JP4725682B2 - Rare earth-iron-manganese-nitrogen magnet powder - Google Patents

Rare earth-iron-manganese-nitrogen magnet powder Download PDF

Info

Publication number
JP4725682B2
JP4725682B2 JP2010152968A JP2010152968A JP4725682B2 JP 4725682 B2 JP4725682 B2 JP 4725682B2 JP 2010152968 A JP2010152968 A JP 2010152968A JP 2010152968 A JP2010152968 A JP 2010152968A JP 4725682 B2 JP4725682 B2 JP 4725682B2
Authority
JP
Japan
Prior art keywords
powder
rare earth
manganese
iron
magnet powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010152968A
Other languages
Japanese (ja)
Other versions
JP2010283359A (en
Inventor
尚 石川
公一 横沢
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010152968A priority Critical patent/JP4725682B2/en
Publication of JP2010283359A publication Critical patent/JP2010283359A/en
Application granted granted Critical
Publication of JP4725682B2 publication Critical patent/JP4725682B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

本発明は、希土類−鉄−マンガン−窒素系磁石粉末およびその製造方法に関し、さらに詳しくは、Feリッチ相が大幅に低減し、良好な保磁力と優れた角形性を有し、還元拡散法で安価に製造しうる希土類−鉄−マンガン−窒素系磁石粉末に関する。   The present invention relates to a rare earth-iron-manganese-nitrogen based magnet powder and a method for producing the same, and more specifically, the Fe-rich phase is greatly reduced, the coercive force is excellent, and the squareness is excellent. The present invention relates to a rare earth-iron-manganese-nitrogen based magnet powder that can be manufactured at low cost.

フェライト磁石、アルニコ磁石、希土類磁石等が、自動車、一般家電製品、通信・音響機器、医療機器、一般産業機器をはじめとする種々の製品にモータなどとして組み込まれ、使用されている。これら磁石は、主に焼結法で製造されるが、脆く、薄肉化しにくいため複雑形状への成形は困難であり、また焼結時に15〜20%も収縮するため、寸法精度を高められず、研磨等の後加工が必要で、用途面において大きな制約を受けている。   Ferrite magnets, alnico magnets, rare earth magnets, and the like are incorporated and used as motors in various products including automobiles, general household appliances, communication / audio equipment, medical equipment, and general industrial equipment. Although these magnets are mainly manufactured by a sintering method, they are fragile and difficult to be thinned, so it is difficult to form them into complex shapes, and shrinkage of 15 to 20% during sintering can not improve dimensional accuracy. Further, post-processing such as polishing is necessary, and there are significant restrictions in terms of application.

これに対し、ボンド磁石は、ポリアミド樹脂、ポリフェニレンサルファイド樹脂等の熱可塑性樹脂や、エポキシ樹脂、フェノール樹脂等の熱硬化性樹脂をバインダとし、磁石粉末を充填して容易に製造できるため、新しい用途開拓が繰り広げられている。   In contrast, bond magnets can be easily manufactured by filling magnet powder with thermoplastic resin such as polyamide resin and polyphenylene sulfide resin, and thermosetting resin such as epoxy resin and phenol resin as a binder. Pioneering is unfolding.

これら樹脂バインダの中で、ポリフェニレンサルファイド(PPS)は、280°Cを超える高い融点を有するとともに、有機酸や無機酸、強アルカリ、油脂、有機溶媒などに対する優れた耐薬品性も併せ持っている。そのためPPSをバインダとしたボンド磁石は、高い耐熱性や耐薬品性を必要とする用途に用いられている。   Among these resin binders, polyphenylene sulfide (PPS) has a high melting point exceeding 280 ° C. and also has excellent chemical resistance against organic acids, inorganic acids, strong alkalis, oils and fats, organic solvents, and the like. Therefore, bonded magnets using PPS as a binder are used for applications that require high heat resistance and chemical resistance.

ここで磁石粉末がBaフェライトやSrフェライトなどのハードフェライトである場合には、磁気特性が最大エネルギー積で20kJ/m未満であり、それ以上の性能が必要である場合には希土類遷移金属系磁石粉末が用いられる。 Here, when the magnetic powder is a hard ferrite such as Ba ferrite or Sr ferrite, the magnetic properties are less than 20 kJ / m 3 in terms of the maximum energy product. Magnet powder is used.

希土類−遷移金属系磁石粉末としては、Sm−Co系磁石粉末、Nd−Fe−B系磁石粉末、Sm−Fe−N系磁石粉末が知られており、Sm−Co系のSmTM17磁石粉末(TMはCo、Fe、Cu、Zr、Hfなど)や、Nd−Fe−B系のMQ磁石粉末(マグネクエンチインターナショナル製の等方性粉末)を用いたPPSボンド磁石が実用化されている。 Known rare earth-transition metal magnet powders include Sm—Co magnet powder, Nd—Fe—B magnet powder, and Sm—Fe—N magnet powder. Sm—Co Sm 2 TM 17 magnet PPS bonded magnets using powder (TM is Co, Fe, Cu, Zr, Hf, etc.) and Nd-Fe-B MQ magnet powder (isotropic powder made by Magnequench International) have been put into practical use. .

Sm−Fe−N系のSmFe17磁石粉末を用いたPPSボンド磁石(例えば、特許文献1参照)が提案されているが、高温で混練・成形されるため磁石粉末の保磁力や角形性が低下する問題がある。 PPS bonded magnets using Sm—Fe—N-based Sm 2 Fe 17 N 3 magnet powder have been proposed (for example, see Patent Document 1). However, since they are kneaded and molded at high temperatures, There is a problem that the squareness decreases.

また、PPS以外の良好な耐熱性と耐薬品性を有する樹脂バインダとして、芳香族系ポリアミドや液晶ポリマーが知られており、芳香族ポリアミドと脂肪族ポリアミドの混合物を樹脂バインダとした磁石が提案されている(例えば、特許文献2参照)。これにより、固有保磁力8kOe(640kA/m)以上のボンド磁石が得られているが、磁石粉末の耐熱性が十分でないために、固有保磁力が16kOe(1280kA/m)レベルの原料粉末を使わざるを得ない。   As resin binders having good heat resistance and chemical resistance other than PPS, aromatic polyamides and liquid crystal polymers are known, and magnets using a mixture of aromatic polyamide and aliphatic polyamide as a resin binder have been proposed. (For example, refer to Patent Document 2). As a result, a bonded magnet having an intrinsic coercive force of 8 kOe (640 kA / m) or more is obtained. However, since the heat resistance of the magnet powder is insufficient, a raw material powder having an intrinsic coercive force of 16 kOe (1280 kA / m) level is used. I must.

課題となっているSmFe17磁石粉末の耐熱性を向上させるため、粉末表面をZnで処理すること(例えば、特許文献3参照)、また、粉末を燐酸化合物で処理すること(例えば、特許文献4、5参照)が提案されているが、その効果はまだ十分とはいえなかった。 In order to improve the heat resistance of the Sm 2 Fe 17 N 3 magnet powder, which is a problem, the surface of the powder is treated with Zn (for example, see Patent Document 3), and the powder is treated with a phosphoric acid compound (for example, Patent Documents 4 and 5) have been proposed, but the effect has not been sufficient yet.

一方、耐熱性に優れたSm−Fe−N系磁石粉末として、希土類元素と、鉄または鉄およびコバルトと、マンガンと、窒素からなる磁性材料が提案されている(例えば、特許文献6参照)。この磁性材料は、従来のSmFe17磁石粉末以上の過剰な窒素を合金粉末に導入して製造され、ピンニング型の磁化反転機構を示すとされている。また、その金属組織について、菱面体晶又は六方晶の結晶構造を有する強磁性相の周りをN濃度の高い結晶格子の崩れた或いは崩れかけた部分が取り囲む、セルのような構造が生じ、そのセルの結晶粒子径が10〜200nmであることを開示している。 On the other hand, a magnetic material composed of rare earth elements, iron or iron and cobalt, manganese, and nitrogen has been proposed as an Sm-Fe-N magnet powder having excellent heat resistance (see, for example, Patent Document 6). This magnetic material is manufactured by introducing excess nitrogen more than the conventional Sm 2 Fe 17 N 3 magnet powder into the alloy powder, and exhibits a pinning-type magnetization reversal mechanism. In addition, the metal structure has a cell-like structure in which a ferromagnetic phase having a rhombohedral or hexagonal crystal structure is surrounded by a broken or broken portion of a crystal lattice with a high N concentration. It discloses that the crystal particle diameter of the cell is 10 to 200 nm.

この特許文献6には、例えば飽和磁化134emu/g(134Am/kg)で固有保磁力4.1kOe(328kA/m)の磁石粉末や、飽和磁化が102emu/g(102Am/kg)で固有保磁力が9.3kOe(744kA/m)の粉末が記載されている。これらの粉末は、110°Cの温度に200時間さらした後も、初期値の98%以上の優れた保磁力を維持し、ここで得られた磁石粉末の粉末X線回折によれば、ThZn17型結晶構造の回折線に加えて、2θが44°(Cu−Kα)付近に比較的大きな回折線が見られるとしている。 In this patent document 6, for example, magnet powder having a saturation magnetization of 134 emu / g (134 Am 2 / kg) and an intrinsic coercive force of 4.1 kOe (328 kA / m), or a saturation magnetization of 102 emu / g (102 Am 2 / kg) is inherent. A powder having a coercive force of 9.3 kOe (744 kA / m) is described. These powders maintained an excellent coercive force of 98% or more of the initial value even after being exposed to a temperature of 110 ° C. for 200 hours. According to the powder X-ray diffraction of the magnetic powder obtained here, Th In addition to the diffraction line of the 2 Zn 17 type crystal structure, a relatively large diffraction line is observed in the vicinity of 2θ of 44 ° (Cu-Kα).

また、K.Majimaらは、個々の粒子がSm(Fe、Mn)17化合物結晶相からなる磁石粉の金属組織について研究し、それが10〜30nmの微結晶粒の集合組織(セル状構造)を有しており、セル境界はアモルファス相であると報告している(非特許文献1参照)。そして、該アモルファス相においては、窒素とマンガン組成が結晶相に比べてかなり高いとしている。 K.K. Maima et al. Studied the metal structure of a magnetic powder in which individual particles are composed of a crystal phase of Sm 2 (Fe, Mn) 17 N 3 compound, and the structure (cell-like structure) of fine crystal grains of 10 to 30 nm. It is reported that the cell boundary is an amorphous phase (see Non-Patent Document 1). In the amorphous phase, the composition of nitrogen and manganese is considerably higher than that of the crystal phase.

さらに、希土類元素と、鉄または鉄およびコバルトと、マンガンと、窒素からなる磁性材料に、CuまたはBiの少なくとも一種を含有させることによって、その磁気特性を高めた磁石粉末が提案されており、例えば、飽和磁化12.5kG(1.25T)で保磁力9.1kOe(728kA/m)の粉末が得られるとされている(特許文献7参照)。   Furthermore, a magnetic powder having improved magnetic properties by incorporating at least one of Cu or Bi into a magnetic material composed of rare earth elements, iron or iron and cobalt, manganese, and nitrogen has been proposed, for example, It is said that a powder having a coercive force of 9.1 kOe (728 kA / m) with a saturation magnetization of 12.5 kG (1.25 T) can be obtained (see Patent Document 7).

この特許文献7によれば、たとえ良好な飽和磁化と保磁力を有する磁石粉末が得られても、減磁曲線の角形性が悪く、また、高い磁気特性を再現性よく得ることが困難であった。さらに、窒素を導入する前の希土類−鉄−マンガン母合金粉末は、溶解法で製造されており、特に希土類元素がSmの場合には原料となる金属Smが高価であるため、コスト的にも問題があった。
また、希土類−鉄−マンガン系磁石では、母合金粉末を篩分級などにより粒度調整した後、さらに窒素を導入して得られた希土類−鉄−マンガン−窒素系磁石粉末に対しても粒度調整を行って初めて、高い保磁力が得られるため、製品収率が低いという点でも工業製品としてコスト的に問題があった。
According to Patent Document 7, even if a magnet powder having good saturation magnetization and coercive force is obtained, the squareness of the demagnetization curve is poor, and it is difficult to obtain high magnetic characteristics with good reproducibility. It was. Furthermore, the rare earth-iron-manganese mother alloy powder before introducing nitrogen is manufactured by a melting method, and particularly when the rare earth element is Sm, the metal Sm as a raw material is expensive, so that the cost is also low. There was a problem.
In addition, for rare earth-iron-manganese magnets, the particle size is adjusted for the rare earth-iron-manganese-nitrogen based magnet powder obtained by adjusting the particle size of the master alloy powder by sieving, etc., and then introducing nitrogen. For the first time, a high coercive force can be obtained, so that there is a problem in terms of cost as an industrial product in that the product yield is low.

前記特許文献6には、母合金の調製方法として還元拡散法(R/D法)も可能である旨が記載されている。還元拡散法による母合金は、溶解法に比べて安価に製造できる特長があるが、従来提案されていた希土類−鉄−母合金粉末を窒素ガス又はアンモニアで窒化する方法(特許文献8〜10参照)では、特許文献6に開示された情報によっても良好な性能、特に高い角形性の磁石粉末を再現よく、良好な収率で得ることが難しかった。
このような状況下、高い角形性の磁石粉末を再現よく、低コストかつ良好な収率で得ることができる方法の出現が切望されていた。
Patent Document 6 describes that a reduction diffusion method (R / D method) is also possible as a method for preparing a mother alloy. Although the mother alloy by the reduction diffusion method has a feature that it can be manufactured at a lower cost than the melting method, a conventionally proposed method of nitriding rare earth-iron-mother alloy powder with nitrogen gas or ammonia (see Patent Documents 8 to 10). ), It was difficult to obtain a magnet powder having good performance, particularly high squareness, with good reproducibility and good yield even by the information disclosed in Patent Document 6.
Under such circumstances, the advent of a method capable of reproducibly producing a highly square magnet powder with good reproducibility, low cost and good yield has been eagerly desired.

特開平03−160705号公報Japanese Patent Laid-Open No. 03-160705 特開2002−270419号公報JP 2002-270419 A 特開平09−190909号公報JP 09-190909 A 特開2000−058312号公報JP 2000-05831 A 特開2002−008911号公報JP 2002-008911 A 特開平08−55712号公報JP 08-55712 A 特開平11−135311号公報JP-A-11-135311 特開平05−148517号公報JP 05-148517 A 特開平05−279714号公報JP 05-279714 A 特開平06−212342号公報Japanese Patent Laid-Open No. 06-212342 K.Majima;J.Appl.Phys.81(1997)p.4530−4532K. Majima; Appl. Phys. 81 (1997) p. 4530-4532

本発明の目的は、このような状況に鑑み、Feリッチ相が大幅に低減し、良好な保磁力と優れた角形性を有し、還元拡散法で安価に製造しうる希土類−鉄−マンガン−窒素系磁石粉末を提供することにある。   In view of such a situation, the object of the present invention is to provide a rare earth-iron-manganese--a Fe-rich phase that is greatly reduced, has a good coercive force and excellent squareness, and can be manufactured at low cost by the reduction diffusion method. It is to provide a nitrogen-based magnet powder.

本発明者らは、かかる従来の課題を解決するために、希土類−鉄−マンガン−窒素系磁石粉末の高性能化について鋭意検討し、磁石原料粉末を還元拡散して冷却後に反応生成物を取り出し、湿式処理して得た希土類−鉄−マンガン系母合金粉末を窒化し、得られた希土類−鉄−マンガン−窒素系磁石粉末の組織を透過型電子顕微鏡で観察した結果、ThZn17型結晶構造を有する相とアモルファス相に加えて、粉末X線回折結果に対応すると思われるFeリッチな相が顕著に認められ、このFeリッチ相の影響で、減磁曲線の角形性が悪くなるか、また良好な飽和磁化と保磁力が得られても、高い磁気特性を再現性よく得られないことを究明し、還元拡散反応後の反応生成物を、引き続き不活性ガス雰囲気下で特定の温度以下に冷却後、湿式処理する前に窒化熱処理することで、Feリッチな相が実質的に存在せず、高い保磁力を有し減磁曲線の角形性が良好である磁石粉末が得られることを見出し、本発明を完成するに至った。 In order to solve such conventional problems, the present inventors diligently studied to improve the performance of rare earth-iron-manganese-nitrogen based magnet powder, and reduced and diffused the magnet raw material powder to take out the reaction product after cooling. As a result of nitriding rare earth-iron-manganese master alloy powder obtained by wet treatment and observing the structure of the obtained rare earth-iron-manganese-nitrogen based magnet powder with a transmission electron microscope, Th 2 Zn 17 type In addition to the phase having a crystal structure and the amorphous phase, a Fe-rich phase that seems to correspond to the powder X-ray diffraction results is remarkably observed, and is the squareness of the demagnetization curve worsened by this Fe-rich phase? Moreover, even if good saturation magnetization and coercive force were obtained, it was determined that high magnetic properties could not be obtained with good reproducibility, and the reaction product after the reduction-diffusion reaction was continued at a specific temperature under an inert gas atmosphere. After cooling to By performing nitriding heat treatment before wet processing, it has been found that a magnetic powder having substantially no Fe-rich phase, high coercive force, and good demagnetization curve squareness can be obtained. It came to complete.

すなわち、本発明の第1の発明によれば、希土類元素と、Mnと、Nと、残部が実質的にFeまたはFeおよびCoからなり、希土類元素が22〜27重量%、Mnが7重量%以下、Nが3.5〜6.0重量%である希土類−鉄−マンガン−窒素系磁石粉末であって、粒径が10〜70μmの粉末が全体の80%以上を占める鉄粉末、粒径が0.1〜10μmの粉末が全体の80%以上を占めるマンガン粉末および/またはマンガン酸化物粉末、希土類酸化物粉末、コバルト粉末および/またはコバルト酸化物粉末からなる原料粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合する工程、得られた混合物を不活性ガス雰囲気中で900〜1200°Cに加熱する工程、引き続き、得られた反応生成物を不活性ガス雰囲気中で300°C以下に冷却する工程、その後、雰囲気ガスを変えて、少なくともアンモニアと水素とを含有する混合気流中で昇温し、350〜500°Cで反応生成物を窒化熱処理する工程、および得られた窒化熱処理物を水中に投入して湿式処理する工程を順次行って製造され、ThZn17型結晶構造を有する相とアモルファス相とを含有するとともに、それ以外に共存するFeリッチ相は、下記の式で表される粉末X回折における回折線の強度比(X)が10%以下になるまで低減していることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末が提供される。
X=I(Fe)/Im
[式中、I(Fe)は、2θが44〜45°(Cu−Kα)に現れる回折線の強度であり、ImはThZn17型結晶構造の回折線の中で最大の強度を表す]
That is, according to the first aspect of the present invention, the rare earth element, Mn, N, and the balance are substantially made of Fe or Fe and Co, the rare earth element being 22 to 27 wt%, and Mn being 7 wt%. Hereinafter, a rare earth-iron-manganese-nitrogen based magnet powder in which N is 3.5 to 6.0% by weight , wherein the powder having a particle size of 10 to 70 μm accounts for 80% or more of the whole, a particle size Raw material powder composed of manganese powder and / or manganese oxide powder, rare earth oxide powder, cobalt powder and / or cobalt oxide powder, in which 0.1 to 10 μm of powder occupies 80% or more of the total, alkali metal, alkali A step of mixing a predetermined ratio of at least one reducing agent powder selected from an earth metal or a hydride thereof, and a step of heating the resulting mixture to 900 to 1200 ° C. in an inert gas atmosphere. Subsequently, a step of cooling the obtained reaction product to 300 ° C. or lower in an inert gas atmosphere, and then raising the temperature in a mixed air stream containing at least ammonia and hydrogen by changing the atmospheric gas, A phase having a Th 2 Zn 17 type crystal structure and an amorphous state are manufactured by sequentially performing a step of nitriding heat treatment of a reaction product at ˜500 ° C. and a step of wet-treating the obtained nitriding heat-treated product into water. The Fe-rich phase that contains the other phase and coexists with the other is characterized in that the intensity ratio (X) of diffraction lines in powder X diffraction represented by the following formula is reduced to 10% or less. A rare earth-iron-manganese-nitrogen based magnet powder is provided.
X = I (Fe) / Im
[Wherein, I (Fe) is the intensity of the diffraction line where 2θ appears at 44 to 45 ° (Cu-Kα), and Im represents the maximum intensity among the diffraction lines of the Th 2 Zn 17 type crystal structure. ]

また、本発明の第2の発明によれば、第1の発明において、回折線の強度比(X)が5%以下であることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末が提供される。   According to a second aspect of the present invention, there is provided a rare earth-iron-manganese-nitrogen based magnet powder characterized in that, in the first aspect, the intensity ratio (X) of diffraction lines is 5% or less. Is done.

また、本発明の第3の発明によれば、第1の発明において、各成分元素の含有量は、希土類元素が23〜26重量%、Mnが2〜5重量%、Nが4.0〜5.5重量%であることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末が提供される。 According to the third invention of the present invention, in the first invention, the content of each component element is 23 to 26 % by weight of rare earth elements, 2 to 5 % by weight of Mn, and 4.0 to 4.0 % of N. A rare earth-iron-manganese-nitrogen based magnet powder characterized by being 5.5 % by weight is provided.

さらに、本発明の第4の発明によれば、第3の発明において、Nの含有量が、4.0〜5.0重量%であることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末が提供される。 Furthermore, according to the fourth aspect of the present invention, in the third invention, the rare earth content of N, characterized in that a 4.0 to 5.0% by weight - iron - manganese - nitrogen based magnet A powder is provided.

また、本発明の第5の発明によれば、第1の発明において、混合気流中のアンモニア分圧が0.4〜1.0であることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末が提供される。   According to a fifth aspect of the present invention, the rare earth-iron-manganese-nitrogen based magnet according to the first aspect is characterized in that the ammonia partial pressure in the mixed gas stream is 0.4 to 1.0. A powder is provided.

さらに、本発明の第6の発明によれば、第1の発明において、窒化熱処理に要する時間が200〜600分であることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末が提供される。   Furthermore, according to the sixth aspect of the present invention, there is provided the rare earth-iron-manganese-nitrogen based magnet powder characterized in that the time required for the nitriding heat treatment is 200 to 600 minutes in the first aspect. .

本発明の希土類−鉄−マンガン−窒素系磁石粉末は、粉末X線回折によってFeリッチ相が大幅に低減していることが確認され、窒素を十分な量含んでいるため、高い保磁力を有し、減磁曲線の角形性が良好で優れた磁気特性を有する。この磁石粉末の製造方法は、還元拡散後の反応生成物である希土類−鉄−マンガン系母合金を、不活性ガス雰囲気下で一旦特定の温度まで冷却後、雰囲気ガスを切り替えて昇温し特定条件で窒化することを特徴としており、容易かつ低コストで製造できる利点がある。   The rare earth-iron-manganese-nitrogen based magnet powder of the present invention is confirmed to have a significantly reduced Fe-rich phase by powder X-ray diffraction, and has a sufficient coercive force because it contains a sufficient amount of nitrogen. In addition, the squareness of the demagnetization curve is good and the magnetic properties are excellent. This magnet powder is produced by cooling a rare earth-iron-manganese master alloy, which is a reaction product after reduction diffusion, to a specific temperature in an inert gas atmosphere, and then switching the atmosphere gas to raise the temperature. It is characterized by nitriding under conditions, and has the advantage that it can be manufactured easily and at low cost.

以下、本発明の希土類−鉄−マンガン−窒素系磁石粉末についてさらに詳しく説明する。   Hereinafter, the rare earth-iron-manganese-nitrogen based magnet powder of the present invention will be described in more detail.

1.希土類−鉄−マンガン−窒素系磁石粉末
本発明の希土類−鉄−マンガン−窒素系磁石粉末は、希土類元素と、Mnと、Nと、残部が実質的にFeまたはFeおよびCoからなり、希土類元素が22〜27重量%、Mnが7重量%以下、Nが3.5〜6.0重量%であり、還元拡散による特定の製造方法で得られ、しかもThZn17型結晶構造を有する相とアモルファス相とを含有する希土類−鉄−マンガン−窒素系磁石粉末であって、Feリッチ相が大幅に減少した希土類−鉄−マンガン−窒素系磁石粉末である。
1. Rare earth - iron - manganese - nitrogen based magnetic powder rare earth present invention - Iron - Manganese - nitrogen based magnetic powder, a rare earth element, and Mn, and N, the balance being substantially Fe or Fe and Co, rare earth elements 22 to 27% by weight, Mn 7% by weight or less, N 3.5 to 6.0% by weight , obtained by a specific production method by reduction diffusion, and having a Th 2 Zn 17 type crystal structure Rare earth-iron-manganese-nitrogen-based magnet powder containing an amorphous phase and a rare earth-iron-manganese-nitrogen-based magnet powder with a significantly reduced Fe-rich phase.

この希土類−鉄−マンガン−窒素系磁石粉末の組成は、22〜27重量%の希土類元素と、7重量%以下のMnと、3.5〜6.0重量%のNと、残部が実質的にFeまたはFeおよびCoである。特に好ましいのは、23〜26重量%の希土類元素と、2〜5重量%以下のMnと、4.0〜5.0重量%のNと、残部が実質的にFeまたはFeおよびCoである磁石粉末である。 The composition of this rare earth-iron-manganese-nitrogen based magnet powder is 22-27 wt% rare earth element, 7 wt% or less Mn, 3.5-6.0 wt% N, and the balance is substantially it is Fe or Fe and Co in. Particularly preferred is 23 to 26% by weight of rare earth elements, 2 to 5% by weight or less of Mn, 4.0 to 5.0% by weight of N, and the balance being substantially Fe or Fe and Co. Magnet powder.

希土類元素としては、Smを希土類全体の60重量%以上、好ましくは90重量%以上にするのが、高い保磁力を得るために必要である。希土類元素が22重量%未満であると、磁石粉末に未拡散の鉄(−コバルト)−マンガン相が残留するので、磁化と保磁力と角形性が低下する。また、希土類元素が27重量%を超えると、ThZn17型のSm(Fe、Mn)17化合物結晶相よりも希土類リッチの窒化物相が形成され、磁石粉末の磁化と角形性が低下する。 As the rare earth element, Sm should be 60% by weight or more, preferably 90% by weight or more of the whole rare earth, in order to obtain a high coercive force. If the rare earth element is less than 22% by weight, the undiffused iron (-cobalt) -manganese phase remains in the magnet powder, and magnetization, coercive force, and squareness are reduced. If the rare earth element exceeds 27% by weight, a nitride phase richer in the rare earth than the Th 2 Zn 17 type Sm 2 (Fe, Mn) 17 N 3 compound crystal phase is formed, and the magnetization and squareness of the magnet powder are formed. Decreases.

Mnは、保磁力を発現させるための必須元素であるが、7重量%を超えると磁石粉末の磁化が低下する。より好ましいMn量は2〜5重量%である。   Mn is an essential element for developing the coercive force, but when it exceeds 7% by weight, the magnetization of the magnet powder decreases. A more preferable amount of Mn is 2 to 5% by weight.

N量は、3.5重量%未満では、微粉砕して保磁力を発現するタイプの合金になってしまい、角形性が不十分となるので、3.5重量%以上でなければならない。ただし、6.0重量%を超えると、磁石粉末中のアモルファス相が増加するとともに、ThZn17型結晶構造を持つSm(Fe、Mn)17化合物結晶相主相をアモルファス相が取り囲む形をとった個々のセル構造において、ThZn17型結晶構造を持つSm(Fe、Mn)17化合物結晶相のc軸が揃わなくなってくるため、磁化が低下する。より好ましいN量は、4.0〜5.0重量%である。 If the amount of N is less than 3.5% by weight, it becomes a type of alloy that finely pulverizes and develops coercive force, resulting in insufficient squareness, so it must be 3.5% by weight or more. However, if it exceeds 6.0% by weight, the amorphous phase in the magnet powder increases and the amorphous phase becomes the main phase of the Sm 2 (Fe, Mn) 17 N 3 compound crystal phase having a Th 2 Zn 17 type crystal structure. In the individual cell structure having an enclosing shape, the c-axis of the Sm 2 (Fe, Mn) 17 N 3 compound crystal phase having a Th 2 Zn 17 type crystal structure is not aligned, so that the magnetization is lowered. A more preferable N amount is 4.0 to 5.0% by weight.

残部はFeであるが、その一部をCoで置換することができる。Feの20重量%以下をCoで置換するとキュリー温度が上昇し、磁化や磁化の温度係数を改善できる。   The balance is Fe, but part of it can be replaced with Co. When 20% by weight or less of Fe is replaced with Co, the Curie temperature rises, and magnetization and the temperature coefficient of magnetization can be improved.

本発明の希土類−鉄−マンガン−窒素系磁石粉末の組織を透過型電子顕微鏡で観察すると、ThZn17型結晶構造を有する相とアモルファス相のみからなり、Feリッチ相が大幅に低減されている。すなわち、Feリッチな相は、例えば図2において、楕円状の囲みで示した中の、幅が数10〜200nmの細長い部分に相当し、粉末X線回折による2θが44〜45°(Cu−Kα)の位置にブロードな回折線が現れることで確認されるが、本発明の磁石粉末では、この回折線の強度が極端に小さい。軟磁性を有するFeリッチ相が極めて少ないので、磁石粉末の磁気特性を低下させるおそれはない。 When the structure of the rare earth-iron-manganese-nitrogen based magnet powder of the present invention is observed with a transmission electron microscope, it consists only of a phase having a Th 2 Zn 17 type crystal structure and an amorphous phase, and the Fe rich phase is greatly reduced. Yes. That is, the Fe-rich phase corresponds to, for example, an elongated portion having a width of several tens to 200 nm, which is shown by an elliptical enclosure in FIG. 2, and 2θ by powder X-ray diffraction is 44 to 45 ° (Cu— Although it is confirmed by the appearance of a broad diffraction line at the position of Kα), the intensity of the diffraction line is extremely small in the magnet powder of the present invention. Since the Fe-rich phase having soft magnetism is extremely small, there is no possibility of deteriorating the magnetic properties of the magnet powder.

特に、本発明の希土類−鉄−マンガン−窒素系磁石粉末では、次式で示される粉末X線回折における回折線の強度比(X)が10%以下、好ましくは5%以下のものである。
X=I(Fe)/Im
[式中、I(Fe)は、2θが44〜45°(Cu−Kα)に現れる回折線の強度であり、ImはThZn17型結晶構造の回折線の中で最大の強度を表す]
なお、本発明において、最大の強度を有するThZn17型結晶構造の回折線は、通常(303)の面指数に対応するものである。
In particular, in the rare earth-iron-manganese-nitrogen based magnet powder of the present invention, the intensity ratio (X) of diffraction lines in powder X-ray diffraction represented by the following formula is 10% or less, preferably 5% or less.
X = I (Fe) / Im
[Wherein, I (Fe) is the intensity of the diffraction line where 2θ appears at 44 to 45 ° (Cu-Kα), and Im represents the maximum intensity among the diffraction lines of the Th 2 Zn 17 type crystal structure. ]
In the present invention, the diffraction line of the Th 2 Zn 17- type crystal structure having the maximum intensity usually corresponds to the plane index of (303).

この回折線の強度比(X)が10%以下である磁石粉末は、高い保磁力と良好な減磁曲線の角形性を有する。このXの値が10%を超えたものは、内部にFeリッチ相が実質的に存在することを意味しており、磁石粉末の磁気特性が低下するので好ましくない。   The magnet powder having an intensity ratio (X) of diffraction lines of 10% or less has a high coercive force and a good demagnetization curve squareness. When the value of X exceeds 10%, it means that an Fe-rich phase is substantially present inside, and the magnetic properties of the magnet powder are deteriorated, which is not preferable.

2.希土類−鉄−マンガン−窒素系磁石粉末の製造方法
本発明の希土類−鉄−マンガン−窒素系磁石粉末の製造方法は、(1)磁石原料粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合し、(2)得られた混合物を不活性ガス雰囲気中で900〜1200°Cに加熱して、磁石原料の酸化物粉末を金属に還元して合金化し、(3)引き続き、得られた反応生成物を不活性ガス雰囲気中で300°C以下に冷却し、(4)次に、雰囲気ガスを変えて、少なくともアンモニアと水素とを含有する混合気流中で昇温し、350〜500°Cで窒化熱処理し、(5)得られた窒化熱処理物を水中に投入して湿式処理することにより製造される。
2. Method for producing rare earth-iron-manganese-nitrogen based magnet powder The method for producing the rare earth-iron-manganese-nitrogen based magnet powder of the present invention includes (1) magnet raw material powder, alkali metal, alkaline earth metal or hydrogen thereof. At least one reducing agent powder selected from the chemicals is mixed at a predetermined ratio, and (2) the resulting mixture is heated to 900 to 1200 ° C. in an inert gas atmosphere to obtain an oxide powder of a magnet raw material (3) Subsequently, the obtained reaction product is cooled to 300 ° C. or lower in an inert gas atmosphere. (4) Next, the atmosphere gas is changed to at least ammonia. The temperature is raised in a mixed gas stream containing hydrogen, and a nitriding heat treatment is performed at 350 to 500 ° C. (5) The obtained nitriding heat treatment product is put into water and wet-treated.

(1)磁石原料粉末の混合
本発明においては、希土類−鉄−マンガン系母合金粉末を還元拡散法で製造するために、磁石原料粉末として希土類酸化物粉末、鉄粉末、マンガン粉末および/またはマンガン酸化物粉末を用いる。
(1) Mixing of magnet raw material powder In the present invention, a rare earth oxide powder, iron powder, manganese powder and / or manganese is used as a magnet raw material powder in order to produce rare earth-iron-manganese master alloy powder by the reduction diffusion method. Use oxide powder.

希土類酸化物粉末としては、特に制限されないが、Sm、Ge、Tb、およびCeから選ばれる少なくとも1種の元素、あるいは、さらにPr、Nd、Dy、Ho、Er、Tm、およびYbから選ばれる少なくとも1種の元素が含まれるものが好ましい。中でもSmが含まれるものは、本発明の効果を顕著に発揮させることが可能となるので特に好ましい。Smが含まれる場合、高い保磁力を得るためにはSmを希土類全体の60重量%以上、好ましくは90重量%以上にすることが高い保磁力を得るために好ましい。   The rare earth oxide powder is not particularly limited, but at least one element selected from Sm, Ge, Tb, and Ce, or at least selected from Pr, Nd, Dy, Ho, Er, Tm, and Yb. Those containing one element are preferred. Among these, those containing Sm are particularly preferable because the effects of the present invention can be remarkably exhibited. When Sm is contained, in order to obtain a high coercive force, it is preferable to obtain Sm of 60% by weight or more, preferably 90% by weight or more of the entire rare earth, in order to obtain a high coercive force.

鉄粉末としては、例えば還元鉄粉、ガスアトマイズ粉、水アトマイズ粉、電解鉄粉などが使用でき、必要に応じて最適な粒度になるように分級する。
ここで鉄粉末の30重量%までを鉄酸化物粉末として投入し、還元拡散反応の発熱量を調整することもできる。また、マンガン量の全部または一部を鉄−マンガン合金粉末の形で投入することもできる。
さらに、Feの20重量%以下をCoで置換した組成の希土類−鉄−コバルト−マンガン−窒素系磁石粉末を製造する場合には、Co源としてコバルト粉末および/またはコバルト酸化物粉末および/または鉄−コバルト−マンガン合金粉末を用いる。
As the iron powder, for example, reduced iron powder, gas atomized powder, water atomized powder, electrolytic iron powder, and the like can be used, and classification is performed so as to obtain an optimum particle size as necessary.
Here, up to 30% by weight of the iron powder can be added as iron oxide powder to adjust the calorific value of the reduction diffusion reaction. It is also possible to add all or part of the manganese amount in the form of iron-manganese alloy powder.
Furthermore, in the case of producing a rare earth-iron-cobalt-manganese-nitrogen based magnet powder having a composition in which 20% by weight or less of Fe is substituted with Co, cobalt powder and / or cobalt oxide powder and / or iron are used as a Co source. -Cobalt-manganese alloy powder is used.

なお、マンガンとコバルト源としては、得られる希土類−鉄(−コバルト)−マンガン母合金粉末中のMn組成の、粒子間ばらつきを小さくするために、酸化物粉末を使用するのが好ましく、また取り扱い時の発火に対する安全性からも酸化物が好ましい。   As the manganese and cobalt source, it is preferable to use an oxide powder in order to reduce the interparticle variation in the Mn composition in the obtained rare earth-iron (-cobalt) -manganese master alloy powder. Oxides are preferable from the viewpoint of safety against ignition.

マンガン酸化物としては、たとえば酸化マンガンや二酸化マンガン、これらの混合物で、上記粒度を持つものが使用できる。また、コバルト酸化物としては、たとえば酸化第一コバルトや四三酸化コバルト、これらの混合物で、上記粒度を持つものが使用できる。   As the manganese oxide, for example, manganese oxide, manganese dioxide, or a mixture thereof having the above particle size can be used. Moreover, as cobalt oxide, what has the said particle size by the cobalt oxide, tetroxide trioxide, and these mixtures, for example can be used.

ここで、各磁石原料粉末は、粒径が10〜70μmの粉末が全体の80%以上を占める鉄粉末、粒径が0.1〜10μmの粉末が全体の80%以上を占めるマンガン粉末および/またはマンガン酸化物粉末、希土類酸化物粉末、コバルト粉末および/またはコバルト酸化物粉末とするHere, each magnetic raw material powder is composed of iron powder in which powder having a particle size of 10 to 70 μm accounts for 80% or more of the powder, manganese powder in which powder having a particle size of 0.1 to 10 μm accounts for 80% or more of the total, and / or Alternatively, manganese oxide powder, rare earth oxide powder, cobalt powder and / or cobalt oxide powder are used .

鉄粉末は、粒径10μm未満の粒子が多くなると、希土類−鉄(−コバルト)−マンガン母合金粉末粒子が多結晶体となり、得られた希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末の磁化が低下しやすい。一方、粒径70μmを超えるものが多くなると、希土類−鉄(−コバルト)−マンガン母合金粉末中に希土類元素が拡散していない鉄部または鉄−マンガン部が多くなるとともに母合金粉末の粒径も大きくなり、窒素分布が不均一になって、得られた希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末の角形性が低下しやすい。   When the iron powder has a particle size of less than 10 μm, the rare earth-iron (-cobalt) -manganese mother alloy powder particles become a polycrystal, and the obtained rare earth-iron (-cobalt) -manganese-nitrogen magnet powder The magnetization of is easy to decrease. On the other hand, when the number of particles exceeding 70 μm increases, the rare earth-iron (-cobalt) -manganese master alloy powder has more iron parts or iron-manganese parts in which rare earth elements are not diffused and the grain size of the mother alloy powder is increased. And the nitrogen distribution becomes non-uniform, and the squareness of the obtained rare earth-iron (-cobalt) -manganese-nitrogen based magnet powder tends to deteriorate.

これに対し、他の原料であるマンガン酸化物粉末、希土類酸化物粉末、コバルト酸化物粉末は、これらの中でもっとも多い希土類酸化物粉末でも組成が30重量%未満であることから、還元拡散反応時に、反応容器内部で上記鉄粉末の周りに均一に分布存在していることが望ましい。したがって、粒径が0.1〜10μmの粉末が全体の80%以上を占めるものであるとよい。粒径が0.1μm未満の粉末が多くなると、製造中に粉末が舞い上がり取り扱いにくくなる。また、10μmを超えるものが多くなると、還元拡散法で得られた希土類−鉄(−コバルト)−マンガン母合金粉末中のMn組成が粒子間でばらつきやすくなり、希土類元素が拡散していない鉄部または鉄(−コバルト)−マンガン部が多くなる。   On the other hand, manganese oxide powder, rare earth oxide powder, and cobalt oxide powder, which are other raw materials, are composed of less than 30% by weight even of the most rare earth oxide powders among them. Sometimes, it is desirable that a uniform distribution exists around the iron powder inside the reaction vessel. Therefore, it is preferable that the powder having a particle size of 0.1 to 10 μm occupies 80% or more of the whole. When the powder having a particle size of less than 0.1 μm increases, the powder rises during manufacture and becomes difficult to handle. Further, when the number of particles exceeding 10 μm increases, the Mn composition in the rare earth-iron (-cobalt) -manganese master alloy powder obtained by the reduction diffusion method tends to vary among particles, and the iron part where the rare earth element is not diffused. Or the iron (-cobalt) -manganese part increases.

ここで、鉄(−コバルト)−マンガン合金粉末については、粒径が10〜80μmの粉末が全体の80%以上を占めること、希土類酸化物粉末については、粒径が0.1〜10μmの粉末が全体の80%以上を占めるものが好ましい。粒径10μm未満のものが多くなると、希土類−鉄(−コバルト)−マンガン母合金粒子が多結晶体となり、得られた希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末の磁化が低下する。一方、粒径80μmを超える粒子が多くなると、希土類−鉄(−コバルト)−マンガン母合金中に希土類元素が拡散していない鉄部または鉄(−コバルト)−マンガン部が多くなるとともに、母合金粉末の粒径も大きくなり窒素分布が不均一になって、得られた希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末の角形性が低下しやすい。   Here, for iron (-cobalt) -manganese alloy powder, powder having a particle size of 10 to 80 μm accounts for 80% or more of the whole, and for rare earth oxide powder, powder having a particle size of 0.1 to 10 μm. Occupy 80% or more of the total. When the particle size is less than 10 μm, rare earth-iron (-cobalt) -manganese master alloy particles become polycrystalline, and the magnetization of the obtained rare earth-iron (-cobalt) -manganese-nitrogen based magnet powder decreases. . On the other hand, when the number of particles exceeding 80 μm increases, the iron part or iron (-cobalt) -manganese part in which the rare earth element is not diffused increases in the rare earth-iron (-cobalt) -manganese master alloy, and the master alloy The particle size of the powder becomes large and the nitrogen distribution becomes non-uniform, so that the squareness of the obtained rare earth-iron (-cobalt) -manganese-nitrogen based magnet powder tends to deteriorate.

(2)還元拡散
本発明においては、次に上記の磁石原料粉末を不活性ガス雰囲気中、所定の温度で熱処理し、還元拡散法でThZn17型結晶構造を有する希土類−鉄−マンガン系母合金粉末を製造する。
(2) Reduction diffusion In the present invention, the above-mentioned magnet raw material powder is then heat-treated at a predetermined temperature in an inert gas atmosphere, and a rare earth-iron-manganese system having a Th 2 Zn 17 type crystal structure by a reduction diffusion method. Produces mother alloy powder.

還元拡散法は、例えば特開昭61−295308号公報に記載されているように、希土類酸化物粉末と、他の金属の粉末と、Caなどの還元剤との混合物を、不活性ガス雰囲気中などで加熱した後、反応生成物を湿式処理して副生したCaOおよび残留Caなどの還元剤成分を除去することによって、直接合金粉末を得る方法である。   For example, as described in JP-A-61-295308, the reduction diffusion method is performed by mixing a mixture of a rare earth oxide powder, another metal powder, and a reducing agent such as Ca in an inert gas atmosphere. In this method, the reaction product is wet-treated and the reducing agent components such as CaO and residual Ca are removed by wet treatment to directly obtain alloy powder.

本発明では、鉄、マンガン、必要に応じてコバルトからなる磁石原料粉末と還元剤とを反応容器に投入し、加熱処理することによって、希土類酸化物と他の酸化物原料とを還元するとともに、還元された希土類元素等の金属元素を鉄粉末に拡散させてThZn17型結晶構造を有する希土類−鉄(−コバルト)−マンガン母合金粉末を生成させる。 In the present invention, magnet raw material powder made of iron, manganese, and cobalt as required, and a reducing agent are charged into a reaction vessel, and heat treatment is performed to reduce the rare earth oxide and other oxide raw materials, A metal element such as a reduced rare earth element is diffused into the iron powder to produce a rare earth-iron (-cobalt) -manganese master alloy powder having a Th 2 Zn 17 type crystal structure.

ここで各原料粉末は、それぞれの粉体特性差によって分離しないように均一に混合することが重要である。混合方法としては、たとえばリボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、ハイスピードミキサー、ボールミル、振動ミル、アトライター、ジェットミルなどが使用できる。   Here, it is important that the raw material powders are uniformly mixed so as not to be separated due to a difference in powder characteristics. As a mixing method, for example, a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, a Nauter mixer, a Henschel mixer, a super mixer, a high speed mixer, a ball mill, a vibration mill, an attritor, a jet mill and the like can be used.

還元剤としては、アルカリ金属、アルカリ土類金属およびこれらの水素化物などが使用でき、取り扱いの安全性とコストの点で、目開き4.00mm以下に篩い分級した粒状金属カルシウムが好ましい。還元剤は上記原料粉末と混合するか、カルシウム蒸気が原料粉末と接触しうるよう分離しておくが、混合して還元拡散させれば、反応生成物が多孔質となり、引き続き行われる窒化処理を効率的に行うことができる。   As the reducing agent, alkali metals, alkaline earth metals, hydrides thereof, and the like can be used. From the viewpoint of safety in handling and cost, granular metallic calcium sieved to a mesh size of 4.00 mm or less is preferable. The reducing agent is mixed with the raw material powder or separated so that calcium vapor can come into contact with the raw material powder, but if mixed and reduced and diffused, the reaction product becomes porous, and the subsequent nitriding treatment is performed. Can be done efficiently.

磁石原料粉末や還元剤とともに、後の湿式処理工程において反応生成物の崩壊を促進させる添加剤を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属塩や酸化カルシウムなどを用いることができ、磁石原料粉末などと同時に均一に混合する。   It is also effective to mix an additive that promotes the decay of the reaction product in the subsequent wet processing step together with the magnet raw material powder and the reducing agent. As the disintegration accelerator, alkaline earth metal salts such as calcium chloride, calcium oxide, and the like can be used, and they are uniformly mixed simultaneously with the magnet raw material powder and the like.

熱処理温度は、900〜1200°Cの範囲とすることが望ましい。900°C未満では鉄粉末に対して、マンガン、希土類元素、コバルトの拡散が不均一となり、得られる希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末の保磁力や角形性が低下する。一方、1200°Cを超えると、生成する希土類−鉄(−コバルト)−マンガン母合金粉末が粒成長を起こすとともに互いに焼結するため、均一に窒化することが困難になり磁石粉末の残留磁束密度と角形性が低下する。   The heat treatment temperature is desirably in the range of 900 to 1200 ° C. When the temperature is lower than 900 ° C., the diffusion of manganese, rare earth elements and cobalt becomes non-uniform with respect to the iron powder, and the coercive force and squareness of the rare earth-iron (-cobalt) -manganese-nitrogen based magnet powder are reduced. On the other hand, when the temperature exceeds 1200 ° C., the rare earth-iron (-cobalt) -manganese master alloy powder produced undergoes grain growth and sinters with each other. And the squareness decreases.

還元拡散反応で得られる生成物は、例えば、還元剤として金属カルシウムを用いた場合には、ThZn17型結晶構造を有する希土類−鉄(−コバルト)−マンガン母合金粉末と酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物である。さらに粒状金属カルシウムを原料粉末に混合して還元拡散反応させた場合には、多孔質の塊状混合物となっている。 For example, when metallic calcium is used as the reducing agent, the product obtained by the reduction-diffusion reaction includes rare earth-iron (-cobalt) -manganese master alloy powder having a Th 2 Zn 17 type crystal structure and calcium oxide, It is a massive mixture composed of excess metal calcium in the reaction. Furthermore, when granular metal calcium is mixed with the raw material powder and subjected to a reduction diffusion reaction, a porous massive mixture is obtained.

これに対して、前記特許文献6などで採用されている溶解法は、希土類原料として希土類金属が用いられ、これは還元拡散法で用いられる希土類酸化物原料に比べて高価である。特に、希土類元素が、優れた磁気特性をもたらすSmの場合にその差は顕著である。また上記粒度調整で発生する不要な粉末は、製品収率を低下させ、粉末コストをさらに引き上げてしまう。また溶解法では、得られた合金中のαFe相などをなくすための均質化熱処理工程が必要になり、さらに窒素を導入する前に均質化熱処理した合金を粗粉砕する工程と、粗粉砕粉末を粒度調整する工程が必要になるので好ましくない。   On the other hand, the melting method employed in Patent Document 6 and the like uses a rare earth metal as the rare earth material, which is more expensive than the rare earth oxide material used in the reduction diffusion method. In particular, the difference is remarkable when the rare earth element is Sm that provides excellent magnetic properties. Moreover, the unnecessary powder generated by the particle size adjustment reduces the product yield and further increases the powder cost. Further, the melting method requires a homogenization heat treatment step for eliminating the αFe phase in the obtained alloy, and further, a step of coarsely pulverizing the homogenized heat treatment alloy before introducing nitrogen, and a coarsely pulverized powder. This is not preferable because a step of adjusting the particle size is required.

(3)反応生成物の冷却
本発明では、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま変えずに、引き続き300°C以下、好ましくは250°C以下に冷却する。
(3) Cooling of reaction product In the present invention, the reaction product after the reduction-diffusion reaction is continuously kept at 300 ° C or lower, preferably 250 ° C or lower, without changing the atmospheric gas as an inert gas. Cooling.

冷却後の温度、すなわち、少なくともアンモニアと水素とを含有する窒化ガス(混合気流)を導入する温度が300°Cを超えると、反応生成物との窒化反応が急激に進んでしまい、Feリッチ相を増加させることがあるので、300°C以下とするのが望ましい。これは、300°Cを超える温度では、活性な反応生成物が急激に窒化されるためにThZn17型結晶構造を有する金属間化合物がFeリッチ相とSmNとに分解されるためであると推測される。 If the temperature after cooling, that is, the temperature at which a nitriding gas (mixed gas stream) containing at least ammonia and hydrogen is introduced exceeds 300 ° C., the nitriding reaction with the reaction product proceeds rapidly, and the Fe rich phase May be increased, it is desirable that the temperature be 300 ° C. or lower. This is because, at temperatures exceeding 300 ° C., active reaction products are rapidly nitrided, so that the intermetallic compound having a Th 2 Zn 17 type crystal structure is decomposed into an Fe-rich phase and SmN. It is guessed.

冷却後に、多孔質の塊状混合物(反応生成物)を湿式処理しないで次の窒化工程に移る。このとき反応生成物が大気中に曝されると、反応生成物中の活性な希土類−鉄(−コバルト)−マンガン母合金粉末が酸化されて失活し、窒化の度合いをばらつかせるので、大気(酸素)に曝されることのないように窒化工程に持ち込むことが望ましい。   After cooling, the porous massive mixture (reaction product) is transferred to the next nitriding step without wet treatment. When the reaction product is exposed to the atmosphere at this time, the active rare earth-iron (-cobalt) -manganese master alloy powder in the reaction product is oxidized and deactivated, and the degree of nitriding is varied. It is desirable to bring it into the nitriding process so as not to be exposed to the atmosphere (oxygen).

(4)窒化処理
窒化工程では、雰囲気ガスを不活性ガスから、少なくともアンモニアと水素とを含有する混合ガスに変えてから昇温し、反応生成物を特定温度に加熱する。窒化ガスとしては、少なくともアンモニアと水素とを含有していることが必要であり、反応をコントロールするためにアルゴン、窒素、ヘリウムなどを混合することができる。
(4) Nitriding treatment In the nitriding step, the temperature is raised after changing the atmosphere gas from an inert gas to a mixed gas containing at least ammonia and hydrogen, and the reaction product is heated to a specific temperature. The nitriding gas needs to contain at least ammonia and hydrogen, and argon, nitrogen, helium, etc. can be mixed to control the reaction.

全気流圧力に対するアンモニアの比(アンモニア分圧)は、0.4〜1.0、好ましくは0.5〜0.8となるようにする。本発明では、アンモニア分圧が0.4未満であると、長時間かけても母合金粉末の窒化が進まず、窒素量を3.5重量%以上とすることができず、アモルファス相が十分形成されないため、磁石粉末の残留磁束密度と保磁力が低下する。   The ratio of ammonia to the total air flow pressure (ammonia partial pressure) is 0.4 to 1.0, preferably 0.5 to 0.8. In the present invention, if the ammonia partial pressure is less than 0.4, nitriding of the mother alloy powder does not proceed even for a long time, the amount of nitrogen cannot be increased to 3.5% by weight or more, and the amorphous phase is sufficient. Since it is not formed, the residual magnetic flux density and coercive force of the magnet powder are reduced.

アンモニアと水素とを含有する混合気流を350〜500°C、好ましくは400〜480°Cに昇温し、母合金粉末を窒化熱処理する。温度が350°C未満であると、反応生成物中の希土類−鉄(−コバルト)−マンガン母合金粉末に3.5重量%以上の窒素を導入するのに長時間を要するので工業的優位性がなくなる。一方、500°Cを超えると磁石粉末の減磁曲線の角形性が低下するので好ましくない。   The mixed gas stream containing ammonia and hydrogen is heated to 350 to 500 ° C., preferably 400 to 480 ° C., and the mother alloy powder is subjected to nitriding heat treatment. When the temperature is less than 350 ° C., it takes a long time to introduce 3.5 wt% or more of nitrogen into the rare earth-iron (-cobalt) -manganese master alloy powder in the reaction product. Disappears. On the other hand, if it exceeds 500 ° C., the squareness of the demagnetization curve of the magnet powder is lowered, which is not preferable.

窒化熱処理の保持時間は、窒化温度にもよるが、200〜600分、好ましくは、300〜550分とする。200分未満では、窒化が不十分になり、一方、600分を超えると窒化が進みすぎるので好ましくない。   The holding time of the nitriding heat treatment is 200 to 600 minutes, preferably 300 to 550 minutes, depending on the nitriding temperature. If it is less than 200 minutes, nitriding becomes insufficient, while if it exceeds 600 minutes, nitriding proceeds excessively, which is not preferable.

前記した特許文献6によれば、「アンモニア分圧を0.1〜0.7の範囲に制御すれば、窒化効率が高い上に本発明の窒素量範囲全域の磁性材料を作製することができる」と記載され、「加熱温度は、母合金組成、窒化雰囲気によって異なるが、200〜650°Cの範囲で選ばれるのが望ましい」と記載されている。
ところが、このような条件の中には、良好な飽和磁化と保磁力が得られても、減磁曲線の角形性が悪くなる部分があり、また一定の条件で磁石粉末を製造しても高い磁気特性を再現性よく得ることができない。それは、Feリッチ相の存在が影響しているものと判断される。
According to the above-mentioned Patent Document 6, “By controlling the ammonia partial pressure in the range of 0.1 to 0.7, the nitriding efficiency is high and the magnetic material in the entire nitrogen amount range of the present invention can be produced. "The heating temperature varies depending on the composition of the master alloy and the nitriding atmosphere, but is preferably selected in the range of 200 to 650 ° C."
However, in such conditions, even if good saturation magnetization and coercive force are obtained, there is a portion where the squareness of the demagnetization curve is deteriorated, and even if magnet powder is produced under certain conditions, it is high. Magnetic properties cannot be obtained with good reproducibility. It is judged that the presence of the Fe rich phase has an influence.

このようなFeリッチ相と推定される、2θが44〜45°(Cu−Kα)に回折線を生じさせる相の生成を抑制するため、本発明では、還元拡散反応後の反応生成物を、不活性ガス雰囲気中で特定温度以下に冷却してから、雰囲気ガスをアンモニアと水素を含む窒化ガスに切り替えて昇温し、アンモニア分圧と加熱温度を特定して窒化するのである。   In order to suppress the generation of a phase that is presumed to be such an Fe-rich phase and 2θ forms a diffraction line at 44 to 45 ° (Cu-Kα), in the present invention, the reaction product after the reduction-diffusion reaction is After cooling to a specific temperature or lower in an inert gas atmosphere, the ambient gas is switched to a nitriding gas containing ammonia and hydrogen to raise the temperature, and the partial pressure of ammonia and the heating temperature are specified for nitriding.

ところで、希土類−鉄(−コバルト)−窒素系磁石粉末の製造では、還元拡散の反応生成物に対して窒化処理する場合、特許文献8(特開平05−148517号公報)では、還元拡散の反応生成混合物を窒素雰囲気中において、300〜600°Cの温度に保持し、特許文献9(特開平05−279714号公報)では、窒素あるいはアンモニア雰囲気中で窒化処理し、得られた熱処理物を湿式処理している。しかし、このような窒素又はアンモニア雰囲気中の熱処理では、本発明の希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末を得ることはできない。   By the way, in the production of rare earth-iron (-cobalt) -nitrogen based magnet powder, when the reduction diffusion reaction product is subjected to nitriding, Patent Document 8 (Japanese Patent Laid-Open No. 05-148517) discloses a reduction diffusion reaction. The product mixture is kept at a temperature of 300 to 600 ° C. in a nitrogen atmosphere, and in Patent Document 9 (Japanese Patent Laid-Open No. 05-279714), a nitriding treatment is performed in a nitrogen or ammonia atmosphere, and the obtained heat-treated product is wet-treated. Processing. However, the rare earth-iron (-cobalt) -manganese-nitrogen based magnet powder of the present invention cannot be obtained by such heat treatment in a nitrogen or ammonia atmosphere.

また、Mnを含まない合金を対象とした特許文献10(特開平06−212342号公報)の実施例では、還元拡散反応後に250°Cまで冷却し、水素ガスに切り替えて熱処理し、さらに窒素ガスに切り替えて500°Cまで昇温し窒化している。しかしながら、本発明の必須元素であるMnを含まないために、磁気特性が十分ではない上に、N量が3.3±0.1重量%と本発明のN量の下限値(3.5重量%)より小さくなっている。なお、常圧の窒素ガスで窒化した場合には、SmFe17においてxが高々3.3重量%の試料しか得られない。 Moreover, in the Example of patent document 10 (Unexamined-Japanese-Patent No. 06-212342) for the alloy which does not contain Mn, it cools to 250 degreeC after a reduction | restoration diffusion reaction, switches to hydrogen gas, heat-processes, and also nitrogen gas The temperature is raised to 500 ° C. and nitriding. However, since Mn, which is an essential element of the present invention, is not included, the magnetic properties are not sufficient, and the N amount is 3.3 ± 0.1% by weight, which is the lower limit of the N amount of the present invention (3.5 % By weight). In addition, when nitriding with normal-pressure nitrogen gas, only a sample having x at most 3.3% by weight in Sm 2 Fe 17 N x can be obtained.

本発明においては、窒化熱処理に引き続いて、さらに水素ガスおよび/または窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中で合金粉末を熱処理することが望ましい。特に好ましいのは、水素ガスおよび/または窒素ガスおよび/またはアルゴンガスである。これにより、磁石粉末を構成する個々のセル内の窒素分布をさらに均一化することができ、角形性を向上させることができる。熱処理の保持時間は、30〜200分、好ましくは60〜150分である。   In the present invention, following the nitriding heat treatment, it is desirable to further heat-treat the alloy powder in an inert gas such as hydrogen gas and / or nitrogen gas, argon gas, helium gas. Particularly preferred are hydrogen gas and / or nitrogen gas and / or argon gas. Thereby, the nitrogen distribution in the individual cells constituting the magnet powder can be made more uniform, and the squareness can be improved. The holding time of the heat treatment is 30 to 200 minutes, preferably 60 to 150 minutes.

(5)湿式処理
最後に、本発明では、窒化処理後の反応生成物に含まれている還元剤成分の副生成物(酸化カルシウムや窒化カルシウムなど)を、湿式処理して希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末から分離除去する。
(5) Wet treatment Finally, in the present invention, a by-product of the reducing agent component (calcium oxide, calcium nitride, etc.) contained in the reaction product after the nitriding treatment is wet-treated to form a rare earth-iron (- Separate and remove from cobalt) -manganese-nitrogen magnet powder.

窒化終了後の磁石粉末に湿式処理を行うのは、前述したとおり、窒化する前に、反応生成物を湿式処理すると、この湿式処理過程で母合金表面が酸化されて窒化の度合いをばらつかせるからである。   As described above, the wet treatment is performed on the magnet powder after nitriding. When the reaction product is wet-treated before nitriding, the surface of the mother alloy is oxidized during the wet treatment, thereby varying the degree of nitriding. Because.

窒化後に反応生成物を長期間大気中に放置すると、炭酸カルシウムなどの還元剤成分の炭酸化物が生成し除去しにくくなり、磁石粉末の磁化の低下が起こったり、配向不良によって角形性が低下したりする。したがって、大気中に放置された反応生成物は、反応器から取り出してから2週間以内に湿式処理するのがよい。   If the reaction product is left in the atmosphere for a long time after nitriding, carbonates of reducing agent components such as calcium carbonate are generated and difficult to remove, resulting in a decrease in magnetism of the magnet powder and a decrease in squareness due to poor orientation. Or Therefore, the reaction product left in the atmosphere is preferably wet-processed within 2 weeks after being taken out from the reactor.

湿式処理は、まず崩壊した生成物を水中に投入し、デカンテーション−注水−デカンテーションを繰り返し行い、生成したCa(OH)の多くを除去する。さらに必要に応じて、残留するCa(OH)を除去するために、酢酸および/または塩酸を用いて酸洗浄する。このときの水溶液の水素イオン濃度はpH4〜7の範囲で実施するとよい。 In the wet treatment, first, the disintegrated product is put into water, and decantation-water injection-decantation is repeated to remove much of the produced Ca (OH) 2 . Further, if necessary, in order to remove residual Ca (OH) 2 , acid washing is performed using acetic acid and / or hydrochloric acid. The hydrogen ion concentration of the aqueous solution at this time is preferably in the range of pH 4-7.

上記処理終了後には、例えば水洗し、アルコールあるいはアセトン等の有機溶媒で脱水し、不活性ガス雰囲気中または真空中で乾燥することで希土類−鉄(−コバルト)−マンガン−窒素系磁石粉末を得ることができる。   After completion of the above treatment, for example, it is washed with water, dehydrated with an organic solvent such as alcohol or acetone, and dried in an inert gas atmosphere or vacuum to obtain a rare earth-iron (-cobalt) -manganese-nitrogen based magnet powder. be able to.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.

得られた磁石粉末の微細組織は、透過型電子顕微鏡(株式会社日立製作所製、HF−2200、および日本電子株式会社製、JEM−3010)で観察した。微細組織の結晶構造は、電子線回折パターンから判定した。一部では、エネルギー分散型X線解析(EDX)と電子エネルギー損失分析装置(EELS JEM−2100F/STEM)を用い、組織構造観察と組成分析を行った。また、粉末X線回折装置(Cu−Kα、理学電機株式会社製 Rotaflex RAD−rVB、マックサイエンス株式会社製 SUN SP/IPX)によって、磁石粉末のマクロの結晶構造を確認した。なお、I(Fe)/Imの算出にあたっては、バックグラウンドを除去した後に実施した。回折線の強度比Xが10%以下で、Feリッチ相の存在が無視しうる程度である場合を○、強度比Xが10%を超え、Feリッチ相の存在を無視しえない場合を×と評価した。
得られた磁石粉末の磁気特性は、最大印加磁界1200kA/mの振動試料型磁力計(東英工業株式会社製、VSM−3)で測定した。測定では、日本ボンド磁石工業協会ボンド磁石試験法ガイドブックBMG−2005に準じて、1600kA/mの配向磁界をかけて試料を作製し、4000kA/mの磁界で着磁してから評価した。
また、粉末のX線密度は、分析組成とThZn17型結晶構造の格子定数から算出し、この値で残留磁束密度Brを換算した。
The microstructure of the obtained magnet powder was observed with a transmission electron microscope (manufactured by Hitachi, Ltd., HF-2200, and JEOL Ltd., JEM-3010). The crystal structure of the microstructure was determined from the electron diffraction pattern. In some cases, using an energy dispersive X-ray analysis (EDX) and an electron energy loss analyzer (EELS JEM-2100F / STEM), tissue structure observation and composition analysis were performed. Further, the macroscopic crystal structure of the magnet powder was confirmed by a powder X-ray diffractometer (Cu-Kα, Rotaflex RAD-rVB manufactured by Rigaku Corporation, SUN SP / IPX manufactured by Mac Science Co., Ltd.). The calculation of I (Fe) / Im was performed after removing the background. The case where the intensity ratio X of the diffraction line is 10% or less and the presence of the Fe-rich phase is negligible, and the case where the intensity ratio X exceeds 10% and the presence of the Fe-rich phase cannot be ignored. It was evaluated.
The magnetic properties of the obtained magnet powder were measured with a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd., VSM-3) having a maximum applied magnetic field of 1200 kA / m. In the measurement, a sample was prepared by applying an orientation magnetic field of 1600 kA / m according to the bond magnet test method guide book BMG-2005 of the Japan Bond Magnet Industry Association, and evaluation was performed after magnetization with a magnetic field of 4000 kA / m.
The X-ray density of the powder was calculated from the analytical composition and the lattice constant of the Th 2 Zn 17 type crystal structure, and the residual magnetic flux density Br was converted with this value.

(実施例1)
磁石原料粉末として、アトマイズ法で製造された、粒径が10〜70μmの粉末が全体の94%を占める鉄粉末(Fe純度99%)332gと、粒径が0.1〜10μmの粉末が全体の83%を占める二酸化マンガン粉末(MnO純度91%)30gと、粒径が0.1〜10μmの粉末が全体の96%を占める酸化サマリウム粉末(Sm純度99.5%)161gを秤量し、粒度4メッシュ(タイラーメッシュ)以下の金属カルシウム粒(Ca純度99%)100gをヘンシェルミキサーで混合した。
これをステンレススチール反応容器に挿入し、容器内をロータリーポンプで真空引きしてArガス置換した後、Arガスを流しながら1190°Cまで昇温し、4時間保持し250°Cまで炉内でArガスを流通しながら冷却した。次に、Arガスをアンモニア分圧が0.5のアンモニア−水素混合ガスに切り替えて昇温し、430°Cで500分保持し、その後、同温度で窒素ガスに切り替えて30分保持し冷却した。
取り出した多孔質塊状の反応生成物を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、Ca(OH)懸濁物をデカンテーションによって分離し、純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返し、合金粉末スラリーを得た。
得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。合金粉末を濾過後、エタノールで数回掛水洗浄し、40°Cで真空乾燥することによって、Sm−Fe−Mn−N磁石粉末を得た。
この粉末組成は、Sm23.8重量%、Mn3.7重量%、N5.4重量%、O0.15重量%、残部Feだった。
透過型電子顕微鏡で微細組織を観察したところ、数10nm〜数100nmまでの結晶粒径を有する主相と、数nm〜数10nmの幅を有する線状の結晶粒界相とからなるセル状構造が観察され、電子線回折パターンは、スポットとハローからなっており、それぞれがThZn17型結晶構造を有する主相とアモルファス相である結晶粒界相とに対応していることが分かった。
また、EELSによってMn量とFe量を分析したところ、主相では、Mnが2.1原子%でFeが71.0原子%であり、MnとFeの合計量に対してMnが2.9%置換された組成であることが分かった。一方、アモルファス相では、Mnが6.0原子%でFeが59.8原子%であり、MnとFeの合計量に対してMnが9.1%置換された組成であることが分かった。
さらに粉末X線回折法により解析した結果、図1に示すようにThZn17型結晶構造と、2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは8.0%だった。
得られた磁石粉末の磁気特性を、最大磁界1200kA/mの振動試料型磁力計で評価したところ、Br=0.77T、Hc=1020kA/m、Hk=222kA/mだった。ここで、日本ボンド磁石工業協会のボンド磁石試験法ガイドブックBMG−2005に準じて、1600kA/mの配向磁界をかけて試料を作製し、4000kA/mの磁界で着磁してから評価した。
また、分析組成とThZn17型結晶構造の格子定数から算出された粉末のX線密度は7.66g/cmで、この値で残留磁束密度Brを換算した。Hcは保磁力である。またHkは、減磁曲線の角形性を表し、第二象限において、磁化JがBrの90%の値を取るときの減磁界の大きさである。結果を表1に示す。
Example 1
As the magnet raw material powder, 332 g of iron powder (Fe purity 99%), which is produced by the atomization method and occupies 94% of the powder having a particle size of 10 to 70 μm, and the powder having a particle size of 0.1 to 10 μm as a whole. Of manganese dioxide powder (MnO 2 purity 91%) occupying 83% of the powder and 161 g of samarium oxide powder (Sm 2 O 3 purity 99.5%) occupying 96% of the powder having a particle size of 0.1 to 10 μm Were weighed, and 100 g of metal calcium particles (Ca purity 99%) having a particle size of 4 mesh (Tyler mesh) or less were mixed with a Henschel mixer.
This was inserted into a stainless steel reaction vessel, and the inside of the vessel was evacuated with a rotary pump and replaced with Ar gas. Then, while flowing Ar gas, the temperature was raised to 1190 ° C, held for 4 hours, and kept at 250 ° C in the furnace. It was cooled while circulating Ar gas. Next, the Ar gas is switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.5, the temperature is raised, held at 430 ° C. for 500 minutes, and then switched to nitrogen gas at the same temperature for 30 minutes and cooled did.
The taken porous mass reaction product was immediately poured into pure water, and collapsed to obtain a slurry. From this slurry, the Ca (OH) 2 suspension was separated by decantation, and the operation of stirring pure water for 1 minute after water injection and then decanting was repeated 5 times to obtain an alloy powder slurry.
While stirring the obtained alloy powder slurry, dilute acetic acid was added dropwise, and the pH was maintained at pH 5.0 for 7 minutes. The alloy powder was filtered, washed with water several times with ethanol, and vacuum-dried at 40 ° C. to obtain Sm—Fe—Mn—N magnet powder.
The powder composition was Sm 23.8% by weight, Mn 3.7% by weight, N 5.4% by weight, O 0.15% by weight and the balance Fe.
When the microstructure was observed with a transmission electron microscope, a cellular structure composed of a main phase having a crystal grain size of several tens of nm to several hundreds of nm and a linear crystal grain boundary phase having a width of several nm to several tens of nm. It was found that the electron diffraction pattern is composed of spots and halos, each corresponding to a main phase having a Th 2 Zn 17 type crystal structure and a grain boundary phase which is an amorphous phase. .
Further, when the amount of Mn and the amount of Fe were analyzed by EELS, in the main phase, Mn was 2.1 atomic% and Fe was 71.0 atomic%, and Mn was 2.9 with respect to the total amount of Mn and Fe. % Composition was found to be substituted. On the other hand, it was found that the amorphous phase had a composition in which Mn was 6.0 atomic% and Fe was 59.8 atomic%, and Mn was substituted by 9.1% with respect to the total amount of Mn and Fe.
Further, as a result of analysis by a powder X-ray diffraction method, as shown in FIG. 1, an alloy powder having a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu-Kα), I (Fe) / Im was 8.0%.
When the magnetic properties of the obtained magnet powder were evaluated with a vibrating sample magnetometer having a maximum magnetic field of 1200 kA / m, Br = 0.77T, Hc = 1020 kA / m, and Hk = 222 kA / m. Here, according to the bond magnet test method guidebook BMG-2005 of the Japan Bond Magnet Industry Association, a sample was prepared by applying an orientation magnetic field of 1600 kA / m, and evaluation was performed after magnetization with a magnetic field of 4000 kA / m.
The X-ray density of the powder calculated from the analytical composition and the lattice constant of the Th 2 Zn 17 type crystal structure was 7.66 g / cm 3 , and the residual magnetic flux density Br was converted with this value. Hc is a coercive force. Hk represents the squareness of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization J takes 90% of Br in the second quadrant. The results are shown in Table 1.

(実施例2)
還元拡散反応後、反応生成物を実施例1よりも低い35°Cまで炉内でArガスを流通しながら冷却したところで、Arガスをアンモニア分圧が0.5のアンモニア−水素混合ガスに切り替えてから再び昇温し、430°Cで480分保持し、その後、同温度で水素ガスに切り替えて120分保持し、さらに窒素ガスに切り替えて30分保持してから冷却した。取り出した多孔質塊状の反応生成物を実施例1と同様に湿式処理することによって、Sm−Fe−Mn−N磁石粉末を得た。
この粉末組成は、Sm23.7重量%、Mn3.7重量%、N5.1重量%、O0.14重量%、残部Feだった。
透過型電子顕微鏡で微細組織を観察したところ、実施例1と同様のThZn17型結晶構造を有する主相とアモルファス相が観察された。さらに粉末X線回折法により解析した結果、図1に示すようにThZn17型結晶構造であり、2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは3.8%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.90T、Hc=948kA、Hk=275kA/mだった。結果を表1に示す。
(Example 2)
After the reduction-diffusion reaction, when the reaction product was cooled to 35 ° C. lower than that in Example 1 while circulating Ar gas in the furnace, the Ar gas was switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.5. Then, the temperature was raised again and maintained at 430 ° C. for 480 minutes, then, at the same temperature, the gas was switched to hydrogen gas and maintained for 120 minutes, further switched to nitrogen gas and maintained for 30 minutes, and then cooled. The taken porous mass reaction product was wet-treated in the same manner as in Example 1 to obtain Sm—Fe—Mn—N magnet powder.
The powder composition was Sm 23.7% by weight, Mn 3.7% by weight, N 5.1% by weight, O 0.14% by weight and the balance Fe.
When the microstructure was observed with a transmission electron microscope, the main phase and the amorphous phase having the same Th 2 Zn 17 type crystal structure as in Example 1 were observed. Further, as a result of analysis by the powder X-ray diffraction method, as shown in FIG. 1, the alloy powder has a Th 2 Zn 17 type crystal structure and has a very weak diffraction line at 2θ of 44 to 45 ° (Cu-Kα). , I (Fe) / Im was 3.8%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.90T, Hc = 948 kA, and Hk = 275 kA / m. The results are shown in Table 1.

(従来例1)
実施例1と同様に原料を混合し、Arガスを流しながら1190°Cまで昇温して4時間保持し、その後反応生成物を35°Cまで自然冷却して、多孔質塊状の反応生成物を反応容器から取り出した。
次に、この反応生成物を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、Ca(OH)懸濁物をデカンテーションによって分離し、純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返した。得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。合金粉末を濾過後、エタノールで数回掛水洗浄し、40°Cで真空乾燥することによって、Sm−Fe−Mn母合金粉末を得た。
この母合金粉末を、アンモニア分圧が0.5のアンモニア−水素混合ガス雰囲気中で昇温し、430°Cで500分保持し、その後、同温度で窒素ガスに切り替えて30分保持して熱処理し、室温まで冷却することによって、Sm−Fe−Mn−N磁石粉末を得た。
この粉末組成は、Sm24.4重量%、Mn3.7重量%、N4.7重量%、O0.17重量%、残部Feだった。透過型電子顕微鏡で微細組織を観察したところ、実施例1と同様のThZn17型結晶構造を有する相とアモルファス相が観察された他に、図2に示すような幅が数10〜200nmの細長い部分が認められた。この部分をエネルギー分散型X線解析(EDX)したところ、Feリッチな相であることが確認できた。さらに粉末X線回折法により解析した結果、図3に示すようにTh2Zn17型結晶構造の回折線に加えて、2θが44.7°(Cu−Kα)に図2のFeリッチ相に対応すると思われる明瞭な回折線が確認できた。このときI(Fe)/Imは11.5%だった。
得られた磁石粉末の磁気特性を、実施例1と同様に評価したところ、Br=0.98T、Hc=681kA/m、Hk=167kA/mだった。結果を表1に示す。
(Conventional example 1)
In the same manner as in Example 1, the raw materials were mixed, heated to 1190 ° C while flowing Ar gas and held for 4 hours, and then the reaction product was naturally cooled to 35 ° C to form a porous massive reaction product. Was removed from the reaction vessel.
Next, when this reaction product was immediately put into pure water, it collapsed and a slurry was obtained. From this slurry, the Ca (OH) 2 suspension was separated by decantation, the operation of stirring pure water for 1 minute after pouring, and then decanting was repeated 5 times. While stirring the obtained alloy powder slurry, dilute acetic acid was added dropwise, and the pH was maintained at pH 5.0 for 7 minutes. The alloy powder was filtered, washed with water several times with ethanol, and vacuum-dried at 40 ° C. to obtain Sm—Fe—Mn mother alloy powder.
The mother alloy powder was heated in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.5, held at 430 ° C. for 500 minutes, and then switched to nitrogen gas at the same temperature and held for 30 minutes. Sm—Fe—Mn—N magnet powder was obtained by heat treatment and cooling to room temperature.
The powder composition was Sm 24.4 wt%, Mn 3.7 wt%, N 4.7 wt%, O 0.17 wt%, and the balance Fe. When the microstructure was observed with a transmission electron microscope, a phase having a Th 2 Zn 17 type crystal structure and an amorphous phase similar to those in Example 1 were observed, and the width as shown in FIG. The elongate part was recognized. When this portion was subjected to energy dispersive X-ray analysis (EDX), it was confirmed to be a Fe-rich phase. Further, as a result of analysis by powder X-ray diffraction method, in addition to the diffraction line of Th2Zn17 type crystal structure as shown in FIG. 3, 2θ seems to correspond to the Fe-rich phase of FIG. 2 at 44.7 ° (Cu-Kα). A clear diffraction line was confirmed. At this time, I (Fe) / Im was 11.5%.
The magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1. As a result, Br = 0.98T, Hc = 681 kA / m, and Hk = 167 kA / m. The results are shown in Table 1.

「評価」
実施例1を従来例1と比較すると、湿式処理前に窒化した実施例1の磁石粉末は2θが44〜45°(Cu−Kα)の回折線強度が小さく、保磁力と角形性が高いものとなっているのに対して、湿式処理後に窒化した従来例1ではFeリッチ相が形成され、磁気特性が悪化したことが分かる。
"Evaluation"
Comparing Example 1 with Conventional Example 1, the magnet powder of Example 1 nitrided before wet processing has a small diffraction line intensity of 2θ of 44 to 45 ° (Cu-Kα), and a high coercive force and squareness. On the other hand, it can be seen that, in Conventional Example 1 that was nitrided after the wet treatment, an Fe-rich phase was formed, and the magnetic properties deteriorated.

(従来例2)
従来例1と同様にして、母合金を35℃まで自然冷却してSm−Fe−Mn母合金粉末を得た。従来例1とは条件を変え、この母合金粉末をアンモニア分圧が0.5のアンモニア−水素混合ガス雰囲気中で昇温し、430°Cで550分保持し、その後、同温度で水素ガスに切り替えて120分保持し、さらに窒素ガスに切り替えて、30分保持してから冷却することによって、Sm−Fe−Mn−N磁石粉末を得た。
この粉末組成は、Sm24.3重量%、Mn3.6重量%、N5.1重量%、O0.17重量%、残部Feだった。透過型電子顕微鏡で微細組織を観察したところ、従来例1と同様に、ThZn17型結晶構造を有する相、アモルファス相、Feリッチな相が認められた。さらに粉末X線回折法により解析した結果、図3に示すようにThZn17型結晶構造の回折線と2θが44.7°(Cu−Kα)の回折線が確認できた。このときI(Fe)/Imは16.0%だった。
得られた磁石粉末の磁気特性を、実施例1と同様に評価したところ、Br=0.81T、Hc=952kA/m、Hk=143kA/mだった。結果を表1に示す。
(Conventional example 2)
In the same manner as in Conventional Example 1, the mother alloy was naturally cooled to 35 ° C. to obtain Sm—Fe—Mn mother alloy powder. The conditions were changed from those in Conventional Example 1, and the mother alloy powder was heated in an ammonia-hydrogen mixed gas atmosphere having an ammonia partial pressure of 0.5, held at 430 ° C. for 550 minutes, and then hydrogen gas at the same temperature. And then kept for 120 minutes, further switched to nitrogen gas, kept for 30 minutes, and then cooled to obtain Sm—Fe—Mn—N magnet powder.
The powder composition was Sm 24.3 wt%, Mn 3.6 wt%, N 5.1 wt%, O 0.17 wt% and the balance Fe. When the microstructure was observed with a transmission electron microscope, a phase having a Th 2 Zn 17 type crystal structure, an amorphous phase, and an Fe-rich phase were observed as in Conventional Example 1. Further, as a result of analysis by a powder X-ray diffraction method, as shown in FIG. 3, a diffraction line of Th 2 Zn 17 type crystal structure and a diffraction line of 2θ of 44.7 ° (Cu-Kα) were confirmed. At this time, I (Fe) / Im was 16.0%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.81T, Hc = 952 kA / m, and Hk = 143 kA / m. The results are shown in Table 1.

「評価」
実施例2を従来例2と比較すると、窒化処理条件を調整して同等の窒素量となるようにし保磁力を揃えても、2θが44〜45°(Cu−Kα)の回折線強度が非常に小さい実施例2の磁石粉末は、従来例2よりも残留磁束密度と角形性が高いものとなっている。
"Evaluation"
Comparing Example 2 with Conventional Example 2, even if the nitriding treatment conditions are adjusted so that the amount of nitrogen is equal and the coercive force is uniform, the diffraction line intensity of 2θ is 44 to 45 ° (Cu-Kα) is very high. The smaller magnet powder of Example 2 has higher residual magnetic flux density and squareness than Conventional Example 2.

(実施例3)
実施例1、2に対し、原料粉末の配合量を鉄粉末363g、二酸化マンガン粉末33g、酸化サマリウム粉末174g、金属カルシウム粒104gと変え、Arガスを流しながら920°Cで6時間保持し還元拡散反応させた後、280°Cまで冷却してから、アンモニア分圧0.4のアンモニア−水素混合ガスに切り替えて、温度490°Cで450分窒化した。その後、同温度で窒素ガスに切り替えて30分保持し冷却した。
このようにして得られたSm−Fe−Mn−N磁石粉末は、化学分析組成が、Sm22.9重量%、Mn3.8重量%、N4.0重量%、O0.09重量%、残部Feだった。
粉末X線回折法により解析した結果、ThZn17型結晶構造と2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは1.8%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.95T、Hc=583kA、Hk=279kA/mだった。結果を表1に示す。
(Example 3)
Compared to Examples 1 and 2, the amount of raw material powder was changed to 363 g of iron powder, 33 g of manganese dioxide powder, 174 g of samarium oxide powder, and 104 g of metal calcium particles, and held at 920 ° C. for 6 hours while flowing Ar gas, and reduced diffusion. After the reaction, the mixture was cooled to 280 ° C., then switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.4, and nitrided at a temperature of 490 ° C. for 450 minutes. Then, it switched to nitrogen gas at the same temperature, hold | maintained for 30 minutes, and cooled.
The Sm-Fe-Mn-N magnet powder thus obtained had a chemical analysis composition of Sm 22.9% by weight, Mn 3.8% by weight, N 4.0% by weight, O 0.09% by weight, and the balance Fe. It was.
As a result of analysis by the powder X-ray diffraction method, the alloy powder has a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu-Kα), and I (Fe) / Im is 1 It was 8%.
The magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1. As a result, Br = 0.95T, Hc = 583 kA, and Hk = 279 kA / m. The results are shown in Table 1.

(実施例4)
実施例1、2に対し、原料粉末の配合量を鉄粉末269g、二酸化マンガン粉末24g、酸化サマリウム粉末131g、金属カルシウム粒78gと変え、Arガスを流しながら1100°Cで4時間保持し還元拡散反応させた後、100°Cまで冷却してから、アンモニアガスに切り替えて(アンモニア分圧1.0)、温度360°Cで600分窒化した。その後同温度で水素ガスに切り替えて120分保持し、さらに窒素ガスに切り替えて30分保持してから冷却した。
このようにして得られたSm−Fe−Mn−N磁石粉末は、化学分析組成が、Sm26.1重量%、Mn3.4重量%、N5.3重量%、O0.14重量%、残部Feだった。粉末X線回折法により解析した結果、ThZn17型結晶構造と2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは7.0%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.72T、Hc=966kA、Hk=216kA/mだった。結果を表1に示す。
Example 4
Compared with Examples 1 and 2, the amount of raw material powder was changed to iron powder 269 g, manganese dioxide powder 24 g, samarium oxide powder 131 g, and metal calcium particles 78 g, and held at 1100 ° C. for 4 hours while flowing Ar gas, and reduced diffusion. After the reaction, the mixture was cooled to 100 ° C., then switched to ammonia gas (ammonia partial pressure 1.0), and nitrided at a temperature of 360 ° C. for 600 minutes. After that, it was switched to hydrogen gas at the same temperature and held for 120 minutes, further switched to nitrogen gas and held for 30 minutes, and then cooled.
The Sm—Fe—Mn—N magnet powder thus obtained has a chemical analysis composition of Sm 26.1 wt%, Mn 3.4 wt%, N 5.3 wt%, O 0.14 wt%, and the balance Fe. It was. As a result of analysis by a powder X-ray diffraction method, the alloy powder has a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu—Kα), and I (Fe) / Im is 7 It was 0%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, it was Br = 0.72T, Hc = 966 kA, and Hk = 216 kA / m. The results are shown in Table 1.

(実施例5)
実施例1、2に対し、原料粉末の配合量を鉄粉末171g、二酸化マンガン粉末30g、酸化サマリウム粉末87g、金属カルシウム粒69gと変え、Arガスを流しながら1150°Cで4時間保持し還元拡散反応させた後、200°Cまで冷却してから、アンモニア分圧0.8のアンモニア−水素混合ガスに切り替えて、温度400°Cで550分窒化した。その後、同温度で窒素ガスに切り替えて30分保持してから冷却した。
このようにして得られたSm−Fe−Mn−N磁石粉末は、化学分析組成が、Sm23.0重量%、Mn6.4重量%、N5.9重量%、O0.08重量%、残部Feだった。粉末X線回折法により解析した結果、ThZn17型結晶構造と2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは8.2%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.68T、Hc=780kA、Hk=191kA/mだった。結果を表1に示す。
(Example 5)
Compared to Examples 1 and 2, the amount of raw material powder was changed to 171 g of iron powder, 30 g of manganese dioxide powder, 87 g of samarium oxide powder, and 69 g of metal calcium particles, and held at 1150 ° C. for 4 hours while flowing Ar gas, and reduced diffusion. After the reaction, the mixture was cooled to 200 ° C., then switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.8, and nitrided at a temperature of 400 ° C. for 550 minutes. Then, it switched to nitrogen gas at the same temperature, hold | maintained for 30 minutes, and then cooled.
The Sm—Fe—Mn—N magnet powder thus obtained has a chemical analysis composition of Sm 23.0 wt%, Mn 6.4 wt%, N 5.9 wt%, O 0.08 wt%, and the balance Fe. It was. As a result of analysis by the powder X-ray diffraction method, the alloy powder has a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu—Kα), and I (Fe) / Im is 8 It was 2%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.68T, Hc = 780 kA, and Hk = 191 kA / m. The results are shown in Table 1.

(実施例6)
実施例1、2に対し、原料粉末の配合量を鉄粉末332g、二酸化マンガン粉末30g、酸化サマリウム粉末161g、金属カルシウム粒100gと変え、Arガスを流しながら1150°Cで4時間保持し還元拡散反応させた後、40°Cまで冷却してから、アンモニア分圧0.4のアンモニア−水素混合ガスに切り替えて、温度430°Cで500分窒化した。その後、同温度で窒素ガスに切り替えて30分保持してから冷却した。
このようにして得られたSm−Fe−Mn−N磁石粉末は、化学分析組成が、Sm25.0重量%、Mn3.8重量%、N3.8重量%、O0.27重量%、残部Feだった。粉末X線回折法により解析した結果、ThZn17型結晶構造と2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは6.1%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.95T、Hc=385kA、Hk=237kA/mだった。結果を表1に示す。
(Example 6)
Compared with Examples 1 and 2, the amount of raw material powder was changed to 332 g of iron powder, 30 g of manganese dioxide powder, 161 g of samarium oxide powder, and 100 g of metal calcium particles, and held at 1150 ° C. for 4 hours while flowing Ar gas, and reduced diffusion. After the reaction, the mixture was cooled to 40 ° C., then switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.4, and nitrided at a temperature of 430 ° C. for 500 minutes. Then, it switched to nitrogen gas at the same temperature, hold | maintained for 30 minutes, and then cooled.
The Sm—Fe—Mn—N magnet powder thus obtained had a chemical analysis composition of Sm 25.0 wt%, Mn 3.8 wt%, N 3.8 wt%, O 0.27 wt%, and the balance Fe. It was. As a result of analysis by the powder X-ray diffraction method, the alloy powder has a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu-Kα), and I (Fe) / Im is 6 It was 1%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.95T, Hc = 385 kA, and Hk = 237 kA / m. The results are shown in Table 1.

(実施例7)
窒化熱処理後に、水素ガスと窒素ガスによる熱処理を行わなかった以外は、実施例2と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.7重量%、Mn3.7重量%、N5.3重量%、O0.13重量%、残部Feだった。
粉末X線回折法により解析した結果、ThZn17型結晶構造と2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは4.7%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.88T、Hc=968kA、Hk=251kA/mだった。結果を表1に示す。
(Example 7)
An Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 2 except that no heat treatment with hydrogen gas and nitrogen gas was performed after the nitriding heat treatment.
The obtained magnet powder had a chemical analysis composition of Sm 23.7 wt%, Mn 3.7 wt%, N 5.3 wt%, O 0.13 wt%, and the balance Fe.
As a result of analysis by the powder X-ray diffraction method, the alloy powder has a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu-Kα), and I (Fe) / Im is 4 It was 7%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.88T, Hc = 968 kA, and Hk = 251 kA / m. The results are shown in Table 1.

(実施例8)
実施例1、2に対し、原料粉末の配合量を鉄粉末242g、二酸化マンガン粉末24g、酸化サマリウム粉末131g、粒径が0.1〜10μmの粉末が全体の82%を占める酸化コバルト粉末(CoO純度99重量%)27g、金属カルシウム粒74gと変え、Arガスを流しながら1190°Cで4時間保持し還元拡散反応させた後、250°Cまで冷却してから、アンモニア分圧0.5のアンモニア−水素混合ガスに切り替えて、温度430°Cで600分窒化した。その後、同温度で水素ガスに切り替えて120分保持し、さらに窒素ガスに切り替えて30分保持してから冷却した。
得られたSm−Fe−Co−Mn−N磁石粉末は、化学分析組成が、Sm24.0重量%、Co6.8重量%、Mn3.6重量%、N4.6重量%、O0.09重量%、残部Feだった。
粉末X線回折法により解析した結果、ThZn17型結晶構造と2θが44〜45°(Cu−Kα)にごく弱い回折線を有する合金粉末であって、I(Fe)/Imは3.5%だった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.91T、Hc=792kA、Hk=288kA/mだった。結果を表1に示す。
(Example 8)
Compared to Examples 1 and 2, the raw material powder was blended in an amount of 242 g of iron powder, 24 g of manganese dioxide powder, 131 g of samarium oxide powder, and cobalt oxide powder (CoO, which accounted for 82% of the powder having a particle size of 0.1 to 10 μm. The purity was changed to 27 g and metal calcium particles 74 g, and kept at 1190 ° C. for 4 hours while flowing Ar gas, followed by a reduction diffusion reaction, cooled to 250 ° C., and then with an ammonia partial pressure of 0.5 Switching to the ammonia-hydrogen mixed gas, nitriding was performed at a temperature of 430 ° C. for 600 minutes. Then, it switched to hydrogen gas at the same temperature, hold | maintained for 120 minutes, and also switched to nitrogen gas, and hold | maintained for 30 minutes, Then, it cooled.
The obtained Sm-Fe-Co-Mn-N magnet powder has a chemical analysis composition of Sm 24.0 wt%, Co 6.8 wt%, Mn 3.6 wt%, N4.6 wt%, O 0.09 wt% The balance was Fe.
As a result of analysis by the powder X-ray diffraction method, the alloy powder has a Th 2 Zn 17 type crystal structure and a very weak diffraction line at 2θ of 44 to 45 ° (Cu-Kα), and I (Fe) / Im is 3 It was 5%.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.91T, Hc = 792 kA, and Hk = 288 kA / m. The results are shown in Table 1.

(比較例1)
還元拡散反応後、350°Cまで冷却した時点で、Arガスをアンモニア−水素混合ガスに切り替えた以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.8重量%、Mn3.7重量%、N5.8重量%、O0.20重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.72T、Hc=1050kA、Hk=158kA/mで、実施例1に比べて残留磁束密度と角形性が低下した。粉末X線回折法により解析した結果、ThZn17型結晶構造の回折線と2θが44.7°(Cu−Kα)の明瞭な回折線が確認できた。このときI(Fe)/Imは13.4%だった。結果を表1に示す。
(Comparative Example 1)
After the reductive diffusion reaction, Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the Ar gas was switched to the ammonia-hydrogen mixed gas when it was cooled to 350 ° C.
The obtained magnet powder had a chemical analysis composition of Sm 23.8% by weight, Mn 3.7% by weight, N 5.8% by weight, O 0.20% by weight and the balance Fe. As in Example 1, the magnetic characteristics were evaluated. As a result, Br = 0.72T, Hc = 1050 kA, and Hk = 158 kA / m, and the residual magnetic flux density and the squareness were reduced as compared with Example 1. As a result of analysis by the powder X-ray diffraction method, a diffraction line having a Th 2 Zn 17 type crystal structure and a clear diffraction line having 2θ of 44.7 ° (Cu-Kα) were confirmed. At this time, I (Fe) / Im was 13.4%. The results are shown in Table 1.

(比較例2)
還元拡散反応後、430°Cまで冷却した時点で、Arガスをアンモニア−水素混合ガスに切り替えた以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.6重量%、Mn3.7重量%、N6.3重量%、O0.22重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.60T、Hc=1130kA、Hk=121kA/mで、実施例1に比べて残留磁束密度と角形性が低下した。粉末X線回折法により解析した結果、ThZn17型結晶構造の回折線と2θが44.7°(Cu−Kα)の明瞭な回折線が確認できた。このときI(Fe)/Imは17.3%だった。結果を表1に示す。
(Comparative Example 2)
After the reductive diffusion reaction, Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the Ar gas was switched to an ammonia-hydrogen mixed gas when it was cooled to 430 ° C.
The obtained magnet powder had a chemical analysis composition of Sm 23.6 wt%, Mn 3.7 wt%, N 6.3 wt%, O 0.22 wt%, and the balance Fe. When the magnetic characteristics were evaluated in the same manner as in Example 1, the residual magnetic flux density and the squareness were reduced as compared with Example 1, with Br = 0.60T, Hc = 1130 kA, and Hk = 121 kA / m. As a result of analysis by the powder X-ray diffraction method, a diffraction line having a Th 2 Zn 17 type crystal structure and a clear diffraction line having 2θ of 44.7 ° (Cu-Kα) were confirmed. At this time, I (Fe) / Im was 17.3%. The results are shown in Table 1.

(比較例3)
実施例1、2に対し、原料粉末として二酸化マンガン粉末を配合せず、鉄粉末317g、酸化サマリウム粉末126g、金属カルシウム粒91gと配合量を変え、Arガスを流しながら1150°Cで4時間保持し還元拡散反応させた後、40°Cまで冷却してから、アンモニアガスに切り替えて(アンモニア分圧1.0)、温度450°Cで400分窒化した。その後同温度で窒素ガスに切り替えて30分保持してから冷却した。
得られたSm−Fe−N磁石粉末は、化学分析組成が、Sm24.1重量%、N4.6重量%、O0.18重量%、残部Feだった。粉末X線回折では、ThZn17型結晶構造の回折線のみで、2θが44.7°(Cu−Kα)の回折線は認められなかったが、実施例1と同様に磁気特性を評価したところ、Br=0.39T、Hc=183kA、Hk=44kA/mで、Mnを含有しないと実施例1に比べて残留磁束密度、保磁力と角形性が大幅に低下することが分かった。結果を表1に示す。
(Comparative Example 3)
Compared with Examples 1 and 2, manganese dioxide powder was not blended as a raw material powder, but the blending amount was changed to 317 g of iron powder, 126 g of samarium oxide powder, 91 g of metal calcium particles, and kept at 1150 ° C. for 4 hours while flowing Ar gas. After the reduction diffusion reaction, the mixture was cooled to 40 ° C., then switched to ammonia gas (ammonia partial pressure 1.0), and nitrided at a temperature of 450 ° C. for 400 minutes. After that, it was switched to nitrogen gas at the same temperature and kept for 30 minutes, and then cooled.
The obtained Sm—Fe—N magnet powder had a chemical analysis composition of Sm 24.1 wt%, N 4.6 wt%, O 0.18 wt%, and the balance Fe. In the powder X-ray diffraction, only the diffraction line of the Th 2 Zn 17 type crystal structure was observed, but no diffraction line with 2θ of 44.7 ° (Cu-Kα) was observed. As a result, it was found that when Br = 0.39T, Hc = 183 kA, Hk = 44 kA / m, and not containing Mn, the residual magnetic flux density, the coercive force and the squareness were significantly reduced as compared with Example 1. The results are shown in Table 1.

(比較例4)
窒化熱処理をアンモニア分圧0.35のアンモニア−水素混合ガスに切り替えた以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.9重量%、Mn3.8重量%、N3.4重量%、O0.13重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.47T、Hc=310kA、Hk=39kA/mで、実施例1に比べてNの含有量が少ないために、残留磁束密度、保磁力と角形性が大幅に低下した。透過型電子顕微鏡で微細組織を観察したが、ThZn17型結晶構造を有する単相であって、アモルファス相は認められなかった。結果を表1に示す。
(Comparative Example 4)
An Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the nitriding heat treatment was switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.35.
The obtained magnet powder had a chemical analysis composition of Sm 23.9% by weight, Mn 3.8% by weight, N 3.4% by weight, O 0.13% by weight, and the balance Fe. As in Example 1, when the magnetic properties were evaluated, Br = 0.47T, Hc = 310 kA, Hk = 39 kA / m, and since the N content was smaller than that in Example 1, the residual magnetic flux density, The coercive force and squareness were greatly reduced. Although the microstructure was observed with a transmission electron microscope, it was a single phase having a Th 2 Zn 17 type crystal structure and no amorphous phase was observed. The results are shown in Table 1.

(比較例5)
窒化ガスをアンモニアガス(アンモニア分圧1.0)とし、330°Cで加熱し、1440分保持した以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.9重量%、Mn3.7重量%、N2.9重量%、O0.09重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.44T、Hc=338kA、Hk=32kA/mで、実施例1に比べて残留磁束密度、保磁力と角形性が大幅に低下した。
窒化熱処理する温度が350°C未満であると、窒化時間をこれまでの2倍以上にしても十分な窒素が入らず、磁気特性が低くなることが分かる。透過型電子顕微鏡で微細組織を観察したが、ThZn17型結晶構造を有する単相であって、アモルファス相は認められなかった。結果を表1に示す。
(Comparative Example 5)
Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the nitriding gas was ammonia gas (ammonia partial pressure 1.0), heated at 330 ° C. and held for 1440 minutes.
The obtained magnet powder had a chemical analysis composition of Sm 23.9 wt%, Mn 3.7 wt%, N 2.9 wt%, O 0.09 wt%, and the balance Fe. As in Example 1, the magnetic characteristics were evaluated. As a result, Br = 0.44T, Hc = 338 kA, and Hk = 32 kA / m, and the residual magnetic flux density, coercive force, and squareness were significantly reduced compared to Example 1. did.
It can be seen that if the temperature for the nitriding heat treatment is less than 350 ° C., sufficient nitrogen does not enter even if the nitriding time is set to be twice or more, and the magnetic properties are lowered. Although the microstructure was observed with a transmission electron microscope, it was a single phase having a Th 2 Zn 17 type crystal structure and no amorphous phase was observed. The results are shown in Table 1.

(比較例6)
窒化ガスをアンモニア分圧0.4のアンモニア−水素混合ガスとし、420°Cに加熱し180分保持して行った以外は、実施例2と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.7重量%、Mn3.8重量%、N3.3重量%、O0.11重量%、残部Feだった。粉末X線回折では、ThZn17型結晶構造の回折線のみで、2θが44.7°(Cu−Kα)の回折線は認められなかったが、実施例1と同様に磁気特性を評価したところ、Br=0.42T、Hc=274kA、Hk=72kA/mで、窒素量が3.5重量%未満では実施例2に比べてNの含有量が少ないために、残留磁束密度、保磁力と角形性が大幅に低下することが分かった。透過型電子顕微鏡で微細組織を観察したが、ThZn17型結晶構造を有する単相であって、アモルファス相は認められなかった。結果を表1に示す。
(Comparative Example 6)
The Sm—Fe—Mn—N magnet powder was prepared in the same manner as in Example 2 except that the nitriding gas was an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.4, heated to 420 ° C. and held for 180 minutes. Manufactured.
The obtained magnet powder had a chemical analysis composition of Sm 23.7% by weight, Mn 3.8% by weight, N 3.3% by weight, O0.11% by weight, and the balance Fe. In the powder X-ray diffraction, only the diffraction line of the Th 2 Zn 17 type crystal structure was observed, but no diffraction line with 2θ of 44.7 ° (Cu-Kα) was observed. As a result, Br = 0.42T, Hc = 274 kA, Hk = 72 kA / m, and when the nitrogen content was less than 3.5% by weight, the N content was lower than that in Example 2, so that the residual magnetic flux density, It was found that the magnetic force and the squareness were greatly reduced. Although the microstructure was observed with a transmission electron microscope, it was a single phase having a Th 2 Zn 17 type crystal structure and no amorphous phase was observed. The results are shown in Table 1.

(比較例7)
還元拡散反応後、250°Cまで冷却した後に切り替えるガスを、窒素ガスに変更した以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を得た。
この粉末組成は、Sm24.2重量%、Mn3.8重量%、N2.9重量%、O0.19重量%、残部Feだった。実施例1と同様に磁気特性を評価したところ、Br=0.38T、Hc=151kA/m、Hk=27kA/mだった。窒化が不十分なため大幅に磁気特性が悪化することが分かった。透過型電子顕微鏡で微細組織を観察したが、ThZn17型結晶構造を有する単相であって、アモルファス相は認められなかった。結果を表1に示す。
(Comparative Example 7)
After the reductive diffusion reaction, an Sm—Fe—Mn—N magnet powder was obtained in the same manner as in Example 1 except that the gas switched after cooling to 250 ° C. was changed to nitrogen gas.
The powder composition was Sm 24.2% by weight, Mn 3.8% by weight, N 2.9% by weight, O 0.19% by weight and the balance Fe. The magnetic characteristics were evaluated in the same manner as in Example 1. As a result, Br = 0.38T, Hc = 151 kA / m, and Hk = 27 kA / m. It was found that the magnetic properties were greatly deteriorated due to insufficient nitriding. Although the microstructure was observed with a transmission electron microscope, it was a single phase having a Th 2 Zn 17 type crystal structure and no amorphous phase was observed. The results are shown in Table 1.

(比較例8)
窒化ガスをアンモニア分圧0.4のアンモニア−水素混合ガスとし、520°Cに加熱し400分保持した以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.6重量%、Mn3.6重量%、N5.8重量%、O0.11重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.75T、Hc=1083kA、Hk=137kA/mで、実施例1に比べて角形性が低下した。粉末X線回折法により解析した結果、ThZn17型結晶構造の回折線と2θが44.7°(Cu−Kα)の明瞭な回折線が確認できた。このときI(Fe)/Imは15.2%だった。
窒化熱処理する温度が500°Cを超えると、2θが44.7°(Cu−Kα)の回折線が生成し、角形性が低下することが分かる。結果を表1に示す。
(Comparative Example 8)
An Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the nitriding gas was an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.4 and heated to 520 ° C. and held for 400 minutes.
The obtained magnet powder had a chemical analysis composition of Sm 23.6 wt%, Mn 3.6 wt%, N 5.8 wt%, O 0.11 wt%, and the balance Fe. As in Example 1, the magnetic properties were evaluated. As a result, Br = 0.75T, Hc = 1083 kA, and Hk = 137 kA / m, and the squareness was lower than that in Example 1. As a result of analysis by the powder X-ray diffraction method, a diffraction line having a Th 2 Zn 17 type crystal structure and a clear diffraction line having 2θ of 44.7 ° (Cu-Kα) were confirmed. At this time, I (Fe) / Im was 15.2%.
It can be seen that when the temperature for nitriding heat treatment exceeds 500 ° C., diffraction lines having 2θ of 44.7 ° (Cu—Kα) are generated, and the squareness is lowered. The results are shown in Table 1.

(参考例1)
還元拡散反応を880°Cで6時間保持することで行った以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.5重量%、Mn3.9重量%、N4.5重量%、O0.07重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.54T、Hc=512kA、Hk=43kA/mで実施例1に比べて残留磁束密度、保磁力、角形性が低下した。粉末を樹脂に埋め込んで断面を走査型電子顕微鏡で観察したところ、粉末中心付近にSmが十分拡散していない部分が認められた。結果を表1に示す。
(Reference Example 1)
An Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the reduction diffusion reaction was carried out at 880 ° C. for 6 hours.
The obtained magnet powder had a chemical analysis composition of Sm 23.5 wt%, Mn 3.9 wt%, N 4.5 wt%, O 0.07 wt%, and the balance Fe. When the magnetic characteristics were evaluated in the same manner as in Example 1, the residual magnetic flux density, the coercive force, and the squareness were reduced as compared with Example 1 at Br = 0.54T, Hc = 512 kA, and Hk = 43 kA / m. When the powder was embedded in the resin and the cross section was observed with a scanning electron microscope, a portion where Sm was not sufficiently diffused was observed near the center of the powder. The results are shown in Table 1.

(参考例2)
還元拡散反応を1230°Cで3時間保持することで行った以外は、実施例1と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.7重量%、Mn3.7重量%、N5.7重量%、O0.19重量%、残部Feだった。実施例1と同様に、磁気特性を評価したところ、Br=0.69T、Hc=922kA、Hk=181kA/mで、実施例1に比べて残留磁束密度と角形性が低下した。粉末を走査型電子顕微鏡で観察したところ、焼結して凝集した粉末が多く観察された。結果を表1に示す。
(Reference Example 2)
An Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 1 except that the reduction diffusion reaction was carried out at 1230 ° C. for 3 hours.
The obtained magnet powder had a chemical analysis composition of Sm 23.7 wt%, Mn 3.7 wt%, N 5.7 wt%, O 0.19 wt%, and the balance Fe. As in Example 1, the magnetic characteristics were evaluated. As a result, Br = 0.69T, Hc = 922 kA, Hk = 181 kA / m, and the residual magnetic flux density and the squareness were reduced as compared with Example 1. When the powder was observed with a scanning electron microscope, many powders that were sintered and aggregated were observed. The results are shown in Table 1.

(参考例3)
実施例1、2に対し、原料粉末の配合量を鉄粉末897g、二酸化マンガン粉末81g、酸化サマリウム粉末426g、金属カルシウム粒264gと変え、Arガスを流しながら1150°Cで4時間保持し還元拡散反応させた後、40°Cまで冷却してから、アンモニア分圧0.5のアンモニア−水素混合ガスに切り替えて、温度450°Cで500分窒化した。その後同温度で窒素ガスに切り替えて30分保持してから冷却した。
このようにして得られたSm−Fe−Mn−N磁石粉末は、化学分析組成が、Sm21.7重量%、Mn3.7重量%、N4.8重量%、O0.07重量%、残部Feだった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.61T、Hc=293kA、Hk=74kA/mで、実施例1に比べて残留磁束密度、保磁力と角形性が大幅に低下した。粉末を樹脂に埋め込んで断面を走査型電子顕微鏡で観察したところ、粉末中心付近にSmが十分拡散していない部分が認められた。結果を表1に示す。
(Reference Example 3)
Compared to Examples 1 and 2, the amount of the raw material powder was changed to 897 g of iron powder, 81 g of manganese dioxide powder, 426 g of samarium oxide powder, and 264 g of metal calcium particles, and held at 1150 ° C. for 4 hours while flowing Ar gas, and reduced diffusion. After the reaction, the mixture was cooled to 40 ° C., then switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.5, and nitrided at a temperature of 450 ° C. for 500 minutes. After that, it was switched to nitrogen gas at the same temperature and kept for 30 minutes, and then cooled.
The Sm-Fe-Mn-N magnet powder thus obtained has a chemical analysis composition of Sm 21.7% by weight, Mn 3.7% by weight, N 4.8% by weight, O 0.07% by weight and the balance Fe. It was.
When the magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1, Br = 0.61T, Hc = 293 kA, Hk = 74 kA / m, and the residual magnetic flux density, coercive force and The squareness was greatly reduced. When the powder was embedded in the resin and the cross section was observed with a scanning electron microscope, a portion where Sm was not sufficiently diffused was observed near the center of the powder. The results are shown in Table 1.

(参考例4)
実施例1、2に対し、原料粉末の配合量を鉄粉末897g、二酸化マンガン粉末81g、酸化サマリウム粉末534g、金属カルシウム粒313gと変えた以外は、比較例8と同様にしてSm−Fe−Mn−N磁石粉末を得た。
磁石粉末の化学分析組成は、Sm27.5重量%、Mn3.2重量%、N5.4重量%、O0.18重量%、残部Feだった。
得られた磁石粉末を実施例1と同様に、磁気特性を評価したところ、Br=0.55T、Hc=891kA、Hk=171kA/mで、実施例1に比べて残留磁束密度と角形性が低下した。結果を表1に示す。
(Reference Example 4)
Sm-Fe-Mn was performed in the same manner as in Comparative Example 8 except that the amount of the raw material powder was changed to 897 g of iron powder, 81 g of manganese dioxide powder, 534 g of samarium oxide powder, and 313 g of metallic calcium particles. -N magnet powder was obtained.
The chemical analysis composition of the magnet powder was Sm 27.5 wt%, Mn 3.2 wt%, N 5.4 wt%, O 0.18 wt%, and the balance Fe.
The magnetic properties of the obtained magnet powder were evaluated in the same manner as in Example 1. As a result, Br = 0.55T, Hc = 891 kA, Hk = 171 kA / m, and the residual magnetic flux density and squareness were higher than in Example 1. Declined. The results are shown in Table 1.

(参考例5)
実施例1、2に対し、原料粉末の配合量を鉄粉末269g、二酸化マンガン粉末48g、酸化サマリウム粉末126g、金属カルシウム粒95gと変え、Arガスを流しながら1150°Cで4時間保持し還元拡散反応させた後、40°Cまで冷却してから、アンモニア分圧0.6のアンモニア−水素混合ガスに切り替えて、温度400°Cで420分窒化した。その後、同温度で窒素ガスに切り替えて30分保持してから冷却した。
得られたSm−Fe−Mn−N磁石粉末は、化学分析組成が、Sm24.3重量%、Mn7.3重量%、N5.8重量%、O0.23重量%、残部Feだった。粉末X線回折では、ThZn17型結晶構造の回折線のみで、2θが44.7°(Cu−Kα)の回折線は認められなかったが、実施例1と同様に磁気特性を評価したところ、Br=0.51T、Hc=943kA、Hk=201kA/mで、実施例1に比べて残留磁束密度が低下した。結果を表1に示す。
(Reference Example 5)
Compared to Examples 1 and 2, the amount of raw material powder was changed to iron powder 269 g, manganese dioxide powder 48 g, samarium oxide powder 126 g, and metal calcium particles 95 g, and held at 1150 ° C. for 4 hours while flowing Ar gas, and reduced diffusion. After the reaction, the mixture was cooled to 40 ° C., then switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.6, and nitrided at a temperature of 400 ° C. for 420 minutes. Then, it switched to nitrogen gas at the same temperature, hold | maintained for 30 minutes, and then cooled.
The obtained Sm—Fe—Mn—N magnet powder had a chemical analysis composition of Sm 24.3 wt%, Mn 7.3% wt, N 5.8 wt%, O 0.23 wt%, and the balance Fe. In powder X-ray diffraction, only the diffraction line of the Th 2 Zn 17 type crystal structure was observed, but no diffraction line with 2θ of 44.7 ° (Cu—Kα) was observed, but the magnetic properties were evaluated in the same manner as in Example 1. As a result, Br = 0.51T, Hc = 943 kA, Hk = 201 kA / m, and the residual magnetic flux density was lower than that in Example 1. The results are shown in Table 1.

(参考例6)
窒化ガスをアンモニア分圧0.8のアンモニア−水素混合ガスとし、450°Cに加熱し500分保持した以外は、実施例2と同様にしてSm−Fe−Mn−N磁石粉末を製造した。
得られた磁石粉末は、化学分析組成が、Sm23.5重量%、Mn3.6重量%、N6.2重量%、O0.09重量%、残部Feだった。粉末X線回折では、ThZn17型結晶構造の回折線のみで、2θが44.7°(Cu−Kα)の回折線は認められなかったが、実施例1と同様に磁気特性を評価したところ、Br=0.78T、Hc=803kA、Hk=120kA/mで、窒素量が6.0重量%を超えると実施例2に比べて残留磁束密度、保磁力と角形性が大幅に低下することが分かった。結果を表1に示す。
(Reference Example 6)
An Sm—Fe—Mn—N magnet powder was produced in the same manner as in Example 2 except that the nitriding gas was an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.8, heated to 450 ° C. and held for 500 minutes.
The obtained magnet powder had a chemical analysis composition of Sm 23.5 wt%, Mn 3.6 wt%, N 6.2 wt%, O 0.09 wt%, and the balance Fe. In powder X-ray diffraction, only the diffraction line of the Th 2 Zn 17 type crystal structure was observed, but no diffraction line with 2θ of 44.7 ° (Cu—Kα) was observed, but the magnetic properties were evaluated in the same manner as in Example 1. As a result, when Br = 0.78T, Hc = 803 kA, Hk = 120 kA / m, and the nitrogen content exceeds 6.0% by weight, the residual magnetic flux density, coercive force and squareness are greatly reduced as compared with Example 2. I found out that The results are shown in Table 1.

Figure 0004725682
Figure 0004725682

本発明の希土類−鉄−マンガン−窒素系磁石粉末は、従来の磁石粉末と異なり、Feリッチ相が大幅に減少し、しかも十分な窒素を含んでいるため、従来の粉末に比べて高い保磁力と角形性を有する。そのため、良好な耐熱性が要求されるボンド磁石用の粉末として利用でき、その工業的価値は極めて大きい。   Unlike the conventional magnet powder, the rare earth-iron-manganese-nitrogen based magnet powder of the present invention has a significantly reduced Fe-rich phase and contains sufficient nitrogen, and thus has a higher coercive force than the conventional powder. And has squareness. Therefore, it can be used as a powder for bonded magnets that require good heat resistance, and its industrial value is extremely high.

本発明(実施例1および実施例2)によって得られるSm−Fe−Mn−N磁石粉末のX線回折図である。It is an X-ray diffraction pattern of Sm-Fe-Mn-N magnet powder obtained by the present invention (Example 1 and Example 2). 従来方法(従来例1)によって製造されたSm−Fe−Mn−N磁石粉末の透過型電子顕微鏡写真(2−a)とEDXプロファイル(2−b)である。It is the transmission electron micrograph (2-a) and EDX profile (2-b) of the Sm-Fe-Mn-N magnet powder manufactured by the conventional method (conventional example 1). 従来方法(従来例1および従来例2)によって製造されたSm−Fe−Mn−N磁石粉末のX線回折図である。It is an X-ray diffraction pattern of the Sm-Fe-Mn-N magnet powder manufactured by the conventional method (conventional example 1 and conventional example 2).

Claims (6)

希土類元素と、Mnと、Nと、残部が実質的にFeまたはFeおよびCoからなり、希土類元素が22〜27重量%、Mnが7重量%以下、Nが3.5〜6.0重量%である希土類−鉄−マンガン−窒素系磁石粉末であって、
粒径が10〜70μmの粉末が全体の80%以上を占める鉄粉末、粒径が0.1〜10μmの粉末が全体の80%以上を占めるマンガン粉末および/またはマンガン酸化物粉末、希土類酸化物粉末、コバルト粉末および/またはコバルト酸化物粉末からなる原料粉末と、アルカリ金属、アルカリ土類金属又はこれらの水素化物から選ばれる少なくとも1種の還元剤粉末とを所定の割合で混合する工程、得られた混合物を不活性ガス雰囲気中で900〜1200°Cに加熱する工程、引き続き、得られた反応生成物を不活性ガス雰囲気中で300°C以下に冷却する工程、その後、雰囲気ガスを変えて、少なくともアンモニアと水素とを含有する混合気流中で昇温し、350〜500°Cで反応生成物を窒化熱処理する工程、および得られた窒化熱処理物を水中に投入して湿式処理する工程を順次行って製造され、
ThZn17型結晶構造を有する相とアモルファス相とを含有するとともに、それ以外に共存するFeリッチ相は、下記の式で表される粉末X回折における回折線の強度比(X)が10%以下になるまで低減していることを特徴とする希土類−鉄−マンガン−窒素系磁石粉末。
X=I(Fe)/Im
[式中、I(Fe)は、2θが44〜45°(Cu−Kα)に現れる回折線の強度であり、ImはThZn17型結晶構造の回折線の中で最大の強度を表す]
Rare earth element, Mn, N, the balance being substantially composed of Fe or Fe and Co, rare earth element 22-27 wt%, Mn 7 wt% or less, N 3.5-6.0 wt% A rare earth-iron-manganese-nitrogen based magnet powder,
Iron powder occupying 80% or more of the powder having a particle size of 10 to 70 μm, manganese powder and / or manganese oxide powder occupying 80% or more of the powder having a particle size of 0.1 to 10 μm, rare earth oxide A step of mixing a raw material powder composed of powder, cobalt powder and / or cobalt oxide powder and at least one reducing agent powder selected from alkali metals, alkaline earth metals or hydrides thereof in a predetermined ratio; A step of heating the obtained mixture to 900 to 1200 ° C. in an inert gas atmosphere, a step of cooling the obtained reaction product to 300 ° C. or less in an inert gas atmosphere, and then changing the atmosphere gas And heating the reaction product at 350 to 500 ° C. in a mixed gas stream containing at least ammonia and hydrogen, and the resulting heat of nitriding Manufactured by sequentially carrying out wet processing by throwing processed products into water,
The Fe-rich phase containing a phase having a Th 2 Zn 17 type crystal structure and an amorphous phase and coexisting with the other has an intensity ratio (X) of diffraction lines in powder X diffraction represented by the following formula of 10 % Rare earth-iron-manganese-nitrogen based magnet powder characterized by being reduced to less than or equal to%.
X = I (Fe) / Im
[Wherein, I (Fe) is the intensity of the diffraction line where 2θ appears at 44 to 45 ° (Cu-Kα), and Im represents the maximum intensity among the diffraction lines of the Th 2 Zn 17 type crystal structure. ]
回折線の強度比(X)が5%以下であることを特徴とする請求項1に記載の希土類−鉄−マンガン−窒素系磁石粉末。   The rare earth-iron-manganese-nitrogen based magnet powder according to claim 1, wherein the intensity ratio (X) of diffraction lines is 5% or less. 各成分元素の含有量は、希土類元素が23〜26重量%、Mnが2〜5重量%、Nが4.0〜5.5重量%であることを特徴とする請求項1に記載の希土類−鉄−マンガン−窒素系磁石粉末。 The rare earth element according to claim 1, wherein the content of each component element is 23 to 26 % by weight of rare earth elements, 2 to 5 % by weight of Mn, and 4.0 to 5.5 % by weight of N. -Iron-manganese-nitrogen based magnet powder. Nの含有量が、4.0〜5.0重量%であることを特徴とする請求項3に記載の希土類−鉄−マンガン−窒素系磁石粉末。 The rare earth-iron-manganese-nitrogen based magnet powder according to claim 3, wherein the N content is 4.0 to 5.0 % by weight. 混合気流中のアンモニア分圧が0.4〜1.0であることを特徴とする請求項1に記載の希土類−鉄−マンガン−窒素系磁石粉末。   The rare earth-iron-manganese-nitrogen based magnet powder according to claim 1, wherein the partial pressure of ammonia in the mixed gas stream is 0.4 to 1.0. 窒化熱処理に要する時間が200〜600分であることを特徴とする請求項1に記載の希土類−鉄−マンガン−窒素系磁石粉末。   2. The rare earth-iron-manganese-nitrogen based magnet powder according to claim 1, wherein the time required for the nitriding heat treatment is 200 to 600 minutes.
JP2010152968A 2010-07-05 2010-07-05 Rare earth-iron-manganese-nitrogen magnet powder Expired - Lifetime JP4725682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010152968A JP4725682B2 (en) 2010-07-05 2010-07-05 Rare earth-iron-manganese-nitrogen magnet powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010152968A JP4725682B2 (en) 2010-07-05 2010-07-05 Rare earth-iron-manganese-nitrogen magnet powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004082865A Division JP4604528B2 (en) 2004-03-22 2004-03-22 Rare earth-iron-manganese-nitrogen magnet powder

Publications (2)

Publication Number Publication Date
JP2010283359A JP2010283359A (en) 2010-12-16
JP4725682B2 true JP4725682B2 (en) 2011-07-13

Family

ID=43539770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010152968A Expired - Lifetime JP4725682B2 (en) 2010-07-05 2010-07-05 Rare earth-iron-manganese-nitrogen magnet powder

Country Status (1)

Country Link
JP (1) JP4725682B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331982B2 (en) * 2014-11-11 2018-05-30 住友電気工業株式会社 Magnet molded body, magnetic member, method for manufacturing magnet molded body, and method for manufacturing magnetic member
JP6601432B2 (en) * 2017-02-03 2019-11-06 株式会社豊田中央研究所 Manufacturing method of magnetic powder

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06231917A (en) * 1993-02-05 1994-08-19 Kawasaki Steel Corp Permanent magnet of rare earth-transition metal base and its manufacture
JP3560387B2 (en) * 1994-05-25 2004-09-02 旭化成株式会社 Magnetic material and its manufacturing method
JP3304726B2 (en) * 1995-11-28 2002-07-22 住友金属鉱山株式会社 Rare earth-iron-nitrogen magnet alloy
JP3304729B2 (en) * 1995-12-01 2002-07-22 住友金属鉱山株式会社 Rare earth-iron magnet alloys
JPH11135311A (en) * 1997-10-27 1999-05-21 Matsushita Electric Ind Co Ltd Rare earth-iron-nitrogen magnetic material, its manufacture, and bond magnet using the same
JP3777793B2 (en) * 1998-05-13 2006-05-24 日亜化学工業株式会社 Method for producing rare earth metal-iron-nitrogen based magnetic material

Also Published As

Publication number Publication date
JP2010283359A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
RU2377680C2 (en) Rare-earth permanaent magnet
JP5501828B2 (en) R-T-B rare earth permanent magnet
JP4805998B2 (en) Permanent magnet and permanent magnet motor and generator using the same
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
US20220411902A1 (en) Rare-earth high entropy alloys and transition metal high entropy alloys as building blocks for the synthesis of new magnetic phases for permanent magnets
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP3560387B2 (en) Magnetic material and its manufacturing method
JP4725682B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
CN109550973B (en) Preparation method of AlNiCo/SmCo composite magnetic powder, magnetic powder and magnet
JPH06207203A (en) Production of rare earth permanent magnet
JP4604528B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP4814856B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JPH06207204A (en) Production of rare earth permanent magnet
JP4696798B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
KR102399418B1 (en) Manufacturing method of sintered magnetic and sintered magnetic manufactured by the same
Chen et al. Formation of Metastable Pr~ 2Fe~ 2~ 3B~ 3 Phase and Its Effect on Magnetic Properties in Rapidly Quenched Pr~ 9Fe~ 9~ 1~-~ xB~ x Nanocomposites
JP3645312B2 (en) Magnetic materials and manufacturing methods
JP2006269637A (en) Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
KR101528070B1 (en) Rare-earth permanent sintered magnet and method for manufacturing the same
JP5501833B2 (en) R-T-B permanent magnet
JP7449538B2 (en) Rare earth iron carbon-based magnetic powder and its manufacturing method
JP2006144048A (en) Method for producing rare earth-transition metal-nitrogen based magnet powder, composition for bond magnet using the same, and bond magnet
JPS6318603A (en) Permanent magnet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Ref document number: 4725682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

EXPY Cancellation because of completion of term