m、角形性Hk10kA/mだった。
[Comparative Example 6]
After the completion of the second step, the heat treatment temperature in the third step was lowered to 450 ° C., and the inside of the container was replaced with argon gas. Thereafter, the pressure was reduced to 5 kPa, maintained for 30 minutes, and cooled to room temperature. Except for this, a rare earth-transition metal alloy powder was produced in the same manner as in Example 1. The average particle diameter of the recovered alloy powder is 25 μm, and the composition is Nd 28.2 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.63 wt%, Ca 0.06 wt%, H 0.23 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br0.81T, coercive force Hc90 kA / m, and squareness Hk10 kA / m.
[比較例7]
第2の工程終了後、第3の工程での熱処理温度を950°Cまで上げてから容器内をアルゴンガスで置換し、その後5kPaまで減圧して30分保持し、室温まで冷却した。それ以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は29μmであり、組成は、Nd29.5wt%、B1.07wt%、Ga0.33wt%、Nb0.28wt%、O0.22wt%、Ca0.01wt%、H0.03wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.14T、保磁力Hc620kA/m、角形性Hk210kA/mだった。
[Comparative Example 7]
After completion of the second step, the heat treatment temperature in the third step was raised to 950 ° C., and the inside of the container was replaced with argon gas. Thereafter, the pressure was reduced to 5 kPa, maintained for 30 minutes, and cooled to room temperature. Except for this, a rare earth-transition metal alloy powder was produced in the same manner as in Example 1. The average particle size of the recovered alloy powder is 29 μm, and the composition is Nd 29.5 wt%, B 1.07 wt%, Ga 0.33 wt%, Nb 0.28 wt%, O 0.22 wt%, Ca 0.01 wt%, H 0.03 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.14T, coercive force Hc620 kA / m, and squareness Hk210 kA / m.
[実施例8]
第3の工程での熱処理雰囲気を、アルゴンガスを流通させたまま減圧しなかった以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は29μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.24wt%、Ca0.01wt%、H0.11wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.26T、保磁力Hc1040kA/m、角形性Hk400kA/mだった。
[Example 8]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1, except that the heat treatment atmosphere in the third step was not reduced while argon gas was circulated. The average particle diameter of the recovered alloy powder is 29 μm, and the composition is Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.24 wt%, Ca 0.01 wt%, H 0.11 wt. %, The balance was Fe. The magnetic properties of the powder were a residual magnetic flux density Br of 1.26 T, a coercive force of Hc of 1040 kA / m, and a squareness of Hk of 400 kA / m.
[比較例8]
第3の工程での熱処理雰囲気を、アルゴンガスと水素ガスを、水素ガス分圧が20kPaとなるよう流通させた以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は29μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.24wt%、Ca0.01wt%、H0.25wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.06T、保磁力Hc760kA/m、角形性Hk180kA/mだった。
[Comparative Example 8]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that argon gas and hydrogen gas were circulated in the third step so that the hydrogen gas partial pressure was 20 kPa. The average particle diameter of the recovered alloy powder is 29 μm, and the composition is Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.24 wt%, Ca 0.01 wt%, H 0.25 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.06T, coercive force Hc 760 kA / m, and squareness Hk 180 kA / m.
[実施例9]
第5の工程での乾燥温度を170°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は28μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.23wt%、Ca0.01wt%、H0.13wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.30T、保磁力Hc1010kA/m、角形性Hk410kA/mだった。
[Example 9]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the drying temperature in the fifth step was 170 ° C. The average particle diameter of the recovered alloy powder is 28 μm, and the composition is Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.23 wt%, Ca 0.01 wt%, H 0.13 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.30T, coercive force Hc1010 kA / m, and squareness Hk410 kA / m.
[実施例10]
第5の工程での乾燥温度を350°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は28μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.24wt%、Ca0.01wt%、H0.05wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.29T、保磁力Hc1020kA/m、角形性Hk420kA/mだった。
[Example 10]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the drying temperature in the fifth step was 350 ° C. The recovered alloy powder has an average particle size of 28 μm and a composition of Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.24 wt%, Ca 0.01 wt%, H 0.05 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br 1.29 T, coercive force Hc 1020 kA / m, and squareness Hk 420 kA / m.
[比較例9]
第5の工程での乾燥温度を100°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は28μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.20wt%、Ca0.01wt%、H0.30wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.30T、保磁力Hc710kA/m、角形性Hk210kA/mだった。
[Comparative Example 9]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the drying temperature in the fifth step was 100 ° C. The average particle size of the recovered alloy powder was 28 μm, and the composition was Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.20 wt%, Ca 0.01 wt%, H 0.30 wt. %, The balance was Fe. The magnetic properties of the powder were a residual magnetic flux density Br of 1.30 T, a coercive force Hc of 710 kA / m, and a squareness of Hk of 210 kA / m.
[比較例10]
第5の工程での乾燥温度を450°Cとした以外は、実施例1と同様にして希土類−遷移金属系合金粉末を製造した。回収された合金粉末の平均粒径は28μmであり、組成は、Nd29.5wt%、B1.08wt%、Ga0.32wt%、Nb0.28wt%、O0.29wt%、Ca0.01wt%、H0.03wt%、残部がFeだった。また粉末の磁気特性は、残留磁束密度Br1.11T、保磁力Hc920kA/m、角形性Hk250kA/mだった。
[Comparative Example 10]
A rare earth-transition metal alloy powder was produced in the same manner as in Example 1 except that the drying temperature in the fifth step was 450 ° C. The recovered alloy powder has an average particle size of 28 μm and a composition of Nd 29.5 wt%, B 1.08 wt%, Ga 0.32 wt%, Nb 0.28 wt%, O 0.29 wt%, Ca 0.01 wt%, H 0.03 wt. %, The balance was Fe. The magnetic properties of the powder were residual magnetic flux density Br1.11T, coercive force Hc920 kA / m, and squareness Hk250 kA / m.
「評価」
実施例1と比較例1を比べることにより、還元拡散法の熱処理と湿式処理の間に第2および第3の工程を入れることで、角形性Hkが著しく向上していることが分かる。
比較例2および3と実施例1〜3を比較することによって、第1の工程での熱処理温度が850°C未満では目的とする希土類−遷移金属系合金粒子が得られず、1200°Cを超えると角形性Hkが低下することが分かる。比較例4および5と、実施例1、4,5とを比較することにより、第2の工程での熱処理温度が700°C未満あるいは900°Cを超えると角形性Hkが低下することが分かる。比較例6および7と、実施例1、6、7とを比較すると、第3の工程での熱処理温度が500°C未満あるいは900°Cを超えると角形性Hkが低下することが分かる。比較例8と実施例1、8とを比較すると、第3の工程での熱処理雰囲気の水素ガス分圧が10kPaを超えると、合金粉末のHkが低下することが分かる。さらに、比較例9および10と、実施例1、9、10とを比較すると、第5の工程で乾燥温度を150°C未満とすると水素量が0.20重量%を超えていることにより、また400°Cを超えると酸素量が0.29wt%と実施例より増加していることから酸化により、それぞれ角形性Hkが低下していることが分かる。
"Evaluation"
By comparing Example 1 and Comparative Example 1, it can be seen that the squareness Hk is remarkably improved by inserting the second and third steps between the heat treatment and the wet treatment of the reduction diffusion method.
By comparing Comparative Examples 2 and 3 with Examples 1 to 3, the target rare earth-transition metal alloy particles cannot be obtained when the heat treatment temperature in the first step is less than 850 ° C., and 1200 ° C. If it exceeds, it turns out that the squareness Hk falls. By comparing Comparative Examples 4 and 5 with Examples 1, 4 and 5, it can be seen that the squareness Hk is lowered when the heat treatment temperature in the second step is less than 700 ° C or more than 900 ° C. . Comparing Comparative Examples 6 and 7 with Examples 1, 6, and 7 shows that the squareness Hk is lowered when the heat treatment temperature in the third step is less than 500 ° C or more than 900 ° C. Comparing Comparative Example 8 with Examples 1 and 8, it can be seen that when the hydrogen gas partial pressure in the heat treatment atmosphere in the third step exceeds 10 kPa, the Hk of the alloy powder decreases. Further, comparing Comparative Examples 9 and 10 with Examples 1, 9, and 10, when the drying temperature is less than 150 ° C. in the fifth step, the amount of hydrogen exceeds 0.20 wt%, In addition, when the temperature exceeds 400 ° C., the amount of oxygen is 0.29 wt%, which is higher than that of the example, and it can be understood that the squareness Hk is lowered due to oxidation.
本発明は、さまざまな電気機器類、例えば携帯電話やデジタルカメラ、デジタルビデオなどの家電製品などにおいて、小型化、軽量化、高性能化が要求されている永久磁石の製造に使用することができる。 INDUSTRIAL APPLICABILITY The present invention can be used in the manufacture of permanent magnets that are required to be reduced in size, weight, and performance in various electrical devices such as cellular phones, digital cameras, digital video and other home appliances. .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136941A JP5609783B2 (en) | 2011-06-21 | 2011-06-21 | Method for producing rare earth-transition metal alloy powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011136941A JP5609783B2 (en) | 2011-06-21 | 2011-06-21 | Method for producing rare earth-transition metal alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013001985A JP2013001985A (en) | 2013-01-07 |
JP5609783B2 true JP5609783B2 (en) | 2014-10-22 |
Family
ID=47670869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011136941A Active JP5609783B2 (en) | 2011-06-21 | 2011-06-21 | Method for producing rare earth-transition metal alloy powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5609783B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105190802A (en) * | 2013-03-12 | 2015-12-23 | 因太金属株式会社 | Method for producing RFeB sintered magnet and RFeB sintered magnet produced thereby |
CN104674169A (en) * | 2015-02-12 | 2015-06-03 | 烟台首钢磁性材料股份有限公司 | Method for electroplating surface of permanent magnet neodymium iron boron magnetic steel with composite coating |
WO2017150557A1 (en) * | 2016-03-04 | 2017-09-08 | 国立研究開発法人産業技術総合研究所 | Samarium-iron-nitrogen alloy powder and method for producing same |
JP7187920B2 (en) * | 2018-09-21 | 2022-12-13 | 住友金属鉱山株式会社 | Polycrystalline rare earth transition metal alloy powder and method for producing the same |
KR102634865B1 (en) * | 2019-08-02 | 2024-02-06 | 주식회사 엘지화학 | Method for preparation magnet powder and sintered magnet produced by the same |
CN111112605B (en) * | 2020-02-29 | 2022-03-29 | 江西开源自动化设备有限公司 | Powder magnetic field forming method of rare earth permanent magnet |
CN113808839B (en) * | 2021-08-23 | 2022-12-16 | 华南理工大学 | Method for preparing high-coercivity neodymium-iron-boron magnet by utilizing macroscopic non-uniform diffusion |
CN113798504B (en) * | 2021-09-17 | 2023-08-22 | 郑州大学 | Preparation method of rare earth oxide dispersion-reinforced tungsten powder for 3D printing |
CN114559046B (en) * | 2022-01-26 | 2023-07-25 | 中北大学 | Preparation method of rare earth modified 17-4PH high-strength steel powder for additive manufacturing |
CN117245089A (en) * | 2023-11-20 | 2023-12-19 | 西安稀有金属材料研究院有限公司 | Method for efficiently treating samarium-iron-nitrogen magnetic powder reaction byproducts |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61238903A (en) * | 1985-04-16 | 1986-10-24 | Hitachi Metals Ltd | Production of rare earth containing alloy powder |
JPH05299216A (en) * | 1992-04-23 | 1993-11-12 | Sumitomo Metal Ind Ltd | Manufacture of rare earth alloy magnetic material |
JP3151959B2 (en) * | 1992-10-12 | 2001-04-03 | 日立金属株式会社 | Method for producing raw material powder for R-TM-B permanent magnet |
JP3715331B2 (en) * | 1993-11-04 | 2005-11-09 | 株式会社Neomax | Method for producing raw powder for anisotropic bonded magnet |
JP4032561B2 (en) * | 1999-05-26 | 2008-01-16 | 日立金属株式会社 | Method and apparatus for producing rare earth alloy powder for permanent magnet |
JP4032560B2 (en) * | 1999-05-26 | 2008-01-16 | 日立金属株式会社 | Method for producing rare earth alloy powder for permanent magnet |
WO2004064085A1 (en) * | 2003-01-16 | 2004-07-29 | Aichi Steel Corporation | Process for producing anisotropic magnet powder |
JP2007119909A (en) * | 2005-09-29 | 2007-05-17 | Sumitomo Metal Mining Co Ltd | Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same |
JP2008001953A (en) * | 2006-06-23 | 2008-01-10 | Sumitomo Metal Mining Co Ltd | Method for producing rare earth-iron-nitrogen-based alloy powder |
-
2011
- 2011-06-21 JP JP2011136941A patent/JP5609783B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013001985A (en) | 2013-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5609783B2 (en) | Method for producing rare earth-transition metal alloy powder | |
WO2011145674A1 (en) | Method for producing rare earth permanent magnets, and rare earth permanent magnets | |
WO2007010860A1 (en) | Rare earth sintered magnet and method for production thereof | |
JP2005223263A (en) | Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet | |
JP2007119909A (en) | Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same | |
JPH11329811A (en) | Raw material powder for r-fe-b magnet and manufacture of r-fe-b based magnet | |
JPH0424401B2 (en) | ||
JP4900085B2 (en) | Rare earth magnet manufacturing method | |
JP2006291257A (en) | Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same | |
JP7187920B2 (en) | Polycrystalline rare earth transition metal alloy powder and method for producing the same | |
CN116741484A (en) | Samarium-iron alloy, samarium-iron-nitrogen permanent magnet material, and preparation methods and applications thereof | |
JP2005150503A (en) | Method for manufacturing sintered magnet | |
JP4241461B2 (en) | Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same | |
JP2011214113A (en) | Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby | |
JP2020155740A (en) | Method for producing rare earth magnet | |
JP2014122392A (en) | Method for producing rare earth-iron-nitrogen-based magnet powder | |
JP6623998B2 (en) | Method for producing RTB based sintered magnet | |
JP4814856B2 (en) | Rare earth-iron-manganese-nitrogen magnet powder | |
JP4696798B2 (en) | Rare earth-iron-manganese-nitrogen magnet powder | |
JP4345588B2 (en) | Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained | |
JP2016037611A (en) | Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder | |
JP2019206742A (en) | Method of producing rare-earth transition metal alloy powder | |
JP4687493B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP5235264B2 (en) | Rare earth sintered magnet and manufacturing method thereof | |
JP2003247022A (en) | Method for manufacturing r-t-b sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130514 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140428 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140805 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140818 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5609783 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |