JP6759855B2 - Method for manufacturing rare earth-iron-nitrogen alloy powder - Google Patents

Method for manufacturing rare earth-iron-nitrogen alloy powder Download PDF

Info

Publication number
JP6759855B2
JP6759855B2 JP2016163672A JP2016163672A JP6759855B2 JP 6759855 B2 JP6759855 B2 JP 6759855B2 JP 2016163672 A JP2016163672 A JP 2016163672A JP 2016163672 A JP2016163672 A JP 2016163672A JP 6759855 B2 JP6759855 B2 JP 6759855B2
Authority
JP
Japan
Prior art keywords
rare earth
iron
powder
nitrogen
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016163672A
Other languages
Japanese (ja)
Other versions
JP2018031053A (en
Inventor
松本 哲
哲 松本
林 真一
真一 林
石川 尚
尚 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2016163672A priority Critical patent/JP6759855B2/en
Publication of JP2018031053A publication Critical patent/JP2018031053A/en
Application granted granted Critical
Publication of JP6759855B2 publication Critical patent/JP6759855B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、希土類−鉄−窒素系磁石粉末の製造方法に関し、さらに詳しくは、粗大粒子の生成や、磁石結晶で磁気特性を低下させる逆磁区の核となり得る破断面の突起や結晶歪みの発生が抑制され、優れた磁気特性を有する磁石粉末が還元拡散法を用いて低コストで得られる希土類−鉄−窒素系磁石粉末の製造方法に関する。 The present invention relates to a method for producing a rare earth-iron-nitrogen magnet powder, and more specifically, generation of coarse particles and generation of protrusions and crystal strains of fracture surface which can be the core of an inverse magnetic domain that deteriorates magnetic properties in a magnet crystal. The present invention relates to a method for producing a rare earth-iron-nitrogen magnet powder, in which a magnet powder having excellent magnetic properties can be obtained at low cost by using a reduction diffusion method.

Sm−Fe−N磁石で代表される希土類−鉄−窒素系磁石は、高性能かつ安価な磁石として知られている。上記Sm−Fe−N系磁石粉末では、SmFe17Nxであればx=3の組成で構成されることによって最大の飽和磁化を示すとされている(非特許文献1参照)。 Rare earth-iron-nitrogen magnets represented by Sm-Fe-N magnets are known as high-performance and inexpensive magnets. It is said that the Sm-Fe-N magnet powder exhibits maximum saturation magnetization when it is composed of Sm 2 Fe 17 Nx and has a composition of x = 3 (see Non-Patent Document 1).

上記希土類−鉄−窒素系磁石は、従来、FeとSm金属を用いて高周波炉、アーク炉などを用いた溶解法により作製される希土類−鉄合金を、または、FeあるいはFeと、Sm等の原料とCaを混合加熱処理する還元拡散法によって得られる希土類−鉄合金を、窒化することで製造されている。
このようにして得られた粉末状の希土類−鉄−窒素系磁石は、保磁力の発生機構がニュークリエーション型であることから、窒化後に平均粒子径が数μmから5μm程度になるまで微粉砕処理される。
The rare earth - iron - nitrogen based magnet, conventionally, a high-frequency furnace with Fe and Sm metals, rare earth is produced by arc furnace melting method using, for example - an iron alloy, or a Fe or Fe 2 O 3, It is produced by nitriding a rare earth-iron alloy obtained by a reduction diffusion method in which a raw material such as Sm 2 O 3 and Ca are mixed and heat-treated.
The powdered rare earth-iron-nitrogen magnet thus obtained is finely pulverized until the average particle size becomes about several μm to 5 μm after nitriding because the coercive force generation mechanism is a new creation type. Will be done.

上記溶解法による希土類−鉄合金製造では、原料粉末の1500℃以上での溶解、粉砕、組成均一化のための熱処理が必要で(特許文献3参照)、工程が極めて煩雑であるとともに、各工程間において一旦大気中に曝されるために酸化により不純物が生成し、湿式処理後に窒化を行うが湿式処理時に表面が酸化しているため窒化が均一に進行できなくなり、磁気特性のうち飽和磁化、保磁力、角形性が低下し、結果として最大エネルギー積が低くなってしまう。また、原料として必要とされる希土類金属が高価であるという問題がある。 In the production of rare earth-iron alloy by the above melting method, heat treatment for melting, crushing, and homogenizing the composition of the raw material powder at 1500 ° C. or higher is required (see Patent Document 3), the steps are extremely complicated, and each step is extremely complicated. Since it is once exposed to the atmosphere, impurities are generated by oxidation, and nitriding is performed after wet treatment, but nitriding cannot proceed uniformly because the surface is oxidized during wet treatment, and saturation magnetization among the magnetic properties, The coercive force and squareness are reduced, and as a result, the maximum energy product is lowered. In addition, there is a problem that the rare earth metal required as a raw material is expensive.

一方、希土類−鉄合金の製造に還元拡散法を採用すれば、安価な希土類酸化物粉末を原料として利用できるので溶解法に比べてコスト的に有利とされている。本出願人は、原料粉を還元拡散熱処理した合金を窒化し、得られたRFeNの粗粉末を微粉砕しながら表面を被覆することで、耐酸化性を高める提案をしている(特許文献4参照)。 On the other hand, if the reduction diffusion method is adopted for the production of the rare earth-iron alloy, an inexpensive rare earth oxide powder can be used as a raw material, which is advantageous in terms of cost as compared with the dissolution method. The applicant has proposed to improve the oxidation resistance by nitriding an alloy obtained by reducing and diffusing the raw material powder and coating the surface while finely pulverizing the obtained crude powder of RFeN (Patent Document 4). reference).

還元拡散法では、通常出発原料に数十μmの鉄粉末を用い、希土類金属もしくは希土類酸化物とアルカリ土類金属を混合の後、還元熱処理を行うことで希土類−鉄合金を作製するが、この方法では最終的な窒化処理の後、磁石合金粉末を数μmに機械粉砕する必要がある。しかし、この機械粉砕により当該RFeN磁石合金粉末の結晶では逆磁区の核となり得る破断面の突起や結晶歪みが発生し、磁気特性が低下してしまうことが課題となっていた。 In the reduction diffusion method, a rare earth-iron alloy is usually produced by using iron powder of several tens of μm as a starting material, mixing a rare earth metal or a rare earth oxide with an alkaline earth metal, and then performing a reduction heat treatment. In the method, after the final nitriding treatment, the magnet alloy powder needs to be mechanically ground to several μm. However, there has been a problem that the crystal of the RFeN magnet alloy powder is subjected to protrusions and crystal strains of fracture surface which can be the core of the reverse magnetic domain due to this mechanical pulverization, and the magnetic characteristics are deteriorated.

これに対し、出発原料として用いる粉末の粒子径を小さくすることにより、還元拡散法によって得られる希土類−鉄合金の粒子径を小さく抑え、粉砕せずに磁石粉末を得る方法(特許文献1〜3参照)が提案されている。 On the other hand, by reducing the particle size of the powder used as a starting material, the particle size of the rare earth-iron alloy obtained by the reduction diffusion method can be suppressed to a small size, and magnet powder can be obtained without pulverization (Patent Documents 1 to 3). See) has been proposed.

特許文献1では、平均粒径が5μm未満である希土類酸化物と、平均粒径が5μm未満である遷移金属酸化物を使用し、乾式混合を行い、2段階で還元することにより、平均粒径が5μm未満の希土類遷移金属合金粉末を得る製造方法が開示されている。 In Patent Document 1, a rare earth oxide having an average particle size of less than 5 μm and a transition metal oxide having an average particle size of less than 5 μm are used, dry-mixed, and reduced in two steps to obtain an average particle size. A production method for obtaining a rare earth transition metal alloy powder having a particle size of less than 5 μm is disclosed.

特許文献2には、平均粒子径0.1〜10μmの酸化鉄粒子粉末と、平均粒子径0.5〜5.0μmの酸化サマリウム粒子粉末を、湿式混合もしくは湿式粉砕混合を行い、水素ガス雰囲気下で還元反応を行い鉄粒子と酸化サマリウム粒子との混合物にし、鉄粒子と酸化サマリウム粒子との上記混合物に酸素含有雰囲気で安定化処理を行って、鉄粒子の粒子表面に酸化被膜を形成した後、カルシウムを混合して還元拡散反応を行う方法が提案され、上記鉄粒子表面に酸化被膜を形成することによって、その後の窒化反応を均一に進行させ、粒子間の焼結を抑制することが開示されている。 In Patent Document 2, iron oxide particle powder having an average particle diameter of 0.1 to 10 μm and samarium oxide particle powder having an average particle diameter of 0.5 to 5.0 μm are wet-mixed or wet-ground and mixed to create a hydrogen gas atmosphere. The reduction reaction was carried out underneath to obtain a mixture of iron particles and samarium oxide particles, and the above mixture of iron particles and samarium oxide particles was stabilized in an oxygen-containing atmosphere to form an oxide film on the particle surface of the iron particles. Later, a method of mixing calcium to carry out a reduction and diffusion reaction has been proposed, and by forming an oxide film on the surface of the iron particles, the subsequent nitrided reaction can proceed uniformly and the sintering between particles can be suppressed. It is disclosed.

また、特許文献3では、希土類元素及び遷移金属を酸等により溶解してイオン化し、溶液状態で完全に混合し、沈殿反応により沈殿させれば、沈殿物粒子内の構成元素の分布が均質で、平均粒径が0.05〜20μmで粒子形状が整い、粒度分布のシャープな沈殿物が得られるので、この沈殿物を焼成して、粒子内に希土類元素と遷移金属元素の微視的な混合がなされた金属酸化物を生成した後、還元拡散法を用いると、粒子形状が整った均質な合金粉末が得られることが開示されている。 Further, in Patent Document 3, if rare earth elements and transition metals are dissolved with an acid or the like, ionized, completely mixed in a solution state, and precipitated by a precipitation reaction, the distribution of constituent elements in the precipitate particles is uniform. The average particle size is 0.05 to 20 μm, the particle shape is uniform, and a precipitate with a sharp particle size distribution can be obtained. Therefore, this precipitate is calcined to microscopically reduce rare earth elements and transition metal elements in the particles. It is disclosed that a homogeneous alloy powder having a well-organized particle shape can be obtained by using a reduction diffusion method after producing a mixed metal oxide.

しかし、いずれの場合も、アルカリ土類金属による還元拡散熱処理時に局部的に非常に大きな発熱を生じ局部的粒成長を引き起こすことを抑制できないため、生成した粗大粒子による磁気特性低下を抑制するまでには至っていなかった。 However, in either case, it is not possible to suppress the occurrence of extremely large heat generation locally and local grain growth during the reduction diffusion heat treatment with alkaline earth metal, so that the deterioration of magnetic properties due to the generated coarse particles cannot be suppressed. Was not reached.

また、特許文献1に開示されている乾式混合方法では、原料の比重分離や装置内付着、凝集などによる混合不均一が起きやすいという課題や、特許文献2に開示されている鉄粒子と酸化サマリウム粒子との混合物に酸素含有雰囲気で安定化処理を行う方法では、鉄粒子の粒子表面に酸化被膜を形成した後、還元拡散反応を行うが、実施例を参照すると、平均粒径が3μm以上で中には4μmを超える大きなものもあり、窒化不足な粒子が存在するので磁気特性が十分とはいえないという課題、また特許文献3に開示されている晶析による共沈法では、希土類化合物が混合物中に微分散することによって水素による還元熱処理時に鉄希土類複合酸化物の生成が顕著に起こるなど、さらなる課題も指摘されている。 Further, the dry mixing method disclosed in Patent Document 1 has a problem that mixing non-uniformity is likely to occur due to specific gravity separation of raw materials, adhesion in an apparatus, aggregation, etc., and iron particles and samarium oxide disclosed in Patent Document 2. In the method of stabilizing the mixture with the particles in an oxygen-containing atmosphere, an oxide film is formed on the surface of the iron particles and then a reduction diffusion reaction is performed. However, referring to the examples, the average particle size is 3 μm or more. Some of them are large, exceeding 4 μm, and there is a problem that the magnetic properties are not sufficient because there are particles that are insufficiently nitrided. In addition, in the co-precipitation method by crystallization disclosed in Patent Document 3, rare earth compounds are used. Further problems have been pointed out, such as the formation of iron rare earth composite oxides remarkably during the reduction heat treatment with hydrogen due to the fine dispersion in the mixture.

以上のことから、従来の希土類−遷移金属合金の製造方法では、局部的粒成長を無くすことはできておらず、粉砕処理時に、当該磁石合金粉末の結晶で磁気特性を低下させる逆磁区の核となり得る破断面の突起や結晶歪みの発生を引き起こさないような、また、当該磁石合金粉末の局部的粒成長を引き起こさないような、希土類−鉄−窒素系磁石粉末の製造方法の確立が強く望まれていた。 From the above, the conventional method for producing a rare earth-transition metal alloy cannot eliminate the local grain growth, and the core of the reverse magnetic domain whose magnetic properties are deteriorated by the crystals of the magnet alloy powder during the pulverization treatment. There is a strong desire to establish a method for producing rare earth-iron-nitrogen magnet powder that does not cause the occurrence of possible fracture surface protrusions or crystal strain, and does not cause local grain growth of the magnet alloy powder. It was rare.

特開平11−310807号公報Japanese Unexamined Patent Publication No. 11-310807 特開2003−297660号公報JP-A-2003-297660 特許3698538号公報Japanese Patent No. 3698538 特許4135447号公報Japanese Patent No. 4135447

T.Iriyama IEEE TRANSACTIONS ON MAGNETICS,VOL.28,No.5(1992)T. Iriyama IEEE TRANSATIONS ON MAGNETICS, VOL. 28, No. 5 (1992)

本発明は、このような従来技術の状況に鑑み、粗大粒子の生成や、磁石結晶で磁気特性を低下させる逆磁区の核となり得る破断面の突起や結晶歪みの発生が抑制され、優れた磁気特性を有する磁石粉末が還元拡散法を用いて低コストで得られる希土類−鉄−窒素系磁石粉末の製造方法を提供することにある。 In view of such a situation of the prior art, the present invention suppresses the generation of coarse particles and the generation of protrusions and crystal strains on the fracture surface, which can be the core of the reverse magnetic domain that deteriorates the magnetic properties of the magnet crystal, and is excellent in magnetism. It is an object of the present invention to provide a method for producing a rare earth-iron-nitrogen magnet powder in which a magnet powder having characteristics can be obtained at low cost by using a reduction diffusion method.

本発明者等は、かかる従来の課題を解決するために、還元拡散法を用いた希土類−鉄−窒素系磁石粉末の製造について鋭意研究を重ねた結果、原料混合段階で、希土類原料粉末が過度に微粒であったり、希土類化合物が非常に微細な状態で分散していたりする場合、水素による還元熱処理時に鉄希土類複合酸化物RFeO(Rは希土類元素)が多量に生成してしまい、次工程のアルカリ土類金属による還元拡散処理を行う際に、大きなテルミット発熱を生じて磁石合金の局部的な粒成長を引き起こしていることを知見し、
希土類−鉄−窒素系磁石粉末を高性能化するためには、鉄化合物粉末と希土類化合物粉末を湿式混合処理する段階で、希土類化合物が微細な状態で分散した状態となることを抑制し、原料粉として、塩素イオン濃度の総和が0.1重量%以下となるような混合粉末を用いて、次工程の水素還元熱処理工程において、得られる還元混合物粉末中に希土類鉄複合酸化物RFeO(Rは希土類元素)が生成することを抑制すれば、還元拡散工程において、局部的な発熱の増大を抑え、希土類−鉄系合金の粒成長による粗大粒子の発生が抑制され、粗大粒子が非常に少ない希土類−鉄系母合金が得られるようになり、当該希土類−鉄系母合金を窒化処理すれば、優れた磁気特性を有する希土類−鉄−窒素系磁石粉末が得られることを見出し、本発明を完成するに至った。
As a result of intensive research on the production of rare earth-iron-nitrogen magnet powder using the reduction diffusion method in order to solve the conventional problems, the present inventors have conducted excessive research on the rare earth raw material powder at the raw material mixing stage. In the case of fine particles or rare earth compounds dispersed in a very fine state, a large amount of iron rare earth composite oxide RFeO 3 (R is a rare earth element) is generated during the reduction heat treatment with hydrogen, and the next step It was found that a large thermit heat generation was generated during the reduction and diffusion treatment with the alkaline earth metal of the above, causing the local grain growth of the magnet alloy.
In order to improve the performance of the rare earth-iron-nitrogen magnet powder, it is possible to prevent the rare earth compound from being dispersed in a fine state at the stage of wet mixing the iron compound powder and the rare earth compound powder, and to use the raw material. As the powder, a mixed powder having a total chlorine ion concentration of 0.1% by weight or less was used, and in the hydrogen reduction heat treatment step of the next step, the rare earth iron composite oxide RFeO 3 (R) was added to the obtained reduction mixture powder. If the formation of rare earth elements) is suppressed, the increase in local heat generation is suppressed in the reduction and diffusion step, the generation of coarse particles due to the grain growth of the rare earth-iron alloy is suppressed, and the number of coarse particles is very small. We have found that a rare earth-iron-based mother alloy can be obtained, and if the rare earth-iron-based mother alloy is nitrided, a rare earth-iron-nitrogen-based magnet powder having excellent magnetic properties can be obtained. It came to be completed.

すなわち、本発明の第1の発明によれば、還元拡散法により得られる希土類−鉄系母合
金粉末を窒化する工程を含む希土類−鉄−窒素系磁石粉末の製造方法であって、
磁石原料となる鉄化合物粉末と希土類化合物粉末を、水あるいは有機溶媒中で湿式混合処理し、処理液から磁石原料を濾別し、乾燥して、混合粉末を得る第一の工程と、
記混合粉末を、水素気流中で熱処理し、還元混合物粉末を得る第二の工程と、
記還元混合物粉末にアルカリ土類金属を添加し、混合して、不活性ガス雰囲気中で、900〜1180℃の温度で熱処理した後、得られた反応生成物を同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程と、
記希土類−鉄系母合金を含む反応生成物に、少なくともアンモニアと水素とを含有する混合ガスを供給し、前記混合ガス気流中で熱処理することにより窒化処理して生成した希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を得る第四の工程と、
次に得られた前記希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を水中に投入して湿式処理して崩壊させ、得られた希土類−鉄−窒素系磁石粗粉末を解砕して希土類−鉄−窒素系磁石粉末を得る第五の工程と、
を有し、
前記混合粉末は、水中に分散させたときに溶出する塩素イオン濃度の総和が、前記混合物粉末に対して0.1重量%以下であり、
前記還元混合物粉末中、希土類鉄複合酸化物RFeO (Rは希土類元素)の存在比率が6重量%以下である、希土類−鉄−窒素系磁石粉末の製造方法提供される。
That is, according to the first invention of the present invention, there is a method for producing a rare earth-iron-nitrogen magnet powder, which comprises a step of nitriding the rare earth-iron mother alloy powder obtained by the reduction diffusion method.
An iron compound powder and rare earth compound powder of the magnet raw material, wet mixed treated with water or an organic solvent and then filtered to remove the magnet material from processing liquid and dried, a first step of obtaining a mixed powder,
The pre-Symbol mixed powder was heat-treated in a hydrogen stream, a second step of obtaining a reduced mixture powder,
Was added before Symbol reduced mixture powder alkaline earth to the metal, and mixed in an inert gas atmosphere, after heat treatment at a temperature of from 900 to 1180 ° C., cooling the reaction product obtained in the same atmosphere The third step of obtaining a rare earth-iron base alloy by
Before SL earth - the reaction product comprising an iron-based matrix alloy, supplying a mixed gas containing at least ammonia and hydrogen were produced by nitriding treatment by heat treatment in the mixed gas flow rare earth - iron - nitrogen A fourth step of obtaining a nitriding product mass containing a system magnet coarse powder, and
Next, the obtained nitriding product mass containing the rare earth-iron-nitrogen magnet coarse powder was put into water and wet-treated to disintegrate, and the obtained rare earth-iron-nitrogen magnet crude powder was crushed. And the fifth step to obtain rare earth-iron-nitrogen magnet powder,
Have a,
The total concentration of chloride ions eluted in the mixed powder when dispersed in water is 0.1% by weight or less with respect to the mixture powder.
The reduced mixture powder (the R a rare earth element) rare earth iron composite oxide RFeO 3 or less the existence ratio is 6% by weight of rare earth - iron - method for producing nitrogen-based magnetic powder is provided.

また、本発明の第2の発明によれば、本発明の第1の発明において、希土類−鉄−窒素系磁石粉末の製造方法で得られた希土類−鉄−窒素系磁石粗粉末が、1次粒子が複数集まってブドウ状に焼結した2次粒子と、1次粒子とからなる混合粉末であり、
長軸粒子径が4μm以上である1次粒子の累積個数百分率が5%未満であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。
Further, according to the second invention of the present invention, in the first invention of the present invention, the rare earth-iron-nitrogen magnet coarse powder obtained by the method for producing a rare earth-iron-nitrogen magnet powder is primary. It is a mixed powder consisting of secondary particles obtained by gathering a plurality of particles and sintering them into a grape shape and primary particles.
Provided by a method for producing a rare earth-iron-nitrogen magnet powder, characterized in that the cumulative number percentage of primary particles having a major axis particle diameter of 4 μm or more is less than 5%.

また、本発明の第3の発明によれば、本発明の第1の発明において、希土類−鉄−窒素系磁石粉末がSm−Fe−Nであることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the third invention of the present invention, in the first invention of the present invention, the rare earth-iron-nitrogen magnet powder is Sm-Fe-N. Provided by a method of producing a powder.

また、本発明の第4の発明によれば、本発明の第1の発明において、Sm量が、磁石粉末全体に対して23.2〜23.6重量%であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the fourth invention of the present invention, in the first invention of the present invention, the amount of Sm is 23.2 to 23.6% by weight based on the total amount of the magnet powder. It is provided by a method for producing an iron-nitrogen magnet powder.

また、本発明の第5の発明によれば、本発明の第1の発明において、第一の工程の鉄化合物が、酸化鉄、オキシ水酸化鉄、水酸化鉄から選ばれる1種以上であり、希土類化合物が、希土類酸化物、希土類水酸化物から選ばれる1種以上であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the fifth invention of the present invention, in the first invention of the present invention, the iron compound in the first step is one or more selected from iron oxide, iron oxyhydroxide, and iron hydroxide. , The rare earth compound is provided by a method for producing a rare earth-iron-nitrogen magnet powder, which is characterized in that the rare earth compound is at least one selected from a rare earth oxide and a rare earth hydroxide.

また、本発明の第6の発明によれば、本発明の第1の発明において、第一の工程の湿式混合処理で、予め前記鉄化合物粉末、希土類化合物粉末のいずれかを水に分散させる試験を行い、水溶液が酸性を示す場合、溶媒に有機溶媒を用いるようにし、一方、水溶液がアルカリ性を示す場合は、溶媒に水、あるいは、有機溶媒を用いるようにすることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the sixth invention of the present invention, in the first invention of the present invention, a test in which either the iron compound powder or the rare earth compound powder is dispersed in water in advance by the wet mixing treatment of the first step. When the aqueous solution shows acidity, an organic solvent is used as the solvent, while when the aqueous solution shows alkalinity, water or an organic solvent is used as the solvent. -Provided by a method for producing nitrogen-based magnet powder.

また、本発明の第7の発明によれば、本発明の第1の発明において、第二の工程における熱処理の温度範囲が500〜800℃であること特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the seventh invention of the present invention, in the first invention of the present invention, the temperature range of the heat treatment in the second step is 500 to 800 ° C., which is a rare earth-iron-nitrogen magnet powder. Provided by the manufacturing method of.

また、本発明の第8の発明によれば、本発明の第1の発明において、第三の工程におけるアルカリ土類金属量が、還元されていない酸素量を還元するだけの量を1当量としたとき、1.1〜3.0当量であること特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the eighth invention of the present invention, in the first invention of the present invention, the amount of the alkaline earth metal in the third step is defined as one equivalent of the amount sufficient to reduce the amount of unreduced oxygen. The present invention is provided by a method for producing a rare earth-iron-nitrogen magnet powder, which is characterized by having 1.1 to 3.0 equivalents.

さらに、本発明の第9の発明によれば、本発明の第1の発明において、第五の工程においてブドウ状の2次粒子を砕く粉砕強度で解砕を行い、1次粒子塊は粉砕しないことを特徴とする希土類−鉄−窒素系磁石粉末の製造方法により提供される。 Further, according to the ninth invention of the present invention, in the first invention of the present invention, in the fifth step, the grape-like secondary particles are crushed with a crushing strength to crush the grape-like secondary particles, and the primary particle mass is not crushed. The present invention is provided by a method for producing a rare earth-iron-nitrogen magnet powder.

本発明の希土類−鉄−窒素系磁石粉末の製造方法によれば、原料粉に含まれうる塩素を特定の塩素イオン濃度以下となるように規制することで、水素還元時に生成される希土類鉄複合酸化物RFeO(Rは希土類元素)の存在率を大幅に減らすことを可能とし、還元拡散処理後の粒成長を抑制したことにより、粗大粒子の粉砕強度を強める必要が無くなることから、逆磁区の核の発生および結晶歪みの発生を抑制することが可能となり、高性能な希土類−鉄−窒素系磁石粉末を製造することができ、製造コストも安価になることから、その工業的価値は極めて大きい。 According to the method for producing a rare earth-iron-nitrogen magnet powder of the present invention, the rare earth iron composite produced during hydrogen reduction is regulated so that the chlorine that can be contained in the raw material powder is equal to or less than a specific chlorine ion concentration. Since it is possible to significantly reduce the abundance of oxide RFeO 3 (R is a rare earth element) and suppress the grain growth after the reduction and diffusion treatment, it is not necessary to increase the crushing strength of coarse particles. It is possible to suppress the generation of nuclei and crystal strain, and it is possible to produce high-performance rare earth-iron-nitrogen magnet powder, and the production cost is low, so its industrial value is extremely high. large.

本発明(実施例1)の製造方法で作製された希土類−鉄−窒素系磁石粉末の、ボールミルによる解砕後の磁石粉末のSEM像(左側:粒子表面観察、右側:反射電子像による粒子断面観察)を示す写真である。SEM image of rare earth-iron-nitrogen magnet powder produced by the production method of the present invention (Example 1) after crushing with a ball mill (left side: particle surface observation, right side: particle cross section by reflected electron image) It is a photograph showing observation).

従来(比較例1)の製造方法で作製された希土類−鉄−窒素系磁石粉末の、ボールミルによる解砕後の磁石粉末のSEM像(左側:粒子表面観察、右側:反射電子像による粒子断面観察)を示す写真である。SEM image of rare earth-iron-nitrogen magnet powder produced by the conventional (Comparative Example 1) magnet powder after crushing with a ball mill (left side: particle surface observation, right side: particle cross-sectional observation by reflected electron image) ) Is a photograph showing.

従来(比較例4)の製造方法で作製された希土類−鉄−窒素系磁石粉末の、ボールミルによる解砕後の磁石粉末のSEM像(左側:粒子表面観察、右側:反射電子像による粒子断面観察)を示す写真である。SEM image of rare earth-iron-nitrogen magnet powder produced by the conventional (Comparative Example 4) magnet powder after crushing with a ball mill (left side: particle surface observation, right side: particle cross-sectional observation by reflected electron image) ) Is a photograph showing.

以下、本発明の希土類−鉄−窒素系磁石粉末の製造方法について、詳しく説明する。 Hereinafter, the method for producing the rare earth-iron-nitrogen magnet powder of the present invention will be described in detail.

本発明は、還元拡散法により得られる希土類−鉄系母合金粉末を窒化する希土類−鉄−窒素系磁石粉末の製造方法であって、
鉄化合物粉末と希土類化合物粉末を、水あるいは有機溶媒中で湿式混合処理し、ろ過後乾燥して、当該混合粉末中に含有される塩素イオン濃度の総和が0.1重量%以下となる混合粉末を得る第一の工程と、
得られた前記混合粉末を、水素気流中で熱処理して、得られる還元混合物粉末中に生成される希土類鉄複合酸化物RFeO(Rは希土類元素)の生成量を6重量%以下とする第二の工程と、
得られた前記還元混合物粉末にアルカリ土類金属を添加し、混合して、不活性ガス雰囲気中で、900〜1180℃の温度で熱処理した後、得られた反応生成物を同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程と、
次に、得られた前記希土類−鉄系母合金を含む反応生成物に、少なくともアンモニアと水素とを含有する混合ガスを供給し、前記混合ガス気流中で熱処理することにより窒化処理して生成した希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を得る第四の工程と、
次に得られた前記希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を水中に投入して湿式処理して崩壊させ、得られた希土類−鉄−窒素系磁石粗粉末を解砕して希土類−鉄−窒素系磁石粉末を得る第五の工程と、を備えている。
The present invention is a method for producing a rare earth-iron-nitrogen magnet powder that nitrides a rare earth-iron mother alloy powder obtained by a reduction diffusion method.
A mixed powder in which the iron compound powder and the rare earth compound powder are wet-mixed in water or an organic solvent, filtered and dried so that the total concentration of chloride ions contained in the mixed powder is 0.1% by weight or less. The first step to get
The obtained mixed powder is heat-treated in a hydrogen stream so that the amount of rare earth iron composite oxide RFeO 3 (R is a rare earth element) produced in the obtained reduction mixture powder is 6% by weight or less. The second step and
An alkaline earth metal is added to the obtained reduction mixture powder, mixed, and heat-treated at a temperature of 900 to 1180 ° C. in an inert gas atmosphere, and then the obtained reaction product is cooled in the same atmosphere. The third step of obtaining a rare earth-iron-based mother alloy by
Next, a mixed gas containing at least ammonia and hydrogen was supplied to the obtained reaction product containing the rare earth-iron base alloy, and heat treatment was performed in the mixed gas stream to generate nitriding treatment. The fourth step of obtaining a nitriding product mass containing a rare earth-iron-nitrogen magnet coarse powder, and
Next, the obtained nitriding product mass containing the rare earth-iron-nitrogen magnet coarse powder was put into water and wet-treated to disintegrate, and the obtained rare earth-iron-nitrogen magnet crude powder was crushed. It is provided with a fifth step of obtaining a rare earth-iron-nitrogen magnet powder.

以下、各工程ごとに詳細に説明する。 Hereinafter, each step will be described in detail.

1.希土類−鉄母合金の製造方法
(1−a)第一の工程:原料粉末の混合
まず、磁石原料となる鉄化合物粉末と希土類化合物粉末を、水あるいは有機溶媒中で湿式混合処理し、ろ過後に乾燥する。
1. 1. Method for Producing Rare Earth-Iron Mother Alloy (1-a) First Step: Mixing Raw Material Powder First, the iron compound powder and rare earth compound powder, which are the raw materials for magnets, are wet-mixed in water or an organic solvent, and after filtration. dry.

本発明では、水中に酸化物粉末を分散させた後、遠心分離し、その上澄み液を使って、溶出塩素濃度を分析し、塩素イオン濃度の総和が0.1重量%以下となる混合粉末を用いるようにする。塩素イオン濃度の測定方法については、特に限定されるわけではないが、陰イオンクロマトグラフィによることができる。 In the present invention, the oxide powder is dispersed in water, centrifuged, and the supernatant is used to analyze the eluted chlorine concentration to obtain a mixed powder having a total chlorine ion concentration of 0.1% by weight or less. Try to use. The method for measuring the chlorine ion concentration is not particularly limited, but anion chromatography can be used.

鉄化合物粉末としては、酸化鉄;Fe、FeO、Fe、オキシ水酸化鉄;FeOOH、水酸化鉄(II);Fe(OH)、水酸化鉄(III);Fe(OH)が好ましく使用できる。また、塩化物出発の酸化物等を化合物として用いることもできるが、塩素が含まれるために、混合・乾燥まで行った後に、酸素含有雰囲気、例えば大気中で800℃以上の温度で焙焼することが望ましい。 The iron compound powder includes iron oxide; Fe 2 O 3 , FeO, Fe 3 O 4 , iron oxyhydroxide; FeOOH, iron (II) hydroxide; Fe (OH) 2 , iron (III) hydroxide; Fe ( OH) 3 can be preferably used. Further, an oxide starting from chloride can be used as a compound, but since it contains chlorine, it is roasted in an oxygen-containing atmosphere, for example, at a temperature of 800 ° C. or higher in the atmosphere after mixing and drying. Is desirable.

これらは、後に生成される希土類−鉄母合金の粒子径を小さくするため、鉄化合物粉末の粒子径は、平均粒子径で3μm以下が好ましく、1μm以下がより好ましい。これは、平均粒子径が3μmを超えると後に生成される希土類−鉄母合金の粒子径が鉄化合物粉末の粒子径以上となるため、大きな粒子ができやすく保磁力が低下するほか、窒化処理の際に粒子内の窒化不足が起きる要因となるためである。 In order to reduce the particle size of the rare earth-iron mother alloy produced later, the particle size of the iron compound powder is preferably 3 μm or less, and more preferably 1 μm or less in terms of average particle size. This is because when the average particle size exceeds 3 μm, the particle size of the rare earth-iron mother alloy produced later becomes larger than the particle size of the iron compound powder, so that large particles are likely to be formed and the coercive force is lowered, and the nitriding process is performed. This is because it causes insufficient nitriding in the particles.

希土類化合物粉末としては、特に制限されないが、Sm、Gd、Tb、Ceから選ばれる少なくとも1種類の元素、あるいは、さらにPr、Nd、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも1種類の元素が含まれる、希土類酸化物、希土類水酸化物から選ばれる1種以上であるものが好ましい。中でもSmが含まれる希土類化合物は、本発明の効果を顕著に発揮させることが可能になるので特に好ましい。
Smが含まれる場合、高い保磁力を得るためにはSmを希土類元素全体の60重量%以上、好ましくは90重量%以上にすることが好ましい。化合物の形態としては酸化物、水酸化物が好ましく、粒子径については固相内拡散がしやすく、不均一な拡散が起こらないように鉄化合物の粒子径より小さいことが好ましい。ただし0.1μm未満の微粉末を使用する場合は、鉄希土類複合酸化物を多く生成させる要因となるので好ましくない。
The rare earth compound powder is not particularly limited, but at least one element selected from Sm, Gd, Tb, and Ce, or at least one element selected from Pr, Nd, Dy, Ho, Er, Tm, and Yb. It is preferably one or more selected from rare earth oxides and rare earth hydroxides containing elements. Among them, a rare earth compound containing Sm is particularly preferable because it enables the effect of the present invention to be remarkably exhibited.
When Sm is contained, it is preferable that Sm is 60% by weight or more, preferably 90% by weight or more of the total rare earth elements in order to obtain a high coercive force. As the form of the compound, oxides and hydroxides are preferable, and the particle size is preferably smaller than the particle size of the iron compound so that diffusion in the solid phase is easy and non-uniform diffusion does not occur. However, when a fine powder of less than 0.1 μm is used, it is not preferable because it causes a large amount of iron rare earth composite oxide to be produced.

混合方法としては、乾式混合、湿式混合があるが、乾式混合は細かい粉を扱うため静電気や大気中の水分などの影響によって粉体同士が凝集を起こしたり混合装置内壁に付着したりしてしまうなど、均一な混合が難しいため、湿式混合が好ましい。また、その他の方法としては、上記したように晶析による鉄と希土類の共沈粉末を製造する方法もあるが、希土類塩が非常に細かい状態で微分散しているため、水素による還元熱処理時に鉄希土類複合酸化物を多量に生成する問題が起こるため、好ましくない。 There are two types of mixing methods: dry mixing and wet mixing. Since dry mixing handles fine powder, the powders may agglomerate or adhere to the inner wall of the mixing device due to the effects of static electricity and moisture in the atmosphere. Wet mixing is preferable because uniform mixing is difficult. As another method, there is also a method of producing a coprecipitated powder of iron and rare earths by crystallization as described above, but since the rare earth salts are finely dispersed in a very fine state, during the reduction heat treatment with hydrogen. This is not preferable because it causes a problem of producing a large amount of iron rare earth composite oxide.

湿式混合において、希土類化合物粉末の粒子径が鉄化合物粉末の粒子径より大きい場合などは、ボールミル混合やビーズミル混合といった媒体を利用して希土類化合物粉末の粒子径を鉄化合物粉末よりも小さくする混合方法を用いることが好ましい。また、希土類化合物粉末が鉄化合物粉末の粒子径より小さい場合は、攪拌羽根を利用した攪拌混合や、粉砕されにくい大きさのボールや比重の軽いボールを使用したボールミル混合などの方法にて混合することが好ましい。 In wet mixing, when the particle size of the rare earth compound powder is larger than the particle size of the iron compound powder, a mixing method in which the particle size of the rare earth compound powder is made smaller than that of the iron compound powder by using a medium such as ball mill mixing or bead mill mixing. It is preferable to use. When the rare earth compound powder is smaller than the particle size of the iron compound powder, it is mixed by a method such as stirring and mixing using a stirring blade, or ball mill mixing using a ball having a size that is difficult to be crushed or a ball having a light specific gravity. Is preferable.

このとき、予め混合に用いる鉄化合物、希土類化合物のいずれかを水に分散させて、水溶液のpHを確認しておくことが望ましい。水溶液が酸性を示す場合は、溶媒に有機溶媒を用いることが好ましい。有機溶媒としては、エチルアルコール、イソプロピルアルコール、n−ブタノールなどのアルコール、もしくはジメチルエーテル、エチルメチルエーテル、ジエチルエーテル、エチルメチルケトン、ジエチルケトンなどが好ましいが、エタノールもしくはイソプロピルアルコールがより好ましく、かつ有機溶媒中に水分を含まないものがより好ましい。 At this time, it is desirable to disperse either the iron compound or the rare earth compound used for mixing in water in advance and check the pH of the aqueous solution. When the aqueous solution is acidic, it is preferable to use an organic solvent as the solvent. As the organic solvent, alcohols such as ethyl alcohol, isopropyl alcohol and n-butanol, or dimethyl ether, ethyl methyl ether, diethyl ether, ethyl methyl ketone and diethyl ketone are preferable, but ethanol or isopropyl alcohol is more preferable and the organic solvent is used. It is more preferable that the solvent does not contain water.

一方、鉄化合物、希土類化合物のいずれかを水に分散させた水溶液がアルカリ性を示す場合は、溶媒に水、あるいは、有機溶媒を用いることができる。 On the other hand, when an aqueous solution in which either an iron compound or a rare earth compound is dispersed in water exhibits alkalinity, water or an organic solvent can be used as the solvent.

原料化合物を水に分散させたときに分散溶液が酸性を示す場合に有機溶媒を用いるのは、溶媒が水の場合、例えば、希土類化合物として希土類酸化物を用いた場合、希土類酸化物の一部が水中に溶解し、その後、再析出し、微細な希土類水酸化物となって生成し、この希土類水酸化物が存在することにより、次工程の水素還元時に鉄希土類複合酸化物RFeO(Rは希土類元素)が形成されるためである。さらには、この鉄希土類複合酸化物RFeO(Rは希土類元素)が存在することにより、アルカリ土類金属との還元熱処理工程で大きな発熱を生じて最終的に保磁力を低下させてしまうか、もしくは、生成する希土類−鉄母合金粒子が局部的に粒成長を引き起こして、窒化処理時に粒子内部が窒化不足に陥る恐れがあるからである。 When the dispersion solution shows acidity when the raw material compound is dispersed in water, the organic solvent is used when the solvent is water, for example, when a rare earth oxide is used as the rare earth compound, a part of the rare earth oxide is used. Dissolves in water and then reprecipitates to form fine rare earth hydroxides, and the presence of these rare earth hydroxides causes the iron rare earth composite oxide RFeO 3 (R) during hydrogen reduction in the next step. This is because rare earth elements) are formed. Furthermore, the presence of this iron rare earth composite oxide RFeO 3 (R is a rare earth element) causes a large amount of heat to be generated in the reduction heat treatment step with the alkaline earth metal, and finally the coercive force is lowered. Alternatively, the generated rare earth-iron mother alloy particles may cause grain growth locally, resulting in insufficient nitriding inside the particles during the nitriding treatment.

湿式混合したスラリーは、次にろ過し、乾燥させるが、乾燥方法は定置乾燥、流動乾燥、気流乾燥、攪拌乾燥、真空乾燥、振動乾燥等どの方法を用いても構わない。 The wet-mixed slurry is then filtered and dried, and the drying method may be any method such as stationary drying, fluid drying, air flow drying, stirring drying, vacuum drying, and vibration drying.

得られた鉄化合物および希土類化合物からなる混合粉末においては、水に分散させたときに、塩素イオン濃度の総和が0.1重量%以下であることを確認して用いることが必要である。これは、塩素イオン濃度の総和が0.1重量%を超える混合粉末を用いると、次の水素による還元熱処理中に発生する水蒸気中に塩化水素として溶け込んだ酸性水蒸気が希土類化合物を攻撃し、溶解、加熱による分解によって鉄化合物もしくはすでに還元された鉄粉末中に希土類化合物が微分散して、鉄希土類複合酸化物RFeO(Rは希土類元素)の生成を促す方向へ急激に進むためである。 In the obtained mixed powder composed of an iron compound and a rare earth compound, it is necessary to confirm that the total chloride ion concentration is 0.1% by weight or less when dispersed in water before use. This is because when a mixed powder having a total chlorine ion concentration of more than 0.1% by weight is used, the acidic water vapor dissolved as hydrogen chloride in the water vapor generated during the next reduction heat treatment with hydrogen attacks the rare earth compound and dissolves it. This is because the rare earth compound is finely dispersed in the iron compound or the iron powder that has already been reduced by decomposition by heating, and rapidly proceeds in the direction of promoting the formation of the iron rare earth composite oxide RFeO 3 (R is a rare earth element).

混合粉末は、塩素イオン濃度の総和が0.1重量%以下でなければならないために、原料粉の鉄化合物、希土類化合物として塩化物は用いず、酸化物等を用いる場合でも、その原材料として塩化物出発のものは使用しないことが好ましい。なお、塩化物出発の酸化物等を化合物として用いる場合には、前記の通り、混合・乾燥まで行った後に、酸素含有雰囲気、例えば大気中で800℃以上の温度で焙焼することにより混合粉末の塩素イオン濃度を低下させることが好ましい。 Since the total chlorine ion concentration of the mixed powder must be 0.1% by weight or less, chloride is not used as the iron compound or rare earth compound of the raw material powder, and even when oxides or the like are used, chloride is used as the raw material. It is preferable not to use the starting material. When an oxide starting from chloride is used as a compound, as described above, after mixing and drying, the mixed powder is roasted in an oxygen-containing atmosphere, for example, at a temperature of 800 ° C. or higher in the air. It is preferable to reduce the chlorine ion concentration of.

(1−b)第二の工程:水素還元
第二の工程は、第一の工程で得られた前記混合粉末を、水素気流中で熱処理して、得られる還元混合物粉末中の希土類鉄複合酸化物RFeO(Rは希土類元素)の生成量を6重量%以下とする工程である。
(1-b) Second Step: Hydrogen Reduction In the second step, the mixed powder obtained in the first step is heat-treated in a hydrogen stream to obtain a rare earth iron composite oxidation in the reduced mixture powder. This is a step of reducing the amount of product RFeO 3 (R is a rare earth element) to 6% by weight or less.

水素還元は、(1−a)で作製した混合粉末を、水素気流中にて熱処理することで行われる。熱処理温度範囲としては500〜800℃が好ましい。
これは、500℃を下回ると、還元が不十分となり酸化鉄が残りやすくなるほか、還元後の結晶が不安定なため、大気に触れるとすぐに酸化して再び酸化鉄に戻ってしまうためである。熱処理温度が800℃を超えると、還元はされるが高温のため出発原料の粒子が粒成長して粒子径が大きくなってしまい、次工程の希土類−鉄母合金を得る時点では保磁力を低下させるほどまで粒子径が大きくなるためである。熱処理温度範囲は550〜700℃がより好ましい。熱処理時間は特に限定されないが、例えば1〜5時間とすることができる。また、水素流量も特に限定されないが、例えば1〜100ml/(min・g)とすることができる。
Hydrogen reduction is performed by heat-treating the mixed powder prepared in (1-a) in a hydrogen stream. The heat treatment temperature range is preferably 500 to 800 ° C.
This is because when the temperature drops below 500 ° C, the reduction is insufficient and iron oxide tends to remain, and the crystals after reduction are unstable, so they oxidize immediately when they come into contact with the atmosphere and return to iron oxide again. is there. If the heat treatment temperature exceeds 800 ° C, the particles are reduced but the high temperature causes the particles of the starting material to grow and increase the particle size, and the coercive force decreases when the rare earth-iron matrix alloy is obtained in the next process. This is because the particle size becomes large enough to make it. The heat treatment temperature range is more preferably 550 to 700 ° C. The heat treatment time is not particularly limited, but can be, for example, 1 to 5 hours. The hydrogen flow rate is also not particularly limited, but can be, for example, 1 to 100 ml / (min · g).

水素還元装置としては、定置式のマッフル炉、昇降炉、回転式のキルン、連続製造可能なプッシャー炉、ローラーハースキルンなどがあるが、回転式のキルンのようにガスの反応効率の良い装置が、短時間で還元が終了するため好ましい。定置式のマッフル炉、昇降炉でも時間をかければ水素還元は可能であるが、より好ましくは、混合粉末からの水蒸気の排出、水素ガスの浸透が遅滞なく行われるように匣鉢内の混合粉末の層厚を薄くするとか、導入ガス量を多くするとか、容器をメッシュ式にするなど様々な方法で反応効率を上げることが望ましい。 Hydrogen reduction devices include stationary muffle furnaces, elevating furnaces, rotary kilns, pusher furnaces capable of continuous production, roller harsher kilns, etc., but devices with good gas reaction efficiency such as rotary kilns are available. , It is preferable because the reduction is completed in a short time. Hydrogen reduction is possible even in a stationary muffle furnace or an elevating furnace if it takes time, but more preferably, the mixed powder in the sack is used so that the discharge of steam from the mixed powder and the permeation of hydrogen gas can be performed without delay. It is desirable to increase the reaction efficiency by various methods such as thinning the layer thickness, increasing the amount of introduced gas, and making the container a mesh type.

上記方法により水素還元を行うことで、得られる還元混合粉末中には、希土類鉄複合酸化物RFeO(Rは希土類元素)の量が少なくなる。 By performing hydrogen reduction by the above method, the amount of the rare earth iron composite oxide RFeO 3 (R is a rare earth element) is reduced in the obtained reduction mixed powder.

ただ希土類化合物が0.1μm未満の微粉末であったり、原料化合物混合時の溶媒に希土類化合物が溶解して微細な希土類化合物となり、鉄化合物表面に存在したりするなどの状態から、水素還元時、鉄希土類複合酸化物RFeO(Rは希土類元素)の生成が促進され、鉄粉末、希土類酸化物の他に鉄希土類複合酸化物RFeO(Rは希土類元素)が多く含まれる場合がある。しかし、この鉄希土類複合酸化物RFeO(Rは希土類元素)の存在比率は6重量%以下でなければならない。これは、希土類鉄複合酸化物RFeO(Rは希土類元素)の存在比率が6重量%を超えると、次の還元拡散工程において局部的な粒成長が起きてしまうからである。より好ましいのは、鉄希土類複合酸化物RFeO(Rは希土類元素)の存在比率が5.5重量%以下となることである。 However, when the rare earth compound is a fine powder of less than 0.1 μm, or when the rare earth compound is dissolved in the solvent when the raw material compound is mixed to become a fine rare earth compound, which exists on the surface of the iron compound, when hydrogen is reduced. , Iron rare earth compound oxide RFeO 3 (R is a rare earth element) is promoted, and in addition to iron powder and rare earth oxide, iron rare earth compound oxide RFeO 3 (R is a rare earth element) may be contained in a large amount. However, the abundance ratio of this iron rare earth composite oxide RFeO 3 (R is a rare earth element) must be 6% by weight or less. This is because if the abundance ratio of the rare earth iron composite oxide RFeO 3 (R is a rare earth element) exceeds 6% by weight, local grain growth will occur in the next reduction / diffusion step. More preferably, the abundance ratio of the iron rare earth composite oxide RFeO 3 (R is a rare earth element) is 5.5% by weight or less.

(1−c)第三の工程:還元拡散、および、反応生成物の冷却
次に、第三の工程では、第二の工程で得られた上記還元混合物粉末にアルカリ土類金属を添加し、混合して、不活性ガス雰囲気中で、900〜1180℃の温度で熱処理した後、得られた反応生成物を同雰囲気中で冷却することによりThZn17型結晶構造を有する希土類−鉄系母合金を得る。アルカリ土類金属量は、還元されていない酸素量を還元するだけの量を1当量としたとき、1.1〜3.0当量であることが好ましい。
(1-c) Third step: Reduction diffusion and cooling of reaction product Next, in the third step, an alkaline earth metal was added to the reduction mixture powder obtained in the second step. The mixture is mixed and heat-treated at a temperature of 900 to 1180 ° C. in an inert gas atmosphere, and then the obtained reaction product is cooled in the same atmosphere to obtain a rare earth-iron system having a Th 2 Zn 17- type crystal structure. Obtain a mother alloy. The amount of alkaline earth metal is preferably 1.1 to 3.0 equivalents, where 1 equivalent is an amount that only reduces the amount of unreduced oxygen.

還元拡散法は、前記したように希土類酸化物粉末と鉄粉末、Caなどのアルカリ土類金属の還元剤との混合物を不活性ガス雰囲気中、例えば900〜1180℃で加熱した後、反応生成物を湿式処理して副生したCaOおよび残留Caなどの還元剤成分を除去することによって、直接希土類−鉄系母合金粉末を得る方法である。 In the reduction diffusion method, as described above, a mixture of a rare earth oxide powder and an iron powder, a reducing agent for an alkaline earth metal such as Ca is heated in an inert gas atmosphere, for example, at 900 to 1180 ° C., and then a reaction product is produced. Is a method for directly obtaining a rare earth-iron-based mother alloy powder by wet-treating the mixture to remove the reducing agent components such as CaO and residual Ca produced as a by-product.

本発明では、鉄粉末と希土類酸化物粉末、さらには希土類鉄複合酸化物が存在する還元混合物粉末と還元剤とを混合して、反応容器に投入し、900〜1180℃の温度で熱処理することによって、希土類酸化物と他に残る酸化物原料等を還元するとともに、還元された希土類元素を鉄粉末中に拡散させてThZn17型結晶構造を有する希土類−鉄母合金を生成させる。 In the present invention, iron powder and rare earth oxide powder, and further, a reduction mixture powder in which a rare earth iron composite oxide is present and a reducing agent are mixed, put into a reaction vessel, and heat-treated at a temperature of 900 to 1180 ° C. The rare earth oxide and other remaining oxide raw materials are reduced, and the reduced rare earth element is diffused into the iron powder to form a rare earth-iron mother alloy having a Th 2 Zn 17- type crystal structure.

ここで、前工程で得られた還元混合物中の各原料化合物粉末は、それぞれの粉体特性によって分離しないように還元剤とともに、均一に混合する必要がある。混合方法としては、例えばリボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、ハイスピードミキサー、振動ミルなどが使用できる。 Here, each raw material compound powder in the reduction mixture obtained in the previous step needs to be uniformly mixed together with the reducing agent so as not to be separated according to the respective powder characteristics. As the mixing method, for example, a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, a Nauter mixer, a Henschel mixer, a high-speed mixer, a vibration mill and the like can be used.

還元剤としては、アルカリ土類金属が使用でき、取り扱いの安全性とコストの点で、目開き4.00mm以下に分級した粒状金属カルシウムもしくは金属マグネシウムが好ましい。上記還元剤は上記還元混合物粉末と混合するか、金属蒸気が還元混合物粉末と接触しうるように分離しておく。還元剤と還元混合物中粉末とを混合して還元拡散を行えば、反応生成物が多孔質となり、引き続き行われる窒化処理を効率的に行うことができるので好ましい。 As the reducing agent, an alkaline earth metal can be used, and from the viewpoint of handling safety and cost, granular metallic calcium or metallic magnesium classified into a mesh size of 4.00 mm or less is preferable. The reducing agent is mixed with the reducing mixture powder or separated so that the metal vapor can come into contact with the reducing mixture powder. It is preferable to mix the reducing agent and the powder in the reduction mixture and perform reduction diffusion because the reaction product becomes porous and the subsequent nitriding treatment can be efficiently performed.

上記還元混合物粉末や還元剤とともに、後の湿式処理工程において反応生成物の崩壊を促進させる添加物を混合することも効果的である。崩壊促進剤としては、塩化カルシウムなどのアルカリ土類金属の塩や酸化物を用いることができ、還元混合物粉末などと同時に均一に混合する。ここで不活性ガスは、アルゴン、ヘリウムから選ばれた1種類以上が用いられる。 It is also effective to mix the reducing mixture powder and the reducing agent with an additive that promotes the disintegration of the reaction product in the subsequent wet treatment step. As the disintegration accelerator, salts or oxides of alkaline earth metals such as calcium chloride can be used, and they are uniformly mixed at the same time as the reduction mixture powder. Here, as the inert gas, one or more kinds selected from argon and helium are used.

還元拡散を行う時の熱処理温度は900〜1180℃の範囲とすることが必要である。900℃未満では、拡散に要する時間が非常に長くなり、生産性に欠けるとともに、鉄粉末に対して希土類元素の拡散が不均一となり、次工程の窒化処理で得られる希土類−鉄−窒素系磁石粉末の保磁力や角形性が低下するため好ましくない。また、1180℃を超えると、生成する希土類−鉄母合金が粒成長を起こすため、次工程の窒化処理で均一に窒化することが困難になり磁石粉末の飽和磁化と角形性、保磁力が低下する場合があり、好ましくない。また、希土類元素の蒸発量も非常に多くなり、これを補うために過剰に希土類元素が必要となり高コストにもなる。熱処理温度が900〜1180℃ではこのような現象が起きないほか、1次粒子が複数集まってブドウ状に焼結した2次粒子と、1次粒子との混合粉末となるが、粒子同士の焼結は弱く、窒化処理後の解砕のときに結晶歪みを起こしにくいという利点もある。 The heat treatment temperature at the time of reduction diffusion needs to be in the range of 900 to 1180 ° C. Below 900 ° C, the time required for diffusion becomes very long, productivity is lacking, and the diffusion of rare earth elements becomes non-uniform with respect to iron powder, and the rare earth-iron-nitrogen magnet obtained in the next step of nitriding treatment. It is not preferable because the coercive force and squareness of the powder are reduced. Further, when the temperature exceeds 1180 ° C., the rare earth-iron mother alloy produced undergoes grain growth, which makes it difficult to uniformly nitrid in the nitriding process in the next step, and the saturation magnetization, squareness, and coercive force of the magnet powder decrease. This is not preferable. In addition, the amount of evaporation of rare earth elements becomes very large, and an excessive amount of rare earth elements is required to compensate for this, resulting in high cost. Such a phenomenon does not occur when the heat treatment temperature is 900 to 1180 ° C. In addition, a plurality of primary particles are gathered to form a mixed powder of secondary particles sintered into a grape shape and primary particles, but the particles are baked together. The formation is weak, and there is an advantage that crystal strain is unlikely to occur during crushing after the nitriding treatment.

ここで、還元拡散反応で得られる反応生成物は、例えば、還元剤として金属カルシウムを用いた場合には、ThZn17型結晶構造を有する希土類−鉄母合金と酸化カルシウム、未反応の余剰の金属カルシウムなどからなる塊状の混合物である。さらに粒状金属カルシウムを原料粉末に混合して還元拡散反応させた場合には、多孔質の塊状混合物となっている。 Here, the reaction product obtained by the reduction diffusion reaction is, for example, when metallic calcium is used as the reducing agent, a rare earth-iron mother alloy having a Th 2 Zn 17- type crystal structure and calcium oxide, and an unreacted surplus. It is a massive mixture consisting of metallic calcium and the like. Further, when granular metallic calcium is mixed with the raw material powder and subjected to a reduction diffusion reaction, it becomes a porous massive mixture.

これに対して、前記特許文献3で採用されている、希土類元素及び遷移金属を酸等により溶解してイオン化し、溶液状態で完全に混合し、沈殿反応により沈殿させ、粒度分布のシャープな沈殿物を得て、この沈殿物を焼成して、粒子内に希土類元素と遷移金属元素の微視的な混合がなされた金属酸化物を生成し、その後還元拡散法を用いて、粒子形状が整った均質な合金粉末を得る方法では、希土類原料として希土類金属が用いられるため、還元拡散法で用いられる希土類酸化物原料に比べて高価となる。特に、希土類元素が、優れた磁気特性をもたらすSmの場合によるコスト差は顕著である。また粒度調整で発生する不要な粉末は、製品収率を低下させ、粉末コストをさらに引き上げてしまう。また沈殿物から焼成、還元拡散する方法では、得られた合金中に存在するα−Fe相などを無くすために均質化熱処理工程が必要であり、さらに窒素を導入する前に均質化熱処理した合金を粗粉砕し、粒度調整する工程が必要となるなど粉末コストをさらに引き上げてしまうため好ましくない。 On the other hand, the rare earth element and the transition metal used in Patent Document 3 are dissolved with an acid or the like to be ionized, completely mixed in a solution state, precipitated by a precipitation reaction, and the particle size distribution is sharp. A substance is obtained, and this precipitate is calcined to form a metal oxide in which a rare earth element and a transition metal element are microscopically mixed in the particles, and then the particle shape is adjusted by using a reduction diffusion method. In the method of obtaining a homogeneous alloy powder, a rare earth metal is used as a rare earth raw material, so that the method is more expensive than the rare earth oxide raw material used in the reduction diffusion method. In particular, the cost difference depending on the case where the rare earth element is Sm which brings about excellent magnetic properties is remarkable. In addition, unnecessary powder generated by particle size adjustment lowers the product yield and further raises the powder cost. Further, in the method of firing and reducing and diffusing from the precipitate, a homogenization heat treatment step is required to eliminate the α-Fe phase and the like existing in the obtained alloy, and the alloy is homogenized and heat-treated before introducing nitrogen. It is not preferable because the powder cost is further increased, for example, a step of coarsely pulverizing and adjusting the particle size is required.

第三の工程では、還元拡散反応後の反応生成物に対して、雰囲気ガスを不活性ガスとしたまま変えずに、引き続き冷却する。冷却としては、300℃以下にするのが好ましく、50〜280℃、より好ましくは100〜250℃に冷却する。冷却後の温度が300°Cを越えていると、次工程の窒化の際に反応生成物との窒化反応が急激に進んでしまい、α−Fe相を増加させてしまうことがあるので、300°Cよりも低い温度まで冷却するのが望ましい。これは、300°Cを越える温度では、反応生成物が活性であるために合金が急激に窒化されて、ThZn17型結晶構造を有する金属間化合物の一部がFeリッチ相とSmNとに分解するものと推測されるからである。 In the third step, the reaction product after the reduction / diffusion reaction is continuously cooled without changing the atmospheric gas as an inert gas. The cooling is preferably 300 ° C. or lower, and is cooled to 50 to 280 ° C., more preferably 100 to 250 ° C. If the temperature after cooling exceeds 300 ° C, the nitriding reaction with the reaction product will proceed rapidly during nitriding in the next step, which may increase the α-Fe phase. It is desirable to cool to a temperature below ° C. This is because at temperatures above 300 ° C, the alloy is rapidly nitrided due to the activity of the reaction product, and some of the intermetallic compounds having a Th 2 Zn 17- type crystal structure are in the Fe-rich phase and SmN. This is because it is presumed that it decomposes into.

冷却後に、多孔質の塊状混合物である反応生成物を湿式処理しないで、雰囲気ガスを不活性ガスから、少なくともアンモニアと水素とを含有する混合ガスに変えて、次の窒化工程に移る。このとき反応生成物が大気中に曝されると、反応生成物中の活性な希土類−鉄母合金粉末が酸化されて反応性が失活し、結果として窒化の度合いをばらつかせるので、大気(酸素)に曝されないように窒化工程に持ち込むことが必要である。 After cooling, the reaction product, which is a porous massive mixture, is not wet-treated, but the atmosphere gas is changed from an inert gas to a mixed gas containing at least ammonia and hydrogen, and the process proceeds to the next nitriding step. At this time, when the reaction product is exposed to the atmosphere, the active rare earth-iron mother alloy powder in the reaction product is oxidized and the reactivity is deactivated, and as a result, the degree of nitriding can be varied. It is necessary to bring it into the nitriding process so that it is not exposed to (oxygen).

2.希土類−鉄−窒素系磁石粉末の製造方法
(2−a)第四の工程:窒化処理
第四の工程では、第三の工程で得られた前記希土類−鉄系母合金を含む反応生成物に、少なくともアンモニアと水素とを含有する混合ガスを供給し、前記混合ガス気流中で熱処理することにより窒化処理して生成した希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を得る。
2. 2. Method for producing rare earth-iron-nitrogen magnet powder (2-a) Fourth step: Nitriding treatment In the fourth step, the reaction product containing the rare earth-iron mother alloy obtained in the third step is used. , A mixed gas containing at least ammonia and hydrogen is supplied, and heat treatment is performed in the mixed gas stream to obtain a nitriding product mass containing a rare earth-iron-nitrogen magnet coarse powder produced by nitriding.

窒化ガスとしては、少なくともアンモニアと水素とを含有している混合ガスが必要であり、反応をコントロールするために、アルゴン、窒素、ヘリウムなどを混合することができる。窒化ガスの量は、磁石粉末中の窒素量が3.3〜3.7重量%となるに十分な量であることが好ましい。 As the nitriding gas, a mixed gas containing at least ammonia and hydrogen is required, and argon, nitrogen, helium and the like can be mixed in order to control the reaction. The amount of nitriding gas is preferably an amount sufficient for the amount of nitrogen in the magnet powder to be 3.3 to 3.7% by weight.

全混合ガス圧力に対するアンモニアの比(アンモニア分圧)は、0.2〜0.6が好ましく、0.3〜0.5となるようにするのがより好ましい。アンモニア分圧が0.2未満であると、長時間かけても母合金の窒化が進まず、窒素量を3.3〜3.7重量%とすることができず、得られる磁石粉末の飽和磁化と保磁力が低下してしまう。 The ratio of ammonia to the total mixed gas pressure (ammonia partial pressure) is preferably 0.2 to 0.6, and more preferably 0.3 to 0.5. If the partial pressure of ammonia is less than 0.2, the nitriding of the mother alloy does not proceed even over a long period of time, the amount of nitrogen cannot be 3.3 to 3.7% by weight, and the resulting magnet powder is saturated. Magnetization and coercive force are reduced.

少なくともアンモニアと水素とを含有する混合ガスを、窒化温度である350〜500°C、好ましくは400〜480°Cで供給して、反応生成物中の希土類−鉄系母合金を窒化熱処理する。温度が350°C未満であると、反応生成物中の希土類−鉄系母合金に3.3〜3.7重量%の窒素を導入するのに長時間を要するので工業的優位性がなくなることがある一方、500°Cを超えると、主相であるSmFe17相が分解してα−Feが生成するので、最終的に得られる希土類−鉄−窒素系磁石粉末の減磁曲線の角形性が低下することがある。なお、前工程で反応生成物を冷却した冷却温度から窒化温度までは、毎分4〜10℃の速度で比較的急速に昇温することが生産効率を高める上で望ましい。また、冷却温度での保持時間は、特に必要はない。保持しても窒化に対する効果はないからである。 A mixed gas containing at least ammonia and hydrogen is supplied at a nitriding temperature of 350 to 500 ° C., preferably 400 to 480 ° C., to heat-treat the rare earth-iron base alloy in the reaction product. If the temperature is less than 350 ° C, it takes a long time to introduce 3.3 to 3.7% by weight of nitrogen into the rare earth-iron base alloy in the reaction product, and the industrial advantage is lost. On the other hand, when the temperature exceeds 500 ° C, the main phase Sm 2 Fe 17 phase is decomposed to generate α-Fe, so that the demagnetization curve of the finally obtained rare earth-iron-nitrogen magnet powder Squareness may decrease. From the cooling temperature at which the reaction product was cooled in the previous step to the nitriding temperature, it is desirable to raise the temperature relatively rapidly at a rate of 4 to 10 ° C. per minute in order to improve the production efficiency. Further, the holding time at the cooling temperature is not particularly required. This is because holding it has no effect on nitriding.

窒化処理の保持時間は、窒化温度にもよるが、100〜300分が好ましく、140〜250分とするのがより好ましい。100分未満では、窒化が不十分になり、一方、300分を超えると窒化が進みすぎることがある。 The holding time of the nitriding treatment depends on the nitriding temperature, but is preferably 100 to 300 minutes, more preferably 140 to 250 minutes. If it is less than 100 minutes, nitriding becomes insufficient, while if it exceeds 300 minutes, nitriding may proceed too much.

本発明においては、窒化処理に引き続いて、さらに水素ガス、または窒素ガス、アルゴンガス、ヘリウムガスなどの不活性ガス中で合金粉末を熱処理することが望ましい。特に好ましいのは、水素ガスで熱処理した後に窒素ガスおよび/またはアルゴンガスで熱処理をすることである。 In the present invention, it is desirable to further heat-treat the alloy powder in hydrogen gas or an inert gas such as nitrogen gas, argon gas or helium gas following the nitriding treatment. Particularly preferred is heat treatment with hydrogen gas followed by heat treatment with nitrogen gas and / or argon gas.

これにより、希土類−鉄−窒素系磁石粉末を構成する個々の結晶セル内の窒素分布をさらに均一化することができ、角形性を向上させることができる。熱処理の保持時間は、30〜200分が好ましく、60〜250分がより好ましい。 As a result, the nitrogen distribution in the individual crystal cells constituting the rare earth-iron-nitrogen magnet powder can be further made uniform, and the squareness can be improved. The holding time of the heat treatment is preferably 30 to 200 minutes, more preferably 60 to 250 minutes.

(2−b)第五の工程:湿式処理、微粉砕、乾燥
次に、第四の工程で得られた前記希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を水中に投入して湿式処理して崩壊させ、得られた希土類−鉄−窒素系磁石粗粉末を解砕して希土類−鉄−窒素系磁石粉末を得る。
(2-b) Fifth Step: Wet Treatment, Fine Grinding, Drying Next, the nitriding product mass containing the rare earth-iron-nitrogen magnet coarse powder obtained in the fourth step is put into water. The rare earth-iron-nitrogen magnet powder is crushed to obtain a rare earth-iron-nitrogen magnet powder.

上記したように、窒化後の希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を水中に投入して湿式処理することで窒化処理生成物塊を崩壊させ、当該窒化処理生成物塊に含まれていた還元剤成分の副生成物(酸化カルシウムや窒化カルシウムなど)を希土類−鉄−窒素系磁石粉末から分離除去することができる。 As described above, the nitriding product mass containing the rare earth-iron-nitrogen magnet coarse powder after nitriding is put into water and wet-treated to disintegrate the nitriding product mass, and the nitriding product mass is destroyed. By-products (calcium oxide, calcium nitride, etc.) of the reducing agent component contained in the above can be separated and removed from the rare earth-iron-nitrogen magnet powder.

窒化終了後の磁石粉末に対して湿式処理を行うのは、窒化する前に希土類−鉄系母合金を含む反応生成物を湿式処理すると、この湿式処理過程で希土類−鉄系母合金表面が酸化されて、その後の希土類−鉄系母合金の窒化の度合いをばらつかせるからである。 The wet treatment of the magnet powder after the completion of nitriding is that if the reaction product containing the rare earth-iron base alloy is wet treated before the nitriding, the surface of the rare earth-iron mother alloy is oxidized in this wet treatment process. This is because the degree of nitriding of the rare earth-iron base alloy after that can be varied.

また、窒化後に窒化処理生成物塊を長期間大気中に放置すると、カルシウムなどの還元剤成分の酸化物が生成し除去しにくくなったり、希土類−鉄−窒素系磁石粉末の表面の酸化によって、窒化が不均一になり主相の比率の低下とニュークリエーションの核の生成によって角形性が低下したりする。したがって、大気中に放置された窒化処理生成物塊は、反応容器から取り出してから2週間以内に湿式処理するのが好ましい。 In addition, if the nitriding product mass is left in the air for a long period of time after nitriding, oxides of reducing agent components such as calcium are generated and difficult to remove, or the surface of rare earth-iron-nitrogen magnet powder is oxidized. Nitriding becomes non-uniform, and the ratio of the main phase decreases and the formation of nuclei nuclei reduces the squareness. Therefore, it is preferable that the nitriding product mass left in the air is wet-treated within 2 weeks after being taken out from the reaction vessel.

湿式処理は、まず窒化処理生成物塊を水中に投入して塊を崩壊させ、デカンテーション−注水−デカンテーションを繰り返し行い、生成したCa(OH)の多くを除去する。さらに必要に応じて、残留するCa(OH)を除去するために、酢酸、塩酸から選ばれる1種以上を用いて酸洗浄する。このときの水溶液の水素イオン濃度はpH4〜7の範囲で実施するとよい。原料混合時に過剰に希土類元素が投入されている場合、還元拡散処理時に、過剰な希土類元素の影響で、主相であるThZn17型結晶構造を有する希土類−鉄合金の周りに、希土類元素量が多く飽和磁化を低下させる非磁性相が生成され存在している場合があり、主相の希土類元素量の好ましい範囲である23.2〜23.6重量%になるように酸洗を行い、希土類元素量が多い非磁性相を除去しておくことが好ましい。 In the wet treatment, first, the nitriding product mass is put into water to disintegrate the mass, and decantation-water injection-decantation is repeated to remove most of the generated Ca (OH) 2 . Further, if necessary, in order to remove the residual Ca (OH) 2 , acid cleaning is performed with one or more selected from acetic acid and hydrochloric acid. The hydrogen ion concentration of the aqueous solution at this time may be in the range of pH 4 to 7. If an excessive amount of rare earth element is added when the raw materials are mixed, the rare earth element has an effect of the excess rare earth element during the reduction and diffusion treatment, and the rare earth element has a Th 2 Zn 17- type crystal structure as the main phase. A non-magnetic phase that is large in quantity and lowers saturation magnetization may be generated and exists, and pickling is performed so that the amount of rare earth elements in the main phase is 23.2 to 23.6% by weight, which is a preferable range. , It is preferable to remove the non-magnetic phase having a large amount of rare earth elements.

上記酸洗浄処理の終了後には、例えば水洗し、アルコールあるいはアセトン等の有機溶媒で脱水し、不活性ガス雰囲気中または真空中で乾燥することで希土類−鉄−窒素系磁石粗粉末を得ることができる。 After the completion of the acid cleaning treatment, a rare earth-iron-nitrogen magnet coarse powder can be obtained by washing with water, dehydrating with an organic solvent such as alcohol or acetone, and drying in an inert gas atmosphere or in a vacuum. it can.

上記で得られる希土類−鉄−窒素系磁石粗粉末は、1次粒子が複数集まってブドウ状に焼結した2次粒子と、1次粒子とからなる混合粉末であり、上記1次粒子の長軸粒子径をSEMによって確認し測定した時、長軸粒子径が4μm以上である1次粒子の累積個数百分率は5%未満となる。長軸粒子径が4μm以上である1次粒子の累積個数百分率は、2%未満であると好ましい。これは、1次粒子で、長軸粒子径が4μm以上の粒子が増えていると、粒子断面を確認すると窒化が粒子中心部まで進んでおらず、窒化不足となっている粒子が存在することが確認されるほか、希土類−鉄−窒素系磁石は、保磁力の発生機構がニュークリエーション型であることから、粒子が大きいために飽和磁化、角形性、保磁力を低下させる要因にもなるからである。 The rare earth-iron-nitrogen magnet coarse powder obtained above is a mixed powder composed of secondary particles obtained by gathering a plurality of primary particles and sintered into a grape shape and primary particles, and has a length of the primary particles. When the axial particle size is confirmed and measured by SEM, the cumulative number percentage of the primary particles having the major particle size of 4 μm or more is less than 5%. The cumulative number percentage of the primary particles having a semimajor particle diameter of 4 μm or more is preferably less than 2%. This is a primary particle, and when the number of particles with a major axis particle diameter of 4 μm or more is increasing, nitriding has not progressed to the center of the particle when the particle cross section is confirmed, and there are particles with insufficient nitriding. In addition to the fact that rare earth-iron-nitrogen magnets have a new creation type coercive force generation mechanism, they also cause a decrease in saturation magnetization, squareness, and coercive force due to the large particles. Is.

上記のように希土類−鉄−窒素系磁石粗粉末は、1次粒子が複数集まってブドウ状に焼結した2次粒子と、1次粒子とからなる混合粉末であり、このような磁石粗粉末を溶媒とともに粉砕機に投入し、上記1次粒子塊は粉砕せず、2次粒子からなる希土類−鉄−窒素系磁石粉末の焼結部が外れる程度に弱く解砕し、その後、ろ過、乾燥することが好ましい。 As described above, the rare earth-iron-nitrogen magnet coarse powder is a mixed powder composed of secondary particles obtained by gathering a plurality of primary particles and sintering them into a grape shape and primary particles, and such a coarse magnet powder. Is put into a crusher together with a solvent, and the primary particle mass is not crushed, but is crushed weakly to the extent that the sintered portion of the rare earth-iron-nitrogen magnet powder composed of secondary particles comes off, and then filtered and dried. It is preferable to do so.

解砕に用いるに粉砕機は、固体を取り扱う各種の化学工業において広く使用され、種々の材料を粉砕するための粉砕装置であれば、特に限定されるわけではない。その中でも、粉末の組成や粒子径を均一にしやすい点で、媒体撹拌ミルまたはビーズミルによる湿式粉砕方式によることが好適である。粉砕条件としては、上記したように、2次粒子からなる希土類−鉄−窒素系磁石粉末の焼結部が外れる程度に弱く解砕する程度が好ましく、一次粒子が壊れるほどの強い粉砕とならないよう適宜条件を設定すればよい。 The crusher used for crushing is widely used in various chemical industries dealing with solids, and is not particularly limited as long as it is a crushing device for crushing various materials. Among them, the wet pulverization method using a medium stirring mill or a bead mill is preferable in that the composition of the powder and the particle size can be easily made uniform. As the crushing conditions, as described above, it is preferable that the rare earth-iron-nitrogen magnet powder composed of secondary particles is crushed weakly to the extent that the sintered portion is disengaged, and the crushing is not strong enough to break the primary particles. Conditions may be set as appropriate.

粉砕に用いる溶媒としては、イソプロピルアルコール、エタノール、トルエン、メタノール、ヘキサン等が使用できるが、特にイソプロピルアルコールが好ましい。粉砕後所定の目開きのフィルターを用いてろ過し、乾燥して希土類−鉄−窒素系磁石粉末を得ればよい。 As the solvent used for pulverization, isopropyl alcohol, ethanol, toluene, methanol, hexane and the like can be used, but isopropyl alcohol is particularly preferable. After pulverization, it may be filtered using a filter having a predetermined opening and dried to obtain a rare earth-iron-nitrogen magnet powder.

3.希土類−鉄−窒素系磁石粉末
上記製造方法で得られた希土類−鉄−窒素系磁石粉末は、ThZn17型またはThNi17型結晶構造を持つ希土類元素−鉄−窒素系磁石粉末である。上記希土類−鉄−窒素系磁石粉は、菱面体晶系、六方晶系、正方晶系または単斜晶系の結晶構造をもつ金属間化合物であり、ThZn17型の磁石合金粉としては、例えば、SmFe17合金、NdFe17などが挙げられ、また、ThNi17型の磁石合金粉としては、例えば、GdFe17などが挙げられる。
3. 3. Rare earth-iron-nitrogen magnet powder The rare earth-iron-nitrogen magnet powder obtained by the above production method is a rare earth element-iron-nitrogen magnet powder having a Th 2 Zn 17 type or Th 2 Ni 17 type crystal structure. is there. The rare earth-iron-nitrogen magnet powder is an intermetallic compound having a rhombohedral, hexagonal, tetragonal or monoclinic crystal structure, and is a Th 2 Zn 17- type magnet alloy powder. For example, Sm 2 Fe 17 N 3 alloy, Nd 2 Fe 17 N 3 and the like can be mentioned, and examples of the Th 2 Ni 17 type magnet alloy powder include Gd 2 Fe 17 N 3 and the like.

希土類元素(R)としては、Sm、Nd、Pr、Y、La、Ce、またはGd等が挙げられ、これらは単独でも複数混在でもよいが、これらの中では、Sm及びNdが有効であり、特にSmを80質量%以上含有するものが好ましい。遷移金属元素(T)は、Feが必須成分であり、この一部がCoで置換されたものでもよい。 Examples of the rare earth element (R) include Sm, Nd, Pr, Y, La, Ce, and Gd, which may be used alone or in combination of two, but among these, Sm and Nd are effective. In particular, those containing 80% by mass or more of Sm are preferable. Fe is an essential component of the transition metal element (T), and a part of the transition metal element (T) may be replaced with Co.

上記希土類−鉄−窒素系磁石粉には、C、Al、Si、Ca、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Re、Os、Ir、Pt、又はAuを含有することができる。これらの中には、遷移金属以外の元素も含まれているが、全て遷移金属元素(T)に準じて扱うものとする。これら成分を3質量%以下、好ましくは0.05〜0.5質量%添加すれば、磁石の耐候性や耐熱性をさらに高めることができる。 The rare earth-iron-nitrogen magnet powder includes C, Al, Si, Ca, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, It can contain Ta, W, Re, Os, Ir, Pt, or Au. Although elements other than transition metals are included in these, all of them shall be treated according to the transition metal element (T). If these components are added in an amount of 3% by mass or less, preferably 0.05 to 0.5% by mass, the weather resistance and heat resistance of the magnet can be further enhanced.

このうち、Al、Si、Ca、V、Cr、Mn、Cu、Mo、Zr、Nb、又はTa等から選ばれた一種以上を添加すれば保磁力の向上、生産性の向上並びに低コスト化を図ることができる。この場合、添加量は、遷移金属(T)全重量に対して3重量%以下とすることが望ましい。 Of these, if one or more selected from Al, Si, Ca, V, Cr, Mn, Cu, Mo, Zr, Nb, Ta, etc. is added, the coercive force is improved, the productivity is improved, and the cost is reduced. Can be planned. In this case, the amount added is preferably 3% by weight or less based on the total weight of the transition metal (T).

本発明の磁石合金粉として、特に好ましい希土類−鉄−窒素系磁石粉としては、Sm−Fe−Nが挙げられる。特に、Sm量が磁石粉末全体に対して23.2〜23.6重量%のものが一層好ましい。 Examples of the rare earth-iron-nitrogen magnet powder that are particularly preferable as the magnet alloy powder of the present invention include Sm-Fe-N. In particular, it is more preferable that the amount of Sm is 23.2 to 23.6% by weight based on the entire magnet powder.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。得られた希土類−鉄−窒素系磁石粉末の特性値は次の方法で測定した。 Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited to these Examples. The characteristic values of the obtained rare earth-iron-nitrogen magnet powder were measured by the following method.

(1)磁気特性
希土類−鉄−窒素系磁石合金粉末の磁気特性は、日本ボンド磁石工業協会、ボンド磁石試験方法ガイドブック、BM−2002、BM−2005に準じて、1600kA/mの配向磁界をかけてステアリン酸中で希土類−鉄−窒素系磁石粉末を配向させた試料を作製し、4000kA/mの磁界で着磁して測定した。
磁石合金粉末の比重を7.67g/cmとし、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、飽和磁化:4πIm(T)、保磁力:iHc(kA/m)、角形性:Hk(kA/m)を測定した。Hkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが残留磁化4πIrの90%の値を取るときの減磁界の大きさである。
(1) Magnetic characteristics The magnetic characteristics of the rare earth-iron-nitrogen magnet alloy powder are based on the Japan Bond Magnet Industry Association, Bond Magnet Test Method Guidebook, BM-2002, BM-2005, and an orientation magnetic field of 1600 kA / m. A sample in which rare earth-iron-nitrogen magnet powder was oriented in stearic acid was prepared, and magnetized with a magnetic field of 4000 kA / m for measurement.
Using a vibrating sample magnetometer with a maximum magnetic field of 1200 kA / m without demagnetizing field correction, the specific gravity of the magnet alloy powder is 7.67 g / cm 3 , saturation magnetization: 4πIm (T), coercive force: iHc (kA). / M), Squareness: Hk (kA / m) was measured. Hk represents the angularity of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes 90% of the residual magnetization 4πIr in the second quadrant.

(2)粒子形状
解砕前の希土類−鉄−窒素系磁石粉末の粒子表面形状、断面を走査型電子顕微鏡(SEM:カールツァイス社、ULTRA55)で観察した。
(2) Particle shape The particle surface shape and cross section of the rare earth-iron-nitrogen magnet powder before crushing were observed with a scanning electron microscope (SEM: Carl Zeiss, ULTRA55).

(3)粒度分布
平均粒子径は、Sympatec社製レーザー回折型粒径分布測定装置:ヘロス・ロードスにて測定した。
粒子長軸粒子径は、SEM像から1次粒子の粒径を1000倍で撮影した写真を2倍に拡大して、最小目盛1mmの定規で長軸粒子径を測定し、測定粒子径と対応する粒子個数を数え、全体粒子個数と、粒径4μm以上の粒子個数から、長軸粒子径が4μm以上である1次粒子の累積個数百分率を求めた。
(3) Particle size distribution The average particle size was measured by a laser diffraction type particle size distribution measuring device manufactured by Symbolec: Heros Rhodes.
The particle major axis particle size corresponds to the measured particle size by magnifying the photograph taken by 1000 times the particle size of the primary particles from the SEM image and measuring the major axis particle size with a ruler with a minimum scale of 1 mm. The cumulative number of primary particles having a major axis particle diameter of 4 μm or more was determined from the total number of particles and the number of particles having a particle size of 4 μm or more.

(4)水素還元物の生成物割合の算出
第二の工程において、乾燥混合粉末を水素還元して得られた還元混合物粉末について、粉末X線回折装置を用いて、X線回折測定したデータをもとに生成化合物の同定を行い、それら化合物の存在比率についてリートベルト解析を使用し、半定量値を算出することで、各化合物の割合を求めた。
(4) Calculation of product ratio of hydrogen-reduced product In the second step, data obtained by X-ray diffraction measurement of the reduced mixture powder obtained by hydrogen-reducing the dry mixed powder using a powder X-ray diffractometer is obtained. Based on this, the produced compounds were identified, and the ratio of each compound was determined by calculating a semi-quantitative value using a Rietbelt analysis for the abundance ratio of those compounds.

(5)塩素イオン濃度
塩素イオン濃度は、陰イオンクロマトグラフィを用いて測定した。水中に酸化物粉末を分散させた後、遠心分離し、その上澄み液を使って、溶出塩素濃度を測定した。
(5) Chloride ion concentration The chloride ion concentration was measured by using anion chromatography. After the oxide powder was dispersed in water, it was centrifuged, and the elution chlorine concentration was measured using the supernatant.

(実施例1)
[第一の工程]
磁石原料粉末として、硝酸塩から製造された平均粒子径が0.7μmの酸化鉄Fe粉末(Fe純度99%)100.0gと、粒径が0.1〜10μmの粉末が全体の96%を占める酸化サマリウムSm粉末(Sm純度99.5%)31.8gを秤量した。次に、500ccのポリ容器中にて秤量した酸化鉄をイソプロピルアルコール130gに分散させスラリー化したところに、さらに酸化サマリウムを投入し、これにSUJ2製の直径5/32inchの金属ボールを追加して24時間ボールミル混合を行った。
その後、ポリ容器からスラリーを排出し、金属ボールと分離した後、定置式真空乾燥器にて40℃設定で20時間乾燥した。混合粉末は、表1に示すように、塩素イオン濃度の総和が0.01重量%未満であった。
(Example 1)
[First step]
As the raw material powder for magnets, 100.0 g of iron oxide Fe 2 O 3 powder (Fe purity 99%) produced from nitrate and having an average particle size of 0.7 μm and powder having a particle size of 0.1 to 10 μm are 96 of the whole. 31.8 g of samarium oxide Sm 2 O 3 powder (Sm 2 O 3 purity 99.5%) accounting for% was weighed. Next, iron oxide weighed in a 500 cc plastic container was dispersed in 130 g of isopropyl alcohol to form a slurry, and then samarium oxide was further added, and a metal ball having a diameter of 5/32 inch made of SUJ2 was added thereto. Ball mill mixing was performed for 24 hours.
Then, the slurry was discharged from the plastic container, separated from the metal balls, and then dried in a stationary vacuum dryer at 40 ° C. for 20 hours. As shown in Table 1, the mixed powder had a total chlorine ion concentration of less than 0.01% by weight.

[第二の工程]
乾燥した混合粉末100.0gを箱型雰囲気炉に装入して、水素を25ml/(min・g)流し、昇温速度5℃/minで600℃まで加熱して4時間保持した後、室温まで冷却し、徐々に内部を空気に置換して水素還元物を回収した。
このときの水素還元物の一部をXRDにて同定を行い、リートベルト解析でその存在比率を半定量値として算出した。この時の存在比率は、α−Fe:Sm:SmFeO=68.6:30.8:0.6(重量%)であった。
[Second step]
100.0 g of the dried mixed powder was charged into a box-type atmosphere furnace, hydrogen was flowed at 25 ml / (min · g), heated to 600 ° C. at a heating rate of 5 ° C./min, held for 4 hours, and then kept at room temperature. The hydrogen reduction product was recovered by gradually replacing the inside with air.
A part of the hydrogen-reduced product at this time was identified by XRD, and its abundance ratio was calculated as a semi-quantitative value by Rietveld analysis. The abundance ratio at this time was α-Fe: Sm 2 O 3 : SmFeO 3 = 68.6: 30.8: 0.6 (% by weight).

[第三の工程]
この水素還元物16gに、粒度4メッシュ(タイラーメッシュ)以下の金属カルシウム粒(Ca純度99%)3.6gを加え、コンデショニングミキサー(MX−201:シンキー製)で30秒間混合した。
これをステンレススチール反応容器に挿入し、容器内をロータリーポンプで真空引きしてArガス置換した後、Arガスを流しながら950℃まで昇温し、8時間保持後250℃まで炉内でArガスを流通しながら冷却した。
[Third step]
To 16 g of this hydrogen-reduced product, 3.6 g of metallic calcium particles (Ca purity 99%) having a particle size of 4 mesh (Tyler mesh) or less was added and mixed with a conditioning mixer (MX-201: manufactured by Shinky) for 30 seconds.
This is inserted into a stainless steel reaction vessel, the inside of the vessel is evacuated with a rotary pump to replace Ar gas, the temperature is raised to 950 ° C while flowing Ar gas, and after holding for 8 hours, Ar gas is kept in the furnace to 250 ° C. Was cooled while circulating.

[第四の工程]
次に、Arガスをアンモニア分圧が0.33のアンモニア−水素混合ガスに切り替えて昇温し、450℃で200分保持し、その後、同温度で水素ガスに切り替えて30分保持し、さらに窒素ガスに切り替えて30分保持し冷却した。
[Fourth step]
Next, the Ar gas was switched to an ammonia-hydrogen mixed gas having an ammonia partial pressure of 0.33 to raise the temperature, held at 450 ° C. for 200 minutes, then switched to hydrogen gas at the same temperature and held for 30 minutes, and further. It was switched to nitrogen gas and held for 30 minutes to cool.

[第五の工程]
取り出した多孔質塊状の反応生成物塊を直ちに純水中に投入したところ、崩壊してスラリーが得られた。このスラリーから、Ca(OH)懸濁物をデカンテーションによって分離し、純水を注水後に1分間攪拌し、次いでデカンテーションを行う操作を5回繰り返し、合金粉末スラリーを得た。
得られた合金粉末スラリーを攪拌しながら希酢酸を滴下し、pH5.0に7分間保持した。合金粉末をろ過後、エタノールで数回、掛水洗浄し、35℃で真空乾燥することによって、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子からなるSm−Fe−N磁石合金粉末を得た。
このSm−Fe−N磁石合金粉末組成は、Sm23.2重量%、N3.33重量%、O0.17重量%、残部Feだった。
このSm−Fe−N磁石合金粉末をエタノール中で振動式ボールミルを用い、エタノール中でSUJ2ボール5/32インチ、振動数 30Hzで、30分間解砕し、常温真空乾燥した。
[Fifth step]
When the removed porous mass reaction product mass was immediately put into pure water, it collapsed to obtain a slurry. From this slurry, a Ca (OH) 2 suspension was separated by decantation, pure water was poured, and the mixture was stirred for 1 minute, and then decantation was repeated 5 times to obtain an alloy powder slurry.
Dilute acetic acid was added dropwise to the obtained alloy powder slurry with stirring, and the mixture was kept at pH 5.0 for 7 minutes. After filtering the alloy powder, it is washed with water several times with ethanol and vacuum dried at 35 ° C., and then Sm-Fe-N consisting of primary particles and grape-like secondary particles obtained by sintering the primary particles. A magnet alloy powder was obtained.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.2% by weight, N3.33% by weight, O0.17% by weight, and the balance Fe.
This Sm-Fe-N magnet alloy powder was crushed in ethanol using a vibrating ball mill at 5/32 inches of SUJ2 balls at a frequency of 30 Hz for 30 minutes and vacuum dried at room temperature.

<磁気特性>
得られたSm−Fe−N磁石合金粉末の磁気特性を、上記測定方法に従い、反磁場補正をせずに最大磁界1200kA/mの振動試料型磁力計を用いて、飽和磁化:4πIm(T)、保磁力:iHc(kA/m)、角形性:Hk(kA/m)を測定した。
分析組成とThZn17型結晶構造の格子定数から算出された粉末のX線密度は7.67g/cmで、この値で飽和磁束密度4πImを換算した。iHcは保磁力である。またHkは、減磁曲線の角形性を表し、第二象限において、磁化4πIが4πIrの90%の値を取るときの減磁界の大きさである。
結果を表2に示すが、4πIm=1.42T、iHc=889kA/m、Hk=413kA/mであり、高特性が得られた。
<Magnetic characteristics>
The magnetic characteristics of the obtained Sm-Fe-N magnet alloy powder were subjected to saturation magnetization: 4πIm (T) according to the above measurement method using a vibration sample type magnetic field meter with a maximum magnetic field of 1200 kA / m without demagnetizing field correction. , Cohesive force: iHc (kA / m), Squareness: Hk (kA / m) were measured.
The X-ray density of the powder calculated from the analytical composition and the lattice constant of the Th 2 Zn 17- type crystal structure was 7.67 g / cm 3 , and the saturation magnetic flux density of 4πIm was converted by this value. iHc is a coercive force. Hk represents the angularity of the demagnetization curve, and is the magnitude of the demagnetizing field when the magnetization 4πI takes a value of 90% of 4πIr in the second quadrant.
The results are shown in Table 2, and 4πIm = 1.42T, iHc = 889kA / m, and Hk = 413kA / m, and high characteristics were obtained.

<粒子表面性状、凝集状態、粗大粒子>
また、図1(左)に示すように粒子表面性状をSEMにて確認したところ、滑らかな表面状態が観察され、凝集塊や粗大粒子はほとんど見られなかった。
<Particle surface texture, aggregated state, coarse particles>
Moreover, when the particle surface texture was confirmed by SEM as shown in FIG. 1 (left), a smooth surface state was observed, and agglomerates and coarse particles were hardly observed.

<粒子断面観察>
図1(右)に示すようにSEMにて粒子断面を観察したところ、残留鉄もなく粒子内部まで均一に窒化されていた。ここで反射電子像において、残留鉄があるとコントラストが黒く、また窒化不足であるとコントラストがやや白く映るため明確に判断できる。
<Particle cross-section observation>
When the particle cross section was observed by SEM as shown in FIG. 1 (right), there was no residual iron and the inside of the particle was uniformly nitrided. Here, in the reflected electron image, the contrast is black when there is residual iron, and the contrast is slightly white when nitriding is insufficient, so that it can be clearly judged.

<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、1.6%であった。
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 1.6% as shown in Table 1.

(実施例2)
実施例1の条件において、鉄化合物として、塩化物出発の平均粒子径が0.9μmのFeを粉末で使用し、ボールミル混合・乾燥まで行った後、一度大気中で800℃焙焼を行った後に、水素による還元熱処理を行うように変更した。それ以外は、実施例1と同様にして行ったところ、水素還元前の混合粉末は、表1に示すように、塩素イオン濃度の総和が、0.09重量%であり、水素還元後の存在比率は、α−Fe:Sm:SmFeO=67.2:27.5:5.3(重量%)であった。
その後、実施例1と同条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N磁石合金粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結した、ブドウ状の2次粒子が観察された。
このSm−Fe−N磁石合金粉末組成は、Sm23.4重量%、N3.35重量%、O0.16重量%、残部Feだった。
(Example 2)
Under the conditions of Example 1, Fe 2 O 3 having an average particle size of 0.9 μm starting from chloride was used as an iron compound as a powder, mixed and dried by a ball mill, and then roasted at 800 ° C. in the air. After that, it was changed to perform reduction heat treatment with hydrogen. Except for this, when the same procedure as in Example 1 was carried out, as shown in Table 1, the total chloride ion concentration of the mixed powder before hydrogen reduction was 0.09% by weight, and it was present after hydrogen reduction. The ratio was α-Fe: Sm 2 O 3 : SmFeO 3 = 67.2: 27.5: 5.3 (% by weight).
Then, under the same conditions as in Example 1, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain a sm-Fe-N magnet alloy crude powder. In the obtained powder, primary particles and grape-like secondary particles in which the primary particles were sintered were observed.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.4% by weight, N3.35% by weight, O0.16% by weight, and the balance Fe.

<磁気特性>
実施例1と同様に解砕後、サンプリングして磁気特性を求めた。
結果を表2に示すが、4πIm=1.40T、iHc=865kA/m、Hk=409kA/mであり、高特性が得られた。
<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、4.2%であった。
<Magnetic characteristics>
After crushing in the same manner as in Example 1, sampling was performed to determine the magnetic characteristics.
The results are shown in Table 2, and 4πIm = 1.40T, iHc = 865kA / m, and Hk = 409kA / m, and high characteristics were obtained.
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 4.2% as shown in Table 1.

(実施例3)
磁石原料粉末として、塩化物出発の平均粒子径が0.9μmの酸化鉄Fe粉末100.0gと、粒径が0.1〜10μmの粉末が全体の96%を占める酸化サマリウムSm粉末31.8gを秤量し、次に500ccのポリ容器中にて秤量した酸化鉄を純水130gに分散させスラリー化した。このときpHは2.3を示すことから、ここに酸化カルシウム(関東化学)を粉末で添加しpHを8.1とした後、さらに酸化サマリウムを投入し、これにSUJ2製の直径5/32inchの金属ボールを追加して24時間ボールミル混合・乾燥を行った。
得られた混合粉末は、当初塩素イオン濃度で0.18重量%であったが、この混合粉末を実施例2の条件で焙焼(大気中で800℃焙焼)することにより、表1に示すように、塩素イオン濃度を0.07重量%に下げた後、さらに水素還元を行った。水素還元後の混合粉末の存在比率は、α−Fe:Sm:SmFeO=67.6:28.3:4.1(重量%)となった。
その後、実施例1と同条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N磁石合金粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子が観察された。
このSm−Fe−N磁石合金粉末組成は、Sm23.3重量%、N3.33重量%、O0.15重量%、残部Feだった。実施例1と同様に解砕後サンプリングして磁気特性を測定した。結果を表2に示すが、4πIm=1.41T、iHc=880kA/m、Hk=410kA/mであり、高特性が得られた。
(Example 3)
As a magnet raw material powder, and iron oxide Fe 2 O 3 powder 100.0g of an average particle diameter of chloride departure 0.9 .mu.m, samarium oxide Sm 2 having a particle size accounts for 96% of the total 0.1~10μm powder O 3 powder 31.8g was weighed and then slurried by dispersing the iron oxide was weighed C. in plastic container 500cc of pure water 130 g. At this time, since the pH is 2.3, calcium oxide (Kanto Chemical Co., Inc.) is added as a powder to adjust the pH to 8.1, and then samarium oxide is further added to this, and the diameter is 5/32 inch made by SUJ2. The metal balls of the above were added, and the ball mill was mixed and dried for 24 hours.
The obtained mixed powder initially had a chlorine ion concentration of 0.18% by weight, but by roasting this mixed powder under the conditions of Example 2 (roasting at 800 ° C. in the air), Table 1 shows. As shown, after reducing the chlorine ion concentration to 0.07% by weight, further hydrogen reduction was performed. The abundance ratio of the mixed powder after hydrogen reduction was α-Fe: Sm 2 O 3 : SmFeO 3 = 67.6: 28.3: 4.1 (% by weight).
Then, under the same conditions as in Example 1, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain a sm-Fe-N magnet alloy crude powder. In the obtained powder, primary particles and grape-like secondary particles obtained by sintering the primary particles were observed.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.3% by weight, N3.33% by weight, O0.15% by weight, and the balance Fe. The magnetic characteristics were measured by sampling after crushing in the same manner as in Example 1. The results are shown in Table 2, and 4πIm = 1.41T, iHc = 880kA / m, and Hk = 410kA / m, and high characteristics were obtained.

<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、3.5%であった。
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 3.5% as shown in Table 1.

(比較例1)
実施例2の製造条件において、塩化物出発の平均粒子径が0.9μmの酸化鉄Fe粉末を使用するが、水素還元前の混合粉末を焙焼せずに水素還元を行う以外は実施例2と同様にして行った。水素還元前の混合粉末は、表1に示すように、塩素イオン濃度が総和で、0.21重量%と高く、SmFeOの存在比率では、α−Fe:Sm:SmFeO=63.0:16.8:20.2(重量%)となり、生成したSmFeO量が実施例に比較し多くなった。
その後、実施例1と同条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N磁石合金粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子と、その他に粗大な一次粒子が観察された。
このSm−Fe−N磁石合金粉末組成は、Sm23.3重量%、N3.31重量%、O0.16重量%、残部Feだった。
(Comparative Example 1)
In the production conditions of Example 2, iron oxide Fe 2 O 3 powder having an average particle size starting from chloride of 0.9 μm is used, except that the mixed powder before hydrogen reduction is reduced without roasting. This was done in the same manner as in Example 2. As shown in Table 1, the mixed powder before hydrogen reduction has a high total chloride ion concentration of 0.21% by weight, and the abundance ratio of SmFeO 3 is α-Fe: Sm 2 O 3 : SmFeO 3 = 63. The ratio was 0.0: 16.8: 20.2 (% by weight), and the amount of SmFeO 3 produced was larger than that in the examples.
Then, under the same conditions as in Example 1, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain a sm-Fe-N magnet alloy crude powder. In the obtained powder, primary particles, grape-like secondary particles obtained by sintering the primary particles with each other, and other coarse primary particles were observed.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.3% by weight, N3.31% by weight, O0.16% by weight, and the balance Fe.

<磁気特性>
実施例1と同様に解砕後、サンプリングして磁気特性を求めた。結果を表2に示すが、4πIm=1.35T、iHc=706kA/m、Hk=322kA/mであった。
<粒子表面性状、凝集状態、粗大粒子>
また、図2(左)に示すように、比較例1では、粒子表面性状をSEMにて確認したところ、弱粉砕のため滑らかな表面状態であるが、凝集塊や粗大粒子がやや見受けられた。
<粒子断面観察>
図2(右)に示すように、SEMにて粒子断面を観察したところ、残留鉄や粗大粒子も見つかった。ここで反射電子像において、残留鉄があるとコントラストが黒く映るため明確に判断できた。
<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、12.5%であった。
<Magnetic characteristics>
After crushing in the same manner as in Example 1, sampling was performed to determine the magnetic characteristics. The results are shown in Table 2, and the results were 4πIm = 1.35T, iHc = 706kA / m, and Hk = 322kA / m.
<Particle surface texture, aggregated state, coarse particles>
Further, as shown in FIG. 2 (left), in Comparative Example 1, when the particle surface texture was confirmed by SEM, the surface condition was smooth due to weak pulverization, but agglomerates and coarse particles were slightly observed. ..
<Particle cross-section observation>
As shown in FIG. 2 (right), when the particle cross section was observed by SEM, residual iron and coarse particles were also found. Here, in the reflected electron image, if there is residual iron, the contrast appears black, so it can be clearly judged.
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 12.5% as shown in Table 1.

(比較例2)
実施例2の製造条件において、水素還元前の焙焼温度を400℃に下げて焙焼を行うことにより、水素還元前の混合粉末の塩素濃度を低下させ、塩素イオン濃度の総和で0.13重量%とした以外は、実施例2と同様にして行った。水素還元後の存在比率は、α−Fe:Sm:SmFeO=66.8:26.3:6.9(重量%)であった。
その後、実施例1と同条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N磁石合金粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子と、その他に粗大な一次粒子が観察された。
このSm−Fe−N磁石合金粉末組成は、Sm23.5重量%、N3.34重量%、O0.17重量%、残部Feだった。
(Comparative Example 2)
Under the production conditions of Example 2, the roasting temperature before hydrogen reduction was lowered to 400 ° C. to reduce the chlorine concentration of the mixed powder before hydrogen reduction, and the total chlorine ion concentration was 0.13. The procedure was carried out in the same manner as in Example 2 except that the weight was set to%. The abundance ratio after hydrogen reduction was α-Fe: Sm 2 O 3 : SmFeO 3 = 66.8: 26.3: 6.9 (% by weight).
Then, under the same conditions as in Example 1, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain a sm-Fe-N magnet alloy crude powder. In the obtained powder, primary particles, grape-like secondary particles obtained by sintering the primary particles with each other, and other coarse primary particles were observed.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.5% by weight, N3.34% by weight, O0.17% by weight, and the balance Fe.

<磁気特性>
実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表2に示すが、4πIm=1.38T、iHc=790kA/m、Hk=390kA/mであった。
<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、5.8%であった。
<Magnetic characteristics>
The magnetic properties were determined by sampling after crushing in the same manner as in Example 1. The results are shown in Table 2, and the results were 4πIm = 1.38T, iHc = 790kA / m, and Hk = 390kA / m.
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 5.8% as shown in Table 1.

(比較例3)
実施例3の製造条件において、ボールミル混合・乾燥し、水素還元前の混合粉末を焙焼せずに水素還元した。混合粉末は、塩素イオン濃度の総和で0.18重量%となった以外は、実施例3と同様である。水素還元後の混合粉末の存在比率はα−Fe:Sm:SmFeO=64.7:21.0:14.3(重量%)となった。
その後、実施例1と同条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N磁石合金粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子と、その他に粗大な一次粒子が観察された。
このSm−Fe−N磁石合金粉末組成は、Sm23.4重量%、N3.32重量%、O0.17重量%、残部Feだった。
(Comparative Example 3)
Under the production conditions of Example 3, the mixed powder was mixed and dried with a ball mill, and the mixed powder before hydrogen reduction was reduced to hydrogen without roasting. The mixed powder is the same as in Example 3 except that the total chlorine ion concentration is 0.18% by weight. The abundance ratio of the mixed powder after hydrogen reduction was α-Fe: Sm 2 O 3 : SmFeO 3 = 64.7: 21.0: 14.3 (% by weight).
Then, under the same conditions as in Example 1, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain a sm-Fe-N magnet alloy crude powder. In the obtained powder, primary particles, grape-like secondary particles obtained by sintering the primary particles with each other, and other coarse primary particles were observed.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.4% by weight, N3.32% by weight, O0.17% by weight, and the balance Fe.

<磁気特性>
実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表2に示すが、4πIm=1.37T、iHc=726kA/m、Hk=367kA/mであった。
<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、9.0%であった。
<Magnetic characteristics>
The magnetic properties were determined by sampling after crushing in the same manner as in Example 1. The results are shown in Table 2, and the results were 4πIm = 1.37T, iHc = 726kA / m, and Hk = 367kA / m.
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 9.0% as shown in Table 1.

(比較例4)
実施例2の製造条件において、原料化合物としてFe、Smを使用し、初期粉末混合時に、湿式混合をせず、ジュリアミキサー(徳寿工作所製)による乾式混合に変えた。それ以外は、実施例2の条件を用い水素還元を行ったところ、水素還元前の混合粉末中の塩素濃度は、塩素イオン濃度の総和で0.25重量%であり、水素還元後の存在比率は、α−Fe:Sm:SmFeO=61.3:12.5:26.2(重量%)であった。
その後、実施例1と同条件で、還元拡散、窒化処理、湿式処理を行い、Sm−Fe−N磁石合金粗粉末を得た。得られた粉末は、1次粒子および1次粒子同士が焼結したブドウ状の2次粒子と、その他に粗大な一次粒子が観察された。
このSm−Fe−N磁石合金粉末組成は、Sm23.4重量%、N3.33重量%、O0.16重量%、残部Feだった。
(Comparative Example 4)
In the production conditions of Example 2, Fe 2 O 3 and Sm 2 O 3 were used as raw material compounds, and at the time of initial powder mixing, wet mixing was not performed, but dry mixing was performed using a Julia mixer (manufactured by Tokuju Kosakusho). Other than that, when hydrogen reduction was performed using the conditions of Example 2, the chlorine concentration in the mixed powder before hydrogen reduction was 0.25% by weight in total of the chlorine ion concentration, and the abundance ratio after hydrogen reduction. Was α-Fe: Sm 2 O 3 : SmFeO 3 = 61.3: 12.5: 26.2 (% by weight).
Then, under the same conditions as in Example 1, reduction diffusion, nitriding treatment, and wet treatment were performed to obtain a sm-Fe-N magnet alloy crude powder. In the obtained powder, primary particles, grape-like secondary particles obtained by sintering the primary particles with each other, and other coarse primary particles were observed.
The composition of this Sm-Fe-N magnet alloy powder was Sm23.4% by weight, N3.33% by weight, O0.16% by weight, and the balance Fe.

<磁気特性>
実施例1と同様に解砕後サンプリングして磁気特性を求めた。結果を表2に示すが、4πIm=1.32T、iHc=693kA/m、Hk=310kA/mであった。
<粒子表面性状、凝集状態、粗大粒子>
また、図3(左)に示すように、比較例4では、粒子表面性状をSEMにて確認したところ、弱粉砕のため滑らかな表面状態であるが、凝集塊や粗大粒子がやや見受けられた。
<粒子断面観察>
図3(右)に示すように、SEMにて粒子断面を観察したところ、乾式混合の影響で、Fe粒子中へのSmの不均一拡散が確認されたほか、Fe粒子内部まで均一に窒化されていない粗大粒子も見つかった。ここで反射電子像において、残留鉄があるとコントラストが黒く、また窒化不足であるとコントラストがやや白く、さらにSmが主相SmFe17Nxより過剰であると白く映ることから、その状況が明確に判断できた。
<長軸粒子径4μm以上の存在割合>
さらに、解砕した磁石粉末から長軸粒子径4μm以上の存在割合を累積個数百分率によって算出した結果、表1に示すように、14.1%であった。
<Magnetic characteristics>
The magnetic properties were determined by sampling after crushing in the same manner as in Example 1. The results are shown in Table 2, and the results were 4πIm = 1.32T, iHc = 693kA / m, and Hk = 310kA / m.
<Particle surface texture, aggregated state, coarse particles>
Further, as shown in FIG. 3 (left), in Comparative Example 4, when the particle surface texture was confirmed by SEM, the surface condition was smooth due to weak pulverization, but agglomerates and coarse particles were slightly observed. ..
<Particle cross-section observation>
As shown in FIG. 3 (right), when the particle cross section was observed by SEM, non-uniform diffusion of Sm into the Fe particles was confirmed due to the effect of dry mixing, and the inside of the Fe particles was uniformly nitrided. Coarse particles were also found. Here, in the reflected electron image, the contrast is black when there is residual iron, the contrast is slightly white when the nitriding is insufficient, and white when Sm is more than the main phase Sm 2 Fe 17 Nx. I was able to make a clear decision.
<Presence ratio of semimajor particle diameter of 4 μm or more>
Further, as a result of calculating the abundance ratio of the semimajor axis particle diameter of 4 μm or more from the crushed magnet powder by the cumulative number percentage, it was 14.1% as shown in Table 1.

「評価」
上記結果を示す表1、2より、実施例1では、原料鉄化合物として、硝酸塩から製造された酸化鉄Fe粉末を用い、また、実施例2、3では、原料鉄化合物として、塩化物から製造された酸化鉄Fe粉末を用いたが、原料化合物混合後、大気中で焙焼を行うことによって、混合粉末の塩素イオン濃度を低下させた後に水素還元を行っており、鉄希土類複合酸化物RFeO(Rは希土類元素)生成量が0.1重量%以下に抑制された。その結果、還元拡散処理を行って得られたSm−Fe−N磁石合金粉末は、滑らかな表面状態が観察され、凝集塊や粗大粒子はほとんど見られず、磁気特性も、飽和磁化、保磁力、角形性いずれも高特性を有していることがわかる。
"Evaluation"
From Table 1 and 2 shows the above results, in Example 1, as a starting material iron compound, using the iron oxide Fe 2 O 3 powder produced from nitrates, In Example 2, as a starting material iron compound, chloride Iron oxide Fe 2 O 3 powder produced from a product was used, but after mixing the raw material compounds, iron reduction was performed after reducing the chlorine ion concentration of the mixed powder by roasting in the air. The amount of iron rare earth composite oxide RFeO 3 (R is a rare earth element) produced was suppressed to 0.1% by weight or less. As a result, the Sm-Fe-N magnet alloy powder obtained by the reduction / diffusion treatment was observed to have a smooth surface state, almost no agglomerates or coarse particles were observed, and the magnetic properties were saturated magnetization and coercive force. It can be seen that both, and squareness have high characteristics.

一方、比較例1〜4は、原料鉄化合物に塩化物出発の酸化鉄Fe粉末を用いた例であり、湿式混合した比較例1、3は、水素還元前に焙焼しておらず、比較例2は、水素還元前に焙焼を行っているが、焙焼温度が400℃と低かったことにより水素還元前の塩素濃度が低減できなかった。いずれも水素還元前の塩素濃度が高かったため、水素還元を行うことによりSmFeOが多く生成され、還元拡散処理を行って得られたSm−Fe−N磁石合金粉末では粗大な一次粒子が多く存在したり、窒化が粒子内部まで進行していない粒子の存在も確認されており、結果として、磁気特性全般の低下が確認されている。 On the other hand, Comparative Examples 1 to 4 are examples in which iron oxide Fe 2 O 3 powder starting from chloride was used as the raw material iron compound, and Comparative Examples 1 and 3 in which wet mixing was performed were roasted before hydrogen reduction. However, in Comparative Example 2, roasting was performed before hydrogen reduction, but the chlorine concentration before hydrogen reduction could not be reduced because the roasting temperature was as low as 400 ° C. Since the chlorine concentration before hydrogen reduction was high in all cases, a large amount of SmFeO 3 was produced by hydrogen reduction, and the Sm-Fe-N magnet alloy powder obtained by the reduction diffusion treatment contained many coarse primary particles. It has also been confirmed that there are particles in which nitriding has not progressed to the inside of the particles, and as a result, deterioration of the overall magnetic properties has been confirmed.

これ等の結果は、上述したように、原料混合物中の塩素濃度が、塩素イオン濃度の総和にして0.1重量%を超えると、水素還元時に水素と結合した塩素が塩化水素となり、同時に発生する水蒸気に溶け込み塩酸ガスとなって原料化合物であるSmを溶解し、生成したSm化合物はその後、微細な結晶として再析出し、FeもしくはFeと反応して鉄希土類複合酸化物であるSmFeOの生成を促進し、この還元混合物粉末中に鉄希土類複合酸化物SmFeOが多く存在すると、次工程のアルカリ土類金属を用いた還元拡散処理時に、局部的に非常に大きな発熱を生じ局部的粒成長を引き起こしたため希土類−鉄合金の粗大粒子化が進んだと考えられる。 As described above, these results show that when the chlorine concentration in the raw material mixture exceeds 0.1% by weight in total of the chlorine ion concentration, the chlorine combined with hydrogen during hydrogen reduction becomes hydrogen chloride and is generated at the same time. It dissolves in the steam to form hydrochloric acid gas, which dissolves the raw material compound Sm 2 O 3, and the resulting Sm compound is then reprecipitated as fine crystals and reacts with Fe or Fe 2 O 3 to form an iron rare earth complex oxidation. It promotes the formation of SmFeO 3 which is a compound, and when a large amount of iron rare earth composite oxide SmFeO 3 is present in this reduction mixture powder, it is locally very large during the reduction and diffusion treatment using an alkaline earth metal in the next step. It is considered that the rare earth-iron alloy became coarser particles because heat was generated and local grain growth was caused.

また、比較例4は、原料化合物を湿式混合ではなく、乾式混合を用いた場合であるが、乾式混合の欠点であるFeとSmの不均一混合が影響している他に、原料鉄化合物に塩化物出発のFeを使用していることから、水素還元前の原料混合物中の塩素濃度が高く、水素還元を行うことによりSmFeOが多く生成され、次工程で発熱により粗大粒子発生につながり、最も磁気特性が低い結果となったものと考えられる。 Further, Comparative Example 4 is a case where the raw material compound is dry-mixed instead of wet-mixed, but the non-uniform mixing of Fe 2 O 3 and Sm 2 O 3 , which is a drawback of dry mixing, has an effect. In addition, since Fe 2 O 3 starting from chloride is used as the raw iron compound, the chlorine concentration in the raw material mixture before hydrogen reduction is high, and a large amount of SmFe O 3 is produced by hydrogen reduction, and the next step It is probable that the heat generated in the iron led to the generation of coarse particles, resulting in the lowest magnetic properties.

本発明の製造方法で得られた希土類−鉄−窒素系磁石は、そのまま加圧成形した圧密磁石とするか、バインダー樹脂と配合した安価なボンド磁石として、広く民生用途あるいは工業用部品などに利用される。

The rare earth-iron-nitrogen magnet obtained by the manufacturing method of the present invention can be used as a compacted magnet as it is, or as an inexpensive bond magnet mixed with a binder resin, and is widely used for consumer or industrial parts. Will be done.

Claims (9)

還元拡散法により得られる希土類−鉄系母合金粉末を窒化する工程を含む希土類−鉄−窒素系磁石粉末の製造方法であって、
磁石原料となる鉄化合物粉末と希土類化合物粉末を、水あるいは有機溶媒中で湿式混合処理し、処理液から磁石原料を濾別し、乾燥して、混合粉末を得る第一の工程と、
記混合粉末を、水素気流中で熱処理し、還元混合物粉末を得る第二の工程と、
記還元混合物粉末にアルカリ土類金属を添加し、混合して、不活性ガス雰囲気中で、900〜1180℃の温度で熱処理した後、得られた反応生成物を同雰囲気中で冷却することにより希土類−鉄系母合金を得る第三の工程と、
記希土類−鉄系母合金を含む反応生成物に、少なくともアンモニアと水素とを含有する混合ガスを供給し、前記混合ガス気流中で熱処理することにより窒化処理して生成した希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を得る第四の工程と、
次に得られた前記希土類−鉄−窒素系磁石粗粉末を含む窒化処理生成物塊を水中に投入して湿式処理して崩壊させ、得られた希土類−鉄−窒素系磁石粗粉末を解砕して希土類−鉄−窒素系磁石粉末を得る第五の工程と、
を有し、
前記混合粉末は、水中に分散させたときに溶出する塩素イオン濃度の総和が、前記混合物粉末に対して0.1重量%以下であり、
前記還元混合物粉末中、希土類鉄複合酸化物RFeO (Rは希土類元素)の存在比率が6重量%以下である、
希土類−鉄−窒素系磁石粉末の製造方法。
A method for producing a rare earth-iron-nitrogen magnet powder, which comprises a step of nitriding a rare earth-iron mother alloy powder obtained by the reduction diffusion method.
An iron compound powder and rare earth compound powder of the magnet raw material, wet mixed treated with water or an organic solvent and then filtered to remove the magnet material from processing liquid and dried, a first step of obtaining a mixed powder,
The pre-Symbol mixed powder was heat-treated in a hydrogen stream, a second step of obtaining a reduced mixture powder,
Was added before Symbol reduced mixture powder alkaline earth to the metal, and mixed in an inert gas atmosphere, after heat treatment at a temperature of from 900 to 1,180 ° C., cooling the reaction product obtained in the same atmosphere The third step of obtaining a rare earth-iron base alloy by
Before SL earth - the reaction product comprising an iron-based matrix alloy, supplying a mixed gas containing at least ammonia and hydrogen were produced by nitriding treatment by heat treatment in the mixed gas flow rare earth - iron - nitrogen A fourth step of obtaining a nitriding product mass containing a system magnet coarse powder, and
Next, the obtained nitriding product mass containing the rare earth-iron-nitrogen magnet coarse powder was put into water and wet-treated to disintegrate, and the obtained rare earth-iron-nitrogen magnet crude powder was crushed. And the fifth step to obtain rare earth-iron-nitrogen magnet powder,
Have a,
The total concentration of chloride ions eluted in the mixed powder when dispersed in water is 0.1% by weight or less with respect to the mixture powder.
The abundance ratio of the rare earth iron composite oxide RFeO 3 (R is a rare earth element) in the reduction mixture powder is 6% by weight or less.
A method for producing a rare earth-iron-nitrogen magnet powder.
請求項1の製造方法で得られた希土類−鉄−窒素系磁石粗粉末が、1次粒子が複数集まってブドウ状に焼結した2次粒子と、1次粒子とからなる混合粉末であり、長軸粒子径が4μm以上である1次粒子の累積個数百分率が5%未満であることを特徴とする希土類−鉄−窒素系磁石粉末の製造方法。 The rare earth-iron-nitrogen magnet coarse powder obtained by the production method of claim 1 is a mixed powder composed of secondary particles obtained by gathering a plurality of primary particles and sintering them into a grape shape, and primary particles. A method for producing a rare earth-iron-nitrogen magnet powder, characterized in that the cumulative number percentage of primary particles having a major axis particle diameter of 4 μm or more is less than 5%. 希土類−鉄−窒素系磁石粉末がSm−Fe−Nであることを特徴とする請求項1または2記載の希土類−鉄−窒素系磁石粉末の製造方法。 The method for producing a rare earth-iron-nitrogen magnet powder according to claim 1 or 2, wherein the rare earth-iron-nitrogen magnet powder is Sm-Fe-N. Sm量が、磁石粉末全体に対して23.2〜23.6重量%であることを特徴とする請求項1〜3のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。 The method for producing a rare earth-iron-nitrogen magnet powder according to any one of claims 1 to 3, wherein the amount of Sm is 23.2 to 23.6% by weight based on the total amount of the magnet powder. 第一の工程における鉄化合物が、酸化鉄、オキシ水酸化鉄、水酸化鉄から選ばれる1種以上であり、また、希土類化合物が、希土類酸化物、希土類水酸化物から選ばれる1種以上であることを特徴とする請求項1〜4のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。 The iron compound in the first step is one or more selected from iron oxide, iron oxyhydroxide, and iron hydroxide, and the rare earth compound is one or more selected from rare earth oxides and rare earth hydroxides. The method for producing a rare earth-iron-nitrogen magnet powder according to any one of claims 1 to 4, wherein the rare earth-iron-nitrogen magnet powder is produced. 第一の工程の湿式混合処理において、予め前記鉄化合物粉末、希土類化合物粉末のいずれかを水に分散させる試験を行い、水溶液が酸性を示す場合、溶媒に有機溶媒を用いるようにし、一方、水溶液がアルカリ性を示す場合は、溶媒に水、あるいは、有機溶媒を用いるようにすることを特徴とする請求項1〜5のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。 In the wet mixing treatment of the first step, a test in which either the iron compound powder or the rare earth compound powder is dispersed in water is performed in advance, and when the aqueous solution shows acidity, an organic solvent is used as the solvent, while the aqueous solution is used. The method for producing a rare earth-iron-nitrogen magnet powder according to any one of claims 1 to 5, wherein when water is alkaline, water or an organic solvent is used as the solvent. 第二の工程における熱処理の温度範囲が500〜800℃であること特徴とする請求項1〜6のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。 The method for producing a rare earth-iron-nitrogen magnet powder according to any one of claims 1 to 6, wherein the temperature range of the heat treatment in the second step is 500 to 800 ° C. 第三の工程におけるアルカリ土類金属量が、還元されていない酸素量を還元するだけの量を1当量としたとき、1.1〜3.0当量であることを特徴とする請求項1〜7のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。 Claims 1 to 3.0 characterized in that the amount of alkaline earth metal in the third step is 1.1 to 3.0 equivalents, where 1 equivalent is an amount sufficient to reduce the amount of unreduced oxygen. The method for producing a rare earth-iron-nitrogen magnet powder according to any one of 7 . 第五の工程における解砕は、ブドウ状の2次粒子を砕く粉砕強度とし、1次粒子塊は粉
砕しない粉砕強度で行うことを特徴とする請求項1〜8のいずれかに記載の希土類−鉄−窒素系磁石粉末の製造方法。
The rare earth according to any one of claims 1 to 8, wherein the crushing in the fifth step is performed with a crushing strength for crushing grape-like secondary particles and a crushing strength for which the primary particle mass is not crushed. A method for producing iron-nitrogen magnet powder.
JP2016163672A 2016-08-24 2016-08-24 Method for manufacturing rare earth-iron-nitrogen alloy powder Active JP6759855B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016163672A JP6759855B2 (en) 2016-08-24 2016-08-24 Method for manufacturing rare earth-iron-nitrogen alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016163672A JP6759855B2 (en) 2016-08-24 2016-08-24 Method for manufacturing rare earth-iron-nitrogen alloy powder

Publications (2)

Publication Number Publication Date
JP2018031053A JP2018031053A (en) 2018-03-01
JP6759855B2 true JP6759855B2 (en) 2020-09-23

Family

ID=61304934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016163672A Active JP6759855B2 (en) 2016-08-24 2016-08-24 Method for manufacturing rare earth-iron-nitrogen alloy powder

Country Status (1)

Country Link
JP (1) JP6759855B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027306B2 (en) 2021-06-10 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet
US12027294B2 (en) 2021-09-27 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985607B2 (en) * 2018-03-22 2021-12-22 日亜化学工業株式会社 Manufacturing method of anisotropic magnetic powder
CN118478014A (en) * 2024-07-16 2024-08-13 西安稀有金属材料研究院有限公司 Method for preparing high-performance samarium-iron-nitrogen magnetic powder based on chemical precipitation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12027306B2 (en) 2021-06-10 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet
US12027294B2 (en) 2021-09-27 2024-07-02 Nichia Corporation Method of producing SmFeN-based rare earth magnet

Also Published As

Publication number Publication date
JP2018031053A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
US20230268105A1 (en) Anisotropic magnetic powders
TWI707048B (en) R-(Fe,Co)-B SINTERED MAGNET AND MAKING METHOD
EP2660830B1 (en) Ferrite sintered magnet and method for producing same
EP2881956B1 (en) Sintered ferrite magnet and its production method
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
EP2980809A2 (en) Mnbi-based magnetic substance, preparation method thereof, mnbi-based sintered magnet and preparation method thereof
WO2011001831A1 (en) Ferrite sintered magnet producing method and ferrite sintered magnet
JP6759855B2 (en) Method for manufacturing rare earth-iron-nitrogen alloy powder
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
Okada et al. Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique
JP6555197B2 (en) Method for producing rare earth-iron-nitrogen alloy powder
JP7187920B2 (en) Polycrystalline rare earth transition metal alloy powder and method for producing the same
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
CN110970187B (en) Samarium-iron-bismuth-nitrogen system magnet powder and samarium-iron-bismuth-nitrogen system sintered magnet
JP2015120958A (en) Rare earth-iron-nitrogen based magnetic alloy and method for manufacturing the same
JP2017218623A (en) Production method of rare earth-iron-nitrogen system alloy powder
JP6919788B2 (en) Rare earth sintered magnet
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
JP2023067693A (en) Rare earth magnet and production method thereof
JP2023077289A (en) Rare earth magnet and manufacturing method thereof
JP4725682B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2005032745A (en) Sintered ferrite magnet and its manufacturing method
JP2007084918A (en) Rare earth-iron-nitrogen based magnet powder, and its production method
JP4604528B2 (en) Rare earth-iron-manganese-nitrogen magnet powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R150 Certificate of patent or registration of utility model

Ref document number: 6759855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150