JP2007119909A - Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same - Google Patents

Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same Download PDF

Info

Publication number
JP2007119909A
JP2007119909A JP2006253775A JP2006253775A JP2007119909A JP 2007119909 A JP2007119909 A JP 2007119909A JP 2006253775 A JP2006253775 A JP 2006253775A JP 2006253775 A JP2006253775 A JP 2006253775A JP 2007119909 A JP2007119909 A JP 2007119909A
Authority
JP
Japan
Prior art keywords
powder
iron
rare earth
magnet powder
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006253775A
Other languages
Japanese (ja)
Inventor
Koichi Yokozawa
公一 横沢
Kunio Watanabe
邦夫 渡辺
Takashi Ishikawa
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006253775A priority Critical patent/JP2007119909A/en
Publication of JP2007119909A publication Critical patent/JP2007119909A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inexpensively manufacturing magnet powder having excellent magnetic characteristics at a yield enhanced by a reduction diffusion method by reducing the non-magnetic phase which lowers the magnetic characteristics of the rare-earth-iron-nitrogen-base magnet powder and reducing the distortion of the crystal which is the nucleus for magnetization inversion and the remaining of a-Fe. <P>SOLUTION: The method includes steps of; mixing rare earth oxide powder, iron powder and reducing agent powder, such as an alkaline metal, at prescribed ratios: heating the mixture at 90 to 1,180°C in an inert gaseous atmosphere; subsequently cooling the mixture down to ≤500°C, then supplying gaseous nitrogen to cause the decay of the mixture after discharging the inert gas; then supplying a gaseous mixture containing ammonia and hydrogen while keeping the mixture at ≤300°C to elevate the temperature thereof; charging the mixture into water to perform wet process treatment; removing the hydrogen having invaded the magnet alloy by the wet process treatment; and thereafter, subjecting the magnet alloy to pulverization. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、希土類―鉄―窒素系磁石粉末およびその製造方法に関し、さらに詳しくは、還元拡散法を利用しながら均一に窒化することで、非磁性相だけでなく磁化反転(ニュークリエーション)の核になる結晶の歪みやα−Feの残留が大幅に低減され、それに伴い優れた磁気特性を有する希土類−鉄−窒素系磁石粉末を収率よくかつ安価に製造することのできる製造方法、およびその方法で得られた希土類−鉄−窒素系磁石粉末に関する。   The present invention relates to a rare earth-iron-nitrogen based magnet powder and a method for producing the same, and more specifically, by uniformly nitriding using a reduction diffusion method, not only a non-magnetic phase but also a core of magnetization reversal (nucleation). Manufacturing method capable of producing a rare earth-iron-nitrogen based magnet powder having excellent magnetic properties with high yield and low cost, and distortion of crystals and residual α-Fe greatly The present invention relates to a rare earth-iron-nitrogen based magnet powder obtained by the method.

Sm−Fe−Nに代表される希土類−鉄−窒素系磁石は、高性能かつ安価な希土類−遷移金属−窒素系磁石として知られている。このSm−Fe−N系磁石粉末は、SmFe17(x=3)で構成されることによって最大の飽和磁化を示すとされている(非特許文献1参照)。
この希土類−鉄−窒素系磁石は、従来、FeとSm金属を用いて高周波炉、アーク炉などにより希土類−鉄合金を作製する溶解法や、FeあるいはFe、Sm等とCaを混合加熱処理により希土類−鉄合金を作製する還元拡散法によって得られた母合金を窒化することで得られている。この様にして得られた粉末状の希土類−鉄−窒素系磁石は、保磁力の発生機構がニュークリエーション型であることから、次の工程において平均粒径が数μmから5μm程度になるまで微粉砕処理されている。
Rare earth-iron-nitrogen based magnets represented by Sm-Fe-N are known as high performance and inexpensive rare earth-transition metal-nitrogen based magnets. This Sm-Fe-N magnet powder is said to exhibit the maximum saturation magnetization by being composed of Sm 2 Fe 17 N x (x = 3) (see Non-Patent Document 1).
This rare earth-iron-nitrogen based magnet has been conventionally used in a melting method in which a rare earth-iron alloy is produced using a high frequency furnace, an arc furnace or the like using Fe and Sm metal, Fe, Fe 2 O 3 , Sm 2 O 3, etc. It is obtained by nitriding a mother alloy obtained by a reduction diffusion method in which a rare earth-iron alloy is produced by mixing heat treatment of Ca. The powdered rare earth-iron-nitrogen based magnet obtained in this way has a coercive force generation mechanism that is a nucleation type, so that in the next step, the average particle size is reduced to several μm to about 5 μm. It has been crushed.

これに対して、出発原料として用いる粉末の粒径を小さくすることにより、母合金を粉砕せずに磁石微粉末を得る方法(特許文献1、2参照)があるが、原料が高価となるため工業的にはコストの点が制約となり実用的でない。
また、溶解法では原料粉末の1500℃以上での溶解、粉砕、組成均一化のための熱処理が必要であり(特許文献3参照)、工程が極めて煩雑であるとともに、各工程間において、一旦大気中に曝されるために酸化により不純物質が生成し、湿式処理後に窒化を行うが、湿式処理時に表面が酸化しているため窒化が均一に進行できなくなり、磁気特性のうち飽和磁化、保磁力、角形性が低下し、結果として最大エネルギー積が低くなってしまう。また、原料として必要とされる希土類金属が高価であるという理由から、希土類−鉄−窒素系磁石の製造方法としては、安価な希土類酸化物粉末を原料として利用できる還元拡散法に比べてコスト的に劣ると考えられている。
On the other hand, there is a method (refer to Patent Documents 1 and 2) in which a fine magnetic powder is obtained without pulverizing the master alloy by reducing the particle size of the powder used as the starting material, but the raw material becomes expensive. Industrially, it is impractical because of cost limitations.
In addition, the melting method requires heat treatment for melting, pulverizing, and homogenizing the raw material powder at 1500 ° C. or higher (see Patent Document 3), and the process is extremely complicated. Impurities are generated by oxidation due to exposure to the inside, and nitriding is performed after wet processing. However, since the surface is oxidized during wet processing, nitriding cannot proceed uniformly, so that saturation magnetization and coercive force among magnetic properties. , The squareness is lowered, and as a result, the maximum energy product is lowered. In addition, because the rare earth metal required as a raw material is expensive, the method for producing a rare earth-iron-nitrogen based magnet is more cost-effective than the reduction diffusion method in which an inexpensive rare earth oxide powder can be used as a raw material. It is considered inferior.

上記のような状況から、従来においては、平均粒径約50μmの鉄粉末、希土類酸化物、および該希土類酸化物を還元するための還元剤が少なくとも配合されている混合物を非酸化性雰囲気中で加熱焼成する還元拡散法が有利とされ、先ず、希土類−鉄系合金を含む還元生成物を得て、次に、この還元生成物を湿式処理して、該還元生成物中に生成している還元剤の酸化物を除去し、その後、得られた希土類−鉄系合金を、アンモニアと水素とを含有する混合気流中で窒化した後、粉砕、乾燥することにより所望の希土類−鉄−窒素系磁石粉末を製造している。
このように従来の還元拡散法を用いた希土類−鉄−窒素系磁石粉末の製造方法では、一般に還元拡散工程で得られた還元物を湿式処理してから、得られた希土類−鉄系合金を窒化している(特許文献4参照)。還元物中には、主相であるSmFe17相と、その周りに非磁性相であるSmFe相、SmFe相、CaOが混在しているため、上記湿式処理で、このCaOが水や酸性溶液によって除去される。また、湿式処理する前に、還元物に水素を吸収させて崩壊させている(特許文献5,6参照)。これにより、還元物の粒径が小さくなり、湿式処理をより効率的に行えるようになった。
From the above situation, conventionally, a mixture containing at least an iron powder having an average particle diameter of about 50 μm, a rare earth oxide, and a reducing agent for reducing the rare earth oxide is mixed in a non-oxidizing atmosphere. The reduction diffusion method by heating and firing is advantageous. First, a reduction product containing a rare earth-iron alloy is obtained, and then this reduction product is wet-processed to form in the reduction product. The oxide of the reducing agent is removed, and then the obtained rare earth-iron-based alloy is nitrided in a mixed gas stream containing ammonia and hydrogen, and then pulverized and dried to obtain a desired rare earth-iron-nitrogen system. Manufactures magnet powder.
As described above, in the conventional method for producing a rare earth-iron-nitrogen based magnet powder using the reduction diffusion method, generally, the reduction product obtained in the reduction diffusion step is wet-treated, and then the obtained rare earth-iron alloy is used. Nitriding is performed (see Patent Document 4). In the reduced product, the Sm 2 Fe 17 phase that is the main phase and the SmFe 3 phase, the SmFe 2 phase, and the CaO that are non-magnetic phases are mixed together. Or removed by acidic solution. In addition, before the wet treatment, hydrogen is absorbed into the reduced product to cause collapse (see Patent Documents 5 and 6). As a result, the particle size of the reduced product is reduced, and wet processing can be performed more efficiently.

そして、湿式処理した後の窒化工程で希土類−鉄系合金に窒素を均一に分布させるために、湿式処理後に粒度調整が行なわれている。この粒度調整では、窒化後に磁気特性の低下が見られる目開き106μmの篩上が排除される。
湿式処理後、残留する非磁性相が多いと、主相の比率が低くなり飽和磁化4πImが低下する。しかし、これら非磁性相を除去し過ぎると、湿式処理液中で主相であるSmFe17相に付着するオキシ水酸化鉄が、引き続き行われる窒化工程で還元されα−Feに変化し、ニュークリエーションサイトとなるため保磁力iHcや角形性Hkが大幅に低下してしまう。したがって、従来法では主相粒子を覆うように存在するSmFe相などが、ある程度残留するような条件を選び湿式処理されている。しかし、その後の窒化で、大部分のSmFe相が主相粒子から剥がれ落ちるが、完全ではなく、SmFe相が多すぎれば除去しきれず、最終的に得られる希土類−鉄−窒素系磁石粉末の飽和磁化4πImを低下させていた。また、湿式処理や乾燥時に粒子表面が酸化することにより不均一窒化やα−Feの生成が起こり、さらには、酸洗浄により水素が磁石粉末中に固溶して、磁気特性は低下する傾向があった。
In order to uniformly distribute nitrogen to the rare earth-iron alloy in the nitriding step after the wet process, the particle size is adjusted after the wet process. This particle size adjustment eliminates the sieve having a mesh size of 106 μm, which shows a decrease in magnetic properties after nitriding.
If there is a large amount of nonmagnetic phase remaining after wet processing, the ratio of the main phase is lowered, and the saturation magnetization 4πIm is lowered. However, if these nonmagnetic phases are removed too much, the iron oxyhydroxide adhering to the Sm 2 Fe 17 phase, which is the main phase in the wet processing liquid, is reduced to α-Fe in the subsequent nitriding step, Since it becomes a new creation site, the coercive force iHc and the squareness Hk are significantly reduced. Therefore, in the conventional method, wet processing is performed by selecting conditions such that SmFe 3 phase and the like existing so as to cover the main phase particles remain to some extent. However, in the subsequent nitriding, most of the SmFe 3 phase is peeled off from the main phase particles, but it is not complete, and if there is too much SmFe 3 phase, it cannot be completely removed, and finally obtained rare earth-iron-nitrogen based magnet powder The saturation magnetization of 4πIm was reduced. In addition, non-uniform nitridation and α-Fe generation occur due to oxidation of the particle surface during wet processing and drying, and further, hydrogen is dissolved in the magnet powder by acid cleaning, and the magnetic properties tend to be reduced. there were.

上記のようにして得られた粉末状の希土類−鉄−窒素系磁石は、保磁力の発生機構がニュークリエーション型であることから、次の工程において平均粒径が数μmから5μmになるまで微粉砕処理する必要がある。したがって、磁気特性を低下させる非磁性相が低減され、さらには、磁化反転の核となる結晶の歪みが無く、α−Feが存在しない希土類−鉄−窒素系磁石粉末を確実に得ることができる方法の確立が強く望まれていた。
特開平11−189811号公報 特開平2003−29766号公報 特開平3−141608号公報 特開昭61−295308号公報 特開平9−241708号公報 特開平11−124605号公報 T.Iriyama IEEE TRANSACTIONS ON MAGNETICS,VOL.28,NO.5(1992)
The powdered rare earth-iron-nitrogen based magnet obtained as described above has a coercive force generation mechanism that is a nucleation type, so that the average particle size in the next step is from several μm to 5 μm. It needs to be crushed. Therefore, the non-magnetic phase that lowers the magnetic properties is reduced, and furthermore, rare earth-iron-nitrogen based magnet powder free from the distortion of crystals serving as the core of magnetization reversal and free of α-Fe can be obtained. The establishment of a method was strongly desired.
Japanese Patent Laid-Open No. 11-189811 Japanese Patent Laid-Open No. 2003-29766 Japanese Patent Laid-Open No. 3-141608 JP-A 61-295308 JP-A-9-241708 Japanese Patent Laid-Open No. 11-124605 T.A. Iriyama IEEE TRANSACTIONS ON MAGNETICS, VOL. 28, NO. 5 (1992)

本発明は、このような状況に鑑み、還元拡散法を利用しながら均一に窒化することで、非磁性相だけでなく磁化反転(ニュークリエーション)の核になる結晶の歪みやα−Feの残留が大幅に低減され、それに伴い優れた磁気特性を有する希土類−鉄−窒素系磁石粉末を収率よくかつ安価に製造することのできる製造方法、およびその方法で得られた希土類−鉄−窒素系磁石粉末を提供することにある。   In view of such a situation, the present invention uniformly nitrides using the reduction diffusion method, so that not only the nonmagnetic phase but also the crystal distortion or α-Fe residual that becomes the nucleus of magnetization reversal (nucleation). Method for producing rare earth-iron-nitrogen based magnet powders with excellent yield and low cost, and a rare earth-iron-nitrogen system obtained by the method It is to provide magnet powder.

本発明者らは、かかる従来の課題を解決するために鋭意研究を重ねた結果、希土類−鉄−窒素系磁石粉末を高性能化するためには、還元拡散処理して得られる粒子の表面が酸化被膜で覆われず窒化時の妨げとならないような状態で均一窒化し、その後、湿式処理(酸洗)を強化して非磁性相を無くし、粉砕による加工度を少なくすべきことを究明し、還元温度を従来よりも低い領域に設定して還元拡散処理を行うとともに、これに水素を吸収させて崩壊させ、一旦特定温度以下に冷却してから、窒化処理時の雰囲気及び温度を制御し、均一に窒化した後、得られた窒化処理生成物を湿式処理し、Ca分を洗浄分離した後、さらに、湿式処理の酸洗時に磁石粉末中に固溶した水素を熱処理で除去することにより、非磁性相を低減でき、高い飽和磁化が得られ、磁化反転の核になる結晶の歪み、α−Feを低減でき高保磁力を有し減磁曲線の角形性が良好になることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve such conventional problems, the present inventors have found that the surface of the particles obtained by reduction diffusion treatment is required in order to improve the performance of rare earth-iron-nitrogen based magnet powder. Nitride nitriding in a state that is not covered with oxide film and does not interfere with nitriding, and then clarified that wet processing (pickling) should be strengthened to eliminate non-magnetic phase and reduce the degree of processing by grinding. In addition, the reduction temperature is set to a lower region than before, and the reduction diffusion treatment is performed, and the hydrogen is absorbed and collapsed, and after cooling to a specific temperature or less, the atmosphere and temperature during the nitriding treatment are controlled. After nitriding uniformly, the obtained nitriding product is wet-processed, the Ca content is washed and separated, and further, hydrogen dissolved in the magnet powder is removed by heat treatment at the time of pickling in the wet process. Can reduce nonmagnetic phase, high saturation Reduction is obtained, crystals of the strain to be nuclear magnetization reversal, found that the squareness of the a demagnetization curve reduction can high coercive force of the alpha-Fe is improved, and accomplished the present invention.

すなわち、本発明の第1の発明は、希土類酸化物粉末と、鉄粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合する工程、得られた混合物を不活性ガス雰囲気中900〜1180℃で加熱する工程、引き続き、得られた反応生成物を不活性ガス雰囲気中で500℃以下に冷却した後、不活性ガスの少なくとも一部を排出してから、水素を含むガスを供給し、得られた反応生成物に水素を吸収させ崩壊させる工程、その後、崩壊した反応生成物を300℃以下の温度に保ちながら、アンモニアと水素とを含有する混合ガスを供給し、この気流中で昇温し、350〜500°Cで反応生成物を窒化処理する工程、次に、得られた窒化処理生成物を水中に投入して湿式処理する工程、さらに、湿式処理された磁石粗粉末を120〜480℃で加熱処理し、湿式処理によって磁石合金中に侵入した水素を除去する工程、および、最後に、得られた磁石粗粉末を微粉砕する工程を含むことを特徴とする均一に窒化された希土類―鉄―窒素系磁石粉末の製造方法が提供される。   That is, the first invention of the present invention is a mixture of rare earth oxide powder, iron powder, and at least one reducing agent powder selected from alkali metals, alkaline earth metals or hydrides thereof at a predetermined ratio. A step of heating the obtained mixture in an inert gas atmosphere at 900 to 1180 ° C., and subsequently cooling the obtained reaction product to 500 ° C. or less in an inert gas atmosphere, A process of supplying a gas containing hydrogen after having partly discharged, and absorbing and decomposing hydrogen in the obtained reaction product, and then maintaining the collapsed reaction product at a temperature of 300 ° C. or lower and ammonia and Supplying a mixed gas containing hydrogen, raising the temperature in this air stream, nitriding the reaction product at 350 to 500 ° C., then throwing the obtained nitriding product into water Wet treatment A step of heat-treating the wet-processed coarse magnet powder at 120 to 480 ° C. to remove hydrogen that has penetrated into the magnet alloy by the wet-treatment; There is provided a method for producing a uniformly nitrided rare earth-iron-nitrogen based magnet powder characterized by comprising a pulverizing step.

また、本発明の第2の発明は、第1の発明において、反応生成物の冷却温度が、250℃以下であることを特徴とする希土類―鉄―窒素系磁石粉末の製造方法が提供される。
また、本発明の第3の発明は、第1の発明において、湿式処理された磁石粗粉末を、真空あるいは不活性ガス雰囲気中で加熱処理することを特徴とする希土類―鉄―窒素系磁石粉末の製造方法が提供される。
The second invention of the present invention provides the method for producing a rare earth-iron-nitrogen based magnet powder according to the first invention, wherein the cooling temperature of the reaction product is 250 ° C. or lower. .
According to a third aspect of the present invention, there is provided a rare earth-iron-nitrogen based magnet powder according to the first aspect, wherein the wet-processed magnet coarse powder is heat-treated in a vacuum or an inert gas atmosphere. A manufacturing method is provided.

また、本発明の第4の発明は、第1〜第3のいずれかの発明において、希土類酸化物粉末の混合量が、RFe17の化学量論組成の1.1倍〜1.4倍であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法が提供される。
また、第5の発明は、第1の発明において、磁石粗粉末は、1次粒子が集まって、ぶどう状に焼結した2次粒子の形態を有し、その際、該1次粒子は、粒径20μm以上の累積個数百分率が10%未満であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法が提供される。
さらに、本発明の第6の発明は、第1の発明において、混合ガス中のアンモニア分圧が0.2〜0.6気圧であることを特徴とする希土類―鉄―窒素系磁石粉末の製造方法が提供される。
In addition, according to a fourth aspect of the present invention, in any one of the first to third aspects, the mixing amount of the rare earth oxide powder is 1.1 times to 1.4 times the stoichiometric composition of R 2 Fe 17. A method for producing a rare earth-iron-nitrogen based magnet powder is provided.
Further, in a fifth invention according to the first invention, the coarse magnet powder has a form of secondary particles in which primary particles are gathered and sintered in the shape of grapes. There is provided a method for producing a rare earth-iron-nitrogen based magnet powder characterized in that the cumulative number percentage having a particle size of 20 μm or more is less than 10%.
Further, the sixth invention of the present invention is the production of a rare earth-iron-nitrogen based magnet powder according to the first invention, wherein the ammonia partial pressure in the mixed gas is 0.2 to 0.6 atm. A method is provided.

一方、本発明の第7の発明は、第1〜6のいずれかの発明の方法により得られる希土類−鉄−窒素系磁石粉末が提供される。
また、本発明の第8の発明は、第7の発明において、希土類元素がSmであることを特徴とする希土類−鉄−窒素系磁石粉末が提供される。
また、本発明の第9の発明は、第6又は7の発明において、Smの含有量が23.2〜23.6重量%であることを特徴とする希土類―鉄―窒素系磁石粉末が提供される。
また、本発明の第10の発明は、第7の発明において、磁石粉末中に含まれる水素量が0.06重量%以下であることを特徴とする希土類―鉄―窒素系磁石粉末が提供される。
On the other hand, the seventh invention of the present invention provides a rare earth-iron-nitrogen based magnet powder obtained by the method of any one of the first to sixth inventions.
According to an eighth aspect of the present invention, there is provided the rare earth-iron-nitrogen based magnet powder according to the seventh aspect, wherein the rare earth element is Sm.
The ninth invention of the present invention provides the rare earth-iron-nitrogen based magnet powder according to the sixth or seventh invention, wherein the Sm content is 23.2 to 23.6% by weight. Is done.
According to a tenth aspect of the present invention, there is provided a rare earth-iron-nitrogen based magnet powder according to the seventh aspect, wherein the amount of hydrogen contained in the magnet powder is 0.06 wt% or less. The

また、本発明の第11の発明は、第7〜10のいずれかの発明において、下記一般式(1)で示されるα−Fe比率が、5%以下であることを特徴とする希土類−鉄−窒素系磁石粉末が提供される。
α−Fe比率=X線回折におけるα−Fe(110)ピーク強度/希土類−Fe−窒素(300)ピーク強度…(1)
The eleventh invention of the present invention is the rare earth-iron according to any one of the seventh to tenth inventions, wherein the α-Fe ratio represented by the following general formula (1) is 5% or less. -A nitrogen-based magnet powder is provided.
α-Fe ratio = α-Fe (110) peak intensity / rare earth-Fe-nitrogen (300) peak intensity in X-ray diffraction (1)

さらに、本発明の第12の発明は、第7又は8の発明において、下記一般式(2)で示される積分幅が0.2deg.以下であることを特徴とする希土類―鉄―窒素系磁石粉末が提供される。
積分幅=X線回折におけるSmFe17(113)回折ピークの面積/ピーク強度高さ…(2)
Furthermore, the twelfth invention of the present invention is the seventh or eighth invention, wherein the integral width represented by the following general formula (2) is 0.2 deg. A rare earth-iron-nitrogen based magnet powder is provided which is characterized by:
Integration width = Sm 2 Fe 17 N 3 in X-ray diffraction (113) Area of diffraction peak / peak intensity height (2)

本発明によれば、原料混合物に対して還元拡散処理を行い、その後引き続き窒化処理を行ってから湿式処理を行うに当たり、還元拡散処理を終了してから還元物に水素を吸収させて崩壊させるので、活性な合金粉粒子表面が出ることによって均一に窒化ができ、収率も向上させることができる。その後、崩壊した還元物の粒子表面が酸化され窒化効率を低下させないよう良好な状態を維持して、従来法よりも還元拡散温度を下げて、900〜1180℃とすることで1次粒子の小さい希土類−鉄−窒素系磁石粉末を作製し、その結果、粉砕負荷を軽減して粉砕時に与える応力が小さくてすみ、磁石粉結晶の歪みを小さくすることができる。
また、湿式処理後に窒化するのではなく、窒化処理後に湿式処理することで、非磁性相が低減でき、湿式処理時にオキシ水酸化鉄が主相の周りに付着して窒化時に該オキシ水酸化鉄がα−Feとなって析出することはなく、湿式処理後Ca分を洗浄分離し、さらに、湿式処理の酸洗時に磁石粉末中に固溶した水素を熱処理で除去することにより、保磁力、角形性を向上させることができる。したがって、飽和磁化、保磁力が高まり減磁曲線の角形性が良好なα−Fe比率が小さい希土類−鉄−窒素系磁石粉末を得ることができ、製造コストも安価であることから、その工業的価値は極めて大きい。
According to the present invention, when performing the reduction diffusion treatment on the raw material mixture, and subsequently performing the nitriding treatment and then performing the wet treatment, the reduction product absorbs hydrogen and collapses after the reduction diffusion treatment is completed. The surface of the active alloy powder particles can be uniformly nitrided and the yield can be improved. After that, maintaining the good state so that the particle surface of the collapsed reduced product is not oxidized and lowering the nitriding efficiency, lowering the reduction diffusion temperature than in the conventional method to 900-1180 ° C., the primary particles are small A rare earth-iron-nitrogen based magnet powder is produced. As a result, the stress applied during grinding can be reduced by reducing the grinding load, and the distortion of the magnet powder crystal can be reduced.
In addition, non-magnetic phase can be reduced by performing wet treatment after nitriding treatment instead of nitriding after wet processing, and iron oxyhydroxide adheres around the main phase during wet processing, and the iron oxyhydroxide during nitriding Is not precipitated as α-Fe, and the Ca component is washed and separated after the wet treatment, and further, the hydrogen dissolved in the magnet powder at the time of pickling in the wet treatment is removed by heat treatment, Squareness can be improved. Therefore, it is possible to obtain a rare earth-iron-nitrogen based magnet powder having a small α-Fe ratio with a high saturation magnetization and a coercive force and a good squareness of the demagnetization curve, and a low manufacturing cost. The value is extremely great.

以下、本発明の均一に窒化された希土類−鉄−窒素系磁石粉末とその製造方法について、図面を用いて詳しく説明する。   Hereinafter, the uniformly nitrided rare earth-iron-nitrogen based magnet powder of the present invention and the manufacturing method thereof will be described in detail with reference to the drawings.

本発明は、希土類酸化物粉末と、鉄粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合する工程、得られた混合物を不活性ガス雰囲気中900〜1180℃で加熱する工程、引き続き、得られた反応生成物を不活性ガス雰囲気中で500℃以下に冷却した後、不活性ガスの少なくとも一部を排出してから、水素を含むガスを供給し、得られた反応生成物に水素を吸収させ崩壊させる工程、その後、崩壊した反応生成物を300℃以下の温度に保ちながら、アンモニアと水素とを含有する混合ガスを供給し、この気流中で昇温し、350〜500°Cで反応生成物を窒化処理する工程、次に、得られた窒化処理生成物を水中に投入して湿式処理する工程、さらに、洗浄分離された磁石粗粉末を120℃以上で加熱処理し、前記湿式処理によって磁石合金中に侵入した水素を除去する工程、その後、得られた磁石粗粉末を微粉砕する工程を含んでいる。   The present invention includes a step of mixing a rare earth oxide powder, an iron powder, and at least one reducing agent powder selected from an alkali metal, an alkaline earth metal, or a hydride thereof at a predetermined ratio, and an obtained mixture A step of heating at 900 to 1180 ° C. in an inert gas atmosphere, and subsequently cooling the obtained reaction product to 500 ° C. or less in an inert gas atmosphere, and then discharging at least a part of the inert gas. A step of supplying a gas containing hydrogen and allowing the resulting reaction product to absorb and disintegrate hydrogen, and then a mixed gas containing ammonia and hydrogen while maintaining the disintegrated reaction product at a temperature of 300 ° C. or lower. The step of nitriding the reaction product at 350 to 500 ° C., then adding the obtained nitriding product into water and performing a wet treatment, Wash The separated magnetic crude powder was heat treated at 120 ° C. or higher, removing the hydrogen which has entered into the magnet alloy by the wet process, then includes the step of finely pulverizing the magnet crude powder obtained.

1.希土類−鉄母合金の製造方法
(1)原料粉末の混合
まず、磁石原料粉末として希土類酸化物粉末、鉄粉末を用意し、これを混合する。
希土類酸化物粉末としては、特に制限されないが、Sm、Gd、Tb、およびCeから選ばれる少なくとも1種の元素、あるいは、さらにPr、Nd、Dy、Ho、Er、Tm、およびYbから選ばれる少なくとも1種の元素が含まれるものが好ましい。中でもSmが含まれるものは、本発明の効果を顕著に発揮させることが可能となるので特に好ましい。Smが含まれる場合、高い保磁力を得るためにはSmを希土類全体の60重量%以上、好ましくは90重量%以上にすることが高い保磁力を得るために好ましい。
1. Production Method of Rare Earth-Iron Master Alloy (1) Mixing of Raw Material Powder First, rare earth oxide powder and iron powder are prepared and mixed as magnet raw material powder.
The rare earth oxide powder is not particularly limited, but at least one element selected from Sm, Gd, Tb, and Ce, or at least selected from Pr, Nd, Dy, Ho, Er, Tm, and Yb. Those containing one kind of element are preferred. Among these, those containing Sm are particularly preferable because the effects of the present invention can be remarkably exhibited. When Sm is contained, in order to obtain a high coercive force, it is preferable to obtain Sm of 60% by weight or more, preferably 90% by weight or more of the entire rare earth in order to obtain a high coercive force.

鉄粉末としては、例えば還元鉄粉、ガスアトマイズ粉、水アトマイズ粉、電解鉄粉などが使用でき、必要に応じて最適な粒度になるように分級する。
ここで鉄粉末の30重量%までを鉄酸化物粉末として投入し、還元拡散反応の発熱量を調整することもできる。また、Feの20重量%以下をCoで置換した組成の希土類−鉄−コバルト−窒素系磁石粉末を製造する場合には、Co源としてコバルト粉末および/またはコバルト酸化物粉末および/または鉄−コバルト合金粉末を用いる。コバルト酸化物としては、たとえば酸化第一コバルトや四三酸化コバルト、これらの混合物で、上記粒度を持つものが使用できる。
As the iron powder, for example, reduced iron powder, gas atomized powder, water atomized powder, electrolytic iron powder, and the like can be used, and classification is performed so as to obtain an optimum particle size as necessary.
Here, up to 30% by weight of the iron powder can be added as iron oxide powder to adjust the calorific value of the reduction diffusion reaction. When a rare earth-iron-cobalt-nitrogen based magnet powder having a composition in which 20% by weight or less of Fe is replaced with Co is produced, cobalt powder and / or cobalt oxide powder and / or iron-cobalt are used as a Co source. Use alloy powder. As the cobalt oxide, for example, cobaltous oxide, cobalt tetroxide, or a mixture thereof having the above particle size can be used.

ここで、各磁石原料粉末は、粒径が10〜70μmの粉末が全体の80%以上を占める鉄粉末、粒径が10μm以下の粉末が全体の80%以上を占める希土類酸化物粉末、コバルトを添加する場合は、コバルト粉末および/またはコバルト酸化物粉末とすることが好ましい。
鉄粉末は、粒径70μmを超えるものが多くなると、希土類−鉄母合金粉末中に希土類元素が拡散していない鉄部が多くなるとともに母合金粉末の粒径も大きくなり、窒素分布が不均一になって、得られた希土類−鉄−窒素系磁石粉末の角形性が低下しやすい。
これに対し、希土類酸化物粉末、コバルト酸化物粉末は、これらの中でもっとも多い希土類酸化物粉末でも組成が30重量%未満であることから、還元拡散反応時に、反応容器内部で上記鉄粉末の周りに均一に分布存在していることが望ましい。したがって、粒径が0.1〜10μmの粉末が全体の80%以上を占めるものであることが好ましい。
粒径が0.1μm未満の粉末が多くなると、製造中に粉末が舞い上がり取り扱いにくくなる。また、10μmを超えるものが多くなると、還元拡散法で得られた希土類−鉄−母合金粉末中の希土類元素が拡散していない鉄部が多くなる。
ここで、鉄(−コバルト)−合金粉末については、粒径が10〜80μmの粉末が全体の80%以上を占めること、希土類酸化物粉末については、粒径が0.1〜10μmの粉末が全体の80%以上を占めるものが好ましい。粒径80μmを超える粒子が多くなると、希土類−鉄母合金中に希土類元素が拡散していない鉄部が多くなるとともに、母合金粉末の粒径も大きくなり窒素分布が不均一になって、得られた希土類−鉄−窒素系磁石粉末の角形性が低下しやすい。
Here, each magnet raw material powder is composed of iron powder in which powder having a particle size of 10 to 70 μm accounts for 80% or more of the whole, rare earth oxide powder in which powder having a particle size of 10 μm or less accounts for 80% or more of the total, cobalt When adding, it is preferable to use cobalt powder and / or cobalt oxide powder.
When the number of iron powders exceeding 70 μm increases, the iron part in which rare earth elements are not diffused increases in the rare earth-iron mother alloy powder, the particle diameter of the mother alloy powder increases, and the nitrogen distribution is uneven. Thus, the squareness of the obtained rare earth-iron-nitrogen based magnet powder tends to be lowered.
On the other hand, the rare earth oxide powder and the cobalt oxide powder have a composition of less than 30% by weight even in the rare earth oxide powder, which is the most abundant of these. It is desirable that there be a uniform distribution around. Therefore, it is preferable that the powder having a particle size of 0.1 to 10 μm occupies 80% or more of the whole.
When the powder having a particle size of less than 0.1 μm increases, the powder rises during manufacture and becomes difficult to handle. Further, when the number of particles exceeding 10 μm increases, the iron part in which the rare earth element in the rare earth-iron-mother alloy powder obtained by the reduction diffusion method has not diffused increases.
Here, for iron (-cobalt) -alloy powder, powder having a particle size of 10 to 80 μm accounts for 80% or more of the whole, and for rare earth oxide powder, powder having a particle size of 0.1 to 10 μm is used. What occupies 80% or more of the whole is preferable. When the particle size exceeds 80 μm, the iron part in which the rare earth element is not diffused increases in the rare earth-iron master alloy, the particle size of the master alloy powder increases, and the nitrogen distribution becomes nonuniform. The squareness of the obtained rare earth-iron-nitrogen based magnet powder tends to be lowered.

(2)還元拡散
次に、上記の原料粉末を混合して、不活性ガス雰囲気中、所定の温度で熱処理し、還元拡散法でThZn17型結晶構造を有する希土類−鉄系母合金を製造する。
(2) Reduction Diffusion Next, the above raw material powders are mixed, heat-treated at a predetermined temperature in an inert gas atmosphere, and a rare earth-iron-based master alloy having a Th 2 Zn 17 type crystal structure by a reduction diffusion method. To manufacture.

還元拡散法は、前記したように、希土類酸化物粉末と、他の金属の粉末と、Caなどの還元剤との混合物を、不活性ガス雰囲気中、例えば900〜1300℃で加熱した後、反応生成物を湿式処理して副生したCaOおよび残留Caなどの還元剤成分を除去することによって、直接合金粉末を得る方法である。
本発明では、鉄、必要に応じてコバルトからなる磁石原料粉末と還元剤とを反応容器に投入し、加熱処理することによって、希土類酸化物と他の酸化物原料とを還元するとともに、還元された希土類元素等の金属元素を鉄粉末に拡散させてThZn17型結晶構造を有する希土類−鉄母合金を生成させる。
希土類酸化物粉末は、RFe17の化学量論組成の1.1倍〜1.4倍の範囲で投入することが好ましい。1.1倍未満では鉄粉末に対して希土類元素の拡散が不均一になる。また、均一窒化するために窒化前に還元物を水素崩壊させる必要があるがSmリッチ相が少なくなると粒子が焼結しやすくなり還元物の水素崩壊性が悪くなり、得られる希土類−鉄−窒素系磁石粉末の保磁力や角形性が低下するので好ましくない。1.4倍を超えると、主相以外の磁化を低下させるSmリッチ相が多くなり、Smリッチ相の除去が必要となり、収率低下や除去にかかるコストが高くなる。
ここで各原料粉末は、それぞれの粉体特性差によって分離しないように均一に混合することが重要である。混合方法としては、たとえばリボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、ハイスピードミキサー、ボールミル、振動ミル、アトライター、ジェットミルなどが使用できる。
As described above, the reduction diffusion method involves heating a mixture of a rare earth oxide powder, another metal powder, and a reducing agent such as Ca in an inert gas atmosphere at, for example, 900 to 1300 ° C. This is a method of directly obtaining alloy powder by removing the reducing agent components such as CaO and residual Ca as a by-product by wet-treating the product.
In the present invention, a rare earth oxide and other oxide raw materials are reduced and reduced by putting a magnetic raw material powder made of iron and, if necessary, cobalt and a reducing agent into a reaction vessel and subjecting to heat treatment. A rare earth element such as a rare earth element is diffused into the iron powder to produce a rare earth-iron mother alloy having a Th 2 Zn 17 type crystal structure.
The rare earth oxide powder is preferably added in a range of 1.1 to 1.4 times the stoichiometric composition of R 2 Fe 17 . If it is less than 1.1 times, the diffusion of rare earth elements with respect to iron powder becomes non-uniform. Further, in order to perform uniform nitriding, it is necessary to hydrogen decay the reduced product before nitriding. However, when the Sm rich phase is reduced, the particles are easily sintered and the hydrogen decay property of the reduced product is deteriorated, and the resulting rare earth-iron-nitrogen is obtained. This is not preferable because the coercive force and squareness of the system magnet powder are lowered. If it exceeds 1.4 times, the number of Sm-rich phases that lower the magnetization other than the main phase increases, and it is necessary to remove the Sm-rich phases, resulting in a decrease in yield and cost for removal.
Here, it is important that the raw material powders are uniformly mixed so as not to be separated due to a difference in powder characteristics. As a mixing method, for example, a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, a Nauter mixer, a Henschel mixer, a super mixer, a high speed mixer, a ball mill, a vibration mill, an attritor, a jet mill and the like can be used.

還元剤としては、アルカリ金属、アルカリ土類金属およびこれらの水素化物などが使用でき、取り扱いの安全性とコストの点で、目開き4.00mm以下に篩い分級した粒状金属カルシウムが好ましい。還元剤は上記原料粉末と混合するか、カルシウム蒸気が原料粉末と接触しうるよう分離しておくが、混合して還元拡散させれば、反応生成物が多孔質となり、引き続き行われる窒化処理を効率的に行うことができる。
原料粉末や還元剤とともに、後の湿式処理工程において反応生成物の崩壊を促進させる添加剤を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属塩や酸化カルシウムなどを用いることができ、原料粉末などと同時に均一に混合する。ここで、不活性ガスは、アルゴンガス、ヘリウムガスから選ばれた1種以上が用いられる。
As the reducing agent, alkali metals, alkaline earth metals, hydrides thereof, and the like can be used. From the viewpoint of safety in handling and cost, granular metallic calcium sieved to a mesh size of 4.00 mm or less is preferable. The reducing agent is mixed with the raw material powder or separated so that calcium vapor can come into contact with the raw material powder, but if mixed and reduced and diffused, the reaction product becomes porous, and the subsequent nitriding treatment is performed. Can be done efficiently.
It is also effective to mix an additive that promotes the decay of the reaction product in the subsequent wet processing step together with the raw material powder and the reducing agent. As the disintegration accelerator, alkaline earth metal salts such as calcium chloride, calcium oxide, and the like can be used, and they are uniformly mixed simultaneously with the raw material powder and the like. Here, the inert gas is at least one selected from argon gas and helium gas.

本発明においては、熱処理温度を900〜1180°Cの範囲とすることが必要である。900°C未満では、鉄粉末に対して希土類元素の拡散が不均一となり、得られる希土類−鉄−窒素系磁石粉末の保磁力や角形性が低下する。また、熱処理温度が900℃未満であると拡散に時間がかかるので望ましくない。一方、1180°Cを超えると、生成する希土類−鉄母合金が粒成長を起すため、均一に窒化することが困難になり磁石粉末の飽和磁化と角形性が低下する場合がある。   In the present invention, the heat treatment temperature needs to be in the range of 900 to 1180 ° C. When the temperature is less than 900 ° C., the rare earth element diffuses unevenly with respect to the iron powder, and the coercive force and squareness of the obtained rare earth-iron-nitrogen based magnet powder are lowered. Further, if the heat treatment temperature is less than 900 ° C., it takes time for diffusion, which is not desirable. On the other hand, if it exceeds 1180 ° C, the generated rare earth-iron mother alloy causes grain growth, so that uniform nitriding becomes difficult, and the saturation magnetization and squareness of the magnet powder may be reduced.

ここで、熱処理温度と粒度分布(累積個数百分率)の関係を図1に、SEM像を図2に示す。図1から熱処理温度が高くなるにつれて、得られる窒化処理生成物の粒径が大きくなっていくことがわかる。また、図2のSEM像から、熱処理温度が高い場合(1190℃)では、希土類−鉄−窒素合金粒子の表面が平滑であるのに対し、熱処理温度が低くなるにつれて一次粒子が小さくなり、熱処理温度が1050℃の場合、ぶどう状に焼結した二次粒子を形成していることがわかる。
すなわち、本発明においては、窒化処理生成物中の希土類−鉄−窒素系粉末(磁石粗粉末)は、小さな粒径のものを含む多数の1次粒子が集まって、ぶどう状に焼結し2次粒子を形成している。この場合、1次粒子は、粒径が20μm以上のものの占める比率が少なく、その累積個数百分率が10%未満であることが望ましい。このような粉末は、粉砕が容易であるというだけでなく、優れた磁気特性を有するものとなる。
熱処理温度を好ましくは930〜1080℃として、1次粒子径が小さい希土類−鉄母合金粒子が含まれる反応生成物とすることにより、窒化時、窒素が希土類−鉄母合金粒界から拡散しやすくなるとともに窒化距離が短くなるのは、このためである。また、粉砕時には、焼結している粒子間の粒界の強度が低いので、加工度が小さくてすむことから、結晶歪みを小さくすることができる。さらに、熱処理温度が低い方がSmの蒸発が少なく投入量も低減できるので好ましい。
Here, the relationship between the heat treatment temperature and the particle size distribution (accumulated number percentage) is shown in FIG. 1, and the SEM image is shown in FIG. FIG. 1 shows that the particle size of the obtained nitriding product increases as the heat treatment temperature increases. From the SEM image of FIG. 2, when the heat treatment temperature is high (1190 ° C.), the surface of the rare earth-iron-nitrogen alloy particles is smooth, whereas the primary particles become smaller as the heat treatment temperature is lowered. When temperature is 1050 degreeC, it turns out that the secondary particle sintered in the shape of a grape is formed.
That is, in the present invention, the rare earth-iron-nitrogen-based powder (magnet coarse powder) in the nitriding product is a large number of primary particles including those having a small particle size, and is sintered into a grape shape. The next particle is formed. In this case, it is desirable that the primary particles have a small proportion of particles having a particle size of 20 μm or more, and the cumulative number percentage is less than 10%. Such a powder is not only easy to grind, but also has excellent magnetic properties.
The heat treatment temperature is preferably 930 to 1080 ° C., and a reaction product containing rare earth-iron mother alloy particles having a small primary particle diameter is used, so that nitrogen easily diffuses from the rare earth-iron mother alloy grain boundary during nitriding. This is the reason why the nitriding distance becomes shorter. Further, at the time of pulverization, since the strength of the grain boundary between the sintered particles is low, the degree of processing can be small, so that the crystal distortion can be reduced. Furthermore, it is preferable that the heat treatment temperature is lower because the evaporation of Sm is less and the input amount can be reduced.

ここで、還元拡散反応で得られる生成物は、例えば、還元剤として金属カルシウムを用いた場合には、ThZn17型結晶構造を有する希土類−鉄母合金と酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物である。さらに粒状金属カルシウムを原料粉末に混合して還元拡散反応させた場合には、多孔質の塊状混合物となっている。
これに対して、前記特許文献3で採用されている溶解法は、希土類原料として希土類金属が用いられ、これは還元拡散法で用いられる希土類酸化物原料に比べて高価である。特に、希土類元素が、優れた磁気特性をもたらすSmの場合は、その差が顕著である。また上記粒度調整で発生する不要な粉末は、製品収率を低下させ、粉末コストをさらに引き上げてしまう。また溶解法では、得られた合金中のα−Fe相などをなくすための均質化熱処理工程が必要になり、さらに窒素を導入する前に均質化熱処理した合金を粗粉砕する工程と、粗粉砕粉末を粒度調整する工程が必要になるので好ましくない。
Here, the product obtained by the reduction diffusion reaction, for example, when metallic calcium is used as the reducing agent, rare earth-iron mother alloy having a Th 2 Zn 17 type crystal structure and calcium oxide, unreacted surplus It is a massive mixture composed of metallic calcium and the like. Furthermore, when granular metal calcium is mixed with the raw material powder and subjected to a reduction diffusion reaction, a porous massive mixture is obtained.
On the other hand, the melting method employed in Patent Document 3 uses a rare earth metal as the rare earth material, which is more expensive than the rare earth oxide material used in the reduction diffusion method. In particular, when the rare earth element is Sm that provides excellent magnetic properties, the difference is significant. Moreover, the unnecessary powder generated by the particle size adjustment reduces the product yield and further increases the powder cost. In addition, the melting method requires a homogenization heat treatment step for eliminating the α-Fe phase in the obtained alloy, and further includes a step of coarsely pulverizing the alloy subjected to the homogenization heat treatment before introducing nitrogen, and a coarse pulverization step. This is not preferable because it requires a step of adjusting the particle size of the powder.

本発明では、次に、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま変えずに、熱処理温度から、500°C以下、好ましくは250°C以下に冷却する。ここで、不活性ガスは、前記のとおりアルゴンガス、ヘリウムガスから選ばれた1種以上になっている。このとき、冷却後の温度が500°Cを越えていると、水素を含むガスを供給する際に爆発などの危険性が高まるので好ましくない。
還元剤として、例えば、カルシウムを用いて還元拡散反応を行うと、得られた反応生成物は、希土類−鉄(−コバルト)母合金粉末、酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物凝集体となる。
In the present invention, the reaction product after the reduction-diffusion reaction is then cooled from the heat treatment temperature to 500 ° C. or lower, preferably 250 ° C. or lower without changing the atmospheric gas as an inert gas. . Here, the inert gas is at least one selected from argon gas and helium gas as described above. At this time, if the temperature after cooling exceeds 500 ° C., the risk of explosion or the like increases when supplying the gas containing hydrogen, which is not preferable.
For example, when a reduction diffusion reaction is performed using calcium as a reducing agent, the obtained reaction product is a lump made of rare earth-iron (-cobalt) mother alloy powder, calcium oxide, unreacted excess metallic calcium, and the like. It becomes a mixture aggregate.

希土類−鉄−窒素系磁石、例えば、Sm−Fe−N系磁石粉末は、SmFe17(x=3)で構成されることによって最大の飽和磁化を示すとされている。すなわち、窒素量が少なすぎても多すぎても磁気特性が低下することが知られている。このような事情から、後工程で、Sm−Fe中に窒素を拡散させる際には、上記組成になるよう均一に窒化を行わなければならない。
還元拡散処理で得られる上記反応生成物の凝集体が外径10mmを越える塊である場合、窒化後の窒素量は低くなる傾向にある。その理由は、還元拡散処理で反応に寄与せず余った金属Caが、生成したSm−Fe合金中には固溶せず該Sm−Fe合金粉末の粒界に存在するため、窒化処理時に該Sm−Fe合金内への窒素の拡散を妨害するためであると思われる。したがって、均一に窒化を行うためには、生成したSm−Fe合金表面に偏りなく窒素が到達できることが望ましく、窒化処理前に反応生成物の凝集体の平均外径は10mm以下となっていることが好ましい。
A rare earth-iron-nitrogen based magnet, for example, an Sm—Fe—N based magnet powder is said to exhibit the maximum saturation magnetization by being composed of Sm 2 Fe 17 N x (x = 3). That is, it is known that the magnetic properties are deteriorated when the amount of nitrogen is too small or too large. Under such circumstances, when nitrogen is diffused into Sm—Fe in a subsequent step, nitriding must be performed uniformly so that the above composition is obtained.
When the aggregate of the reaction product obtained by the reduction diffusion treatment is a lump exceeding an outer diameter of 10 mm, the amount of nitrogen after nitriding tends to be low. The reason for this is that excess metal Ca that does not contribute to the reaction in the reduction diffusion treatment does not form a solid solution in the produced Sm-Fe alloy but exists at the grain boundaries of the Sm-Fe alloy powder, This seems to be due to hindering the diffusion of nitrogen into the Sm-Fe alloy. Therefore, in order to perform nitridation uniformly, it is desirable that nitrogen can reach the generated Sm—Fe alloy surface evenly, and the average outer diameter of the aggregate of the reaction product is 10 mm or less before the nitriding treatment. Is preferred.

(3)水素処理
本発明では、上記反応生成物に対して水素処理を行うことを特徴としている。冷却は、少なくとも水素を含有する雰囲気の温度が500°C以下となるようにする。500℃を越えると、消費エネルギーが大きくなり、しかも、目的の希土類−鉄母合金が分解をしたり、副反応生成物が生じうるからである。反応生成物に水素を吸蔵させることは室温でも十分行うことができる。反応生成物が水素を吸蔵すると自己発熱を起し材料温度が上昇するため、500℃を越えないように留意する。
(3) Hydrogen treatment The present invention is characterized in that a hydrogen treatment is performed on the reaction product. The cooling is performed so that the temperature of the atmosphere containing at least hydrogen is 500 ° C. or lower. When the temperature exceeds 500 ° C., the energy consumption increases, and the target rare earth-iron mother alloy can be decomposed or a side reaction product can be generated. Occlusion of hydrogen in the reaction product can be performed sufficiently even at room temperature. When the reaction product occludes hydrogen, self-heating occurs and the material temperature rises, so care must be taken not to exceed 500 ° C.

水素処理では、還元拡散処理を行った後、冷却した反応生成物を炉内に入れたまま、還元拡散処理で用いた不活性ガスを水素雰囲気ガスに置換し、この水素を含む雰囲気ガスで加圧するか、あるいは流しながら一定時間吸蔵処理することにより行う。このとき次工程の窒化処理に悪影響を与えない範囲で加熱してもかまわない。
水素ガスの置換は、炉内にある不活性ガスを脱気して、真空に引いてから水素ガスを導入した方が短時間で水素ガスに完全に置換ができるので好ましい。このときの真空度は、大気圧に対して−30kPa以下が好ましく、−100kPa以下がさらに好ましい。アルゴンガスは、水素ガスよりも比重が大きいため反応生成物の底部まで完全に水素ガスで置換しきれないと、水素処理が効果的に行えず水素処理後も大きな塊のまま存在することがあるから、注意を要する。次に、水素を含む雰囲気ガスで置換後、水素の吸蔵を促進するために炉内の圧力を大気圧に対して+5kPa以上に加圧しておくことが好ましい。加圧は大気圧に対して+10〜50kPaがより好ましい。加圧した状態で放置し、反応生成物が水素を吸蔵していくと、初期加圧圧力から徐々に低下していくことで水素吸蔵が進行していくことが確認できる。
In the hydrogen treatment, after the reduction diffusion treatment is performed, the inert gas used in the reduction diffusion treatment is replaced with a hydrogen atmosphere gas while the cooled reaction product is put in the furnace, and the atmosphere gas containing hydrogen is added. It is carried out by compressing or flowing for a certain period of time while flowing. At this time, heating may be performed within a range that does not adversely affect the nitriding treatment in the next step.
The replacement of the hydrogen gas is preferably performed by degassing the inert gas in the furnace and introducing the hydrogen gas after evacuation, because the hydrogen gas can be completely replaced in a short time. The degree of vacuum at this time is preferably −30 kPa or less, more preferably −100 kPa or less with respect to atmospheric pressure. Since argon gas has a higher specific gravity than hydrogen gas, hydrogen treatment cannot be effectively performed if hydrogen gas cannot be completely replaced to the bottom of the reaction product, and may remain in a large mass after hydrogen treatment. Therefore, attention is required. Next, it is preferable to pressurize the pressure in the furnace to +5 kPa or more with respect to atmospheric pressure in order to promote the occlusion of hydrogen after replacement with an atmospheric gas containing hydrogen. The pressurization is more preferably +10 to 50 kPa with respect to atmospheric pressure. When the reaction product occludes hydrogen in a pressurized state, it can be confirmed that the hydrogen occlusion proceeds by gradually decreasing from the initial pressurization pressure.

反応生成物では、主相であるSmFe17相の周りにSmリッチ相で覆われている状態が通常である。上記水素処理を行うことにより、水素がSmリッチ相等の結晶格子内に入ることで、Smリッチ相は主相よりも膨張率が大きいために、Smリッチ相と主相の粒界から割れて崩壊する。また、強固に凝集している反応生成物の周りにある未反応還元剤や酸化カルシウム等が水素と反応して、凝集がほぐれて崩壊していく。
取り出した崩壊物の粒径が10mm以下、好ましくは1mm以下になるように反応温度と時間を設定することが好ましい。崩壊物の粒径が10mmを越える状態では、窒化処理工程で均一な窒化が困難になり磁気特性の角形が低下してしまい、水素処理の効果がない。
In the reaction product, the Sm 2 Fe 17 phase, which is the main phase, is usually covered with an Sm rich phase. By performing the above hydrogen treatment, hydrogen enters the crystal lattice of the Sm-rich phase, etc., and the Sm-rich phase has a larger expansion coefficient than the main phase, so it breaks from the grain boundary between the Sm-rich phase and the main phase. To do. In addition, unreacted reducing agent, calcium oxide, and the like around the strongly agglomerated reaction product react with hydrogen, and the agglomeration is loosened and collapses.
It is preferable to set the reaction temperature and time so that the particle size of the taken-out disintegrant is 10 mm or less, preferably 1 mm or less. In the state where the particle size of the collapsed material exceeds 10 mm, uniform nitriding becomes difficult in the nitriding treatment process, and the square shape of the magnetic characteristics is lowered, and there is no effect of hydrogen treatment.

前記特許文献5(特開平9−241708号公報)や特許文献6(特開平11−124605号公報)に示されるように、従来の還元拡散法で処理する場合、反応生成物を冷却後に反応容器から取り出し、大気中に晒すことによって自然崩壊していく。
ところが、本発明により水素処理を行い水素吸蔵させた反応生成物は、該水素処理後、容器から取り出した時点で既に崩壊しており、引き続き行われる窒化工程での崩壊性も向上している。そのため生成した主相であるSmFe17相磁性粉末の凝集が小さく崩壊して、該磁性粉末の表面が活性となっており、その後の窒化処理において該磁性粉末合金内の窒素の分布が均一になり、結果として、微粉砕して得られる希土類−鉄−窒素系磁石粉末の減磁曲線の角形性が良好なものとなる。また、本発明のように水素処理で崩壊した後窒化処理して得られる希土類−鉄−窒素系粗磁石粉末は、窒素の分布が均一となるので、磁気特性を低下させる希土類−鉄−窒素系磁石粉末が少なくなるので収率が高くなる。
As shown in Patent Document 5 (Japanese Patent Laid-Open No. 9-241708) and Patent Document 6 (Japanese Patent Laid-Open No. 11-124605), when the reaction product is cooled by a conventional reduction diffusion method, the reaction product is cooled after being cooled. It will naturally collapse by taking it out and exposing it to the atmosphere.
However, the reaction product that has been subjected to hydrogen treatment according to the present invention and occluded with hydrogen has already collapsed when taken out of the container after the hydrogen treatment, and the disintegration property in the subsequent nitriding step is also improved. Therefore, the agglomeration of the produced Sm 2 Fe 17 phase magnetic powder, which is the main phase, collapses small, and the surface of the magnetic powder becomes active, and the distribution of nitrogen in the magnetic powder alloy is uniform in the subsequent nitriding treatment. As a result, the squareness of the demagnetization curve of the rare earth-iron-nitrogen based magnet powder obtained by fine pulverization is improved. Further, the rare earth-iron-nitrogen based coarse magnet powder obtained by nitriding after being disintegrated by hydrogen treatment as in the present invention has a uniform nitrogen distribution, so that the rare earth-iron-nitrogen based system reduces the magnetic properties. Since the magnet powder decreases, the yield increases.

(4)崩壊物の冷却
水素処理後、崩壊物の温度が300°Cを越えていると、窒化の際に反応生成物との窒化反応が急激に進んでしまい、α−Fe相を増加させてしまうことがあるので、300°Cよりも低い温度まで冷却するのが望ましい。これは、300°Cを越える温度では、反応生成物が活性であるために合金が急激に窒化されて、ThZn17型結晶構造を有する金属間化合物がFeリッチ相とSmNとに分解するものと推測されるからである。ただし、20℃よりも低い温度に冷却しても磁気特性の改善は期待できない。
(4) Cooling of collapsed material After the hydrogen treatment, if the temperature of the collapsed product exceeds 300 ° C, the nitridation reaction with the reaction product proceeds rapidly during nitriding, increasing the α-Fe phase. Therefore, it is desirable to cool to a temperature lower than 300 ° C. This is because, at temperatures exceeding 300 ° C., the reaction product is active, so the alloy is rapidly nitrided, and the intermetallic compound having a Th 2 Zn 17 type crystal structure is decomposed into an Fe-rich phase and SmN. Because it is presumed. However, no improvement in magnetic properties can be expected even when cooled to a temperature lower than 20 ° C.

これまで、数多くの還元拡散法が提案されているが、還元拡散反応後の反応生成物を窒化する前に水素を吸収させて崩壊させ、その後、窒化することは殆ど行われていない。これは、水素を供給する前に一旦冷却することになり、熱エネルギーのロスにつながるためである。
また、窒化に先立ち、殆どのケースで還元物を冷却する工程を採り入れているものの、冷却後の温度は窒化温度範囲内に収められていた。すなわち、窒化の下限温度である300℃よりも低い温度まで冷却されることはなかった。その主な理由は、温度を下げれば下げるほど、次の窒化工程で昇温するのに大きな熱エネルギーが必要となるからである。そのため、雰囲気ガスを不活性ガスとしたまま変えずに、引き続き、反応生成物を300°C以下に冷却することで、母合金がどのようなメカニズムで窒化されるかについては、全く検討されていなかった。
Many reduction diffusion methods have been proposed so far, but the reaction product after the reduction diffusion reaction is absorbed and collapsed before nitriding, and nitriding is rarely performed thereafter. This is because cooling is once performed before supplying hydrogen, which leads to loss of heat energy.
In addition, in most cases, a step of cooling the reduced product is employed prior to nitriding, but the temperature after cooling is within the nitriding temperature range. That is, it was not cooled to a temperature lower than 300 ° C., which is the minimum temperature for nitriding. The main reason is that the lower the temperature, the more heat energy is required to raise the temperature in the next nitriding step. Therefore, the mechanism by which the mother alloy is nitrided by continuously cooling the reaction product to 300 ° C. or lower without changing the atmospheric gas as an inert gas has been completely studied. There wasn't.

2.希土類−鉄−窒素系磁石粉末の製造方法
冷却後、多孔質の崩壊された反応生成物を湿式処理しないで、雰囲気ガスを窒化ガスに変えて、次の窒化工程に移る。このとき反応生成物が大気中に曝されると、反応生成物中の活性な希土類−鉄母合金粉末が酸化されて反応性が失活して、結果として窒化の度合いをばらつかせるので、大気(酸素)に曝されることのないように窒化工程に持ち込むことが必要である。
2. Method for Producing Rare Earth-Iron-Nitrogen Magnet Powder After cooling, the atmosphere gas is changed to a nitriding gas without moving the porous collapsed reaction product to the next nitriding step. If the reaction product is exposed to the atmosphere at this time, the active rare earth-iron mother alloy powder in the reaction product is oxidized and the reactivity is deactivated, resulting in a variation in the degree of nitriding. It is necessary to bring it into the nitriding process so as not to be exposed to the atmosphere (oxygen).

(1)窒化処理
窒化工程では、雰囲気ガスの不活性ガスを排出してから、300℃以下の温度に保ちながら、少なくともアンモニアと水素とを含有する混合ガスを供給し昇温して、反応生成物を特定温度に加熱する。
(1) Nitriding treatment In the nitriding process, after the inert gas of the atmospheric gas is discharged, the temperature is raised by supplying a mixed gas containing at least ammonia and hydrogen while maintaining the temperature at 300 ° C. or lower. The object is heated to a specific temperature.

従来の方法では、磁石原料粉末を還元拡散して冷却後に反応生成物を取り出し、湿式処理して得た希土類−鉄母合金を窒化し、微粉砕する方法で希土類−鉄−窒素系磁石粉末を作製している。ところが、こうして得られた希土類−鉄−窒素系磁石粉末を分析すると、Sm量が高く非磁性相が多くなっている。また、粉砕粉末のX線回折でも磁化反転の核になる結晶歪み、α−Fe比率も粉砕前の希土類−鉄−窒素系磁石粉末に比べて大きく、湿式処理した希土類−鉄母合金には数mm程度の大きな塊が約60重量%も含まれることになる。この塊を含む希土類−鉄母合金を窒化して得た希土類−鉄−窒素系磁石粉末を、目開き106μmで篩分けた篩上の粉末を微粉砕して、磁気特性を測定すると減磁曲線の角形性(HK)が低くなり、好ましい磁石粉末が得られない。   In the conventional method, the magnet raw material powder is reduced and diffused, the reaction product is taken out after cooling, the rare earth-iron master alloy obtained by wet processing is nitrided and finely pulverized to obtain the rare earth-iron-nitrogen based magnet powder. I am making it. However, when the rare earth-iron-nitrogen based magnet powder thus obtained is analyzed, the amount of Sm is high and the nonmagnetic phase is increased. In addition, the X-ray diffraction of the pulverized powder has larger crystal distortion and α-Fe ratio, which are the cores of magnetization reversal, compared to the rare earth-iron-nitrogen based magnet powder before pulverization. A large lump of about mm is included in about 60% by weight. When the magnetic properties are measured by pulverizing the rare earth-iron-nitrogen based magnet powder obtained by nitriding the rare earth-iron master alloy containing this lump with an aperture of 106 μm and measuring the magnetic properties, the demagnetization curve The squareness (HK) of the steel becomes low, and a preferable magnet powder cannot be obtained.

これに対し、本発明においては、上記のように、母合金に水素を吸収させ崩壊させた後、雰囲気ガスを変えて、アンモニアと水素とを含有する混合気流中で昇温して、350〜500°Cで反応生成物の窒化処理を行い、次に、得られた窒化処理生成物を水中に投入して湿式処理することを特徴としている。窒化ガスとしては、少なくともアンモニアと水素とを含有していることが必要であり、反応をコントロールするためにアルゴン、窒素、ヘリウムなどを混合することができる。窒化ガスの量は、磁石粉末中の窒素量が3.3〜3.7重量%となるに十分な量であることが好ましい。
全気流圧力に対するアンモニアの比(アンモニア分圧)は、0.2〜0.6、好ましくは0.3〜0.5となるようにする。アンモニア分圧が0.2未満であると、長時間かけても母合金の窒化が進まず、窒素量を3.3〜3.7重量%とすることができず、磁石粉末の飽和磁化と保磁力が低下する。
On the other hand, in the present invention, as described above, after absorbing and collapsing hydrogen into the mother alloy, the atmospheric gas is changed, and the temperature is raised in a mixed gas stream containing ammonia and hydrogen, and 350 to The reaction product is subjected to nitriding treatment at 500 ° C., and then the obtained nitriding treatment product is put into water and wet-treated. The nitriding gas needs to contain at least ammonia and hydrogen, and argon, nitrogen, helium, etc. can be mixed to control the reaction. The amount of the nitriding gas is preferably an amount sufficient for the amount of nitrogen in the magnet powder to be 3.3 to 3.7% by weight.
The ratio of ammonia to the total airflow pressure (ammonia partial pressure) is 0.2 to 0.6, preferably 0.3 to 0.5. If the ammonia partial pressure is less than 0.2, the nitridation of the master alloy does not proceed over a long period of time, and the amount of nitrogen cannot be reduced to 3.3 to 3.7% by weight. The coercive force decreases.

アンモニアと水素とを含有する混合気流を窒化温度である350〜500°C、好ましくは400〜480°Cで供給して、母合金を窒化熱処理することが必要である。温度が350°C未満であると、反応生成物中の希土類−鉄母合金に3.3〜3.7重量%の窒素を導入するのに長時間を要するので工業的優位性がなくなる。一方、500°Cを超えると、主相であるSmFe17相が分解してα−Feが生成するので、最終的に得られる希土類−鉄−窒素系磁石粉末の減磁曲線の角形性が低下するので好ましくない。なお、冷却温度から窒化温度までは、毎分3〜10℃の速度で比較的急速に昇温することが生産効率を高める上で望ましい。また、冷却温度での保持時間は、特に制限されない。
窒化処理の保持時間は、窒化温度にもよるが、100〜300分、好ましくは、140〜250分とする。100分未満では、窒化が不十分になり、一方、300分を超えると窒化が進みすぎるので好ましくない。
It is necessary to perform a nitriding heat treatment of the master alloy by supplying a mixed gas stream containing ammonia and hydrogen at a nitriding temperature of 350 to 500 ° C., preferably 400 to 480 ° C. When the temperature is less than 350 ° C., it takes a long time to introduce 3.3 to 3.7% by weight of nitrogen into the rare earth-iron master alloy in the reaction product, so that the industrial advantage is lost. On the other hand, when the temperature exceeds 500 ° C., the Sm 2 Fe 17 phase, which is the main phase, is decomposed to produce α-Fe, and thus the squareness of the demagnetization curve of the finally obtained rare earth-iron-nitrogen based magnet powder. Is unfavorable because it decreases. From the cooling temperature to the nitriding temperature, it is desirable for increasing the production efficiency to raise the temperature relatively rapidly at a rate of 3 to 10 ° C. per minute. Further, the holding time at the cooling temperature is not particularly limited.
The retention time for the nitriding treatment is 100 to 300 minutes, preferably 140 to 250 minutes, although it depends on the nitriding temperature. If it is less than 100 minutes, nitriding becomes insufficient, while if it exceeds 300 minutes, nitriding proceeds excessively, which is not preferable.

本発明においては、窒化処理に引き続いて、さらに水素ガス、または窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中で合金粉末を熱処理することが望ましい。特に好ましいのは、水素ガスで熱処理した後に窒素ガスおよび/またはアルゴンガスで熱処理をすることである。
これにより、磁石粉末を構成する個々の結晶セル内の窒素分布をさらに均一化することができ、角形性を向上させることができる。熱処理の保持時間は、30〜200分、好ましくは60〜250分が良い。
In the present invention, following the nitriding treatment, it is desirable to further heat-treat the alloy powder in an inert gas such as hydrogen gas, nitrogen gas, argon gas or helium gas. Particularly preferred is a heat treatment with nitrogen gas and / or argon gas after heat treatment with hydrogen gas.
Thereby, the nitrogen distribution in the individual crystal cells constituting the magnet powder can be made more uniform, and the squareness can be improved. The holding time of the heat treatment is 30 to 200 minutes, preferably 60 to 250 minutes.

(2)湿式処理
本発明では、窒化後の処理生成物を湿式処理して、それに含まれている還元剤成分の副生成物(酸化カルシウムや窒化カルシウムなど)を希土類−鉄−窒素系磁石粉末から分離除去する。
(2) Wet treatment In the present invention, the treated product after nitriding is wet treated, and the by-products (calcium oxide, calcium nitride, etc.) of the reducing agent component contained therein are rare earth-iron-nitrogen based magnet powder. Separate and remove from.

窒化終了後の磁石粉末に対して湿式処理を行うのは、前述したとおり、窒化する前に、反応生成物を湿式処理すると、この湿式処理過程で母合金表面が酸化されて窒化の度合いをばらつかせるからである。
また、窒化後に処理生成物を長期間大気中に放置すると、カルシウムなどの還元剤成分の酸化物が生成し除去しにくくなったり、磁石粉末の表面の酸化によって、窒化が不均一になり主相の比率の低下とニュークリエーションの核の生成によって角形性が低下したりする。したがって、大気中に放置された窒化処理生成物は、反応器から取り出してから2週間以内に湿式処理するのがよい。
As described above, the wet treatment is performed on the magnet powder after the nitridation. When the reaction product is wet-treated before nitriding, the surface of the mother alloy is oxidized during this wet treatment process, thereby varying the degree of nitridation. Because it can be used.
In addition, if the treatment product is left in the atmosphere for a long time after nitriding, an oxide of a reducing agent component such as calcium is generated and difficult to remove, or the surface of the magnet powder is oxidized, resulting in non-uniform nitriding. The squareness decreases due to the decrease in the ratio of nuclei and the formation of nuclei of new creation. Therefore, the nitriding product left in the atmosphere is preferably wet-treated within two weeks after being taken out from the reactor.

湿式処理は、まず崩壊した生成物を水中に投入し、デカンテーション−注水−デカンテーションを繰り返し行い、生成したCa(OH)の多くを除去する。さらに必要に応じて、残留するCa(OH)を除去するために、酢酸および/または塩酸を用いて酸洗浄する。このときの水溶液の水素イオン濃度pHが4〜7の範囲で実施するとよい。還元拡散時に過剰に投入したSmの影響で主相の周りに磁気特性の飽和磁化を低下させる非磁性相が存在している場合があり、Sm量が23.2〜23.6重量%になるように酸洗を行うことが好ましい。
上記酸洗浄処理の終了後には、例えば水洗し、アルコールあるいはアセトン等の有機溶媒で脱水し、不活性ガス雰囲気中または真空中で乾燥することで希土類−鉄−窒素系磁石粗粉末を得ることができる。
In the wet treatment, first, the disintegrated product is put into water, and decantation-water injection-decantation is repeated to remove much of the produced Ca (OH) 2 . Further, if necessary, in order to remove residual Ca (OH) 2 , acid washing is performed using acetic acid and / or hydrochloric acid. It is good to implement in the range whose hydrogen ion concentration pH of the aqueous solution at this time is 4-7. There may be a non-magnetic phase around the main phase that lowers the saturation magnetization of the magnetic properties due to the influence of Sm added excessively during reduction diffusion, and the Sm amount is 23.2 to 23.6% by weight. Thus, it is preferable to perform pickling.
After the completion of the acid cleaning treatment, for example, washing with water, dehydrating with an organic solvent such as alcohol or acetone, and drying in an inert gas atmosphere or vacuum can obtain a rare earth-iron-nitrogen based magnet coarse powder. it can.

(3)脱水素処理
この湿式処理の酸洗時に、水素が希土類−鉄(−コバルト)−窒素系磁石あるいは、希土類−鉄−コバルト−窒素系磁石粗粉末と反応して合金中に侵入する。水素が該磁石粉末中に固溶するとiHcが大きく低下する。そのため、該磁石粉末中に固溶した水素は加熱処理によって除去することが必要である。
(3) Dehydrogenation treatment During pickling in this wet treatment, hydrogen reacts with the rare earth-iron (-cobalt) -nitrogen magnet or the rare earth-iron-cobalt-nitrogen magnet coarse powder and enters the alloy. When hydrogen is dissolved in the magnet powder, iHc is greatly reduced. For this reason, it is necessary to remove hydrogen dissolved in the magnet powder by heat treatment.

加熱処理の雰囲気は、特に限定されるわけではないが、真空中あるいは不活性ガス中で行うと良い。好ましいのは真空中である。図3に、湿式処理後の磁石粗粉末を真空中、加熱処理した場合の加熱温度とiHc、Hkの関係を示す。処理時間は30分とした。加熱温度120〜480℃までの範囲でiHc、Hkが良好な特性を示している。また、図4には、湿式処理後の磁石粗粉末を真空中、250℃で加熱処理した時、加熱処理後の磁石粉末の水素量とiHc、Hkの関係を示す。磁石粗粉末中の水素量が0.06重量%以下であるときに良好な磁気特性を示すことがわかる。上記の結果を勘案すると、処理温度は120〜480℃とし、この時磁石粉末中の水素量が0.06重量%以下となっていることが好ましいといえる。   The atmosphere for the heat treatment is not particularly limited, but it may be performed in a vacuum or in an inert gas. Preference is given to a vacuum. FIG. 3 shows the relationship between the heating temperature, iHc, and Hk when the magnet coarse powder after the wet treatment is heated in vacuum. The processing time was 30 minutes. The iHc and Hk have good characteristics in the heating temperature range of 120 to 480 ° C. FIG. 4 shows the relationship between the amount of hydrogen in the magnet powder after heat treatment and iHc, Hk when the magnet coarse powder after the wet treatment is heat-treated at 250 ° C. in vacuum. It can be seen that good magnetic properties are exhibited when the amount of hydrogen in the magnet coarse powder is 0.06 wt% or less. Considering the above results, it can be said that the treatment temperature is 120 to 480 ° C., and at this time, the amount of hydrogen in the magnet powder is preferably 0.06% by weight or less.

加熱温度が120℃よりも低いと、長い処理時間を必要とし効率が悪く、480℃を越えると磁石粉末が分解してα―Feを生成するのでiHc、Hkが低下してしまう。
得られた希土類−鉄−窒素系磁石粗粉末は、その粒子表面が平滑ではなく、全体的に粒径の異なる多数の粒子が集合した形状をしている。
より具体的には、比較的粒径が大きい1次粒子の周囲に、それよりも粒径が小さい多数の粒子が集って、ぶどう状に焼結し2次粒子を形成している。1次粒子は、粒径20μm以上のものが占める比率が小さく、累積個数百分率が10%未満である。
If the heating temperature is lower than 120 ° C., a long treatment time is required and the efficiency is poor, and if it exceeds 480 ° C., the magnet powder is decomposed to produce α-Fe, so that iHc and Hk are lowered.
The obtained rare earth-iron-nitrogen based magnet coarse powder has a shape in which the particle surface is not smooth and a large number of particles having different particle diameters are aggregated as a whole.
More specifically, a large number of particles having a smaller particle diameter gather around the primary particles having a relatively large particle diameter, and are sintered into grapes to form secondary particles. The proportion of primary particles having a particle size of 20 μm or more is small, and the cumulative number percentage is less than 10%.

(4)微粉砕、乾燥
次に、得られた磁石粗粉末を溶媒とともにビーズミル、媒体撹拌ミル等の粉砕機に入れ、希土類−鉄−窒素系磁石粉末が平均粒径1〜5μmとなるように微粉砕し、その後ろ過、乾燥する。
(4) Fine grinding and drying Next, the obtained magnet coarse powder is put together with a solvent in a grinding machine such as a bead mill or a medium stirring mill so that the rare earth-iron-nitrogen based magnet powder has an average particle diameter of 1 to 5 μm. Finely pulverize, then filter and dry.

本発明で磁石粗粉末を微粉砕するには、固体を取り扱う各種の化学工業において広く使用され、種々の材料を所望の程度に粉砕するための粉砕装置であれば、特に限定されるわけではない。その中でも、粉末の組成や粒子径を均一にしやすい点で優れた、媒体撹拌ミルまたはビーズミルによる湿式粉砕方式によることが好適である。
粉砕に用いる溶媒としては、イソプロピルアルコール、エタノール、トルエン、メタノール、ヘキサン等が使用できるが、特にイソプロピルアルコールが好ましい。粉砕後に所定の目開きのフィルターを用いて、ろ過、乾燥して希土類−鉄−窒素系磁石微粉末を得る。
The fine pulverization of the magnet coarse powder in the present invention is not particularly limited as long as it is a pulverizer that is widely used in various chemical industries handling solids and pulverizes various materials to a desired degree. . Among these, it is preferable to use a wet pulverization method using a medium stirring mill or a bead mill, which is excellent in that the composition and particle size of the powder can be made uniform easily.
As a solvent used for pulverization, isopropyl alcohol, ethanol, toluene, methanol, hexane, or the like can be used, and isopropyl alcohol is particularly preferable. After pulverization, a rare earth-iron-nitrogen based magnet fine powder is obtained by filtering and drying using a filter having a predetermined opening.

3.希土類−鉄−窒素系磁石粉末
本発明では、上記の方法で得られる希土類−鉄−窒素系磁石粉末は、希土類の種類によって制限されるわけではないが、Sm−Fe−Nが好ましい。特に、Sm量が磁石粉末全体に対して23.2〜23.6重量%のものが一層好ましい。
3. Rare earth-iron-nitrogen based magnet powder In the present invention, the rare earth-iron-nitrogen based magnet powder obtained by the above method is not limited by the kind of rare earth, but Sm-Fe-N is preferred. In particular, the Sm content is more preferably 23.2 to 23.6% by weight with respect to the whole magnet powder.

本発明の希土類−鉄−窒素系磁石粉末は、下記一般式(1)で示されるα−Fe比率が5%以下であることを特徴とする。
α−Fe比率=X線回折におけるα−Fe(110)ピーク強度/希土類−Fe−窒素(300)ピーク強度…(1)
このα−Fe比率は、広域測定結果のバックグランドを除去したあとに、α−Fe(JCPDS No.6−696)の(110)面とSmFe17の(300)面の位置に相当するピーク強度IFe、ISFNを用いて後述する式で算出される。本来のX線回折定量分析においては、化合物間のピーク強度比を補正する必要があるが、本発明に係る希土類−鉄−窒素系磁石であれば、そのような補正を省略しても差し支えない。また、α−Fe、SmFe17(SmFe17:主相)以外には化合物が存在しないと仮定している。
希土類−鉄−窒素系磁石粉の主相表面に析出しているα−Feの比率が5%よりも大きくなると、該磁石粉主相のニュークリエーションサイトとなるため保磁力iHcや角形性Hkが大幅に低下してしまう。
The rare earth-iron-nitrogen based magnet powder of the present invention is characterized in that the α-Fe ratio represented by the following general formula (1) is 5% or less.
α-Fe ratio = α-Fe (110) peak intensity / rare earth-Fe-nitrogen (300) peak intensity in X-ray diffraction (1)
This α-Fe ratio is obtained by removing the background of the wide-area measurement result and then the position of the (110) plane of α-Fe (JCPDS No. 6-696) and the (300) plane of Sm 2 Fe 17 N 3. It is calculated by the following formula using the corresponding peak intensities I Fe and I SFN . In the original X-ray diffraction quantitative analysis, it is necessary to correct the peak intensity ratio between the compounds. However, if the rare earth-iron-nitrogen magnet according to the present invention is used, such correction may be omitted. . Further, it is assumed that there is no compound other than α-Fe, Sm 2 Fe 17 (Sm 2 Fe 17 N 3 : main phase).
When the ratio of α-Fe deposited on the surface of the main phase of the rare earth-iron-nitrogen based magnet powder becomes larger than 5%, the magnet powder main phase becomes a nucleation site, and therefore the coercive force iHc and the squareness Hk are reduced. It will drop significantly.

本発明の希土類−鉄−窒素系磁石粉末は、還元拡散温度を下げることで1次粒子の小さい希土類−鉄−窒素系磁石粉末として得られたものである。そのため、粉砕時の応力が小さくてすむために結晶の歪みが小さい。このことは、得られた希土類−鉄−窒素系磁石粉末のX線回折の測定で確認される。本発明では、下記一般式(2)で示される積分幅が0.2deg.以下であることを特徴とする。
積分幅=X線回折におけるSmFe17(113)回折ピークの面積/ピーク強度高さ…(2)
The rare earth-iron-nitrogen magnet powder of the present invention is obtained as a rare earth-iron-nitrogen magnet powder having small primary particles by lowering the reduction diffusion temperature. Therefore, since the stress during pulverization is small, the distortion of the crystal is small. This is confirmed by X-ray diffraction measurement of the obtained rare earth-iron-nitrogen based magnet powder. In the present invention, the integral width represented by the following general formula (2) is 0.2 deg. It is characterized by the following.
Integration width = Sm 2 Fe 17 N 3 in X-ray diffraction (113) Area of diffraction peak / peak intensity height (2)

さらに、本発明の希土類−鉄−窒素系磁石粉末は、還元拡散処理を終了してから窒化処理の間の雰囲気及び温度を制御することにより、粒子表面が酸化等で窒化時の妨げとならないよう良好な状態を維持して均一に窒化処理される。そして、湿式処理後に窒化するのではなく、窒化してから湿式処理するため、非磁性相が低減している。また、湿式処理時にオキシ水酸化鉄が主相の周りに付着し、窒化時にα−Feとなって析出して磁気特性を低下させることがないため、希土類−鉄−窒素系磁石粉末のα−Feが低減し、その比率は5%以下である。さらに、湿式処理時に磁石粉末中に固溶した水素を、その後に加熱処理して除去し、水素量を0.06重量%以下としている。この結果、飽和磁化、保磁力が高まり減磁曲線の角形性が良好である希土類−鉄−窒素系磁石粉末となる。
すなわち、この希土類−鉄−窒素系磁石粉末の磁気特性は、飽和磁化が1.4T(14kG)、保磁力が800kA/m(10kOe)、角形性:Hkが400kA/m(5kOe)以上という優れた性能を有している。
Furthermore, the rare earth-iron-nitrogen based magnet powder of the present invention controls the atmosphere and temperature during nitriding after finishing the reduction diffusion treatment so that the particle surface does not interfere with nitriding due to oxidation or the like. Nitriding is uniformly performed while maintaining a good state. And since it wet-processes after nitriding rather than nitriding after a wet process, the nonmagnetic phase is reducing. Further, since iron oxyhydroxide adheres around the main phase during wet processing and precipitates as α-Fe during nitridation and does not deteriorate the magnetic properties, the α- of the rare earth-iron-nitrogen based magnet powder Fe is reduced, and the ratio is 5% or less. Furthermore, hydrogen dissolved in the magnet powder during the wet treatment is removed by heat treatment thereafter, so that the amount of hydrogen is 0.06% by weight or less. As a result, a rare earth-iron-nitrogen based magnet powder having high saturation magnetization and coercive force and good demagnetization curve squareness is obtained.
That is, the magnetic properties of the rare earth-iron-nitrogen based magnet powder are such that the saturation magnetization is 1.4 T (14 kG), the coercive force is 800 kA / m (10 kOe), and the squareness: Hk is 400 kA / m (5 kOe) or higher Have excellent performance.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。得られた窒化粉末は次の方法で測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples. The obtained nitride powder was measured by the following method.

(1)磁気特性
合金粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600A/mの配向磁界をかけてステアリン酸中で希土類−鉄−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定した。磁石合金粉末の比重を7.67g/cm3とし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、飽和磁化:4πIm(T)、保磁力:iHc(kA/m)、角形性:Hk(kA/m)を測定した。
なお、上記希土類−鉄−窒素系磁石では、飽和磁化1.4T(14kG)、保磁力800kA/m(10kOe)、角形性:Hk400kA/m(5kOe)以上であれば十分な性能を有するものといえる。Hkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが残留磁化4πIrの90%の値を取るときの減磁界の大きさである。
(2)結晶歪み
粉末X線回折装置(Cu−Kα、理学電機株式会社製 Rotaflex RAD−rVB、マックサイエンス株式会社製 SUN SP/IPX)を用いて、SmFe17(113)回折ピークの積分幅を求めた。前記積分幅は、SmFe17(113)回折ピークの面積をピーク強度高さで割った値として、算出した。結晶歪みは2θ(deg.)で表されるから、deg.が大きい程歪みは大きくなり、粉砕後の磁石粉末に残る歪み量の目安になる。
測定はゴニオン半径185mm、発散スリット1.0°、散乱スリット1.0°、受光スリット0.3mm、湾曲グラファイトモノメーターを用いた光学系で行った。
(3)α−Fe比率
結晶歪み測定で使用した粉末X線回折装置を用いてα−Fe比率を求めた。α−Fe比率は、広域測定結果のバックグランドを除去したあとに、α−Fe(JCPDS No.6−696)の(110)面とSmFe17の(300)面の位置に相当するピーク強度IFe、ISFNを用いて、下記の式より算出した比率である。
(1) Magnetic properties The magnetic properties of the alloy powder are rare earths in stearic acid by applying an orientation magnetic field of 1600 A / m according to Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. A sample was prepared by orienting iron-nitrogen based magnet powder, and measurement was performed by magnetizing with a magnetic field of 4000 kA / m. The specific gravity of the magnet alloy powder is 7.67 g / cm 3, and a vibration sample type magnetometer with a maximum magnetic field of 1200 kA / m without demagnetizing correction is used. m), squareness: Hk (kA / m) was measured.
The rare earth-iron-nitrogen magnet has sufficient performance as long as the saturation magnetization is 1.4T (14 kG), the coercive force is 800 kA / m (10 kOe), and the squareness is Hk 400 kA / m (5 kOe) or more. I can say that. Hk represents the squareness of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes 90% of the residual magnetization 4πIr in the second quadrant.
(2) Crystal distortion Sm 2 Fe 17 N 3 (113) diffraction peak using powder X-ray diffractometer (Cu-Kα, Rotaflex RAD-rVB manufactured by Rigaku Corporation, SUN SP / IPX manufactured by Mac Science Co., Ltd.) The integral width of was obtained. The integral width was calculated as a value obtained by dividing the area of the Sm 2 Fe 17 N 3 (113) diffraction peak by the peak intensity height. Since the crystal strain is expressed by 2θ (deg.), Deg. The larger the is, the larger the strain becomes, which is a measure of the amount of strain remaining in the magnet powder after grinding.
The measurement was performed with an optical system using a gonion radius of 185 mm, a divergence slit of 1.0 °, a scattering slit of 1.0 °, a light receiving slit of 0.3 mm, and a curved graphite monometer.
(3) α-Fe ratio The α-Fe ratio was determined using the powder X-ray diffractometer used in the crystal strain measurement. The α-Fe ratio corresponds to the position of the (110) plane of α-Fe (JCPDS No. 6-696) and the (300) plane of Sm 2 Fe 17 N 3 after removing the background of the wide-area measurement result. The ratio calculated from the following formula using the peak intensities IFe and ISFN.

Figure 2007119909
Figure 2007119909

本来X線回折定量分析においては、化合物間のピーク強度比を補正する必要があるが、ここでの比率算出には行っていない。また、α−Fe、SmFe17(SmFe17:主相)以外には化合物が存在しないと仮定している。
希土類−鉄−窒素系磁石粉主相表面に析出しているα−Feの比率が大きくなると、希土類−鉄−窒素系磁石粉主相のニュークリエーションサイトとなるため、保磁力iHcや角形性Hkが大幅に低下してしまうことから、α−Fe比率で磁気特性、角形性への影響が容易に判断できる。
Originally, in the X-ray diffraction quantitative analysis, it is necessary to correct the peak intensity ratio between compounds, but the ratio calculation is not performed here. Further, it is assumed that there is no compound other than α-Fe, Sm 2 Fe 17 (Sm 2 Fe 17 N 3 : main phase).
When the ratio of α-Fe deposited on the surface of the main phase of the rare earth-iron-nitrogen based magnet powder increases, it becomes a nucleation site of the main phase of the rare earth-iron-nitrogen based magnet powder, and therefore the coercive force iHc and the squareness Hk. Therefore, the influence on the magnetic properties and squareness can be easily determined by the α-Fe ratio.

Figure 2007119909
Figure 2007119909

(4)粒子形状
粉砕前の希土類−鉄−窒素系磁石粉末の粒子表面、形状を走査型電子顕微鏡(SEM:株式会社日立製作所製、S−800)で観察した。
(5)粒度分布
SEM像から1次粒子の粒径を1000倍で撮影した写真を2倍に拡大して、最小メモリ1mmの定規で各粒子の最長の長さを測定し、累積個数百分率で求めた。
(4) Particle shape The particle surface and shape of the rare earth-iron-nitrogen magnet powder before pulverization were observed with a scanning electron microscope (SEM: manufactured by Hitachi, Ltd., S-800).
(5) Particle size distribution From the SEM image, the photograph of the particle size of the primary particle was magnified 1000 times, the longest length of each particle was measured with a ruler with a minimum memory of 1 mm, and the cumulative number percentage Asked.

(実施例1)
磁石原料粉末として、アトマイズ法で製造された、粒径が10〜70μmの粉末が全体の94%を占める鉄粉末(Fe純度99%以上)24.3gと、粒径が0.1〜10μmの粉末が全体の96%を占める酸化サマリウム粉末(Sm純度99.5%以上)11.4gを秤量し、粒度4メッシュ(タイラーメッシュ)以下の金属カルシウム粒(Ca純度99%以上)4.6gをコンデショニングミキサー(MX−201:シンキー製)で30秒間混合した。酸化サマリウム粉末はSmFe17化学量論組成の1.27倍である。
これをステンレススチール反応容器に挿入し、容器内をロータリーポンプで真空引きしてArガス置換した後、Arガスを流しながら900°Cまで昇温し、4時間保持し250°Cまで炉内でArガスを流通しながら冷却した。次に、反応容器の温度を20℃まで下げ、容器内を−100kPaまで減圧して水素ガスを導入した。水素ガス圧を20kPaにし放置した。約5分後水素の吸収が始まった。反応容器内の水素ガス圧が10〜20kPaになるように調整して約15分間処理した。処理後20℃まで冷却して、アンモニア分圧が0.33気圧のアンモニア−水素混合ガスに切り替え昇温して、450°Cで200分保持し、その後、同温度で窒素ガスに切り替えて30分保持し冷却した。
取り出した多孔質塊状の反応生成物を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、Ca(OH)懸濁物をデカンテーションによって分離した。純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返し、合金粉末スラリーを得た。
得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。合金粉末をろ過後、エタノールで数回掛水洗浄し、35°Cで真空乾燥することによって、Sm−Fe−N磁石粉末27.0gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。続いて、得られたSm−Fe−N磁石粉末を、目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%でありその割合は高かった。
得られた粗粉末は1次粒子20μmの累積百分率は0.2%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を電気炉(ターボバック:東京真空製)で真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.2重量%、N 3.32重量%、O 0.15重量%、H 0.042重量%、残部Feだった。
この合金粉末をエタノール中、振動式ミル(マルチミル:ナルミ技研製)でSUJ2ボール5/32インチ、振動数 30Hz、120分間エタノール中で微粉砕し常温真空乾燥した。
得られた磁石粉末の磁気特性を、合金粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600A/mの配向磁界をかけてステアリン酸中で希土類−鉄−窒素系磁石粉末を配向させ試料を作製し、4000kA/mの磁界で着磁して測定した。磁石合金粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、飽和磁化:4πIm(T)、保磁力:iHc(kA/m)、角形性:Hk(kA/m)を測定した。
分析組成とThZn17型結晶構造の格子定数から算出された粉末のX線密度は7.67g/cmで、この値で飽和磁束密度4πImを換算した。iHcは保磁力である。またHkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが残留磁化4πIrの90%の値を取るときの減磁界の大きさである。結果を表2、3に示す。
4πIm 1.41T、iHc 996kA/m、Hk 528kA/mであり高特性が得られた。結晶歪み(積分幅)は0.04deg.、α−Fe比率は0.8%であった。
Example 1
As the magnet raw material powder, 24.3 g of iron powder (Fe purity 99% or more) produced by the atomizing method and having a particle size of 10 to 70 μm accounted for 94% of the total, and a particle size of 0.1 to 10 μm. Weigh 11.4 g of samarium oxide powder (Sm 2 O 3 purity 99.5% or higher), which accounts for 96% of the total, and measure metallic calcium particles (Ca purity 99% or higher) 4 or less in particle size (Tyler mesh) 4 .6 g was mixed with a conditioning mixer (MX-201: manufactured by Sinky) for 30 seconds. Samarium oxide powder is 1.27 times the Sm 2 Fe 17 stoichiometric composition.
This was inserted into a stainless steel reaction vessel, and the inside of the vessel was evacuated with a rotary pump and replaced with Ar gas. Then, the temperature was raised to 900 ° C. while flowing Ar gas, held for 4 hours, and kept at 250 ° C. in the furnace. It was cooled while circulating Ar gas. Next, the temperature of the reaction vessel was lowered to 20 ° C., the inside of the vessel was reduced to −100 kPa, and hydrogen gas was introduced. The hydrogen gas pressure was kept at 20 kPa. Hydrogen absorption began after about 5 minutes. The reaction was performed for about 15 minutes while adjusting the hydrogen gas pressure in the reaction vessel to 10 to 20 kPa. After the treatment, it is cooled to 20 ° C., and the temperature is switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.33 atm. The temperature is maintained at 450 ° C. for 200 minutes. Hold for minutes and cool.
The taken porous mass reaction product was immediately poured into pure water, and collapsed to obtain a slurry. From this slurry, the Ca (OH) 2 suspension was separated by decantation. The operation of stirring pure water for 1 minute after pouring and then decanting was repeated 5 times to obtain an alloy powder slurry.
While stirring the obtained alloy powder slurry, dilute acetic acid was added dropwise, and the pH was maintained at pH 5.0 for 7 minutes. The alloy powder was filtered, washed with water several times with ethanol, and vacuum dried at 35 ° C. to obtain 27.0 g of Sm—Fe—N magnet powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. Subsequently, the obtained Sm—Fe—N magnet powder was classified with a sieve having an aperture of 106 μm. The sieve was 95% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained coarse powder, the cumulative percentage of primary particles of 20 μm was 0.2%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in an electric furnace (turboback: manufactured by Tokyo Vacuum) at 250 ° C. for 30 minutes in a vacuum.
The powder composition was Sm 23.2 wt%, N 3.32 wt%, O 0.15 wt%, H 0.042 wt%, and the balance Fe.
This alloy powder was finely pulverized in ethanol using a vibration mill (multi-mill: manufactured by Narumi Giken) in ethanol at a SUJ2 ball of 5/32 inches and a vibration frequency of 30 Hz for 120 minutes and then vacuum dried at room temperature.
The magnetic properties of the obtained magnet powder and the magnetic properties of the alloy powder were applied with an orientation magnetic field of 1600 A / m in accordance with Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005. A sample was prepared by orienting rare earth-iron-nitrogen magnet powder in stearic acid, and magnetized with a magnetic field of 4000 kA / m. The specific gravity of the magnet alloy powder was 7.67 g / cm 3, and a saturation sample: 4πIm (T) and coercive force: iHc (kA) using a vibrating sample magnetometer with a maximum magnetic field of 1200 kA / m without correcting the demagnetizing field. / M), squareness: Hk (kA / m) was measured.
The X-ray density of the powder calculated from the analytical composition and the lattice constant of the Th 2 Zn 17 type crystal structure was 7.67 g / cm 3 , and the saturation magnetic flux density 4πIm was converted with this value. iHc is the coercive force. Hk represents the squareness of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes 90% of the residual magnetization 4πIr in the second quadrant. The results are shown in Tables 2 and 3.
4πIm 1.41T, iHc 996 kA / m, Hk 528 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.04 deg. The α-Fe ratio was 0.8%.

(実施例2)
実施例1の条件の還元拡散温度を1180℃に変えて、他の条件は実施例1と同様に還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末27.2gを得た。得られた粉末の収率は(回収量/原料投入量)68.0重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は9.7%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.5重量%、N 3.35重量%、O 0.16重量%、H 0.031重量%、残部Feだった。
実施例1と同様に、得られたSm−Fe−N磁石粉末を微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.41T、iHc 1000kA/m、Hk 558kA/mであり高特性が得られた。結晶歪み(積分幅)は0.18deg.、α−Fe比率は5.1%であった。
(Example 2)
The reducing diffusion temperature under the conditions of Example 1 was changed to 1180 ° C., and the other conditions were reduced diffusion, hydrogen treatment, nitriding treatment, and wet treatment as in Example 1, and 27.2 g of Sm—Fe—N coarse powder. Got. The yield of the obtained powder was (recovered amount / raw material input amount) 68.0% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 9.7%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.5 wt%, N 3.35 wt%, O 0.16 wt%, H 0.031 wt%, and the balance Fe.
In the same manner as in Example 1, the obtained Sm—Fe—N magnet powder was sampled after being finely pulverized, and magnetic properties, crystal distortion (integral width), and α-Fe ratio were obtained. The results are shown in Tables 2 and 3. It was 4πIm 1.41T, iHc 1000 kA / m, Hk 558 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.18 deg. The α-Fe ratio was 5.1%.

(実施例3)
実施例1の条件の還元拡散温度を1050℃、窒化を350℃、300分、アンモニア分圧を0.2気圧に変えて、他の条件は実施例1と同様にして還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末26.8gを得た。得られた粉末の収率は(回収量/原料投入量)67.0重量%であった。を得た。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.39重量%、O 0.14重量%、H 0.045重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.45T、iHc 990kA/m、Hk 547kA/mであり高特性が得られた。結晶歪み(積分幅)は0.09deg.、α−Fe比率は0.9%であった。
(Example 3)
The reduction diffusion temperature under the conditions of Example 1 was changed to 1050 ° C., the nitridation was changed to 350 ° C., 300 minutes, and the ammonia partial pressure was changed to 0.2 atm. Nitriding treatment and wet treatment were performed to obtain 26.8 g of Sm—Fe—N crude powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.0% by weight. Got. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 95% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3% by weight, N 3.39% by weight, O 0.14% by weight, H 0.045% by weight and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.45T, iHc 990 kA / m, Hk 547 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.09 deg. The α-Fe ratio was 0.9%.

(実施例4)
実施例1の条件の還元拡散温度を1050℃、窒化を500℃、100分、アンモニア分圧を0.6気圧に変えて、他の条件は実施例1と同様に還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末27.0gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は4.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.35重量%、O 0.14重量%、H 0.035重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.44T、iHc 982kA/m、Hk 502kA/mであり高特性が得られた。結晶歪み(積分幅)は0.08deg.、α−Fe比率は0.7%であった。
Example 4
The reduction diffusion temperature under the conditions of Example 1 was changed to 1050 ° C., nitridation was changed to 500 ° C., 100 minutes, and the partial pressure of ammonia was changed to 0.6 atm. Processing and wet processing were performed to obtain 27.0 g of Sm—Fe—N crude powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 4.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.35 wt%, O 0.14 wt%, H 0.035 wt%, balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.44T, iHc 982 kA / m, Hk 502 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.08 deg. The α-Fe ratio was 0.7%.

(実施例5)
実施例1の条件の還元拡散温度を1050℃とし還元拡散を行い、その後反応容器の温度を250℃まで下げて水素ガスを導入した。水素ガス圧等は実施例1と同じにし水素処理を行った。処理後、窒化を500℃、100分、アンモニア分圧を0.60気圧に変えて行い、他の条件は実施例1と同様にして湿式処理を行い、Sm−Fe−N粗粉末27.1gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。を得た。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%であり、その割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は4.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.35重量%、O 0.18重量%、H 0.040重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.42T、iHc 950kA/m、Hk 512kA/mであり高かった。結晶歪み(積分幅)は0.07deg.、α−Fe比率は0.8%であった。
(Example 5)
The reduction diffusion temperature under the conditions of Example 1 was reduced to 1050 ° C., followed by reduction diffusion, and then the temperature of the reaction vessel was lowered to 250 ° C. and hydrogen gas was introduced. Hydrogen treatment was performed at the same hydrogen gas pressure as in Example 1. After the treatment, nitriding was performed at 500 ° C. for 100 minutes and the ammonia partial pressure was changed to 0.60 atm. The other conditions were wet treatment in the same manner as in Example 1, and 27.1 g of Sm—Fe—N crude powder was obtained. Got. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. Got. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 4.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.35 wt%, O 0.18 wt%, H 0.040 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.42T, iHc 950 kA / m, and Hk 512 kA / m. Crystal strain (integral width) is 0.07 deg. The α-Fe ratio was 0.8%.

(実施例6)
原料配合量を鉄粉末24.3g、酸化サマリウム粉末10.2g、カルシウム4.2gとした。酸化サマリウム粉末はSmFe17化学量論組成の1.15倍である。実施例1の条件の還元拡散温度を1050℃とし還元拡散を行い、他の条件は、実施例1同様に行いSm−Fe−N粗粉末27.5gを得た。得られた粉末の収率は(回収量/原料投入量)71.0重量%であった。続いて、目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%であり粉末全体に対し高い割合であった。
得られた粉末は1次粒子20μm以上の累積百分率は2.0%で、1次粒子と焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間処理した。
この粉末組成は、Sm23.3重量%、N3.4重量%、O0.15重量%、H 0.037重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2に示す。4πIm 1.40T、iHc 1020kA/m、Hk 558kA/mであり高特性が得られた。結晶歪み(積分幅)は0.10deg.、α−Fe比率は1.0%であった。
(Example 6)
The raw material blending amount was 24.3 g of iron powder, 10.2 g of samarium oxide powder, and 4.2 g of calcium. Samarium oxide powder is 1.15 times the Sm 2 Fe 17 stoichiometric composition. The reduction diffusion temperature under the conditions of Example 1 was reduced to 1050 ° C., and reduction diffusion was performed. The other conditions were the same as in Example 1 to obtain 27.5 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 71.0% by weight. Subsequently, it was classified with a sieve having an aperture of 106 μm. The sieving amount was 95% by weight of the obtained Sm—Fe—N magnet powder, which was a high proportion of the whole powder.
In the obtained powder, the cumulative percentage of primary particles of 20 μm or more was 2.0%, and primary particles and sintered secondary particles were observed. The obtained Sm—Fe—N magnet powder was treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.4 wt%, O 0.15 wt%, H 0.037 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Table 2. 4πIm 1.40T, iHc 1020 kA / m, Hk 558 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.10 deg. The α-Fe ratio was 1.0%.

(実施例7)
原料配合量を鉄粉末24.3g、酸化サマリウム粉末12.5g、カルシウム5.1gとした。酸化サマリウム粉末はSm2Fe17化学量論組成の1.40倍である。混合以降の処理は実施例3と同様に行いSm−Fe−N粗粉末26.8gを得た。得られた粉末の収率は(回収量/原料投入量)64.0重量%であった。続いて、目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%であり粉末全体に対し高い割合であった。
得られた粉末は1次粒子20μm以上の累積百分率は4.0%で、1次粒子と焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間処理した。
この粉末組成は、Sm23.3重量%、N3.5重量%、O0.17重量%、H 0.035重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2に示す。4πIm 1.42T、iHc 1035kA/m、Hk 555kA/mであり高特性が得られた。結晶歪み(積分幅)は0.07deg.、α−Fe比率は0.7%であった。
(Example 7)
The raw material blending amount was 24.3 g of iron powder, 12.5 g of samarium oxide powder, and 5.1 g of calcium. Samarium oxide powder is 1.40 times the Sm2Fe17 stoichiometric composition. The treatment after mixing was performed in the same manner as in Example 3 to obtain 26.8 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 64.0% by weight. Subsequently, it was classified with a sieve having an aperture of 106 μm. The under-sieving amount was 96% by weight of the obtained Sm—Fe—N magnet powder, which was a high ratio to the whole powder.
In the obtained powder, the cumulative percentage of primary particles of 20 μm or more was 4.0%, and primary particles and sintered secondary particles were observed. The obtained Sm—Fe—N magnet powder was treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.5 wt%, O 0.17 wt%, H 0.035 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Table 2. It was 4πIm 1.42T, iHc 1035 kA / m, Hk 555 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.07 deg. The α-Fe ratio was 0.7%.

(比較例1)
実施例1では還元拡散、窒化後に湿式処理したが、比較例1では、還元拡散後、水素処理、次いで湿式処理を行ってから窒化を行った。還元拡散温度を1100℃、窒化を450℃、200分、アンモニア分圧0.33気圧でSm−Fe−N粗粉末27.0gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。窒化後、脱水素処理は行わなかった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の92重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。
この粉末組成は、Sm 23.9重量%、N 3.31重量%、O 0.14重量%、H 0.028重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.32T、iHc 700kA/m、Hk 360kA/mであり磁気特性は低かった。結晶歪み(積分幅)は0.07deg.、α−Fe比率は6%であった。
(Comparative Example 1)
In Example 1, wet treatment was performed after reduction diffusion and nitridation, but in Comparative Example 1, nitridation was performed after hydrogen treatment and then wet treatment after reduction diffusion. 27.0 g of Sm—Fe—N crude powder was obtained at a reduction diffusion temperature of 1100 ° C., nitridation at 450 ° C. for 200 minutes, and an ammonia partial pressure of 0.33 atm. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. No dehydrogenation treatment was performed after nitriding. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 92% by weight of the obtained Sm—Fe—N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3.0%, and primary particles and sintered grape-like secondary particles were observed.
The powder composition was Sm 23.9 wt%, N 3.31 wt%, O 0.14 wt%, H 0.028 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.32T, iHc 700 kA / m, Hk 360 kA / m, and magnetic properties were low. Crystal strain (integral width) is 0.07 deg. The α-Fe ratio was 6%.

(比較例2)
還元拡散温度を1100℃、窒化を450℃、200分、アンモニア分圧0.33気圧とし、他は実施例1と同じ条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末26.9gを得た。得られた粉末の収率は(回収量/原料投入量)67.3重量%であった。還元拡散後水素処理は行わなかった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の68重量%でありその割合は低かった。
得られた粉末は1次粒子20μmの累積百分率は5.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.32重量%、O 0.14重量%、H 0.050重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.42T、iHc 930kA/m、Hk 436kA/mであり磁気特性は低かった。結晶歪み(積分幅)は0.08deg.、α−Fe比率は0.8%であった。
(Comparative Example 2)
The reduction diffusion temperature is 1100 ° C., nitridation is 450 ° C., 200 minutes, and the ammonia partial pressure is 0.33 atm. Other than that, the reduction diffusion, nitriding treatment, and wet treatment are performed under the same conditions as in Example 1, and Sm—Fe—N 26.9 g of coarse powder was obtained. The yield of the obtained powder was (recovered amount / raw material input amount) 67.3% by weight. No hydrogen treatment was performed after the reduction diffusion. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 68% by weight of the obtained Sm—Fe—N magnet powder, and the ratio was low.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 5.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.32 wt%, O 0.14 wt%, H 0.050 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. They were 4πIm 1.42T, iHc 930 kA / m, and Hk 436 kA / m, and the magnetic properties were low. Crystal strain (integral width) is 0.08 deg. The α-Fe ratio was 0.8%.

(比較例3)
還元拡散温度を1100℃、窒化を450℃、200分、アンモニア分圧0.33気圧とし、他は実施例1と同じ条件で、還元拡散、窒化処理、湿式処理を行い、湿式処理後に加熱処理は行わないでSm−Fe−N粗粉末27.0gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%でありその割合は高かった。
得られた粉末の1次粒子20μmの累積百分率は4.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。
この粉末組成は、Sm 23.4重量%、N 3.38重量%、O 0.16重量%、H 0.078重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.42T、iHc 900kA/m、Hk 430kA/mであり磁気特性は低かった。結晶歪み(積分幅)は0.17deg.、α−Fe比率は5%であった。
(Comparative Example 3)
The reduction diffusion temperature is 1100 ° C., the nitridation is 450 ° C., 200 minutes, and the ammonia partial pressure is 0.33 atm. Other than that, the reduction diffusion, nitriding treatment, and wet treatment are performed, and the heat treatment is performed after the wet treatment. 27.0 g of Sm—Fe—N crude powder was obtained without performing the above step. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 95% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
The cumulative percentage of primary particles 20 μm in the obtained powder was 4.0%, and primary particles and sintered grape-like secondary particles were observed.
The powder composition was Sm 23.4% by weight, N 3.38% by weight, O 0.16% by weight, H 0.078% by weight and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.42T, iHc 900 kA / m, Hk 430 kA / m, and the magnetic properties were low. Crystal strain (integral width) is 0.17 deg. The α-Fe ratio was 5%.

(比較例4)
実施例1の条件のうち、還元拡散温度を850℃、窒化を450℃、200分、アンモニア分圧を0.33気圧に変えて、他の条件は実施例1と同様にして還元拡散、水素処理、窒化処理、湿式処理を行いSm−Fe−N粗粉末27.2gを得た。得られた粉末の収率は(回収量/原料投入量)68.0重量%であった。を得た。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%でありその割合は高かった。
得られた粉末は1次粒子20μm以上の粒子はなく、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.2重量%、N 3.39重量%、O 0.14重量%、H 0.052重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.41T、iHc 860kA/m、Hk 400kA/mであり低かった。結晶歪み(積分幅)は0.04deg.、α−Fe比率は11%であった。
(Comparative Example 4)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 850 ° C., nitridation was 450 ° C., 200 minutes, and the ammonia partial pressure was changed to 0.33 atmospheres. The treatment, nitriding treatment, and wet treatment were performed to obtain 27.2 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 68.0% by weight. Got. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 95% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
The obtained powder had no primary particles of 20 μm or more, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
This powder composition was Sm 23.2 wt%, N 3.39 wt%, O 0.14 wt%, H 0.052 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.41T, iHc 860 kA / m, and Hk 400 kA / m, which were low. Crystal strain (integral width) is 0.04 deg. The α-Fe ratio was 11%.

(比較例5)
実施例1の条件のうち、還元拡散温度を1190℃、窒化を450℃、200分、アンモニア分圧0.33気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末27.3gを得た。得られた粉末の収率は(回収量/原料投入量)68.3重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の94重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は47%で、1次粒子と、焼結して表面が平滑な2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.4重量%、N 3.31重量%、O 0.17重量%、H 0.040重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.40T、iHc 875kA/m、Hk 410kA/mであり低かった。結晶歪み(積分幅)は0.22deg.、α−Fe比率は1.2%であった。
(Comparative Example 5)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1190 ° C., the nitridation was changed to 450 ° C., 200 minutes, and the ammonia partial pressure was 0.33 atm. Treatment, nitriding treatment, and wet treatment were performed to obtain 27.3 g of Sm—Fe—N coarse powder. The yield of the obtained powder was 68.3% by weight (recovered amount / raw material input amount). The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 94% by weight of the obtained Sm—Fe—N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 47%, and primary particles and secondary particles having a smooth surface after sintering were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.4 wt%, N 3.31 wt%, O 0.17 wt%, H 0.040 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.40T, iHc 875 kA / m, and Hk 410 kA / m. Crystal strain (integral width) is 0.22 deg. The α-Fe ratio was 1.2%.

(比較例6)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を450℃、200分、アンモニア分圧0.1気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末26.9gを得た。得られた粉末の収率は(回収量/原料投入量)67.3重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.19重量%、O 0.16重量%、H 0.033重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.35T、iHc 683kA/m、Hk 330kA/mであり低かった。結晶歪み(積分幅)は0.08deg.、α−Fe比率は6.1%であった。
(Comparative Example 6)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., the nitridation was changed to 450 ° C., 200 minutes, and the ammonia partial pressure was changed to 0.1 atm. Treatment, nitriding treatment, and wet treatment were performed to obtain 26.9 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.3% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.19 wt%, O 0.16 wt%, H 0.033 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.35T, iHc 683 kA / m, and Hk 330 kA / m, which were low. Crystal strain (integral width) is 0.08 deg. The α-Fe ratio was 6.1%.

(比較例7)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を450℃、200分、アンモニア分圧0.7気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末26.8gを得た。得られた粉末の収率は(回収量/原料投入量)67.0重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は2%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.41重量%、O 0.17重量%、H 0.042重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.37T、iHc 735kA/m、Hk 355kA/mであり低かった。結晶歪み(積分幅)は0.07deg.、α−Fe比率は6.2%であった。
(Comparative Example 7)
Of the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., the nitridation was changed to 450 ° C., 200 minutes, and the ammonia partial pressure was changed to 0.7 atm. Treatment, nitriding treatment, and wet treatment were performed to obtain 26.8 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.0% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 95% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 2%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.41 wt%, O 0.17 wt%, H 0.042 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.37T, iHc 735 kA / m, and Hk 355 kA / m, which were low. Crystal strain (integral width) is 0.07 deg. The α-Fe ratio was 6.2%.

(比較例8)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を340℃、300分、アンモニア分圧0.6気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末26.8gを得た。得られた粉末の収率は(回収量/原料投入量)67.0重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の95重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は2%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.2重量%、N 3.35重量%、O 0.16重量%、H 0.050重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.38T、iHc 800kA/m、Hk 430kA/mであり低かった。結晶歪み(積分幅)は0.08deg.、α−Fe比率は10.3%であった。
(Comparative Example 8)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., nitridation was changed to 340 ° C., 300 minutes, and the ammonia partial pressure was 0.6 atm. Treatment, nitriding treatment, and wet treatment were performed to obtain 26.8 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.0% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 95% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 2%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.2 wt%, N 3.35 wt%, O 0.16 wt%, H 0.050 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.38T, iHc 800 kA / m, and Hk 430 kA / m, which were low. Crystal strain (integral width) is 0.08 deg. The α-Fe ratio was 10.3%.

(比較例9)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を520℃、100分、アンモニア分圧0.33気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末26.8gを得た。得られた粉末の収率は(回収量/原料投入量)67.0重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間加熱処理した。
この粉末組成は、Sm 23.3重量%、N 3.00重量%、O 0.16重量%、H 0.046重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3示す。4πIm 1.39T、iHc 750kA/m、Hk 435kA/mであり低かった。結晶歪み(積分幅)は0.09deg.、α−Fe比率は9.2%であった。
(Comparative Example 9)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., the nitridation was changed to 520 ° C., 100 minutes, and the ammonia partial pressure was 0.33 atmospheres. Treatment, nitriding treatment, and wet treatment were performed to obtain 26.8 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.0% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.00 wt%, O 0.16 wt%, H 0.046 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.39T, iHc 750 kA / m, and Hk 435 kA / m, which were low. Crystal strain (integral width) is 0.09 deg. The α-Fe ratio was 9.2%.

(比較例10)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を450℃、300分、アンモニア分圧を0.33気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末27.0gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。湿式処理後の加熱処理は行わなかった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。湿式処理後に得られたSm−Fe−N磁石粉末に対して、脱水素処理を行わなかった。
この粉末組成は、Sm 23.3重量%、N 3.35重量%、O 0.14重量%、H 0.090重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.42T、iHc 640kA/m、Hk 352kA/mであり低かった。結晶歪み(積分幅)は0.09deg.、α−Fe比率は0.9%であった。
(Comparative Example 10)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., nitridation was 450 ° C., 300 minutes, and the ammonia partial pressure was changed to 0.33 atm. Hydrogen treatment, nitriding treatment, and wet treatment were performed to obtain 27.0 g of Sm—Fe—N crude powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. The heat treatment after the wet treatment was not performed. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3.0%, and primary particles and sintered grape-like secondary particles were observed. No dehydrogenation treatment was performed on the Sm—Fe—N magnet powder obtained after the wet treatment.
The powder composition was Sm 23.3 wt%, N 3.35 wt%, O 0.14 wt%, H 0.090 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.42T, iHc 640 kA / m, and Hk 352 kA / m, which were low. Crystal strain (integral width) is 0.09 deg. The α-Fe ratio was 0.9%.

(比較例11)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を450℃、300分、アンモニア分圧を0.33気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末27.1gを得た。得られた粉末の収率は(回収量/原料投入量)67.8重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は4.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中100℃、30分間加熱処理した。
この粉末組成は、Sm 23.2重量%、N 3.35重量%、O 0.14重量%、H 0.075重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.42T、iHc 700kA/m、Hk 400kA/mであり低かった。結晶歪み(積分幅)は0.09deg.、α−Fe比率は0.9%であった。
(Comparative Example 11)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., nitridation was 450 ° C., 300 minutes, and the ammonia partial pressure was changed to 0.33 atm. Hydrogen treatment, nitriding treatment, and wet treatment were performed to obtain 27.1 g of Sm—Fe—N crude powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.8% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 4.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was heat-treated in vacuum at 100 ° C. for 30 minutes.
The powder composition was Sm 23.2 wt%, N 3.35 wt%, O 0.14 wt%, H 0.075 wt%, balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.42T, iHc 700 kA / m, and Hk 400 kA / m. Crystal strain (integral width) is 0.09 deg. The α-Fe ratio was 0.9%.

(比較例12)
実施例1の条件のうち、還元拡散温度を1050℃、窒化を450℃、300分、アンモニア分圧を0.33気圧に変えて、他の条件は実施例1と同様にして、還元拡散、水素処理、窒化処理、湿式処理を行い、Sm−Fe−N粗粉末27.0gを得た。得られた粉末の収率は(回収量/原料投入量)67.5重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中520℃、30分間処理した。
この粉末組成は、Sm 23.3重量%、N 3.35重量%、O 0.14重量%、H 0.028重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.45T、iHc 300kA/m、Hk 210kA/mであり低かった。結晶歪み(積分幅)は0.09deg.、α−Fe比率は15.0%であった。
(Comparative Example 12)
Among the conditions of Example 1, the reduction diffusion temperature was changed to 1050 ° C., nitridation was 450 ° C., 300 minutes, and the ammonia partial pressure was changed to 0.33 atm. Hydrogen treatment, nitriding treatment, and wet treatment were performed to obtain 27.0 g of Sm—Fe—N crude powder. The yield of the obtained powder was (recovered amount / raw material input amount) 67.5% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was treated in vacuum at 520 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.35 wt%, O 0.14 wt%, H 0.028 wt%, balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.45T, iHc 300 kA / m, and Hk 210 kA / m, which were low. Crystal strain (integral width) is 0.09 deg. The α-Fe ratio was 15.0%.

(比較例13)
実施例1の条件の還元拡散温度を1050℃、とし還元拡散を行い、その後反応容器の温度を350℃まで下げて水素ガスを導入した。水素ガス圧等は実施例1と同じにし水素処理を行った。処理後、窒化を450℃、300分、アンモニア分圧を0.33気圧にて行い、他の条件は実施例1と同様にして湿式処理を行い、Sm−Fe−N粗粉末26.9gを得た。得られた粉末の収率は(回収量/原料投入量)67.3重量%であった。得られたSm−Fe−N粗粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%でありその割合は高かった。
得られた粉末は1次粒子20μmの累積百分率は3.0%で、1次粒子と、焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間処理した。
この粉末組成は、Sm 23.4重量%、N 3.36重量%、O 0.15重量%、H 0.045重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2、3に示す。4πIm 1.39T、iHc 690kA/m、Hk 410kA/mであり低かった。結晶歪み(積分幅)は0.09deg.、α−Fe比率は10.5%であった。
(Comparative Example 13)
The reduction diffusion temperature under the conditions of Example 1 was 1050 ° C., and reduction diffusion was performed. Thereafter, the temperature of the reaction vessel was lowered to 350 ° C. and hydrogen gas was introduced. Hydrogen treatment was performed at the same hydrogen gas pressure as in Example 1. After the treatment, nitriding is performed at 450 ° C. for 300 minutes, and the ammonia partial pressure is 0.33 atm. The other conditions are wet treatment in the same manner as in Example 1, and 26.9 g of Sm—Fe—N crude powder is obtained. Obtained. The yield of the obtained powder was (recovered amount / raw material input amount) 67.3% by weight. The obtained Sm—Fe—N crude powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder, and the ratio was high.
In the obtained powder, the cumulative percentage of primary particles of 20 μm was 3.0%, and primary particles and sintered grape-like secondary particles were observed. The obtained Sm—Fe—N magnet powder was treated in vacuum at 250 ° C. for 30 minutes.
This powder composition was Sm 23.4% by weight, N 3.36% by weight, O 0.15% by weight, H 0.045% by weight and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Tables 2 and 3. 4πIm 1.39T, iHc 690 kA / m, and Hk 410 kA / m, which were low. Crystal strain (integral width) is 0.09 deg. The α-Fe ratio was 10.5%.

(比較例14)
原料配合量を鉄粉末24.3g、酸化サマリウム粉末9.4g、カルシウム3.8gとした。酸化サマリウム粉末はSm2Fe17化学量論組成の1.05倍である。混合以降の処理は実施例3同様に行いSm−Fe−N粗粉末28.9gを得た。得られた粉末の収率は(回収量/原料投入量)77.1重量%であった。続いて、目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の72.3重量%であり、粉末全体に対し低い割合であった。
得られた粉末は1次粒子20μm以上の累積百分率は7.0%で、1次粒子と焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間処理した。
この粉末組成は、Sm23.3重量%、N3.4重量%、O0.17重量%、H 0.036重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2に示す。4πIm 1.37T、iHc 700kA/m、Hk 370kA/mであり高特性が得られた。結晶歪み(積分幅)は0.05deg.、α−Fe比率は7.0%であった。
(Comparative Example 14)
The raw material blending amount was 24.3 g of iron powder, 9.4 g of samarium oxide powder, and 3.8 g of calcium. Samarium oxide powder is 1.05 times the Sm2Fe17 stoichiometric composition. The processing after mixing was performed in the same manner as in Example 3 to obtain 28.9 g of Sm—Fe—N coarse powder. The yield of the obtained powder was (recovered amount / raw material input amount) 77.1% by weight. Subsequently, it was classified with a sieve having an aperture of 106 μm. The sieve was 72.3% by weight of the obtained Sm—Fe—N magnet powder, which was a low ratio to the whole powder.
The obtained powder had a cumulative percentage of primary particles of 20 μm or more of 7.0%, and primary particles and sintered secondary particles were observed. The obtained Sm—Fe—N magnet powder was treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.4 wt%, O 0.17 wt%, H 0.036 wt% and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Table 2. It was 4πIm 1.37T, iHc 700 kA / m, Hk 370 kA / m, and high characteristics were obtained. Crystal strain (integral width) is 0.05 deg. The α-Fe ratio was 7.0%.

(比較例15)
原料配合量を鉄粉末24.3g、酸化サマリウム粉末14.3g、カルシウム5.8gとした。酸化サマリウム粉末はSmFe17化学量論組成の1.60倍である。混合以降の処理は実施例1と同様に行いSm−Fe−N粗粉末25.2gを得た。粉末の収率は(回収量/原料投入量)56.7重量%であり低かった。続いて、粉末を目開き106μmの篩で分級した。篩下は得られたSm−Fe−N磁石粉末の96重量%であった。
得られた粉末は1次粒子20μm以上の累積百分率は3.0%で、1次粒子と焼結したぶどう状の2次粒子が観察された。得られたSm−Fe−N磁石粉末を真空中250℃、30分間処理した。
この粉末組成は、Sm23.3重量%、N3.5重量%、O0.15重量%、H 0.034重量%、残部Feだった。
実施例1と同様に微粉砕後サンプリングして、磁気特性、結晶歪み(積分幅)およびα−Fe比率を求めた。結果を表2に示す。4πIm 1.37T、iHc 1020kA/m、Hk 550kA/mであり4πImが低かった。結晶歪み(積分幅)は0.07deg.、α−Fe比率は0.8%であった。
(Comparative Example 15)
The raw material blending amount was 24.3 g of iron powder, 14.3 g of samarium oxide powder, and 5.8 g of calcium. Samarium oxide powder is 1.60 times the Sm 2 Fe 17 stoichiometric composition. The treatment after mixing was performed in the same manner as in Example 1 to obtain 25.2 g of Sm—Fe—N coarse powder. The yield of the powder (recovered amount / raw material input amount) was 56.7% by weight and was low. Subsequently, the powder was classified with a sieve having an opening of 106 μm. The sieve was 96% by weight of the obtained Sm-Fe-N magnet powder.
In the obtained powder, the cumulative percentage of primary particles of 20 μm or more was 3.0%, and primary particles and sintered secondary particles were observed. The obtained Sm—Fe—N magnet powder was treated in vacuum at 250 ° C. for 30 minutes.
The powder composition was Sm 23.3 wt%, N 3.5 wt%, O 0.15 wt%, H 0.034 wt%, and the balance Fe.
In the same manner as in Example 1, the sample was pulverized and then sampled to determine the magnetic properties, crystal distortion (integral width), and α-Fe ratio. The results are shown in Table 2. It was 4πIm 1.37T, iHc 1020 kA / m, Hk 550 kA / m, and 4πIm was low. Crystal strain (integral width) is 0.07 deg. The α-Fe ratio was 0.8%.

Figure 2007119909
Figure 2007119909

Figure 2007119909
Figure 2007119909

「評価」
上記の結果、実施例によれば特定の原料粉末を用いて還元拡散法で製造された希土類―鉄(―コバルト)系母合金、これを特定条件で窒化し、湿式処理後に脱水素処理した希土類―鉄(―コバルト)―窒素系磁石粉末は、いずれも好ましい磁気特性(飽和磁化、保磁力、角形性)を有することが分かる。
これに対して、比較例1は窒化前に湿式処理したために、合金内の窒素分布が不均一となり、角形性を低下させた。また、磁気特性を低下させる目開き106μm以上の篩上粒子が約8重量%も存在した。また、Sm量がとα−Fe比率が好ましい範囲からはずれたもので、Smが23.9重量%となり、非磁性相が多くなりすぎ4πImを低下させた。また、湿式処理後に窒化したために磁石粉末表面に付着したオキシ水酸化鉄が窒化で磁石表面に析出しα−Fe比率が6%となり、iHc、Hkが低下している。
比較例2は、実施例1とは異なり還元拡散反応生成物に水素処理を行わず、粗大粒子のまま窒化したために合金内の窒素分布が不均一となり、角形性を低下させた。また、磁気特性を低下させる目開き106μm以上の篩上粒子が約30重量%も存在した。比較例3は、湿式処理後に脱水素処理を行っていないために、磁気特性が低下した。
比較例4、5は還元拡散温度が好ましい範囲からはずれたもので、還元拡散温度が850℃では還元時間が不十分であるためにSmFe17合金のできていない未拡散Feの影響でα−Fe比率が11%となり、1190℃では粒子表面が平滑である粒子(単結晶)が増加したために、粉砕中に粒子表面に受ける歪みが0.22deg.となり、iHc、Hkが低下している。
比較例6、7は窒化雰囲気のアンモニア分圧が好ましい範囲からはずれており、また、比較例8、9は窒化温度が好ましい範囲からはずれたものであるが、還元拡散温度が好ましい範囲内であったとしても、窒化不足や過窒化、主相の分解でα−Feが5%を越え、4πIm、iHc、Hkが低下している。
比較例10は、湿式処理後に磁石粉末中に固溶した水素を除去せずに微粉砕したものであり、また、比較例11、12は脱水素の温度、水素量が好ましい範囲からはずれたものであり、iHc、Hkが低下している。
比較例13は水素処理温度が好ましい範囲からはずれたもので、主相の分解でα−Feが10%を越え、4πIm、iHc、Hkが低下している。水素処理温度が350°Cでは反応生成物が活性であるために、その後窒化処理を行うと、合金が急激に窒化されて、ThZn17型結晶構造を有するSm−Fe金属間化合物がFeリッチ相とSmNとに分解したものと推測される。
比較例14、15は酸化サマリウム配合量が好ましい範囲からはずれたもので、比較例14は鉄粉末に対して希土類元素の拡散が不均一になる。また、均一窒化するために窒化前に還元物を水素崩壊させる必要があるがSmリッチ相が少なくなるので粒子が焼結しやすくなり還元物の水素崩壊性が悪くなり、α−Feが7%となり4πIm、iHc、Hkが低下している。
比較例15はα−Fe量、積分幅は問題ないが酸化サマリウムの配合量が多いため、磁石粉末中に主相以外のSmリッチ相が多くなり、Smリッチ相を除去した後のSmFeN粉末の収率が大きく低下した。磁気特性では完全にSmリッチ相が除去できずに4πImが低くなった。
"Evaluation"
As a result of the above, according to the examples, a rare earth-iron (-cobalt) master alloy manufactured by a reduction diffusion method using a specific raw material powder, nitrided under specific conditions, and dehydrogenated after wet processing It can be seen that all of the iron (-cobalt) -nitrogen based magnet powders have preferable magnetic properties (saturation magnetization, coercive force, squareness).
On the other hand, since Comparative Example 1 was wet-treated before nitriding, the nitrogen distribution in the alloy became non-uniform and the squareness was reduced. In addition, about 8% by weight of particles on the sieve having an aperture of 106 μm or more that deteriorate the magnetic properties was present. Further, the amount of Sm and the α-Fe ratio deviated from the preferred range, Sm was 23.9% by weight, the nonmagnetic phase was excessive, and 4πIm was reduced. In addition, iron oxyhydroxide adhering to the surface of the magnet powder due to nitriding after the wet treatment is deposited on the surface of the magnet by nitriding, and the α-Fe ratio is 6%, and iHc and Hk are reduced.
In Comparative Example 2, unlike in Example 1, the reduction diffusion reaction product was not subjected to hydrogen treatment and was nitrided with coarse particles, so that the nitrogen distribution in the alloy became non-uniform and the squareness was reduced. In addition, about 30% by weight of particles on the sieve having an aperture of 106 μm or more that deteriorate the magnetic properties was present. In Comparative Example 3, since the dehydrogenation treatment was not performed after the wet treatment, the magnetic characteristics were deteriorated.
In Comparative Examples 4 and 5, the reduction diffusion temperature deviated from the preferred range, and when the reduction diffusion temperature was 850 ° C., the reduction time was insufficient, and therefore the effect of undiffused Fe in the Sm 2 Fe 17 alloy was not achieved. The Fe ratio was 11%, and the number of particles (single crystal) with a smooth particle surface increased at 1190 ° C., so that the strain applied to the particle surface during pulverization was 0.22 deg. IHc and Hk are reduced.
In Comparative Examples 6 and 7, the ammonia partial pressure in the nitriding atmosphere deviates from the preferred range, and in Comparative Examples 8 and 9, the nitriding temperature deviates from the preferred range, but the reduction diffusion temperature is within the preferred range. Even so, α-Fe exceeds 5% due to insufficient nitridation, pernitridation, and decomposition of the main phase, and 4πIm, iHc, and Hk are reduced.
In Comparative Example 10, finely pulverized without removing hydrogen dissolved in the magnet powder after the wet treatment, and in Comparative Examples 11 and 12, the dehydrogenation temperature and the amount of hydrogen deviated from the preferred ranges. IHc and Hk are reduced.
In Comparative Example 13, the hydrogen treatment temperature deviated from the preferred range, and α-Fe exceeded 10% due to decomposition of the main phase, and 4πIm, iHc, and Hk were reduced. Since the reaction product is active at a hydrogen treatment temperature of 350 ° C., when nitriding is performed thereafter, the alloy is abruptly nitrided, and the Sm—Fe intermetallic compound having a Th 2 Zn 17 type crystal structure becomes Fe. It is estimated that it decomposed into a rich phase and SmN.
In Comparative Examples 14 and 15, the blending amount of samarium oxide deviates from the preferable range, and in Comparative Example 14, the diffusion of the rare earth element is not uniform with respect to the iron powder. Further, in order to perform uniform nitridation, it is necessary to hydrogen decay the reduced product before nitriding, but since the Sm-rich phase is reduced, the particles are easily sintered and the hydrogen decay property of the reduced product is deteriorated, and α-Fe is 7%. And 4πIm, iHc, and Hk are reduced.
In Comparative Example 15, there is no problem with the amount of α-Fe and the integral width, but since the amount of samarium oxide is large, the Sm-rich phase other than the main phase increases in the magnet powder, and the SmFeN powder after the Sm-rich phase is removed The yield was greatly reduced. In terms of magnetic properties, the Sm-rich phase could not be completely removed, and 4πIm was lowered.

希土類−鉄−窒素系磁石粉末の粉砕前の粒度分布(累積個数百分率)に対する還元拡散処理温度依存性を示すグラフである。It is a graph which shows the reductive diffusion process temperature dependence with respect to the particle size distribution (cumulative number percentage) before the grinding | pulverization of rare earth-iron- nitrogen system magnet powder. 熱処理温度を1050℃、1190°Cとして還元拡散処理を行い、その後窒化して得られた粉砕前の希土類−鉄−窒素系磁石粉末のSEM像を示す写真である。It is a photograph which shows the SEM image of the rare earth-iron- nitrogen-type magnet powder before the grinding | pulverization obtained by performing a reduction | restoration diffusion process by heat-treatment temperature 1050 degreeC and 1190 degreeC, and nitriding after that. 湿式処理後の磁石粗粉末を真空中、30分加熱処理した時の、加熱温度とiHc、Hkの関係を示すグラフである。It is a graph which shows the relationship between heating temperature, iHc, and Hk when the magnet coarse powder after a wet process is heat-processed in vacuum for 30 minutes. 湿式処理後の磁石粗粉末を真空中、250℃で加熱処理した後の磁石粉末の水素量とiHc、Hkの関係を示すグラフである。It is a graph which shows the relationship between the amount of hydrogen of magnet powder after heat-processing the magnet coarse powder after wet processing at 250 degreeC in vacuum, and iHc and Hk.

Claims (12)

希土類酸化物粉末と、鉄粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合する工程、得られた混合物を不活性ガス雰囲気中900〜1180℃で加熱する工程、引き続き、得られた反応生成物を不活性ガス雰囲気中で500℃以下に冷却した後、不活性ガスの少なくとも一部を排出してから、水素を含むガスを供給し、得られた反応生成物に水素を吸収させ崩壊させる工程、その後、崩壊した反応生成物を300℃以下の温度に保ちながら、アンモニアと水素とを含有する混合ガスを供給し、この気流中で昇温し、350〜500°Cで反応生成物を窒化処理する工程、次に、得られた窒化処理生成物を水中に投入して湿式処理する工程、さらに、湿式処理された磁石粗粉末を120〜480℃で加熱処理し、湿式処理によって磁石合金中に侵入した水素を除去する工程、および、最後に、得られた磁石粗粉末を微粉砕する工程を含むことを特徴とする均一に窒化された希土類―鉄―窒素系磁石粉末の製造方法。   A step of mixing a rare earth oxide powder, an iron powder, and at least one reducing agent powder selected from an alkali metal, an alkaline earth metal or a hydride thereof at a predetermined ratio, and the resulting mixture is treated with an inert gas; A step of heating at 900 to 1180 ° C. in an atmosphere, and subsequently cooling the obtained reaction product to 500 ° C. or less in an inert gas atmosphere, and after discharging at least a part of the inert gas, hydrogen is contained. A step of supplying a gas and absorbing the hydrogen into the obtained reaction product and causing the reaction product to decay, and then supplying a mixed gas containing ammonia and hydrogen while maintaining the collapsed reaction product at a temperature of 300 ° C. or lower. The step of nitriding the reaction product at 350 to 500 ° C. by heating in this air stream, the step of adding the obtained nitriding product into water and performing the wet processing, and the wet processing It includes a step of heat-treating the magnet coarse powder at 120 to 480 ° C., removing hydrogen that has entered the magnet alloy by wet treatment, and finally pulverizing the obtained magnet coarse powder. A method for producing uniformly nitrided rare earth-iron-nitrogen based magnet powder. 反応生成物の冷却温度が、250℃以下であることを特徴とする請求項1に記載の希土類―鉄―窒素系磁石粉末の製造方法。   The method for producing a rare earth-iron-nitrogen based magnet powder according to claim 1, wherein the cooling temperature of the reaction product is 250 ° C. or less. 湿式処理された磁石粗粉末を、真空あるいは不活性ガス雰囲気中で加熱処理することを特徴とする請求項1に記載の希土類―鉄―窒素系磁石粉末の製造方法。   2. The process for producing a rare earth-iron-nitrogen based magnet powder according to claim 1, wherein the wet magnet crude powder is heat-treated in a vacuum or in an inert gas atmosphere. 希土類酸化物粉末の混合量が、RFe17の化学量論組成の1.1倍〜1.4倍であることを特徴とする請求項1〜3のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。 Rare earth according to the mixing amount of the rare earth oxide powder, any one of the preceding claims, characterized in that a 1.1-fold to 1.4-fold stoichiometric composition of R 2 Fe 17 - Iron - A method for producing nitrogen-based magnet powder. 磁石粗粉末は、1次粒子が集まって、ぶどう状に焼結した2次粒子の形態を有し、その際、該1次粒子は、粒径20μm以上の累積個数百分率が10%未満であることを特徴とする請求項1に記載の希土類−鉄−窒素系磁石粉末の製造方法。   The coarse magnet powder has a form of secondary particles in which primary particles are gathered and sintered into a grape shape, and the primary particles have a cumulative percentage of particles having a particle size of 20 μm or more of less than 10%. The method for producing a rare earth-iron-nitrogen based magnet powder according to claim 1. 混合ガス中のアンモニア分圧が0.2〜0.6気圧であることを特徴とする請求項1に記載の希土類―鉄―窒素系磁石粉末の製造方法。   The method for producing a rare earth-iron-nitrogen based magnet powder according to claim 1, wherein the partial pressure of ammonia in the mixed gas is 0.2 to 0.6 atm. 請求項1〜6のいずれかに記載の方法で得られる希土類−鉄−窒素系磁石粉末。   Rare earth-iron-nitrogen based magnet powder obtained by the method according to claim 1. 希土類元素がSmであることを特徴とする請求項7に記載の希土類−鉄−窒素系磁石粉末。   The rare earth-iron-nitrogen based magnet powder according to claim 7, wherein the rare earth element is Sm. Smの含有量が23.2〜23.6重量%であることを特徴とする請求項8に記載の希土類―鉄―窒素系磁石粉末。   The rare earth-iron-nitrogen based magnet powder according to claim 8, wherein the Sm content is 23.2 to 23.6% by weight. 磁石粉末中に含まれる水素量が0.06重量%以下であることを特徴とする請求項7に記載の希土類―鉄―窒素系磁石粉末。   The rare earth-iron-nitrogen based magnet powder according to claim 7, wherein the amount of hydrogen contained in the magnet powder is 0.06% by weight or less. 下記一般式(1)で示されるα−Fe比率が、5%以下であることを特徴とする請求項7〜10のいずれかに記載の希土類−鉄−窒素系磁石粉末。
α−Fe比率=X線回折におけるα−Fe(110)ピーク強度/希土類−Fe−窒素(300)ピーク強度…(1)
The rare earth-iron-nitrogen based magnet powder according to claim 7, wherein an α-Fe ratio represented by the following general formula (1) is 5% or less.
α-Fe ratio = α-Fe (110) peak intensity / rare earth-Fe-nitrogen (300) peak intensity in X-ray diffraction (1)
下記一般式(2)で示される積分幅が0.2deg.以下であることを特徴とする請求項7又は8に記載の希土類―鉄―窒素系磁石粉末。
積分幅=X線回折におけるSmFe17(113)回折ピークの面積/ピーク強度高さ…(2)
The integral width represented by the following general formula (2) is 0.2 deg. The rare earth-iron-nitrogen based magnet powder according to claim 7 or 8, wherein:
Integration width = Sm 2 Fe 17 N 3 in X-ray diffraction (113) Area of diffraction peak / peak intensity height (2)
JP2006253775A 2005-09-29 2006-09-20 Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same Pending JP2007119909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006253775A JP2007119909A (en) 2005-09-29 2006-09-20 Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005283397 2005-09-29
JP2006253775A JP2007119909A (en) 2005-09-29 2006-09-20 Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007119909A true JP2007119909A (en) 2007-05-17

Family

ID=38144047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006253775A Pending JP2007119909A (en) 2005-09-29 2006-09-20 Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007119909A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001985A (en) * 2011-06-21 2013-01-07 Sumitomo Metal Mining Co Ltd Rare-earth transition metal-based alloy powder and method for producing the same
CN103328134A (en) * 2011-01-21 2013-09-25 户田工业株式会社 Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
JP2015098623A (en) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnetic powder and method for producing the same
WO2017150557A1 (en) * 2016-03-04 2017-09-08 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen alloy powder and method for producing same
JP2017226871A (en) * 2016-06-22 2017-12-28 住友金属鉱山株式会社 Production method for rare earth-iron-nitrogen system alloy powder
WO2018221512A1 (en) * 2017-05-30 2018-12-06 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen magnetic powder and method for producing same
JP2020057779A (en) * 2018-09-28 2020-04-09 Tdk株式会社 Samarium-iron-bismuth-nitrogen-based magnet powder and samarium-iron-bismuth-nitrogen-based sintered magnet
JPWO2020183886A1 (en) * 2019-03-12 2020-09-17
WO2020183885A1 (en) * 2019-03-12 2020-09-17 Tdk株式会社 Method for manufacturing rare earth metal-transition metal alloy powder, and samarium-iron alloy powder
JPWO2019181249A1 (en) * 2018-03-23 2021-02-04 日立金属株式会社 Manufacturing method of RTB-based sintered magnet
JP7556327B2 (en) 2021-05-18 2024-09-26 住友金属鉱山株式会社 Method for producing rare earth transition metal alloy powder

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328134A (en) * 2011-01-21 2013-09-25 户田工业株式会社 Ferromagnetic granular powder and method for manufacturing same, as well as anisotropic magnet, bonded magnet, and pressed-powder magnet
JP2013001985A (en) * 2011-06-21 2013-01-07 Sumitomo Metal Mining Co Ltd Rare-earth transition metal-based alloy powder and method for producing the same
JP2015098623A (en) * 2013-11-19 2015-05-28 住友金属鉱山株式会社 Rare earth-transition metal-nitrogen based magnetic powder and method for producing the same
WO2017150557A1 (en) * 2016-03-04 2017-09-08 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen alloy powder and method for producing same
CN108701518A (en) * 2016-03-04 2018-10-23 国立研究开发法人产业技术综合研究所 Sm-Fe-N alloy powder and its manufacturing method
US11453057B2 (en) 2016-03-04 2022-09-27 National Institute Of Advanced Industrial Science And Technology Samarium-iron-nitrogen alloy powder and method for producing same
JPWO2017150557A1 (en) * 2016-03-04 2019-01-17 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen alloy powder and method for producing the same
JP2017226871A (en) * 2016-06-22 2017-12-28 住友金属鉱山株式会社 Production method for rare earth-iron-nitrogen system alloy powder
WO2018221512A1 (en) * 2017-05-30 2018-12-06 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen magnetic powder and method for producing same
JPWO2018221512A1 (en) * 2017-05-30 2020-03-26 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen magnet powder and method for producing the same
CN110662617A (en) * 2017-05-30 2020-01-07 国立研究开发法人产业技术综合研究所 Samarium-iron-nitrogen magnet powder and method for producing same
CN110662617B (en) * 2017-05-30 2021-10-26 国立研究开发法人产业技术综合研究所 Samarium-iron-nitrogen magnet powder and method for producing same
US11361888B2 (en) 2017-05-30 2022-06-14 National Institute Of Advanced Industrial Science And Technology Samarium-iron-nitrogen magnet powder and method for manufacturing same
JP7276132B2 (en) 2018-03-23 2023-05-18 株式会社プロテリアル Method for producing RTB based sintered magnet
JPWO2019181249A1 (en) * 2018-03-23 2021-02-04 日立金属株式会社 Manufacturing method of RTB-based sintered magnet
JP2020057779A (en) * 2018-09-28 2020-04-09 Tdk株式会社 Samarium-iron-bismuth-nitrogen-based magnet powder and samarium-iron-bismuth-nitrogen-based sintered magnet
JP7318885B2 (en) 2018-09-28 2023-08-01 Tdk株式会社 Samarium-Iron-Bismuth-Nitrogen Magnet Powder and Samarium-Iron-Bismuth-Nitrogen Sintered Magnet
JPWO2020183885A1 (en) * 2019-03-12 2021-10-21 Tdk株式会社 Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder
WO2020183886A1 (en) * 2019-03-12 2020-09-17 Tdk株式会社 Anisotropic magnet powder, anisotropic magnet, and method for manufacturing anisotropic magnet powder
JP7103612B2 (en) 2019-03-12 2022-07-20 Tdk株式会社 Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder
WO2020183885A1 (en) * 2019-03-12 2020-09-17 Tdk株式会社 Method for manufacturing rare earth metal-transition metal alloy powder, and samarium-iron alloy powder
JPWO2020183886A1 (en) * 2019-03-12 2020-09-17
JP7556327B2 (en) 2021-05-18 2024-09-26 住友金属鉱山株式会社 Method for producing rare earth transition metal alloy powder

Similar Documents

Publication Publication Date Title
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
RU2377680C2 (en) Rare-earth permanaent magnet
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
JP3452254B2 (en) Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP6555197B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP7187920B2 (en) Polycrystalline rare earth transition metal alloy powder and method for producing the same
JP2017218623A (en) Production method of rare earth-iron-nitrogen system alloy powder
JP2007327101A (en) Method for producing rare earth-iron-nitrogen based magnet fine powder
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP4814856B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2014122392A (en) Method for producing rare earth-iron-nitrogen-based magnet powder
JP4696798B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2008171868A (en) Manufacturing method of rare earth-iron-nitrogen-based magnetic powder
JP7044304B2 (en) Rare earth transition metal alloy powder manufacturing method
JP4725682B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP7006156B2 (en) Rare earth-iron-nitrogen magnet powder manufacturing method
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
JP2008001953A (en) Method for producing rare earth-iron-nitrogen-based alloy powder
JP2007070724A (en) Rare earth-iron-nitrogen based magnet powder, and method for producing the same
CN113677457B (en) Metastable single crystal rare earth magnet micropowder and method for producing same
JP4604528B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JPH06124812A (en) Nitride magnet powder and its synthesizing method