JP7103612B2 - Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder - Google Patents
Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder Download PDFInfo
- Publication number
- JP7103612B2 JP7103612B2 JP2021505544A JP2021505544A JP7103612B2 JP 7103612 B2 JP7103612 B2 JP 7103612B2 JP 2021505544 A JP2021505544 A JP 2021505544A JP 2021505544 A JP2021505544 A JP 2021505544A JP 7103612 B2 JP7103612 B2 JP 7103612B2
- Authority
- JP
- Japan
- Prior art keywords
- samarium
- rare earth
- alloy powder
- earth metal
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 187
- 229910000640 Fe alloy Inorganic materials 0.000 title claims description 130
- AWWAHRLLQMQIOC-UHFFFAOYSA-N [Fe].[Sm] Chemical compound [Fe].[Sm] AWWAHRLLQMQIOC-UHFFFAOYSA-N 0.000 title claims description 101
- 229910052723 transition metal Inorganic materials 0.000 title claims description 81
- 229910052761 rare earth metal Inorganic materials 0.000 title claims description 75
- 150000002910 rare earth metals Chemical class 0.000 title claims description 75
- 229910045601 alloy Inorganic materials 0.000 title claims description 55
- 239000000956 alloy Substances 0.000 title claims description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 57
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 51
- 239000002245 particle Substances 0.000 claims description 45
- 229910052772 Samarium Inorganic materials 0.000 claims description 43
- 150000004820 halides Chemical class 0.000 claims description 43
- 239000013078 crystal Substances 0.000 claims description 36
- 150000003624 transition metals Chemical class 0.000 claims description 32
- 229910052783 alkali metal Inorganic materials 0.000 claims description 25
- 150000001340 alkali metals Chemical class 0.000 claims description 25
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 25
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 23
- 229910052742 iron Inorganic materials 0.000 claims description 20
- 238000002441 X-ray diffraction Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 19
- 230000008018 melting Effects 0.000 claims description 19
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 229910001615 alkaline earth metal halide Inorganic materials 0.000 claims description 9
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 6
- 229910052691 Erbium Inorganic materials 0.000 claims description 6
- 229910052693 Europium Inorganic materials 0.000 claims description 6
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 6
- 229910052689 Holmium Inorganic materials 0.000 claims description 6
- 229910052765 Lutetium Inorganic materials 0.000 claims description 6
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 6
- 229910052771 Terbium Inorganic materials 0.000 claims description 6
- 229910052775 Thulium Inorganic materials 0.000 claims description 6
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052746 lanthanum Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- 229910052727 yttrium Inorganic materials 0.000 claims description 6
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 116
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 49
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 17
- 239000001110 calcium chloride Substances 0.000 description 17
- 229910001628 calcium chloride Inorganic materials 0.000 description 17
- PXAWCNYZAWMWIC-UHFFFAOYSA-N [Fe].[Nd] Chemical compound [Fe].[Nd] PXAWCNYZAWMWIC-UHFFFAOYSA-N 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- PRQMIVBGRIUJHV-UHFFFAOYSA-N [N].[Fe].[Sm] Chemical compound [N].[Fe].[Sm] PRQMIVBGRIUJHV-UHFFFAOYSA-N 0.000 description 11
- 229910001508 alkali metal halide Inorganic materials 0.000 description 11
- 150000008045 alkali metal halides Chemical class 0.000 description 11
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 239000001103 potassium chloride Substances 0.000 description 5
- 235000011164 potassium chloride Nutrition 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 238000003917 TEM image Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 235000014413 iron hydroxide Nutrition 0.000 description 4
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000001291 vacuum drying Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical group CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 101100496858 Mus musculus Colec12 gene Proteins 0.000 description 2
- WDIHJSXYQDMJHN-UHFFFAOYSA-L barium chloride Chemical compound [Cl-].[Cl-].[Ba+2] WDIHJSXYQDMJHN-UHFFFAOYSA-L 0.000 description 2
- 229910001626 barium chloride Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 230000005381 magnetic domain Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910001631 strontium chloride Inorganic materials 0.000 description 2
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 229910015475 FeF 2 Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 238000003991 Rietveld refinement Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000006356 dehydrogenation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- NPLGDOVFYILZBK-UHFFFAOYSA-N samarium Chemical compound [Sm].[Sm] NPLGDOVFYILZBK-UHFFFAOYSA-N 0.000 description 1
- 229910001954 samarium oxide Inorganic materials 0.000 description 1
- 229940075630 samarium oxide Drugs 0.000 description 1
- FKTOIHSPIPYAPE-UHFFFAOYSA-N samarium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Sm+3].[Sm+3] FKTOIHSPIPYAPE-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/20—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C28/00—Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、希土類金属-遷移金属系合金粉末の製造方法及びサマリウム-鉄合金粉末に関する。 The present invention relates to a method for producing a rare earth metal-transition metal alloy powder and a samarium-iron alloy powder.
近年、ネオジム磁石を超える高い磁気特性を有する磁石の原料として、TbCu7型サマリウム-鉄-窒素磁石粉末が注目されている。In recent years, TbCu 7 -type samarium-iron-nitrogen magnet powder has been attracting attention as a raw material for magnets having higher magnetic properties than neodymium magnets.
TbCu7型サマリウム-鉄-窒素磁石粉末は、TbCu7型サマリウム-鉄合金粉末を窒化することで製造されている。また、TbCu7型サマリウム-鉄合金は、準安定相であるため、通常の加熱溶解及び冷却による合金化方法で製造することができず、例えば、超急冷法で製造されている(特許文献1参照)。The TbCu 7 -type samarium-iron-nitrogen magnet powder is produced by nitriding the TbCu 7 -type samarium-iron alloy powder. Further, since the TbCu 7 -type samarium-iron alloy has a metastable phase, it cannot be produced by an alloying method by ordinary heating and melting and cooling, and is produced by, for example, an ultra-quenching method (Patent Document 1). reference).
しかしながら、超急冷法を用いると、結晶方位がランダムであるTbCu7型サマリウム-鉄-窒素等方性磁石粉末しか製造することができず、その結果、最大エネルギー積が高いTbCu7型サマリウム-鉄-窒素磁石を製造することはできない。However, using the ultra-quenching method, only TbCu 7 -type samarium-iron-nitrogen isotropic magnet powder with random crystal orientation can be produced, and as a result, TbCu 7 -type samarium-iron with a high maximum energy product can be produced. -Nitrogen magnets cannot be manufactured.
最大エネルギー積が高いTbCu7型サマリウム-鉄-窒素磁石を製造するためには、TbCu7型サマリウム-鉄-窒素異方性磁石粉末を製造する必要があり、そのために、TbCu7型サマリウム-鉄合金の単結晶粒子を含むサマリウム-鉄合金粉末を製造する必要がある。In order to produce a TbCu 7 -type samarium-iron-nitrogen magnet with a high maximum energy product, it is necessary to produce a TbCu 7 -type samarium-iron-nitrogen anisotropic magnet powder, and therefore, a TbCu 7 -type samarium-iron. It is necessary to produce a samarium-iron alloy powder containing monocrystalline particles of the alloy.
本発明の一態様は、TbCu7型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末の製造方法を提供することを目的とする。One aspect of the present invention is to provide a method for producing a rare earth metal-transition metal alloy powder containing single crystal particles of a TbCu 7 -type rare earth metal-transition metal alloy.
本発明の一態様は、希土類金属-遷移金属系合金粉末の製造方法において、希土類金属と、遷移金属と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。 One aspect of the present invention is a method for producing a rare earth metal-transition metal based alloy powder, wherein a composition containing a rare earth metal, a transition metal, an alkali metal halide and / or an alkali earth metal halide is used. The rare earth metal includes a step of heat-treating at a temperature equal to or higher than the melting point of the halide of the alkali metal and / or the halide of the alkaline earth metal, and the rare earth metal is Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy. , Ho, Er, Tm, Yb and Lu, and the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
本発明の他の一態様は、希土類金属-遷移金属系合金粉末の製造方法において、希土類金属と、遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物と、アルカリ金属及び/又はアルカリ土類金属とを含む組成物を、前記アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含み、前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。 Another aspect of the present invention is a method for producing a rare earth metal-transition metal based alloy powder, which comprises a rare earth metal, a transition metal, a transition metal oxide and / or a transition metal halide, an alkali metal halide and the like. A composition containing a halide of / or an alkaline earth metal and an alkali metal and / or an alkaline earth metal is heat-treated at a temperature equal to or higher than the melting point of the halide of the alkali metal and / or the halide of the alkaline earth metal. The rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. The transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
本発明の他の一態様は、サマリウム-鉄合金粉末において、TbCu7型サマリウム-鉄合金の単結晶粒子を含む。Another aspect of the present invention includes single crystal particles of a TbCu 7 -type samarium-iron alloy in the samarium-iron alloy powder.
本発明の一態様によれば、TbCu7型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末の製造方法を提供することができる。According to one aspect of the present invention, it is possible to provide a method for producing a rare earth metal-transition metal alloy powder containing single crystal particles of a TbCu 7 -type rare earth metal-transition metal alloy.
以下、本発明を実施するための形態を説明する。なお、本発明は、以下の実施形態に記載した内容により限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は、適宜組み合わせることが可能である。 Hereinafter, modes for carrying out the present invention will be described. The present invention is not limited to the contents described in the following embodiments. In addition, the components described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the components described below can be combined as appropriate.
[希土類金属-遷移金属系合金粉末の第1の製造方法]
本実施形態の希土類金属-遷移金属系合金粉末の第1の製造方法は、希土類金属と、遷移金属と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物とを含む組成物を、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含む。このため、希土類金属-遷移金属系合金を構成する金属の融点よりも遙かに低い温度で合金化することができ、その結果、TbCu7型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末を製造することができる。[First method for producing rare earth metal-transition metal alloy powder]
The first method for producing a rare earth metal-transition metal alloy powder of the present embodiment comprises a composition containing a rare earth metal, a transition metal, a halide of an alkali metal and / or a halide of an alkaline earth metal. It includes a step of heat treatment at a temperature equal to or higher than the melting point of the alkali metal halide and / or the alkaline earth metal halide. Therefore, it can be alloyed at a temperature much lower than the melting point of the metal constituting the rare earth metal-transition metal alloy, and as a result, it contains single crystal particles of the TbCu 7 type rare earth metal-transition metal alloy. Rare earth metal-transition metal alloy powder can be produced.
本明細書及び特許請求の範囲において、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物が混合物である場合、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度とは、状態図により示される混合物の共晶点以上の温度を意味する。 Within the scope of this specification and patent claims, when the alkali metal halide and / or alkaline earth metal halide is a mixture, it is equal to or higher than the melting point of the alkali metal halide and / or alkaline earth metal halide. The temperature means a temperature above the eutectic point of the mixture shown by the state diagram.
(熱処理)
希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上である。(Heat treatment)
The rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
希土類金属の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the rare earth metal include powder and the like.
遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。 The transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
遷移金属の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the transition metal include powder and the like.
アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物におけるハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物等が挙げられる。 Examples of the halide in the halide of the alkali metal and / or the halide of the alkaline earth metal include fluoride, chloride, bromide, iodide and the like.
アルカリ金属のハロゲン化物としては、例えば、LiCl、KCl、NaCl、LiF等が挙げられる。 Examples of the alkali metal halide include LiCl, KCl, NaCl, LiF and the like.
アルカリ土類金属のハロゲン化物としては、例えば、CaCl2、MgCl2、BaCl2、SrCl2等が挙げられる。Examples of the halide of the alkaline earth metal include CaCl 2 , MgCl 2 , BaCl 2 , SrCl 2 and the like.
アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the alkali metal halide and / or the alkaline earth metal halide include powder and the like.
希土類金属及び遷移金属が、例えば、それぞれSm及びFeであると、サマリウム-鉄系合金の単結晶粒子を含むサマリウム-鉄系合金粉末を製造することができる。 When the rare earth metal and the transition metal are, for example, Sm and Fe, respectively, a samarium-iron alloy powder containing samarium-iron alloy single crystal particles can be produced.
また、希土類金属及び遷移金属が、例えば、それぞれNd及びFeであると、ネオジム-鉄系合金の単結晶粒子を含むネオジム-鉄系合金粉末を製造することができる。 Further, when the rare earth metal and the transition metal are, for example, Nd and Fe, respectively, a neodymium-iron alloy powder containing single crystal particles of the neodymium-iron alloy can be produced.
熱処理する温度は、500℃以上800℃未満であることが好ましく、550℃以上650℃未満であることがさらに好ましい。これにより、TbCu7型希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。The temperature for heat treatment is preferably 500 ° C. or higher and lower than 800 ° C., and more preferably 550 ° C. or higher and lower than 650 ° C. This makes it possible to produce a rare earth-iron alloy powder containing single crystal particles of a TbCu 7 -type rare earth-iron alloy.
なお、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物や、熱処理温度を変更することにより、Th2Zn17型等の希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。By changing the halide of the alkali metal and / or the halide of the alkaline earth metal and the heat treatment temperature, a rare earth-iron alloy containing single crystal particles of a rare earth-iron alloy such as Th 2 Zn 17 type can be used. Powders can be produced.
熱処理する温度におけるアルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物中の希土類金属の濃度は、3.2mol/L以上8.2mol/L以下であることが好ましく、5.2mol/L以上6.2mol/L以下であることがさらに好ましい。これにより、例えば、Smリッチ相(例えば、SmFe2相、SmFe3相)等の異相の生成を抑制することができる。The concentration of the rare earth metal in the halide of the alkali metal and / or the halide of the alkaline earth metal at the temperature of the heat treatment is preferably 3.2 mol / L or more and 8.2 mol / L or less, preferably 5.2 mol / L. It is more preferably 6.2 mol / L or less. This makes it possible to suppress the formation of different phases such as, for example, a Sm-rich phase (for example, SmFe 2 phase, SmFe 3 phase).
[希土類金属-遷移金属系合金粉末の第2の製造方法]
本実施形態の希土類金属-遷移金属系合金粉末の第2の製造方法は、希土類金属と、遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物と、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物と、アルカリ金属及び/又はアルカリ土類金属とを含む組成物を、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の融点以上の温度で熱処理する工程を含む。このため、希土類金属-遷移金属系合金を構成する金属の融点よりも遙かに低い温度で合金化することができ、その結果、TbCu7型希土類金属-遷移金属系合金の単結晶粒子を含む希土類金属-遷移金属系合金粉末を製造することができる。[Second method for producing rare earth metal-transition metal alloy powder]
The second method for producing the rare earth metal-transition metal alloy powder of the present embodiment is a rare earth metal, a transition metal, a transition metal oxide and / or a transition metal halide, an alkali metal halide and / or. A step of heat-treating a composition containing an alkaline earth metal halide and an alkali metal and / or an alkaline earth metal at a temperature equal to or higher than the melting point of the alkali metal halide and / or the alkaline earth metal halide. include. Therefore, it can be alloyed at a temperature much lower than the melting point of the metal constituting the rare earth metal-transition metal alloy, and as a result, it contains single crystal particles of the TbCu 7 type rare earth metal-transition metal alloy. Rare earth metal-transition metal alloy powder can be produced.
(熱処理)
希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上である。(Heat treatment)
The rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
希土類金属の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the rare earth metal include powder and the like.
遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である。 The transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
遷移金属の酸化物としては、例えば、Fe2O3、Fe3O4等が挙げられる。Examples of the oxide of the transition metal include Fe 2 O 3 and Fe 3 O 4 .
遷移金属のハロゲン化物におけるハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物等が挙げられる。 Examples of the halide in the halide of the transition metal include fluoride, chloride, bromide, iodide and the like.
遷移金属のハロゲン化物としては、例えば、FeCl2、FeCl3、FeF2、FeI2等が挙げられる。Examples of the halide of the transition metal include FeCl 2 , FeCl 3 , FeF 2 , FeI 2 , and the like.
遷移金属、遷移金属の酸化物及び/又は遷移金属のハロゲン化物の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the transition metal, the oxide of the transition metal and / or the halide of the transition metal include powder and the like.
アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物におけるハロゲン化物としては、例えば、フッ化物、塩化物、臭化物、ヨウ化物等が挙げられる。 Examples of the halide in the halide of the alkali metal and / or the halide of the alkaline earth metal include fluoride, chloride, bromide, iodide and the like.
アルカリ金属のハロゲン化物としては、例えば、LiCl、KCl、NaCl、LiF等が挙げられる。 Examples of the alkali metal halide include LiCl, KCl, NaCl, LiF and the like.
アルカリ土類金属のハロゲン化物としては、例えば、CaCl2、MgCl2、BaCl2、SrCl2等が挙げられる。Examples of the halide of the alkaline earth metal include CaCl 2 , MgCl 2 , BaCl 2 , SrCl 2 and the like.
アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the alkali metal halide and / or the alkaline earth metal halide include powder and the like.
アルカリ金属としては、例えば、ナトリウム等が挙げられる。 Examples of the alkali metal include sodium and the like.
アルカリ土類金属としては、例えば、カルシウム、マグネシウム等が挙げられる。 Examples of the alkaline earth metal include calcium and magnesium.
アルカリ金属及び/又はアルカリ土類金属の形態としては、例えば、粉末等が挙げられる。 Examples of the form of the alkali metal and / or alkaline earth metal include powder and the like.
本実施形態の希土類金属-遷移金属系合金粉末の第2の製造方法では、アルカリ金属及び/又はアルカリ土類金属が用いられている。このため、アルカリ金属及び/又はアルカリ土類金属は、遷移金属の酸化物及び/又は遷移金属のハロゲン化物を還元したり、表面が酸化された希土類金属及び/又は遷移金属を還元したりすることができる。その結果、例えば、Smリッチ結晶相(例えば、SmFe2相、SmFe3相)等の異相の生成を抑制することができる。In the second method for producing the rare earth metal-transition metal alloy powder of the present embodiment, an alkali metal and / or an alkaline earth metal is used. Therefore, the alkali metal and / or alkaline earth metal may reduce the oxide of the transition metal and / or the halide of the transition metal, or the rare earth metal and / or the transition metal whose surface has been oxidized. Can be done. As a result, it is possible to suppress the formation of different phases such as, for example, a Sm-rich crystal phase (for example, SmFe 2 phase, SmFe 3 phase).
希土類金属及び遷移金属が、例えば、それぞれSm及びFeであると、サマリウム-鉄系合金の単結晶粒子を含むサマリウム-鉄系合金粉末を製造することができる。 When the rare earth metal and the transition metal are, for example, Sm and Fe, respectively, a samarium-iron alloy powder containing samarium-iron alloy single crystal particles can be produced.
また、希土類金属及び遷移金属が、例えば、それぞれNd及びFeであると、ネオジム-鉄系合金の単結晶粒子を含むネオジム-鉄系合金粉末を製造することができる。 Further, when the rare earth metal and the transition metal are, for example, Nd and Fe, respectively, a neodymium-iron alloy powder containing single crystal particles of the neodymium-iron alloy can be produced.
熱処理する温度は、500℃以上800℃未満であることが好ましく、550℃以上650℃未満であることがさらに好ましい。これにより、TbCu7型希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。The temperature for heat treatment is preferably 500 ° C. or higher and lower than 800 ° C., and more preferably 550 ° C. or higher and lower than 650 ° C. This makes it possible to produce a rare earth-iron alloy powder containing single crystal particles of a TbCu 7 -type rare earth-iron alloy.
なお、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属の塩化物や、熱処理温度を変更することにより、Th2Zn17型等の希土類-鉄系合金の単結晶粒子を含む希土類-鉄系合金粉末を製造することができる。By changing the halide of the alkali metal and / or the chloride of the alkaline earth metal and the heat treatment temperature, a rare earth-iron alloy containing single crystal particles of a rare earth-iron alloy such as Th 2 Zn 17 type can be used. Powders can be produced.
熱処理する温度におけるアルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物中の希土類金属の濃度は、3.2mol/L以上8.2mol/L以下であることが好ましく、5.2mol/L以上6.2mol/L以下であることがさらに好ましい。これにより、例えば、Smリッチ結晶相(例えば、SmFe2相、SmFe3相)等の異相の生成を抑制することができる。The concentration of the rare earth metal in the halide of the alkali metal and / or the halide of the alkaline earth metal at the temperature of the heat treatment is preferably 3.2 mol / L or more and 8.2 mol / L or less, preferably 5.2 mol / L. It is more preferably 6.2 mol / L or less. This makes it possible to suppress the formation of different phases such as, for example, a Sm-rich crystal phase (for example, SmFe 2 phase, SmFe 3 phase).
[希土類金属-遷移金属系合金粉末の製造方法のその他の工程]
(水洗)
希土類金属-遷移金属系合金粉末は、アルカリ金属のハロゲン化物及び/又はアルカリ土類金属のハロゲン化物を除去するために、水洗することが好ましい。[Other steps of manufacturing method of rare earth metal-transition metal alloy powder]
(Washing with water)
The rare earth metal-transition metal based alloy powder is preferably washed with water in order to remove the halide of the alkali metal and / or the halide of the alkaline earth metal.
例えば、希土類金属-遷移金属系合金粉末に水を加え、撹拌した後、デカンテーションする操作を繰り返す。 For example, water is added to the rare earth metal-transition metal alloy powder, the mixture is stirred, and then the decantation operation is repeated.
(脱水素)
希土類金属-遷移金属系合金粉末を水洗する際に、希土類金属-遷移金属系合金粉末の結晶格子間に水素が侵入する場合がある。この場合、希土類金属-遷移金属系合金粉末を脱水素してもよい。(Dehydrogenation)
When washing the rare earth metal-transition metal alloy powder with water, hydrogen may enter between the crystal lattices of the rare earth metal-transition metal alloy powder. In this case, the rare earth metal-transition metal alloy powder may be dehydrogenated.
希土類金属-遷移金属系合金粉末を脱水素する方法としては、特に限定されないが、真空中又は不活性ガス雰囲気中で希土類金属-遷移金属系合金粉末を熱処理する方法等が挙げられる。 The method for dehydrogenizing the rare earth metal-transition metal alloy powder is not particularly limited, and examples thereof include a method for heat-treating the rare earth metal-transition metal alloy powder in a vacuum or an inert gas atmosphere.
例えば、真空中又はアルゴン気流下、希土類金属-遷移金属系合金粉末を150~250℃で1~3時間熱処理する。 For example, the rare earth metal-transition metal alloy powder is heat-treated at 150 to 250 ° C. for 1 to 3 hours in a vacuum or in an argon air stream.
(真空乾燥)
水洗された希土類金属-遷移金属系合金粉末は、水を除去するために、真空乾燥させることが好ましい。(Vacuum drying)
The rare earth metal-transition metal alloy powder washed with water is preferably vacuum dried in order to remove water.
水洗された希土類金属-遷移金属系合金粉末を真空乾燥させる温度は、常温~100℃であることが好ましい。これにより、希土類金属-遷移金属系合金粉末の酸化を抑制することができる。 The temperature for vacuum-drying the water-washed rare earth metal-transition metal alloy powder is preferably room temperature to 100 ° C. This makes it possible to suppress the oxidation of the rare earth metal-transition metal alloy powder.
なお、水洗された希土類金属-遷移金属系合金粉末をアルコール類等の揮発性が高く、水と混和することが可能な有機溶媒で置換した後、真空乾燥させてもよい。 The rare earth metal-transition metal alloy powder washed with water may be replaced with an organic solvent having high volatility such as alcohols and capable of being mixed with water, and then vacuum dried.
(解砕)
希土類金属-遷移金属系合金粉末を解砕してもよい。(Crushing)
Rare earth metal-transition metal alloy powder may be crushed.
希土類金属-遷移金属系合金粉末を解砕する際には、ジェットミル、乾式及び湿式のボールミル、振動ミル、媒体撹拌ミル等を用いることができる。 When crushing the rare earth metal-transition metal alloy powder, a jet mill, a dry or wet ball mill, a vibration mill, a medium stirring mill or the like can be used.
[サマリウム-鉄合金粉末]
本実施形態のサマリウム-鉄合金粉末は、TbCu7型サマリウム-鉄合金の単結晶粒子を含む。[Samarium-iron alloy powder]
The samarium-iron alloy powder of the present embodiment contains single crystal particles of a TbCu 7 -type samarium-iron alloy.
ここで、粉末とは、粒子の集合体を表し、単結晶粒子とは、その内部に結晶粒界を含まず、結晶方位が揃った粒子が、他の粒子と凝集していない孤立粒子を表す。 Here, the powder represents an aggregate of particles, and the single crystal particles represent isolated particles in which particles having no crystal grain boundaries inside and having the same crystal orientation are not aggregated with other particles. ..
なお、本実施形態のサマリウム-鉄合金粉末は、本実施形態の希土類金属-遷移金属系合金粉末の製造方法を用いて、製造することができる。 The samarium-iron alloy powder of the present embodiment can be produced by using the method for producing a rare earth metal-transition metal alloy powder of the present embodiment.
本実施形態のサマリウム-鉄合金粉末のTbCu7型サマリウム-鉄合金相の(110)面のX線回折ピークに対するTh2Zn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比は、0.400以下であることが好ましく、0.150以下であることがより好ましく、0.001以下であることがさらに好ましい。TbCu7型サマリウム-鉄合金相の(110)面のX線回折ピークに対するTh2Zn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比が0.400以下であると、本実施形態のサマリウム-鉄合金粉末中のTbCu7型サマリウム-鉄合金相の比率が十分に高くなる。The X-ray diffraction peak of the (1024) plane of the Th 2 Zn 17 -type samarium-iron alloy phase with respect to the X-ray diffraction peak of the (110) plane of the TbCu 7 -type samarium-iron alloy phase of the samarium-iron alloy powder of the present embodiment. The intensity ratio is preferably 0.400 or less, more preferably 0.150 or less, and even more preferably 0.001 or less. When the intensity ratio of the X-ray diffraction peak on the (1024) plane of the Th 2 Zn 17 -type samarium-iron alloy phase to the X-ray diffraction peak on the (110) plane of the TbCu 7 -type samarium-iron alloy phase is 0.400 or less. , The ratio of the TbCu 7 -type samarium-iron alloy phase in the samarium-iron alloy powder of the present embodiment becomes sufficiently high.
本実施形態のサマリウム-鉄合金粉末のTbCu7型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/aが0.840以上であることが好ましく、0.842以上であることがより好ましく、0.846以上であることがさらに好ましい。本実施形態のサマリウム-鉄合金粉末のTbCu7型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/aが0.840以上であると、本実施形態のサマリウム-鉄合金粉末中のTbCu7型サマリウム-鉄合金相の比率が十分に高くなる。The ratio c / a of the lattice constant c to the lattice constant a of the TbCu 7 -type samarium-iron alloy phase of the samarium-iron alloy powder of the present embodiment is preferably 0.840 or more, and preferably 0.842 or more. It is more preferably 0.846 or more, and further preferably 0.846 or more. When the ratio c / a of the lattice constant c to the lattice constant a of the TbCu 7 -type samarium-iron alloy phase of the samarium-iron alloy powder of the present embodiment is 0.840 or more, the samarium-iron alloy powder of the present embodiment contains The ratio of TbCu 7 type samarium-iron alloy phase is sufficiently high.
本実施形態のサマリウム-鉄合金粉末のFe相の比率は、20%以下であることが好ましく、10%以下であることがさらに好ましい。本実施形態のサマリウム-鉄合金粉末のFe相の比率が20%以下であると、本実施形態のサマリウム-鉄合金粉末中のTbCu7型サマリウム-鉄合金相の比率が十分に高くなる。The ratio of the Fe phase of the samarium-iron alloy powder of the present embodiment is preferably 20% or less, and more preferably 10% or less. When the ratio of the Fe phase of the samarium-iron alloy powder of the present embodiment is 20% or less, the ratio of the TbCu 7 -type samarium-iron alloy phase in the samarium-iron alloy powder of the present embodiment becomes sufficiently high.
本実施形態のサマリウム-鉄合金粉末の粒子径は、3μm以下であることが好ましく、1μm以下であることがさらに好ましい。 The particle size of the samarium-iron alloy powder of the present embodiment is preferably 3 μm or less, and more preferably 1 μm or less.
本実施形態のサマリウム-鉄合金粉末を窒化処理することで、TbCu7型サマリウム-鉄-窒素磁石粉末が得られる。ここで、Th2Zn17型サマリウム-鉄-窒素磁石の単磁区粒子の粒子径は3μm程度であり、異方性磁界がTh2Zn17型サマリウム-鉄-窒素磁石の1/3程度であるため、TbCu7型サマリウム-鉄-窒素磁石の単磁区粒子の粒子径が3μmを超えることはないと考えられる。By nitriding the samarium-iron alloy powder of the present embodiment, a TbCu 7 -type samarium-iron-nitrogen magnet powder can be obtained. Here, the particle size of the single magnetic domain particles of the Th 2 Zn 17 -type samarium-iron-nitrogen magnet is about 3 μm, and the anisotropic magnetic field is about 1/3 of that of the Th 2 Zn 17 -type samarium-iron-nitrogen magnet. Therefore, it is considered that the particle size of the single magnetic domain particles of the TbCu 7 -type samarium-iron-nitrogen magnet does not exceed 3 μm.
したがって、本実施形態のサマリウム-鉄合金粉末の粒子径が3μm以下であると、TbCu7型サマリウム-鉄-窒素磁石粉末の磁気構造が多磁区構造から単磁区構造に遷移するため、TbCu7型サマリウム-鉄-窒素磁石粉末の磁気特性が高くなる。また、本実施形態のサマリウム-鉄合金粉末の粒子径が1μm以下であると、磁化反転核の形成を抑制することができるため、TbCu7型サマリウム-鉄-窒素磁石粉末の磁気特性がさらに高くなる。Therefore, when the particle size of the samarium-iron alloy powder of the present embodiment is 3 μm or less, the magnetic structure of the TbCu 7 - type samarium-iron-nitrogen magnet powder shifts from the multi-domain structure to the single-domain structure. The magnetic properties of the sumarium-iron-nitrogen magnet powder are enhanced. Further, when the particle size of the samarium-iron alloy powder of the present embodiment is 1 μm or less, the formation of magnetization reversal nuclei can be suppressed, so that the magnetic characteristics of the TbCu 7 -type samarium-iron-nitrogen magnet powder are further high. Become.
以下、本発明の実施例を説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the following examples.
[鉄粉末の作製]
硝酸鉄101.8g、硝酸カルシウム14.9gを水819mLに溶解させた後、撹拌しながら、1mol水酸化カリウム水溶液441mlを滴下し、水酸化鉄の懸濁液を得た。次に、水酸化鉄の懸濁液をろ過し、洗浄した後、熱風乾燥オーブンを用いて、空気中、120℃で一晩乾燥させ、水酸化鉄粉末を得た。次に、水素気流中、500℃で6時間、水酸化鉄粉末を還元し、鉄粉末を得た。[Making iron powder]
After dissolving 101.8 g of iron nitrate and 14.9 g of calcium nitrate in 819 mL of water, 441 ml of a 1 mol potassium hydroxide aqueous solution was added dropwise with stirring to obtain a suspension of iron hydroxide. Next, the iron hydroxide suspension was filtered and washed, and then dried in air at 120 ° C. overnight using a hot air drying oven to obtain iron hydroxide powder. Next, the iron hydroxide powder was reduced in a hydrogen stream at 500 ° C. for 6 hours to obtain an iron powder.
[実施例1]
(熱処理)
サマリウム粉末0.40g、鉄粉末0.24g、融点605℃の塩化リチウム粉末1.04gを鉄製るつぼに入れた後、Ar雰囲気中、650℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 1]
(Heat treatment)
0.40 g of samarium powder, 0.24 g of iron powder, and 1.04 g of lithium chloride powder having a melting point of 605 ° C. were placed in an iron crucible and then heat-treated at 650 ° C. for 6 hours in an Ar atmosphere to obtain a samarium-iron alloy powder. .. Here, the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
塩化リチウム中のサマリウムの濃度は、式
[(サマリウム粉末の質量)/(サマリウムのモル質量)]/[(塩化リチウムの質量)/(塩化リチウムの密度)]
により決定した。The concentration of samarium in lithium chloride is calculated by the formula [(mass of samarium powder) / (molar mass of samarium)] / [(mass of lithium chloride) / (density of lithium chloride)].
Was decided by.
(水洗)
サマリウム-鉄合金粉末を純水で洗浄し、塩化リチウムを除去した。(Washing with water)
The samarium-iron alloy powder was washed with pure water to remove lithium chloride.
(真空乾燥)
純水で洗浄したサマリウム-鉄合金粉末を、イソプロパノールで置換した後、常温で真空乾燥させた。(Vacuum drying)
The samarium-iron alloy powder washed with pure water was replaced with isopropanol and then vacuum dried at room temperature.
[実施例2]
以下のように熱処理した以外は、実施例1と同様にして、サマリウム-鉄合金粉末を得た。[Example 2]
A samarium-iron alloy powder was obtained in the same manner as in Example 1 except that the heat treatment was performed as follows.
(熱処理)
サマリウム粉末0.24g、鉄粉末0.29g、融点605℃の塩化リチウム粉末1.04g、カルシウム粉末0.20gを鉄製るつぼに入れた後、Ar雰囲気中、650℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、3.2mol/Lであった。(Heat treatment)
0.24 g of samarium powder, 0.29 g of iron powder, 1.04 g of lithium chloride powder having a melting point of 605 ° C., and 0.20 g of calcium powder are placed in an iron crucible, and then heat-treated at 650 ° C. for 6 hours in an Ar atmosphere to obtain samarium-. An iron alloy powder was obtained. Here, the concentration of samarium in lithium chloride at 650 ° C. was 3.2 mol / L.
[実施例3]
熱処理におけるサマリウム粉末及び鉄粉末の添加量を、それぞれ0.40g及び0.24gに変更した以外は、実施例2と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 3]
A samarium-iron alloy powder was obtained in the same manner as in Example 2 except that the addition amounts of the samarium powder and the iron powder in the heat treatment were changed to 0.40 g and 0.24 g, respectively. Here, the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
[実施例4]
熱処理におけるサマリウム粉末及び鉄粉末の添加量を、それぞれ0.54g及び0.20gに変更した以外は、実施例2と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、7.2mol/Lであった。[Example 4]
A samarium-iron alloy powder was obtained in the same manner as in Example 2 except that the addition amounts of the samarium powder and the iron powder in the heat treatment were changed to 0.54 g and 0.20 g, respectively. Here, the concentration of samarium in lithium chloride at 650 ° C. was 7.2 mol / L.
[実施例5]
熱処理におけるサマリウム粉末及び鉄粉末の添加量を、それぞれ0.63g及び0.19gに変更した以外は、実施例2と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、8.4mol/Lであった。[Example 5]
A samarium-iron alloy powder was obtained in the same manner as in Example 2 except that the addition amounts of the samarium powder and the iron powder in the heat treatment were changed to 0.63 g and 0.19 g, respectively. Here, the concentration of samarium in lithium chloride at 650 ° C. was 8.4 mol / L.
[実施例6]
熱処理におけるカルシウム粉末の添加量を0.40gに変更した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 6]
A samarium-iron alloy powder was obtained in the same manner as in Example 3 except that the amount of calcium powder added in the heat treatment was changed to 0.40 g. Here, the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
[実施例7]
熱処理におけるカルシウム粉末の添加量を0.80gに変更した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 7]
A samarium-iron alloy powder was obtained in the same manner as in Example 3 except that the amount of calcium powder added in the heat treatment was changed to 0.80 g. Here, the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
[実施例8]
熱処理におけるカルシウム粉末の添加量を1.00gに変更した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 8]
A samarium-iron alloy powder was obtained in the same manner as in Example 3 except that the amount of calcium powder added in the heat treatment was changed to 1.00 g. Here, the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
[実施例9]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.71g及び融点770℃の塩化カリウム粉末0.31gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化カリウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 9]
In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.71 g of lithium chloride powder and 0.31 g of potassium chloride powder having a melting point of 770 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and potassium chloride at 650 ° C. was 5.4 mol / L.
[実施例10]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.78g及び融点801℃の塩化ナトリウム粉末0.27gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化ナトリウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 10]
In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.78 g of lithium chloride powder and 0.27 g of sodium chloride powder having a melting point of 801 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and sodium chloride at 650 ° C. was 5.4 mol / L.
[実施例11]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.92g及び融点848℃のフッ化リチウム粉末0.14gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化ナトリウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 11]
In the heat treatment, the sumarium-iron alloy powder was obtained in the same manner as in Example 3 except that 0.92 g of lithium chloride powder and 0.14 g of lithium fluoride powder having a melting point of 848 ° C. were added instead of 1.04 g of lithium chloride powder. Got Here, the concentration of samarium in lithium chloride and sodium chloride at 650 ° C. was 5.4 mol / L.
[実施例12]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.63g及び融点772℃の塩化カルシウム粉末0.42gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 12]
In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.63 g of lithium chloride powder and 0.42 g of calcium chloride powder having a melting point of 772 ° C were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and calcium chloride at 650 ° C. was 5.4 mol / L.
[実施例13]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.69g及び融点714℃の塩化マグネシウム粉末0.39gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化マグネシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 13]
In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.69 g of lithium chloride powder and 0.39 g of magnesium chloride powder having a melting point of 714 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and magnesium chloride at 650 ° C. was 5.4 mol / L.
[実施例14]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.62g及び融点962℃の塩化バリウム粉末0.77gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化バリウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 14]
In the heat treatment, the sumarium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.62 g of lithium chloride powder and 0.77 g of barium chloride powder having a melting point of 962 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and barium chloride at 650 ° C. was 5.4 mol / L.
[実施例15]
熱処理において、塩化リチウム粉末1.04gの代わりに、塩化リチウム粉末0.63g及び融点874℃の塩化ストロンチウム粉末0.59gを添加した以外は、実施例3と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化ストロンチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 15]
In the heat treatment, a sumalium-iron alloy powder was prepared in the same manner as in Example 3 except that 0.63 g of lithium chloride powder and 0.59 g of strontium chloride powder having a melting point of 874 ° C. were added instead of 1.04 g of lithium chloride powder. Obtained. Here, the concentration of samarium in lithium chloride and strontium chloride at 650 ° C. was 5.4 mol / L.
[実施例16]
熱処理において、サマリウム粉末0.40gの代わりに、ネオジム粉末0.40gを添加した以外は、実施例3と同様にして、ネオジム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のネオジムの濃度は、5.4mol/Lであった。[Example 16]
In the heat treatment, neodymium-iron alloy powder was obtained in the same manner as in Example 3 except that 0.40 g of neodymium powder was added instead of 0.40 g of samarium powder. Here, the concentration of neodymium in lithium chloride at 650 ° C. was 5.4 mol / L.
[実施例17]
熱処理において、熱処理温度を600℃に変更した以外は、実施例9と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 17]
In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 9 except that the heat treatment temperature was changed to 600 ° C. Here, the concentration of samarium in lithium chloride at 600 ° C. was 5.4 mol / L.
[実施例18]
熱処理において、熱処理温度を550℃に変更した以外は、実施例9と同様にして、サマリウム-鉄合金粉末を得た。ここで、550℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 18]
In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 9 except that the heat treatment temperature was changed to 550 ° C. Here, the concentration of samarium in lithium chloride at 550 ° C. was 5.4 mol / L.
[実施例19]
熱処理において、熱処理時間を48時間に変更した以外は、実施例1と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 19]
In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 1 except that the heat treatment time was changed to 48 hours. Here, the concentration of samarium in lithium chloride at 650 ° C. was 5.4 mol / L.
[実施例20]
熱処理において、塩化リチウム粉末0.71g及び塩化カリウム粉末0.31gの代わりに、塩化リチウム粉末0.35g及び塩化カルシウム粉末0.71gを添加した以外は、実施例17と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 20]
In the heat treatment, Samarium-iron was added in the same manner as in Example 17, except that 0.35 g of lithium chloride powder and 0.71 g of calcium chloride powder were added instead of 0.71 g of lithium chloride powder and 0.31 g of potassium chloride powder. An alloy powder was obtained. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
[実施例21]
熱処理において、熱処理時間を48時間に変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、650℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 21]
In the heat treatment, a samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the heat treatment time was changed to 48 hours. Here, the concentration of samarium in lithium chloride and calcium chloride at 650 ° C. was 5.4 mol / L.
[実施例22]
以下のように熱処理した以外は、実施例1と同様にして、サマリウム-鉄合金粉末を得た。[Example 22]
A samarium-iron alloy powder was obtained in the same manner as in Example 1 except that the heat treatment was performed as follows.
(熱処理)
サマリウム粉末0.25g、鉄粉末0.24g、塩化リチウム粉末0.35g、塩化カルシウム粉末0.71gを鉄製るつぼに入れた後、Ar雰囲気中、600℃で6時間熱処理し、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、3.2mol/Lであった。(Heat treatment)
0.25 g of samarium powder, 0.24 g of iron powder, 0.35 g of lithium chloride powder, and 0.71 g of calcium chloride powder are placed in an iron crucible and then heat-treated at 600 ° C. for 6 hours in an Ar atmosphere to produce a samarium-iron alloy powder. Got Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 3.2 mol / L.
[実施例23]
熱処理におけるサマリウム粉末の添加量を0.30gに変更した以外は、実施例22と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。[Example 23]
A samarium-iron alloy powder was obtained in the same manner as in Example 22 except that the amount of the samarium powder added in the heat treatment was changed to 0.30 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
[実施例24]
熱処理におけるサマリウム粉末の添加量を0.35gに変更した以外は、実施例22と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.7mol/Lであった。[Example 24]
A samarium-iron alloy powder was obtained in the same manner as in Example 22 except that the amount of the samarium powder added in the heat treatment was changed to 0.35 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.7 mol / L.
[実施例25]
熱処理におけるサマリウム粉末の添加量を0.40gに変更した以外は、実施例22と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 25]
A samarium-iron alloy powder was obtained in the same manner as in Example 22 except that the amount of the samarium powder added in the heat treatment was changed to 0.40 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
[実施例26]
熱処理におけるカルシウム粉末の添加量を0.10gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 26]
A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of calcium powder added in the heat treatment was changed to 0.10 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
[実施例27]
熱処理におけるカルシウム粉末の添加量を0.40gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、5.4mol/Lであった。[Example 27]
A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of calcium powder added in the heat treatment was changed to 0.40 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 5.4 mol / L.
[実施例28]
熱処理におけるサマリウム粉末の添加量を0.25gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、3.2mol/Lであった。[Example 28]
A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of the samarium powder added in the heat treatment was changed to 0.25 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 3.2 mol / L.
[実施例29]
熱処理におけるサマリウム粉末の添加量を0.30gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。[Example 29]
A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of the samarium powder added in the heat treatment was changed to 0.30 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
[実施例30]
熱処理におけるサマリウム粉末の添加量を0.35gに変更した以外は、実施例20と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.7mol/Lであった。[Example 30]
A samarium-iron alloy powder was obtained in the same manner as in Example 20 except that the amount of the samarium powder added in the heat treatment was changed to 0.35 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.7 mol / L.
[実施例31]
熱処理における鉄粉末の添加量を0.12gに変更した以外は、実施例30と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。[Example 31]
A samarium-iron alloy powder was obtained in the same manner as in Example 30 except that the amount of iron powder added in the heat treatment was changed to 0.12 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
[実施例32]
熱処理における鉄粉末の添加量を0.06gに変更した以外は、実施例30と同様にして、サマリウム-鉄合金粉末を得た。ここで、600℃における塩化リチウム及び塩化カルシウム中のサマリウムの濃度は、4.0mol/Lであった。[Example 32]
A samarium-iron alloy powder was obtained in the same manner as in Example 30 except that the amount of iron powder added in the heat treatment was changed to 0.06 g. Here, the concentration of samarium in lithium chloride and calcium chloride at 600 ° C. was 4.0 mol / L.
[比較例1]
熱処理において、塩化リチウム粉末を添加しなかった以外は、実施例3と同様にして、サマリウム-鉄合金粉末を作製しようとしたが、サマリウム-鉄合金粉末を作製することができなかった。[Comparative Example 1]
An attempt was made to produce a samarium-iron alloy powder in the same manner as in Example 3 except that lithium chloride powder was not added in the heat treatment, but the samarium-iron alloy powder could not be produced.
[比較例2]
熱処理において、サマリウム粉末0.40gの代わりに、酸化サマリウム粉末0.47gを添加した以外は、比較例1と同様にして、サマリウム-鉄合金粉末を作製しようとしたが、サマリウム-鉄合金粉末を作製することができなかった。[Comparative Example 2]
In the heat treatment, an attempt was made to prepare a samarium-iron alloy powder in the same manner as in Comparative Example 1 except that 0.47 g of samarium oxide powder was added instead of 0.40 g of samarium powder. Could not be made.
表1に、熱処理の条件を示す。 Table 1 shows the heat treatment conditions.
次に、TbCu7型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無、形成相、TbCu7型サマリウム-鉄合金相の(110)面のX線回折ピークに対するTh2Zn17型サマリウム-鉄合金相の(024)面のX線回折ピークの強度比(以下、X線回折ピークの強度比という)、TbCu7型サマリウム-鉄合金相の格子定数aに対する格子定数cの比c/a(以下、格子定数比という)、鉄相の比率を評価した。
Next, the presence or absence of single crystal particles of the TbCu 7 type samarium-iron (or neodymium-iron) alloy, the forming phase, and the Th 2 Zn 17 type for the X-ray diffraction peak of the (110) plane of the TbCu 7 type samarium-iron alloy phase. The intensity ratio of the X-ray diffraction peak on the (024) plane of the sumarium-iron alloy phase (hereinafter referred to as the intensity ratio of the X-ray diffraction peak), the ratio c of the lattice constant c to the lattice constant a of the TbCu 7 -type samarium-iron alloy phase. The ratio of / a (hereinafter referred to as lattice constant ratio) and iron phase was evaluated.
[TbCu7型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無]
粉末を樹脂に包埋し、研磨した後、集束イオンビーム(FIB)加工することにより、薄片を得た。次に、透過型電子顕微鏡(TEM)を用いて、薄片の制限視野回折像を取得し、TbCu7型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無を評価した。[Presence or absence of single crystal particles of TbCu 7 -type samarium-iron (or neodymium-iron) alloy]
The powder was embedded in a resin, polished, and then subjected to focused ion beam (FIB) processing to obtain flakes. Next, a selected area diffraction image of the flakes was obtained using a transmission electron microscope (TEM), and the presence or absence of single crystal particles of the TbCu 7 -type samarium-iron (or neodymium-iron) alloy was evaluated.
図1に、実施例20のサマリウム-鉄合金粉末の明視野TEM像を示す。また、図2は、図1の明視野TEM像の部分拡大図であり、図3は、図2の領域Cに対応する制限視野回折像である。 FIG. 1 shows a bright-field TEM image of the samarium-iron alloy powder of Example 20. 2 is a partially enlarged view of the bright field TEM image of FIG. 1, and FIG. 3 is a selected area diffraction image corresponding to the region C of FIG.
図1から、実施例20のサマリウム-鉄合金粉末は、粒子径が3.0μm以下であることがわかる。 From FIG. 1, it can be seen that the samarium-iron alloy powder of Example 20 has a particle size of 3.0 μm or less.
また、図3の制限視野回折像がスポット状であることから、図1のサマリウム-鉄合金粉末が単結晶粒子を含むことがわかる。さらに、図3の制限視野回折像がTbCu7型サマリウム-鉄合金の結晶構造の特徴である空間群P6/mmmと一致することから、サマリウム-鉄合金粉末がTbCu7型サマリウム-鉄合金の単結晶粒子を含むことがわかる。Further, since the selected area diffraction image of FIG. 3 is spot-shaped, it can be seen that the samarium-iron alloy powder of FIG. 1 contains single crystal particles. Furthermore, since the limited field diffraction image of FIG. 3 matches the space group P6 / mmm, which is a feature of the crystal structure of the TbCu 7 -type sumarium-iron alloy, the sumarium-iron alloy powder is a single TbCu 7 -type sumarium-iron alloy. It can be seen that it contains crystal particles.
[形成相、X線回折ピークの強度比、格子定数比、鉄相の比率]
X線回折装置Empyrean(Malvern Panalytical製)及びX線検出器Pixcel 1D(Malvern Panalytical製)を用いて、サマリウム-鉄合金粉末のX線回折スペクトルを測定した。具体的には、X線源として、Co管球を使用し、管電圧45kV、管電流40mA、測定角度30~60°、測定ステップ幅0.013°、幅スキャンスピード0.09°/secの条件で、サマリウム-鉄合金粉末のX線回折スペクトルを測定した(図4参照)。[Formation phase, intensity ratio of X-ray diffraction peak, lattice constant ratio, ratio of iron phase]
The X-ray diffraction spectrum of the samarium-iron alloy powder was measured using an X-ray diffractometer Empyrean (manufactured by Malvern Panasonic) and an X-ray detector Pixcel 1D (manufactured by Malvern Panasonic). Specifically, a Co tube is used as an X-ray source, and the tube voltage is 45 kV, the tube current is 40 mA, the measurement angle is 30 to 60 °, the measurement step width is 0.013 °, and the width scan speed is 0.09 ° / sec. Under the conditions, the X-ray diffraction spectrum of the samarium-iron alloy powder was measured (see FIG. 4).
X線回折パターンの解析ソフトとして、High Score Plus(Malvern Panalytical製)を用い、最小有意度を1.00に設定して、ピークサーチ及びプロファイルフィッティングを実施した。具体的には、TbCu7型サマリウム-鉄合金相の(110)面の回折ピークの積分強度と、Th2Zn17型サマリウム-鉄合金相の(024)面の回折ピークの積分強度を求めた後、X線回折ピークの強度比を算出した。High Score Plus (manufactured by Malvern Panasonic) was used as X-ray diffraction pattern analysis software, the minimum significance was set to 1.00, and peak search and profile fitting were performed. Specifically, the integrated intensity of the diffraction peak on the (110) plane of the TbCu 7 -type samarium-iron alloy phase and the integrated intensity of the diffraction peak on the (024) plane of the Th 2 Zn 17 -type samarium-iron alloy phase were determined. After that, the intensity ratio of the X-ray diffraction peak was calculated.
図4から、実施例19~21、25のサマリウム-鉄合金粉末は、X線回折ピークの強度比が、それぞれ0.362、<0.001、0.137、<0.001であること、即ち、TbCu7型サマリウム-鉄合金相の比率が高いことがわかった。From FIG. 4, the samarium-iron alloy powders of Examples 19 to 21 and 25 have the intensity ratios of the X-ray diffraction peaks of 0.362, <0.001, 0.137, and <0.001, respectively. That is, it was found that the ratio of the TbCu 7 -type samarium-iron alloy phase was high.
また、サマリウム-鉄合金粉末のX線回折スペクトルを測定した後(図4参照)、リートベルト解析を実施することにより、格子定数比を求めた。 Further, after measuring the X-ray diffraction spectrum of the samarium-iron alloy powder (see FIG. 4), the Rietveld analysis was performed to determine the lattice constant ratio.
図4から、実施例19~21、25のサマリウム-鉄合金粉末の格子定数比は、それぞれ0.840、0.846、0.842、0.846であることがわかった。 From FIG. 4, it was found that the lattice constant ratios of the samarium-iron alloy powders of Examples 19 to 21 and 25 were 0.840, 0.846, 0.842, and 0.846, respectively.
さらに、X線回折パターンの解析ソフトとして、High Score Plus(Malvern Panalytical製)を用いて、TbCu7型サマリウム-鉄合金相の主回折ピークである49.8°近傍に観測される(111)面の積分強度(I_TbCu7)と、Fe相の主回折ピークである52.7°近傍に観測される(110)面の積分強度(I_Fe)と、TbCu7型サマリウム-鉄合金相以外のサマリウム-鉄合金相の主回折ピークの積分強度(I_SmFe)を求め、式
I_Fe/(I_TbCu7+I_Fe+I_SmFe)
から、鉄相の比率を算出した。Furthermore, using High Score Plus (manufactured by Malvern Panasonic) as X-ray diffraction pattern analysis software, the (111) plane observed near the main diffraction peak of the TbCu 7 -type sumalium-iron alloy phase is 49.8 °. (I_TbCu 7 ), the integrated intensity (I_Fe) of the (110) plane observed near the main diffraction peak of the Fe phase, 52.7 °, and the TbCu 7 -type samarium-samarium other than the iron alloy phase- The integrated intensity (I_SmFe) of the main diffraction peak of the iron alloy phase was obtained, and the formula I_Fe / (I_TbCu 7 + I_Fe + I_SmFe)
From this, the ratio of the iron phase was calculated.
図4から、実施例19~21、25のサマリウム-鉄合金粉末の鉄相の比率は、それぞれ1%未満、7%、6%、7%であることがわかった。 From FIG. 4, it was found that the ratios of the iron phases of the samarium-iron alloy powders of Examples 19 to 21 and 25 were less than 1%, 7%, 6%, and 7%, respectively.
なお、ネオジム-鉄合金粉末の鉄相の比率は、TbCu7型ネオジム-鉄合金相の主回折ピークが49.0°近傍に観測される(111)面の積分強度(I_TbCu7)と、TbCu7型ネオジム-鉄合金相以外のネオジム-鉄合金相の主回折ピークの積分強度(I_NdFe)を求めた以外は、サマリウム-鉄合金粉末の鉄相の比率と同様にして、算出した。The ratio of the iron phase of the neodymium-iron alloy powder is the integrated strength (I_TbCu 7 ) of the (111) plane where the main diffraction peak of the TbCu 7 -type neodymium-iron alloy phase is observed near 49.0 ° and TbCu. It was calculated in the same manner as the ratio of the iron phase of the samarium-iron alloy powder, except that the integrated intensity (I_NdFe) of the main diffraction peak of the neodymium-iron alloy phase other than the 7 -type neodymium-iron alloy phase was determined.
表2に、TbCu7型サマリウム-鉄(又はネオジム-鉄)合金の単結晶粒子の有無、形成相、X線回折ピークの強度比、格子定数比、鉄相の比率の評価結果を示す。Table 2 shows the evaluation results of the presence / absence of single crystal particles of the TbCu 7 -type samarium-iron (or neodymium-iron) alloy, the formation phase, the intensity ratio of the X-ray diffraction peak, the lattice constant ratio, and the ratio of the iron phase.
表2から、実施例1~15、17~32では、TbCu7型サマリウム-鉄合金の単結晶粒子を含むサマリウム-鉄合金粉末が得られ、実施例16では、TbCu7型ネオジム-鉄合金の単結晶粒子を含むネオジム-鉄合金粉末が得られることがわかる。
From Table 2, in Examples 1 to 15 and 17 to 32, a samarium-iron alloy powder containing single crystal particles of a TbCu 7 -type samarium-iron alloy was obtained, and in Example 16, a TbCu 7 -type neodymium-iron alloy was obtained. It can be seen that a neodymium-iron alloy powder containing single crystal particles can be obtained.
これに対して、比較例1、2では、アルカリ金属のハロゲン化物又はアルカリ金属土類金属のハロゲン化物を添加せず、650℃で熱処理したため、サマリウム-鉄合金粉末が得られない。 On the other hand, in Comparative Examples 1 and 2, since the halide of the alkali metal or the halide of the alkali metal earth metal was not added and the heat treatment was performed at 650 ° C., the sumalium-iron alloy powder could not be obtained.
本願は、日本特許庁に2019年3月12日に出願された基礎出願2019-044953号の優先権を主張するものであり、その全内容を参照によりここに援用する。 This application claims the priority of Basic Application No. 2019-044953 filed with the Japan Patent Office on March 12, 2019, the entire contents of which are incorporated herein by reference.
Claims (16)
前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、
前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である、希土類金属-遷移金属系合金粉末の製造方法。 A composition containing a rare earth metal, a transition metal, a halide of an alkali metal and / or a halide of an alkaline earth metal is equal to or higher than the melting point of the halide of the alkali metal and / or the halide of the alkaline earth metal. Including the step of heat treatment at temperature
The rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
A method for producing a rare earth metal-transition metal alloy powder, wherein the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
前記遷移金属は、Feである、請求項1に記載の希土類金属-遷移金属系合金粉末の製造方法。 The rare earth metal is Sm or Nd, and is
The method for producing a rare earth metal-transition metal alloy powder according to claim 1, wherein the transition metal is Fe.
前記希土類金属は、Y、La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuからなる群より選択される一種以上であり、
前記遷移金属は、Fe、Ni、Co、Cr及びMnからなる群より選択される一種以上である、希土類金属-遷移金属系合金粉末の製造方法。 Rare earth metals, transition metals, oxides of transition metals and / or halides of transition metals, halides of alkali metals and / or halides of alkaline earth metals, alkali metals and / or alkali earth metals. The composition comprises a step of heat-treating the composition containing the halide at a temperature equal to or higher than the melting point of the halide of the alkali metal and / or the halide of the alkaline earth metal.
The rare earth metal is one or more selected from the group consisting of Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
A method for producing a rare earth metal-transition metal alloy powder, wherein the transition metal is one or more selected from the group consisting of Fe, Ni, Co, Cr and Mn.
前記遷移金属は、Feである、請求項6に記載の希土類金属-遷移金属系合金粉末の製造方法。 The rare earth metal is Sm or Nd, and is
The method for producing a rare earth metal-transition metal alloy powder according to claim 6, wherein the transition metal is Fe.
粒子径が3.0μm以下である、サマリウム-鉄合金粉末。 Contains single crystal particles of TbCu 7 -type samarium-iron alloy ,
A samarium-iron alloy powder having a particle size of 3.0 μm or less .
前記単結晶粒子は、内部に結晶粒界を含まず、結晶方位が揃った粒子であり、他の粒子と凝集していない孤立した粒子であるサマリウム-鉄合金粉末。 Contains single crystal particles of TbCu 7 -type samarium-iron alloy ,
The single crystal particles are samarium-iron alloy powders that do not contain grain boundaries inside and have the same crystal orientation and are isolated particles that are not aggregated with other particles .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019044953 | 2019-03-12 | ||
JP2019044953 | 2019-03-12 | ||
PCT/JP2020/000732 WO2020183885A1 (en) | 2019-03-12 | 2020-01-10 | Method for manufacturing rare earth metal-transition metal alloy powder, and samarium-iron alloy powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020183885A1 JPWO2020183885A1 (en) | 2021-10-21 |
JP7103612B2 true JP7103612B2 (en) | 2022-07-20 |
Family
ID=72427829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021505544A Active JP7103612B2 (en) | 2019-03-12 | 2020-01-10 | Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7103612B2 (en) |
WO (1) | WO2020183885A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007119909A (en) | 2005-09-29 | 2007-05-17 | Sumitomo Metal Mining Co Ltd | Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same |
JP2008505500A (en) | 2004-06-30 | 2008-02-21 | ユニバーシティ・オブ・デイトン | Anisotropic nanocomposite rare earth permanent magnets and methods for their production |
JP2009088121A (en) | 2007-09-28 | 2009-04-23 | Sumitomo Metal Mining Co Ltd | Rare earth-iron-manganese-nitrogen magnet powder |
JP2018127716A (en) | 2017-02-06 | 2018-08-16 | 国立大学法人東北大学 | Rare-earth-iron-nitrogen based magnetic powder and method for producing the same |
WO2018163967A1 (en) | 2017-03-10 | 2018-09-13 | 国立研究開発法人産業技術総合研究所 | Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet |
JP2018186255A (en) | 2017-04-27 | 2018-11-22 | 住友電気工業株式会社 | Manufacturing method of rare-earth magnet |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2740902B2 (en) * | 1991-02-22 | 1998-04-15 | 同和鉱業株式会社 | R-Fe-Co-BC permanent magnet alloy with small irreversible demagnetization and excellent thermal stability |
JPH06310316A (en) * | 1993-04-20 | 1994-11-04 | Mitsubishi Materials Corp | Rare earth-fe-c-n intermetallic compound magnetic material powder and its manufacture |
-
2020
- 2020-01-10 JP JP2021505544A patent/JP7103612B2/en active Active
- 2020-01-10 WO PCT/JP2020/000732 patent/WO2020183885A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008505500A (en) | 2004-06-30 | 2008-02-21 | ユニバーシティ・オブ・デイトン | Anisotropic nanocomposite rare earth permanent magnets and methods for their production |
JP2007119909A (en) | 2005-09-29 | 2007-05-17 | Sumitomo Metal Mining Co Ltd | Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same |
JP2009088121A (en) | 2007-09-28 | 2009-04-23 | Sumitomo Metal Mining Co Ltd | Rare earth-iron-manganese-nitrogen magnet powder |
JP2018127716A (en) | 2017-02-06 | 2018-08-16 | 国立大学法人東北大学 | Rare-earth-iron-nitrogen based magnetic powder and method for producing the same |
WO2018163967A1 (en) | 2017-03-10 | 2018-09-13 | 国立研究開発法人産業技術総合研究所 | Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet |
JP2018186255A (en) | 2017-04-27 | 2018-11-22 | 住友電気工業株式会社 | Manufacturing method of rare-earth magnet |
Non-Patent Citations (1)
Title |
---|
TERESIAK, A. et. al.,Formation of modified TbCu7 and Th2Zn17 type structures during annealing of mechanical-alloyed Sm-Fe powders,Journal of Alloys and Compounds,NL,ELSEVIER,1998年12月30日,vol.274,pp.284-293 |
Also Published As
Publication number | Publication date |
---|---|
WO2020183885A1 (en) | 2020-09-17 |
JPWO2020183885A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6845491B2 (en) | Samarium-iron-nitrogen magnet powder and its manufacturing method | |
WO2015129861A1 (en) | R-t-b sintered magnet and manufacturing method therefor | |
JP6094612B2 (en) | Method for producing RTB-based sintered magnet | |
JP2012015168A (en) | R-t-b-based rare earth permanent magnet, motor, vehicle, generator and wind power generator | |
Okada et al. | Synthesis of Sm2Fe17N3 powder having a new level of high coercivity by preventing decrease of coercivity in washing step of reduction-diffusion process | |
Lu et al. | Crystal structure and magnetic properties of ultrafine nanocrystalline SmCo3 compound | |
JP2017057471A (en) | Magnetic compound and manufacturing method therefor | |
Kim et al. | Effects of calcination conditions on magnetic properties in strontium ferrite synthesized by the molten salt method | |
GB2555608A (en) | A magnetic material and a method of sythesising the same | |
Poenaru et al. | Ce and La as substitutes for Nd in Nd2Fe14B-based melt-spun alloys and hot-deformed magnets: a comparison of structural and magnetic properties | |
JP7137830B2 (en) | Method for producing alloy particles and alloy particles | |
Sato et al. | Development of TbCu7-type Sm-Fe-N anisotropic magnet powder and its sintered magnets | |
JP7103612B2 (en) | Rare earth metal-transition metal alloy powder manufacturing method and samarium-iron alloy powder | |
WO2020183886A1 (en) | Anisotropic magnet powder, anisotropic magnet, and method for manufacturing anisotropic magnet powder | |
JP4274480B2 (en) | R-T-B sintered magnet | |
JP2020057779A (en) | Samarium-iron-bismuth-nitrogen-based magnet powder and samarium-iron-bismuth-nitrogen-based sintered magnet | |
JP2020155476A (en) | R-t-b based permanent magnet | |
CN113677457B (en) | Metastable single crystal rare earth magnet micropowder and method for producing same | |
JP2023077289A (en) | Rare earth magnet and manufacturing method thereof | |
Zhang et al. | Structure and magnetic properties of nanostructured PrCo 7− x Ti x (x= 0–0.4) prepared by mechanical milling and subsequent annealing | |
JP2022147588A (en) | R-t-b-based magnet powder and method for manufacturing the same | |
US20230162898A1 (en) | Rare earth magnet and production method thereof | |
WO2017191790A1 (en) | Rare-earth permanent magnet, and method for manufacturing same | |
JP2018031048A (en) | Method for producing magnetic compound | |
Shen et al. | Metal-redox for MnAl-Based ternary magnetic nanocrystals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220405 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220530 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220621 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7103612 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |