JP4345588B2 - Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained - Google Patents

Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained Download PDF

Info

Publication number
JP4345588B2
JP4345588B2 JP2004185962A JP2004185962A JP4345588B2 JP 4345588 B2 JP4345588 B2 JP 4345588B2 JP 2004185962 A JP2004185962 A JP 2004185962A JP 2004185962 A JP2004185962 A JP 2004185962A JP 4345588 B2 JP4345588 B2 JP 4345588B2
Authority
JP
Japan
Prior art keywords
rare earth
transition metal
powder
raw material
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004185962A
Other languages
Japanese (ja)
Other versions
JP2006009074A (en
Inventor
隆士 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004185962A priority Critical patent/JP4345588B2/en
Publication of JP2006009074A publication Critical patent/JP2006009074A/en
Application granted granted Critical
Publication of JP4345588B2 publication Critical patent/JP4345588B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、希土類−遷移金属−窒素系磁石粉末とその製造方法、および得られるボンド磁石に関し、さらに詳しくは、還元拡散時に希土類元素の組成ずれを抑制でき、優れた磁気特性を有する希土類−遷移金属−窒素系磁石粉末とその製造方法、および得られるボンド磁石に関する。   The present invention relates to a rare earth-transition metal-nitrogen based magnet powder, a method for producing the same, and a bonded magnet obtained. More specifically, the present invention relates to a rare earth-transition having excellent magnetic properties, capable of suppressing composition shift of rare earth elements during reduction diffusion. The present invention relates to a metal-nitrogen based magnet powder, a method for producing the same, and an obtained bonded magnet.

近年、家電、音響機器、自動車用各種機器などさまざまな機器の小型化や高効率化が要求されている。そして、このような機器にとって必要不可欠な永久磁石にも小型化、高特性化が望まれている。このような状況下、フェライトなどの低特性磁石に比較し、数10倍の磁気特性を有する希土類磁石の需要が伸びている。   In recent years, there has been a demand for downsizing and high efficiency of various devices such as home appliances, acoustic devices, and various automotive devices. Further, downsizing and high performance of permanent magnets indispensable for such devices are desired. Under such circumstances, the demand for rare earth magnets having magnetic characteristics several tens of times higher than that of low characteristic magnets such as ferrite is increasing.

たとえば、Nd−Fe−B系焼結磁石は、55MGOeを超える(BH)maxを有し、最も需要が高い磁石の一つである。さらに、磁石粉末の磁気特性でNd−Fe−B系磁石に並ぶ磁石として、菱面体晶系、六方晶系、正方晶系、又は単斜晶系の結晶構造を有する金属間化合物に窒素を導入した希土類−遷移金属−窒素系磁石粉末が、特に永久磁石材料として優れた磁気特性を有することから注目されている。 For example, an Nd—Fe—B based sintered magnet has a (BH) max exceeding 55 MGOe, and is one of the most in demand magnets. Furthermore, nitrogen is introduced into intermetallic compounds having rhombohedral, hexagonal, tetragonal, or monoclinic crystal structures as magnets aligned with Nd-Fe-B magnets due to the magnetic properties of magnet powder. The rare earth-transition metal-nitrogen based magnet powder has been attracting attention because it has excellent magnetic properties as a permanent magnet material.

このような希土類−遷移金属−窒素系磁石粉末として、例えば、Fe−R−N(R:Y、Th、及び全てのランタノイド元素からなる群の中から選ばれた一種または二種以上)で表される永久磁石(特許文献1参照)、また、六方晶系あるいは菱面体晶系の結晶構造を有し、R−Fe−N−H(R:イットリウムを含む希土類元素のうちの少なくとも一種)で表される磁気異方性材料(特許文献2参照)や、R−Fe−M−A(R:Yまたはイットリウムからなる希土類金属、M:V、Ti、Moのうちの少なくとも一種、A:NまたはCからなる元素)で表される希土類磁石材料(特許文献3参照)が提案されている。さらに、菱面体晶系、六方晶系、又は正方晶系の結晶構造を有するThZn17型、TbCu型、又はThMn12型金属間化合物に窒素等を含有させた希土類磁石材料(特許文献4参照)が提案されている。 Such rare earth-transition metal-nitrogen based magnet powder is represented by, for example, Fe-RN (one or two or more selected from the group consisting of R: Y, Th, and all lanthanoid elements). A permanent magnet (see Patent Document 1), or a hexagonal or rhombohedral crystal structure, and R—Fe—N—H (R: at least one of rare earth elements including yttrium). Magnetic anisotropy material represented (see Patent Document 2), R-Fe-MA (R: rare earth metal composed of Y or yttrium, M: V, Ti, Mo, at least one of A: N Or a rare earth magnet material represented by C) (see Patent Document 3). Furthermore, a rare earth magnet material in which nitrogen or the like is contained in a Th 2 Zn 17 type, TbCu 7 type, or ThMn 12 type intermetallic compound having a rhombohedral, hexagonal, or tetragonal crystal structure (Patent Literature) 4) has been proposed.

また、これらの磁石材料の磁気特性等を改善するために、種々の添加物を用いることも検討されている。例えば、この特許文献4には、六方晶系あるいは菱面体晶系の結晶構造を有するR−Fe−N−H−O−M(R:Yを含む希土類元素のうちの少なくとも一種;M:Mg、Ti、Zr、Cu、Zn、Al、Ga、In、Si、Ge、Sn、Pb、Biの元素、及びこれらの元素並びにRの酸化物、フッ化物、炭化物、窒化物、水素化物のうち少なくとも一種)で表される磁性材料が開示されている。   In addition, in order to improve the magnetic properties and the like of these magnet materials, use of various additives has been studied. For example, this Patent Document 4 discloses R—Fe—N—H—O—M (R: Y-containing at least one kind of rare earth elements including M: Mg) having a hexagonal or rhombohedral crystal structure. , Ti, Zr, Cu, Zn, Al, Ga, In, Si, Ge, Sn, Pb, Bi, and these elements and R oxides, fluorides, carbides, nitrides, hydrides, at least A magnetic material represented by “a kind” is disclosed.

これらの希土類−遷移金属−窒素系磁性材料の多くは、平均粒径1〜10μmの粉末として使用される。平均粒径が10μmを超えると、必要な保磁力が得られなかったり、ボンド磁石の表面が粗くなって磁粉の脱落が起こりやすくなり、一方、平均粒径が1μm未満では、粉末の酸化による発熱やThZn17型結晶構造を有する主相の分解による磁気特性の低下が起こるためである。 Many of these rare earth-transition metal-nitrogen based magnetic materials are used as powders having an average particle diameter of 1 to 10 μm. If the average particle size exceeds 10 μm, the required coercive force cannot be obtained, or the surface of the bonded magnet becomes rough and the magnetic particles are likely to fall off. On the other hand, if the average particle size is less than 1 μm, heat is generated due to powder oxidation. This is because the magnetic properties are degraded due to decomposition of the main phase having a Th 2 Zn 17 type crystal structure.

希土類−遷移金属−窒素系磁性材料は、溶解鋳造法、液体急冷法、還元拡散法等によって、1〜10μmを超える平均粒径を有する希土類−遷移金属系の母合金粉末を製造されている。そして、母合金粉末を得た後、合金内に窒素原子を導入するため、窒素やアンモニア、又はこれらと水素との混合ガス雰囲気中で200〜700℃に加熱する窒化処理を行い、次いで、上記所定の粒度に微粉化されている。   As for rare earth-transition metal-nitrogen based magnetic materials, rare earth-transition metal based mother alloy powders having an average particle size exceeding 1 to 10 μm are manufactured by a melt casting method, a liquid quenching method, a reduction diffusion method or the like. Then, after obtaining the master alloy powder, in order to introduce nitrogen atoms into the alloy, nitriding treatment is performed by heating to 200 to 700 ° C. in a mixed gas atmosphere of nitrogen, ammonia, or these and hydrogen, Micronized to a predetermined particle size.

上記母合金粉末を溶解鋳造法で製造するには、希土類金属、遷移金属、必要に応じてその他の金属を所定の比率で調合して、不活性ガス雰囲気中で高周波溶解し、得られた合金インゴットを均一化熱処理した後、ジョークラッシャー等で所定の粒度に粉砕される。また、液体急冷法では、上記合金インゴットから合金薄帯を作製、これを粉砕して製造される。また、還元拡散法では、希土類酸化物粉末、還元剤、遷移金属粉、必要に応じてその他の金属粉及び/又は金属酸化物を出発原料として製造される。   In order to produce the above master alloy powder by the melt casting method, a rare earth metal, a transition metal, and other metals as required are mixed in a predetermined ratio and melted at a high frequency in an inert gas atmosphere. The ingot is subjected to uniform heat treatment and then pulverized to a predetermined particle size by a jaw crusher or the like. In the liquid quenching method, an alloy ribbon is produced from the alloy ingot and is pulverized. In the reduction diffusion method, a rare earth oxide powder, a reducing agent, a transition metal powder, and if necessary, other metal powder and / or metal oxide are used as starting materials.

しかし、例えば、溶解鋳造法では、溶かした合金が固まる際、温度分布ができ組成ずれを起こしてしまう。また、溶解鋳造法、液体急冷法では、原料として使用する希土類金属が高価であるため経済的ではない。   However, in the melt casting method, for example, when a molten alloy is solidified, a temperature distribution is generated and a composition shift occurs. Further, the melt casting method and the liquid quenching method are not economical because the rare earth metal used as a raw material is expensive.

一方、還元拡散法では、炉内の温度分布によって温度の高い箇所の希土類元素が蒸発し組成ずれを起こしてしまう。組成がずれた母合金を用いた磁石粉末は、主相以外の合金相が含まれるので磁気特性は低くなってしまう。このようなことから上記の方法では、母合金組成のばらつきがないものを製造するのは難しいというのが実状である。   On the other hand, in the reduction diffusion method, the rare earth element at a high temperature is evaporated due to the temperature distribution in the furnace, causing a composition shift. A magnet powder using a mother alloy having a shifted composition contains an alloy phase other than the main phase, so that the magnetic properties are lowered. For this reason, it is actually difficult to manufacture the above-described method with no variation in the composition of the mother alloy.

このため、本出願人は、原料粉末を予め加圧成形しておくことで、還元拡散反応中に生成した溶体の移動を制限し、母合金組成のばらつきを防止することを提案した(特許文献5参照)。
これにより、かかる問題はある程度解消されたが、工程が一層複雑になり、コスト的に不利となることに加えて、還元拡散反応生成物中の希土類−遷移金属系母合金粉末には凝集・融着部が多く存在し、窒化処理後も合金粉末同士が強く凝集・融着しているため、粉末を磁界中で配向させた際の配向性(粉末配向度)が劣り、磁化が低くなるという問題が残されている。このため、ジェットミル等の粉砕装置を用いて、合金粉末の凝集・融着部を解砕して微粉化する対応が採られるが、解砕の際に生じる結晶の歪みのために保磁力が低下するという新たな問題が発生する。
For this reason, the present applicant has proposed that the raw material powder is previously pressure-molded to limit the movement of the solution formed during the reduction-diffusion reaction and to prevent variations in the master alloy composition (Patent Document). 5).
Although this problem has been solved to some extent, the process becomes more complicated and disadvantageous in cost. In addition, the rare earth-transition metal master alloy powder in the reduction diffusion reaction product is agglomerated and fused. Because there are many deposits and the alloy powders are strongly agglomerated and fused even after nitriding, the orientation (powder orientation) when the powder is oriented in a magnetic field is inferior and the magnetization is low. The problem remains. For this reason, it is possible to use a pulverizer such as a jet mill to pulverize and pulverize the agglomerated / fused part of the alloy powder, but the coercive force is reduced due to the distortion of the crystals generated during the pulverization. A new problem of lowering occurs.

上述のとおり、希土類−遷移金属−窒素系磁石粉末の磁気特性を向上させるための試みは種々行われているが、未だ、改善すべき問題が多く残されている。このため、上記従来技術の問題点を解決し、組成ずれの無い、優れた磁気特性を示す希土類−遷移金属−窒素系磁石粉末の製造方法を開発することが強く求められていた。
特開昭60−131949号公報 特開平2−57663号公報 特開平6−279915号公報 特開平3−153852号公報 特開平10−280002号公報
As described above, various attempts have been made to improve the magnetic properties of the rare earth-transition metal-nitrogen based magnet powder, but many problems to be improved still remain. For this reason, there has been a strong demand to develop a method for producing a rare earth-transition metal-nitrogen based magnet powder that solves the above-described problems of the prior art and exhibits excellent magnetic properties without composition deviation.
Japanese Patent Laid-Open No. 60-131949 Japanese Patent Laid-Open No. 2-57663 JP-A-6-279915 JP-A-3-153852 JP 10-280002 A

本発明の課題は、上記従来の問題点に鑑み、還元拡散時に希土類元素の組成ずれを抑制でき、優れた磁気特性を有する希土類−遷移金属−窒素系磁石粉末とその製造方法、および得られるボンド磁石を提供することにある。   In view of the above-mentioned conventional problems, an object of the present invention is to provide a rare earth-transition metal-nitrogen based magnet powder having excellent magnetic properties, a rare earth element composition shift during reduction diffusion, a method for producing the same, and a bond obtained It is to provide a magnet.

本発明者は、上記目的を達成するために鋭意研究を行った結果、希土類酸化物を含む原料を還元剤によって還元し遷移金属中に拡散させ母合金を得た後、該母合金を窒化処理して希土類−遷移金属−窒素系磁石粉末を製造する方法において、還元拡散時の加熱焼成により還元拡散用の反応容器内の相対的に温度が高くなる箇所に、予め希土類元素又は原料混合物よりも希土類元素の含有量を多くした調整用原料を導入することにより、炉内の温度分布等によって温度が高くなった場所で希土類元素が蒸発しても、希土類元素が不足しないようになり、生成した窒素導入前の合金の組成をより均一にすることができ、窒化後の希土類−遷移金属−窒素系磁石粉末の特性を高められることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventor reduced a raw material containing a rare earth oxide with a reducing agent and diffused it into a transition metal to obtain a master alloy, and then nitrided the master alloy. Then, in the method of producing a rare earth-transition metal-nitrogen based magnet powder, in a place where the temperature in the reaction vessel for reduction diffusion becomes relatively high due to heating and firing during reduction diffusion, in advance than the rare earth element or the raw material mixture By introducing a raw material for adjustment with an increased content of rare earth elements, even if the rare earth elements evaporate in a place where the temperature is high due to the temperature distribution in the furnace, the rare earth elements are not deficient and generated. It has been found that the composition of the alloy before introducing nitrogen can be made more uniform and the characteristics of the rare earth-transition metal-nitrogen based magnet powder after nitriding can be improved, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、希土類酸化物粉末、鉄を含む遷移金属粉末、及び希土類酸化物を還元するための還元剤を含有する原料混合物を還元拡散用の反応容器に導入し、非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金を得た後、窒化処理して、希土類元素の含有量のばらつきが抑制された希土類−遷移金属−窒素系磁石粉末を製造する方法であって、原料混合物を還元拡散用の反応容器に導入する際に、その底部に、予め、(a)希土類金属、(b)希土類酸化物粉末と還元剤との混合物、又は(c)希土類元素の含有量が原料混合物よりも1〜30原子%多い希土類酸化物粉末、遷移金属粉末および還元剤の混合物から選ばれる調整用原料を装填してから、次いでその上に原料混合物を装填することを特徴とする希土類−遷移金属−窒素系磁石粉末の製造方法が提供される。   That is, according to the first invention of the present invention, the raw material mixture containing the rare earth oxide powder, the transition metal powder containing iron, and the reducing agent for reducing the rare earth oxide is introduced into the reaction vessel for reducing diffusion. And heating and firing in a non-oxidizing atmosphere to obtain a rare earth-transition metal master alloy, followed by nitriding to obtain a rare earth-transition metal-nitrogen magnet powder in which variation in the content of rare earth elements is suppressed. In the production method, when the raw material mixture is introduced into the reaction vessel for reduction diffusion, the bottom thereof is preliminarily provided with (a) a rare earth metal, (b) a mixture of a rare earth oxide powder and a reducing agent, or ( c) A raw material for adjustment selected from a mixture of rare earth oxide powder, transition metal powder and reducing agent having a rare earth element content of 1 to 30 atomic% higher than the raw material mixture is loaded, and then the raw material mixture is placed thereon. Characterized by loading That the rare earth - transition metal - method for producing nitrogen-based magnetic powder is provided.

また、本発明の第2の発明によれば、第1の発明において、原料混合物に含まれる希土類元素の含有量は、7〜11原子%であることを特徴とする希土類−遷移金属−窒素系磁石粉末の製造方法が提供される。   According to the second invention of the present invention, the rare earth-transition metal-nitrogen system according to the first invention, wherein the content of the rare earth element contained in the raw material mixture is 7 to 11 atomic%. A method for producing magnet powder is provided.

さらに、本発明の第3の発明によれば、第1又は2の発明において、調整用原料に含まれる希土類元素の含有量は、原料混合物と調整用原料に含まれる希土類元素の合計量に対して、2〜40%であることを特徴とする希土類−遷移金属−窒素系磁石粉末の製造方法が提供される。   Further, according to the third invention of the present invention, in the first or second invention, the content of the rare earth element contained in the adjustment raw material is relative to the total amount of the rare earth element contained in the raw material mixture and the adjustment raw material. Thus, there is provided a method for producing a rare earth-transition metal-nitrogen based magnet powder characterized by being 2 to 40%.

一方、本発明の第4の発明によれば、第1〜3のいずれかの発明の製造方法により得られる希土類−遷移金属−窒素系磁石粉末が提供される。   On the other hand, according to the fourth aspect of the present invention, there is provided a rare earth-transition metal-nitrogen based magnet powder obtained by the production method of any one of the first to third aspects.

また、本発明の第5の発明によれば、第4の発明において、希土類元素の含有量が、3〜20原子%であることを特徴とする希土類−遷移金属−窒素系磁石粉末が提供される。   According to a fifth aspect of the present invention, there is provided a rare earth-transition metal-nitrogen based magnet powder according to the fourth aspect, wherein the rare earth element content is 3 to 20 atomic%. The

さらに、本発明の第6の発明によれば、第4又は5の発明において、希土類元素の含有量のばらつきが0.3原子%以内であることを特徴とする希土類−遷移金属−窒素系磁石粉末が提供される。   Furthermore, according to the sixth invention of the present invention, the rare earth-transition metal-nitrogen based magnet according to the fourth or fifth invention, wherein the rare earth element content variation is within 0.3 atomic%. A powder is provided.

一方、本発明の第7の発明によれば、第4〜6のいずれかの発明に係る希土類−遷移金属−窒素系磁石粉末に、樹脂バインダーを混合して得られるボンド磁石用組成物が提供される。   On the other hand, according to the seventh invention of the present invention, there is provided a bonded magnet composition obtained by mixing a resin binder with the rare earth-transition metal-nitrogen based magnet powder according to any one of the fourth to sixth inventions. Is done.

さらに、本発明の第8の発明によれば、第7の発明のボンド磁石用組成物を、圧縮成形又は射出成形により成形してなるボンド磁石が提供される。   Furthermore, according to the 8th invention of this invention, the bonded magnet formed by shape | molding the composition for bonded magnets of 7th invention by compression molding or injection molding is provided.

本発明の希土類−遷移金属−窒素系磁石粉末の製造方法によれば、還元拡散用の反応容器の中で原料粉末を加熱焼成する際、希土類元素が飛散しても、母合金中で希土類元素の量が局所的に減少することがないことから、より組成が均一な希土類−遷移金属系母合金粉末を製造することができる。こうして得られた母合金粉末を用いて窒化処理を行うことによって、高い磁気特性を有する希土類−遷移金属−窒素系磁石粉末が得られ、優れたボンド磁石を提供できる。   According to the method for producing a rare earth-transition metal-nitrogen magnet powder of the present invention, when the raw material powder is heated and fired in the reaction vessel for reduction diffusion, the rare earth element is dispersed in the mother alloy even if the rare earth element is scattered. Therefore, the rare earth-transition metal master alloy powder having a more uniform composition can be produced. By performing nitriding using the thus obtained mother alloy powder, a rare earth-transition metal-nitrogen magnet powder having high magnetic properties can be obtained, and an excellent bonded magnet can be provided.

以下、本発明の希土類−遷移金属−窒素系磁石粉末とその製造方法、および得られるボンド磁石を詳しく説明する。   Hereinafter, the rare earth-transition metal-nitrogen based magnet powder of the present invention, its manufacturing method, and the bonded magnet obtained will be described in detail.

1.希土類−遷移金属−窒素系磁石粉末の製造方法
本発明の希土類−遷移金属−窒素系磁石粉末の製造方法は、(1)希土類酸化物粉末、鉄を含む遷移金属粉末、及び上記希土類酸化物を還元するための還元剤が配合されている原料混合物と、(a)希土類金属、(b)希土類酸化物粉末と還元剤との混合物、又は(c)希土類元素の含有量が原料混合物よりも1〜30原子%多い希土類酸化物粉末、遷移金属粉末および還元剤の混合物から選ばれる調整用原料とを用意し、還元拡散用の反応容器に調整用原料が底部に位置するように導入し、(2)非酸化性雰囲気中で加熱焼成する還元拡散法により希土類−遷移金属系母合金を得て、(3)該母合金を窒化処理して希土類−遷移金属−窒素系磁石粉末を製造する方法である。
1. Method for Producing Rare Earth-Transition Metal-Nitrogen Magnet Powder The method for producing a rare earth-transition metal-nitrogen magnet powder of the present invention comprises (1) rare earth oxide powder, transition metal powder containing iron, and the rare earth oxide. A raw material mixture containing a reducing agent for reduction, and (a) a rare earth metal, (b) a mixture of a rare earth oxide powder and a reducing agent, or (c) a rare earth element content is 1 more than that of the raw material mixture. ~ 30 atomic% more rare earth oxide powder, transition metal powder and a raw material for adjustment selected from a mixture of reducing agents, and introduced into the reaction container for reduction diffusion so that the raw material for adjustment is located at the bottom, 2) A rare earth-transition metal master alloy is obtained by a reduction diffusion method by heating and firing in a non-oxidizing atmosphere, and (3) a rare earth-transition metal-nitrogen magnet powder is produced by nitriding the master alloy. It is.

(1)還元拡散用の反応容器への原料混合物の配置
本発明により希土類−遷移金属−窒素系磁石材料を製造するには、先ず希土類酸化物粉末、還元剤、遷移金属粉、必要に応じてその他の金属粉及び/又は金属酸化物を出発原料とする原料混合物と、(a)希土類金属、(b)希土類酸化物粉末と還元剤との混合物、又は(c)希土類元素の含有量が原料混合物よりも1〜30原子%多い希土類酸化物粉末、遷移金属粉末および還元剤の混合物から選ばれる調整用原料とを用意して、還元拡散用の反応容器へこれら粉末原料を特定の位置関係になるように装填する。
(1) Arrangement of raw material mixture in reaction container for reduction diffusion In order to produce a rare earth-transition metal-nitrogen based magnet material according to the present invention, first, rare earth oxide powder, reducing agent, transition metal powder, as required A raw material mixture starting from other metal powder and / or metal oxide, and (a) a rare earth metal, (b) a mixture of rare earth oxide powder and a reducing agent, or (c) a rare earth element content. Preparation material selected from a mixture of rare earth oxide powder, transition metal powder and reducing agent 1-30 atomic% more than the mixture, and these powder raw materials in a specific positional relationship to the reaction vessel for reduction diffusion Load as follows.

(還元拡散用の反応容器)
本発明においては、希土類酸化物を還元し、遷移金属へ拡散させるために図1に示すような反応装置を用いる。この反応装置は、原料混合物を装填した反応容器を収容する密閉型の還元拡散容器と、その内部の雰囲気ガスをアルゴンなどの非酸化性ガスに置換し、非酸化性ガスを流通する手段、還元拡散容器を所定の温度に加熱するヒーター6が煉瓦5の中に組込まれた電気炉などから構成されている。
(Reaction container for reduction diffusion)
In the present invention, a reactor as shown in FIG. 1 is used to reduce the rare earth oxide and diffuse it into the transition metal. This reactor comprises a closed type reduction diffusion container containing a reaction vessel charged with a raw material mixture, means for replacing the atmospheric gas in the inside with a non-oxidizing gas such as argon, and circulating the non-oxidizing gas, A heater 6 for heating the diffusion container to a predetermined temperature is composed of an electric furnace or the like incorporated in the brick 5.

還元拡散容器内に設置される反応容器の構造は、その内部が円筒状、角筒状など様々な形状のものが採用され、材質はステンレスなど耐食性のものが好ましい。反応容器の底部形状は、半球状、角のとれた筒状など、いかなる形状であっても良く特に制限されない。   As the structure of the reaction vessel installed in the reduction diffusion vessel, various shapes such as a cylindrical shape and a rectangular tube shape are adopted, and the material is preferably a corrosion-resistant material such as stainless steel. The bottom shape of the reaction vessel may be any shape such as a hemispherical shape or a rounded cylindrical shape, and is not particularly limited.

(希土類酸化物粉末)
本発明に用いられる希土類酸化物粉末としては、特に制限されないが、希土類元素として、Yを含むランタノイド元素のいずれか1種または2種以上、例えば、Y、La、Ce、Pr、Nd、及びSmの群から選ばれる少なくとも一種以上の元素が挙げられる。これらの少なくとも一種と、Eu、Gd、Tb、Dy、Ho、Er、Tm、及びYbの群から選ばれる少なくとも一種の元素とからなるものを組合せれば、さらに磁気特性を高めることができる。
希土類元素の中でも、特に、Smは好ましく、希土類元素の50原子%以上占めると高い保磁力を持つ材料が得られる。
(Rare earth oxide powder)
The rare earth oxide powder used in the present invention is not particularly limited, but as the rare earth element, any one or more of lanthanoid elements including Y, for example, Y, La, Ce, Pr, Nd, and Sm And at least one element selected from the group consisting of: By combining at least one of these with at least one element selected from the group consisting of Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, the magnetic properties can be further enhanced.
Among the rare earth elements, Sm is particularly preferable, and a material having a high coercive force can be obtained when it accounts for 50 atomic% or more of the rare earth elements.

ここで用いる希土類元素は、工業的生産により入手可能な純度でよく、製造上、混入が避けられない元素、例えば、O、H、C、Al、Si、F、Na、Mg、Ca、Liなどが含まれていても差し支えない。
特に、Li、Na、K、Rb、Cs、Mg、Ca、SrまたはBaの少なくとも一種以上の元素は、希土類−遷移金属−窒素系磁石合金粉末の結晶粒界に存在するのではなく、該合金内部に0.001〜0.1wt%含有され、合金内に均一に分散されていると、希土類−遷移金属−窒素系合金粉末をより短い窒化処理時間で製造することができる。
The rare earth element used here may be a purity that can be obtained by industrial production, and elements that cannot be mixed in production, such as O, H, C, Al, Si, F, Na, Mg, Ca, Li, etc. May be included.
In particular, at least one element of Li, Na, K, Rb, Cs, Mg, Ca, Sr or Ba does not exist in the grain boundary of the rare earth-transition metal-nitrogen based magnet alloy powder, but the alloy When 0.001 to 0.1 wt% is contained inside and uniformly dispersed in the alloy, the rare earth-transition metal-nitrogen based alloy powder can be produced in a shorter nitriding time.

(遷移金属粉末)
母合金を構成する遷移金属は、磁石粉末の強磁性を担う基本元素であり、Fe、Co、Ni、Mnが一般的に用いられるが、特に限定はされない。遷移金属として、特に好ましいのはFeであり、さらに磁気特性を損なうことなく磁石の温度特性を改善する目的で、Feの一部をCoで置換してもよい。
(Transition metal powder)
The transition metal constituting the mother alloy is a basic element responsible for the ferromagnetism of the magnet powder, and Fe, Co, Ni, and Mn are generally used, but are not particularly limited. As the transition metal, Fe is particularly preferable, and a part of Fe may be substituted with Co for the purpose of improving the temperature characteristics of the magnet without impairing the magnetic characteristics.

また、保磁力の向上、生産性の向上並びに低コスト化を図るために、上記Mnの他に、Ca、Cr、Nb、Mo、Sb、Ge、Zr、V、Si、Al、Ta又はCu等から選ばれた一種以上を添加してもよい。この場合、添加量は、遷移金属全重量に対して7重量%以下とすることが望ましい。また、不可避的不純物としてCあるいはB等が5重量部%以下含有されていてもよい。   In addition to Mn, Ca, Cr, Nb, Mo, Sb, Ge, Zr, V, Si, Al, Ta, Cu, etc., in order to improve coercivity, improve productivity, and reduce costs One or more selected from the above may be added. In this case, the addition amount is desirably 7% by weight or less with respect to the total weight of the transition metal. Further, C or B or the like as an unavoidable impurity may be contained in an amount of 5 parts by weight or less.

鉄粉末としては、例えば還元鉄粉、ガスアトマイズ粉、水アトマイズ粉、電解鉄粉などが使用でき、必要に応じて上記粒度になるように分級する。なお、鉄粉末の30重量%までを酸化鉄粉末としてもよい。
また、コバルト粉末としては、金属コバルトの他、たとえば酸化第一コバルトや四三酸化コバルト、これらの混合物など、ニッケル粉末としては、金属ニッケルの他、各種酸化ニッケルなど、さらに、マンガン粉末としては、金属マンガンの他、たとえば酸化マンガンや二酸化マンガン、これらの混合物なども使用できる。
As the iron powder, for example, reduced iron powder, gas atomized powder, water atomized powder, electrolytic iron powder or the like can be used, and classification is performed so as to obtain the above particle size as necessary. Note that iron oxide powder may be used up to 30% by weight of the iron powder.
Further, as the cobalt powder, in addition to metallic cobalt, for example, cobaltous oxide and tribasic cobalt oxide, a mixture thereof, etc. As nickel powder, in addition to metallic nickel, various nickel oxides, and further, as manganese powder, In addition to manganese metal, for example, manganese oxide, manganese dioxide, and a mixture thereof can be used.

(還元剤)
還元剤としては、Li及び/又はCa、あるいはこれらの元素とNa、K、Mg、Sr又はBaから選ばれる少なくとも一種からなるアルカリ金属又はアルカリ土類金属元素が使用できる。
なお、上記還元剤の中では、取り扱いの安全性とコストの点から、金属Li又はCaが好ましく、特にCaが好ましい。還元剤として用いたCaは非磁性であり、母合金の結晶粒界に多く残留していると磁気特性を下げるので、できるだけ少ない方が好ましい。上記したように、Caが磁石合金内部に0.001〜0.1wt%含有され、合金内に均一に分散されている場合は、希土類−遷移金属−窒素系合金粉末をより短い窒化処理時間で製造することができるという効果が有り、前記の限りではない。
(Reducing agent)
As the reducing agent, Li and / or Ca, or an alkali metal or alkaline earth metal element composed of at least one selected from these elements and Na, K, Mg, Sr, or Ba can be used.
Among the reducing agents, metal Li or Ca is preferable, and Ca is particularly preferable from the viewpoints of handling safety and cost. Since Ca used as a reducing agent is non-magnetic and remains in the crystal grain boundary of the master alloy, the magnetic properties are lowered. As described above, when Ca is contained in the magnet alloy in an amount of 0.001 to 0.1 wt% and is uniformly dispersed in the alloy, the rare earth-transition metal-nitrogen based alloy powder is reduced in a shorter nitriding time. There is an effect that it can be manufactured, and it is not limited to the above.

(原料混合物)
本発明において、原料混合物とは、上記の希土類酸化物粉末、遷移金属粉末、および還元剤を所定量配合したものである。これには、必要に応じてその他の金属粉及び/又は金属酸化物を配合することができる。この混合物は、通常、単に互いに混合した状態で出発原料とされる。ただし、予め混合物を加圧しペレット化しておいても良い。
(Raw material mixture)
In the present invention, the raw material mixture is a mixture of the rare earth oxide powder, transition metal powder, and reducing agent in a predetermined amount. This can be blended with other metal powders and / or metal oxides as required. This mixture is usually used as a starting material simply mixed with each other. However, the mixture may be pre-pressurized and pelletized.

原料混合物中には、希土類元素が7〜11原子%含まれるようにすることが望ましく、このような割合で配合することにより、得られる合金粉の組成は理論上、最も高い特性付近の値となる。上記範囲を外れると、できた合金粉末の組成が理論上好ましい値からずれてしまい、最終的に得られる希土類−遷移金属−窒素系磁石粉末の磁気特性が低下してしまうため好ましくない。   It is desirable that the raw material mixture contains 7 to 11 atomic% of rare earth elements. By blending at such a ratio, the composition of the obtained alloy powder is theoretically the value around the highest characteristic. Become. Outside the above range, the composition of the resulting alloy powder deviates from a theoretically preferable value, and the magnetic properties of the finally obtained rare earth-transition metal-nitrogen based magnet powder are deteriorated, which is not preferable.

粉末は、それぞれの粉体特性差によって分離しないように均一に混合することが重要である。混合方法としては、たとえばリボンブレンダー、タンブラー、S字ブレンダー、V字ブレンダー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、ハイスピードミキサー、ボールミル、振動ミル、アトライター、ジェットミルなどが使用できる。   It is important that the powders are mixed uniformly so as not to separate due to differences in powder characteristics. As a mixing method, for example, a ribbon blender, a tumbler, an S-shaped blender, a V-shaped blender, a Nauter mixer, a Henschel mixer, a super mixer, a high speed mixer, a ball mill, a vibration mill, an attritor, a jet mill and the like can be used.

(調整用原料)
本発明において、調整用原料とは、(a)希土類金属、(b)希土類酸化物粉末と還元剤との混合物、又は(c)希土類元素の含有量が原料混合物よりも1〜30原子%多い希土類酸化物粉末、遷移金属粉末および還元剤の混合物(以下、過剰希土類混合物とも呼ぶ)である。
希土類酸化物粉末および還元剤は、特別なものを用いる必要はなく、上記原料混合物で使用するものと同様なものでよい。
(Raw material for adjustment)
In the present invention, the adjustment raw material is (a) a rare earth metal, (b) a mixture of rare earth oxide powder and a reducing agent, or (c) a rare earth element content of 1 to 30 atomic% higher than the raw material mixture. A mixture of rare earth oxide powder, transition metal powder and reducing agent (hereinafter also referred to as excess rare earth mixture).
The rare earth oxide powder and the reducing agent do not need to be special, and may be the same as those used in the raw material mixture.

調整用原料は、還元拡散時、還元物の希土類が蒸発し部分的に減少した分を補うためのものであり、希土類金属を用いるか、希土類酸化物粉末と還元剤とを配合し遷移金属粉末を用いないで混合物を調製するか、原料混合物よりも希土類酸化物粉末、および還元剤の量を増加させ、遷移金属粉末の量を相対的に減少させて過剰希土類混合物を調製すればよい。   The raw material for adjustment is to compensate for the partial reduction of the reduced rare earth by evaporation during the reduction diffusion. Either a rare earth metal or a rare earth oxide powder and a reducing agent are mixed to make a transition metal powder. The mixture may be prepared without using or an excess rare earth mixture may be prepared by increasing the amount of rare earth oxide powder and reducing agent relative to the raw material mixture and relatively reducing the amount of transition metal powder.

過剰希土類混合物は、原料混合物よりも希土類元素を1〜30原子%多く含んでいることが好ましい。過剰希土類混合物と原料混合物との希土類元素の含有量の差が1原子%未満では、加熱焼成したときに不足する分の希土類を補うのに不十分であり、30原子%を超えると逆に希土類が過剰になり磁気特性を下げてしまう。   The excess rare earth mixture preferably contains 1 to 30 atomic% of rare earth elements more than the raw material mixture. If the difference in the rare earth element content between the excess rare earth mixture and the raw material mixture is less than 1 atomic%, it will be insufficient to compensate for the shortage of rare earth when heated and fired. Will become excessive and lower the magnetic properties.

また、調整用原料は、その希土類元素の含有量が、原料混合物と調整用原料に含まれる希土類元素の合計量に対して、2〜40%であることが好ましい。調整用原料の希土類元素の含有量が2%未満では加熱焼成によって不足する分の希土類を補うのに不十分であり、40%を超えると逆に希土類が過剰になり磁気特性を下げてしまうからである。   Moreover, it is preferable that content of the rare earth element of the adjustment raw material is 2 to 40% with respect to the total amount of the rare earth elements contained in the raw material mixture and the adjustment raw material. If the content of the rare earth element in the adjustment raw material is less than 2%, it is insufficient to compensate for the amount of rare earth that is insufficient by heating and firing. If it exceeds 40%, the rare earth becomes excessive and the magnetic properties are lowered. It is.

原料混合物の導入方法は、予め調整用原料を用意し、これを還元拡散用の反応容器の底部に装填し、その上に、希土類酸化物粉末、鉄を含む遷移金属粉末、及び還元剤が配合されている原料混合物を装填する。すなわち、調整用原料を還元拡散用の反応容器底部に略均一な厚さの層になるように敷き、その上に原料混合物の層を形成する(図2参照)。   The raw material mixture is introduced by preparing a raw material for adjustment in advance and loading it at the bottom of a reaction container for reduction diffusion, and then mixing a rare earth oxide powder, a transition metal powder containing iron, and a reducing agent. The raw material mixture is charged. That is, the raw material for adjustment is laid on the bottom of the reaction vessel for reduction diffusion so as to form a layer having a substantially uniform thickness, and a layer of the raw material mixture is formed thereon (see FIG. 2).

ここで、調整用原料の層と原料混合物の層との境界は、通常は明確な二層になるが、還元拡散用の反応容器の構造やその底部形状などによっては、装填する粉末の量を段階的あるいはなだらかに変化させても良い。さらに、希土類の飛散を防止する目的で、原料混合物の上に内蓋を被せたり、落し蓋などをしてもよい。   Here, the boundary between the layer of the raw material for adjustment and the layer of the raw material mixture is usually a clear two-layer, but depending on the structure of the reaction container for reduction diffusion and its bottom shape, the amount of powder to be charged is It may be changed stepwise or gently. Furthermore, for the purpose of preventing the rare earth from scattering, an inner lid may be put on the raw material mixture, or a drop lid may be provided.

(2)原料混合物の還元拡散工程
還元拡散用の反応容器に原料混合物を導入したら、この状態で酸素が実質的に存在しない非酸化性雰囲気下で加熱処理して還元反応を起こさせる。
(2) Reduction Diffusion Step of Raw Material Mixture When the raw material mixture is introduced into a reaction vessel for reduction diffusion, heat treatment is performed in this state in a non-oxidizing atmosphere substantially free of oxygen to cause a reduction reaction.

Caは、融点が838℃、沸点が1480℃であるので、処理温度は1000〜1250℃、好ましくは1100〜1200℃に設定する。1000℃未満では鉄粉末に対して、希土類元素の拡散が不均一となり、これを用いて製造される希土類−遷移金属−窒素系磁石粉末の保磁力や角形性が低下する。1250℃を超えると、生成した母合金粉末が粒成長を起こすとともに互いに焼結するため、均一窒化が困難になり磁石粉末の角形性が低下する。   Since Ca has a melting point of 838 ° C. and a boiling point of 1480 ° C., the treatment temperature is set to 1000 to 1250 ° C., preferably 1100 to 1200 ° C. When the temperature is lower than 1000 ° C., the rare earth element diffuses unevenly with respect to the iron powder, and the coercive force and squareness of the rare earth-transition metal-nitrogen based magnet powder produced using the iron powder decrease. If the temperature exceeds 1250 ° C., the generated master alloy powder undergoes grain growth and sinters with each other, so that uniform nitriding becomes difficult, and the squareness of the magnet powder decreases.

上記の温度条件であれば、還元剤は溶解するが、蒸気にはならないので好ましく処理できる。これにより上記希土類酸化物が希土類元素に還元されるとともに、この希土類元素が遷移金属粉中に拡散された希土類−遷移金属母合金が合成される。還元拡散は、温度条件だけでなく、前記還元剤の投入量、還元剤および希土類酸化物の粉体性状、各種粉末の混合状態、還元拡散反応の時間を注意深く制御して行われる。   If it is said temperature conditions, although a reducing agent melt | dissolves, since it does not become a vapor | steam, it can process preferably. As a result, the rare earth oxide is reduced to a rare earth element, and a rare earth-transition metal master alloy in which the rare earth element is diffused in the transition metal powder is synthesized. The reduction diffusion is performed by carefully controlling not only the temperature conditions but also the amount of the reducing agent input, the powder properties of the reducing agent and the rare earth oxide, the mixed state of various powders, and the time of the reduction diffusion reaction.

還元拡散を6〜12時間行った後、炉を冷却し、必要により希土類−遷移金属合金を含んだ反応生成物(以下、還元物という場合がある)を水素処理してから、水中に投入しデカンテーションを行った後、酸洗を行い、固液分離して希土類−遷移金属合金粉末を得る。   After reducing diffusion for 6 to 12 hours, the furnace is cooled, and if necessary, a reaction product containing a rare earth-transition metal alloy (hereinafter sometimes referred to as a reduced product) is treated with hydrogen, and then poured into water. After decantation, pickling is performed and solid-liquid separation is performed to obtain a rare earth-transition metal alloy powder.

(水素処理)
上記還元物は、非常に硬いため単に機械的に粉砕することは困難である。この粉砕性を改善し、さらには水中での崩壊性を改善するために、還元物に対し水素処理を行い、粉状にすることができる。水素処理では、希土類−遷移金属合金を含んだ還元物をステンレス製還元拡散用の反応容器に入れたまま、あるいは専用の容器に移してからアルゴンガスを封入し、その後、水素に置換し、所定の時間水素ガスを流し続ける。
(Hydrogen treatment)
The reduced product is so hard that it is difficult to mechanically grind it. In order to improve the pulverization property and further improve the disintegration property in water, the reduced product can be treated with hydrogen to be powdered. In the hydrogen treatment, the reduced product containing the rare earth-transition metal alloy is put in a stainless steel reaction vessel for reduction diffusion or transferred to a special vessel and sealed with argon gas, and then replaced with hydrogen. Continue to flow hydrogen gas for a period of time.

水素処理は、通常500℃以下の温度で実施するが、取り出した崩壊物の粒径が10mm以下、好ましくは1mm以下になるように、反応温度と時間を設定する必要がある。崩壊物が10mmを超える状態では、湿式処理に引き続いて行われる窒化処理工程で均一な窒化が困難になり、磁石粉末の角形性が低下する。   The hydrogen treatment is usually carried out at a temperature of 500 ° C. or lower, but it is necessary to set the reaction temperature and time so that the particle size of the taken-out collapsed product is 10 mm or less, preferably 1 mm or less. In the state where the collapsed material exceeds 10 mm, uniform nitriding becomes difficult in the nitriding treatment step performed subsequent to the wet treatment, and the squareness of the magnet powder is lowered.

(水洗、デカンテーション、酸洗)
その後、得られた還元物1kgあたり約10リットルの水中に投入し、1時間攪拌し還元物を崩壊させる。その後、水中で還元物が崩壊し、得られたスラリーを粗い篩を通し水洗槽に移入する。このときスラリーのpHは11〜12程度であり、崩壊せずに残留する塊はなく、篩上に残ったロスは非常に少なくなる。
(Washing, decantation, pickling)
Thereafter, the resultant reduced product is put into about 10 liters of water per 1 kg and stirred for 1 hour to collapse the reduced product. Thereafter, the reduced product is disintegrated in water, and the resulting slurry is transferred to a water washing tank through a coarse sieve. At this time, the pH of the slurry is about 11 to 12, there is no lump remaining without collapsing, and the loss remaining on the sieve is very small.

この後、デカンテーションを5回程度繰り返す。デカンテーション条件は上記スラリーに注水し、例えば、攪拌1分、静置分離2分、排水することを1回とする。
その後、スラリーのpHが5〜6になるように酢酸等の酸を添加し、酸洗を行い固液分離し、乾燥して希土類−遷移金属合金粉末を得る。
得られた希土類−遷移金属合金粉を窒化して磁石粉にする際に、効率よく窒化を良好にするために、通常100μm程度以下の粒子を用いることが好ましく、必要によっては解砕を行うことが好ましい。
Thereafter, the decantation is repeated about 5 times. The decantation conditions are such that water is poured into the slurry, and, for example, it is discharged once for 1 minute with stirring and 2 minutes for stationary separation.
Thereafter, an acid such as acetic acid is added so that the slurry has a pH of 5 to 6, pickled, solid-liquid separated, and dried to obtain a rare earth-transition metal alloy powder.
When nitriding the obtained rare earth-transition metal alloy powder into a magnet powder, it is usually preferable to use particles of about 100 μm or less in order to efficiently improve nitriding, and if necessary, crushing is performed. Is preferred.

得られる希土類−遷移金属合金粉末は、凝集・融着部を実質的に含まない平均粒径10〜100μmの粉末であればよく、粒径の大きな希土類−遷移金属系合金粉末をさらに微粉化(解砕を含む)して製造してもよい。粒径が10μmよりも細かいと、発火し易く取り扱いが難しくなる。また、100μmを超えると均一な窒化が行えず、磁気特性が低くなる場合がある。   The obtained rare earth-transition metal alloy powder may be a powder having an average particle diameter of 10 to 100 μm substantially free of agglomerated / fused portions, and the rare earth-transition metal alloy powder having a larger particle diameter is further finely divided ( (Including crushing). If the particle size is smaller than 10 μm, it is easy to ignite and difficult to handle. On the other hand, if the thickness exceeds 100 μm, uniform nitriding cannot be performed and the magnetic properties may be lowered.

合金粉末を微粉化する方法としては、特に制限されず、例えば、湿式粉砕法ではボールミル粉砕や媒体攪拌型ミル粉砕等を、乾式粉砕法では不活性ガスによるジェットミル粉砕等を用いることができる。
これらの中でも、粉末の凝集が少ないジェットミル粉砕が特に好ましい。また、粉末の凝集をさらに少なくするため、例えば、ジェットミル粉砕では、不活性ガス中に5vol%以下の酸素を導入して微粉化することが、ボールミル粉砕や媒体攪拌ミル粉砕等では、小径の粉砕ボール、あるいはステンレス鋼等ではなくジルコニア等の低比重のセラミックス粉砕ボールを用いて微粉化することができる。
The method for finely pulverizing the alloy powder is not particularly limited. For example, ball milling or medium stirring mill pulverization can be used in the wet pulverization method, and jet mill pulverization using an inert gas can be used in the dry pulverization method.
Among these, jet mill pulverization is particularly preferable because of less agglomeration of the powder. In order to further reduce the agglomeration of the powder, for example, in jet mill pulverization, it is possible to introduce 5 vol% or less of oxygen into an inert gas to make fine powder. Fine pulverization can be performed using a pulverized ball or a ceramic pulverized ball of low specific gravity such as zirconia instead of stainless steel.

なお、母合金を窒化する前に粉砕する方法を詳述したが、本発明においては、これに限定されず、窒化後に粉砕する手段をとることもできる。   In addition, although the method to grind | pulverize before nitriding a mother alloy was explained in full detail, in this invention, it is not limited to this, The means to grind | pulverize after nitriding can also be taken.

(3)母合金の窒化工程
こうして場合により微粉砕された母合金は、公知の方法を用いて窒化することができる。
(3) Nitriding process of mother alloy The mother alloy thus finely pulverized can be nitrided using a known method.

本発明で用いる希土類−遷移金属合金粉末の窒化は、例えば、希土類−遷移金属合金粉をキルンに投入し、窒素ガス、またはアンモニア−水素混合ガスを導入して加熱する。特に、アンモニア−水素混合ガス中での窒化は、窒素ガスに比較し短時間で行えるため好ましく、キルンは静置で窒化する場合に比較すると、回転しながら窒化が行えるため均一な窒化ができる。窒化温度は250〜650℃の範囲が好ましい。250℃より低いと窒化速度が遅く、650℃を超えると希土類元素の窒化物と遷移金属に分解してしまう。
また、アンモニア−水素混合ガス中で窒化した後の合金粉中に水素含有量が多く残留していると、磁気特性が低下するため、必要により真空加熱などの方法で十分に除去しておく必要がある。
For nitriding the rare earth-transition metal alloy powder used in the present invention, for example, the rare earth-transition metal alloy powder is charged into a kiln and heated by introducing nitrogen gas or ammonia-hydrogen mixed gas. In particular, nitriding in an ammonia-hydrogen mixed gas is preferable because it can be performed in a short time compared to nitrogen gas, and a kiln can perform nitriding while rotating as compared with the case of nitriding by standing, so uniform nitriding can be performed. The nitriding temperature is preferably in the range of 250 to 650 ° C. If it is lower than 250 ° C., the nitriding rate is slow, and if it exceeds 650 ° C., it is decomposed into a rare earth nitride and a transition metal.
Also, if a large amount of hydrogen remains in the alloy powder after nitriding in a mixed gas of ammonia and hydrogen, the magnetic properties will deteriorate, so it will be necessary to remove it sufficiently by a method such as vacuum heating if necessary. There is.

なお、上記希土類−遷移金属系母合金を粉砕処理して得られた合金粉末には、粉砕により生じた結晶の歪みが残留し、次の窒化工程においてα−Fe等の軟磁性相が発生する原因となる場合がある。α−Fe等の軟磁性相が発生すると保磁力や角型性が低下するため、さらに磁気特性を向上させるためには、得られた合金微粉末を、窒化処理に先立って、アルゴン、ヘリウム、真空等の非酸化性かつ非窒化性雰囲気中、600℃以下で熱処理し、結晶の歪みを除去することが好ましい。特に窒化処理と同時に400〜600℃で熱処理を行うと、処理コストを下げられるためメリットが大きい。窒化処理と同時の場合は、熱処理温度が400℃未満であると、残留する結晶の歪みを除去する効果が十分でなく、一方、600℃を超えると、合金が希土類元素の窒化物と遷移金属に分解するので好ましくない。   In addition, in the alloy powder obtained by pulverizing the rare earth-transition metal master alloy, crystal distortion generated by pulverization remains, and a soft magnetic phase such as α-Fe is generated in the next nitriding step. It may be a cause. When a soft magnetic phase such as α-Fe is generated, the coercive force and the squareness are lowered. Therefore, in order to further improve the magnetic properties, the obtained alloy fine powder is subjected to argon, helium, It is preferable to remove crystal distortion by heat treatment at 600 ° C. or lower in a non-oxidizing and non-nitriding atmosphere such as vacuum. In particular, when heat treatment is performed at 400 to 600 ° C. at the same time as the nitriding treatment, the processing cost can be reduced, which is advantageous. In the case of simultaneous nitriding treatment, if the heat treatment temperature is less than 400 ° C., the effect of removing residual crystal distortion is not sufficient, whereas if it exceeds 600 ° C., the alloy is a rare earth element nitride and transition metal. It is not preferable because it decomposes into

2.希土類−遷移金属−窒素系磁石粉末
上記の方法によって得られる希土類−遷移金属−窒素系磁石粉末は、磁石合金に希土類元素の組成ばらつきがないことから、優れた磁気特性を有するものである。
2. Rare earth-transition metal-nitrogen-based magnet powder The rare-earth-transition metal-nitrogen-based magnet powder obtained by the above method has excellent magnetic properties because there is no variation in the composition of rare earth elements in the magnet alloy.

本発明において、磁石合金に希土類元素の組成ばらつきがないとは、還元物(母合金)を高さ方向に3分割して取り分けた上部、中部、下部の還元物を窒化して磁石粉末化した場合、それぞれの試料から希土類元素を分析し、得られた希土類元素量の最大値と最小値の差が0.3原子%以内である状態を言う。   In the present invention, there is no variation in the composition of rare earth elements in the magnet alloy. The reduced product (mother alloy) is divided into three parts in the height direction, and the upper, middle, and lower reduced products are nitrided into a magnet powder. In this case, a rare earth element is analyzed from each sample, and the difference between the maximum value and the minimum value of the obtained rare earth element amount is within 0.3 atomic%.

希土類元素は、希土類−遷移金属−窒素系磁石粉末において、合金材料に磁気異方性を発現させ、保磁力を発生させる上で本質的な役割を果たす。希土類元素は、磁石粉末中、少なくとも3〜20原子%とすることが必要である。3原子%よりも少なくなると、磁石合金中に軟磁性相であるα−Feが多く存在するようになり高い保磁力が得にくくなる。また、20原子%を超えると主相となる磁性相のほかに他相が生成し、主相体積が減少してしまい磁石の飽和磁化が低下するため好ましくない。本発明である高特性の磁石粉末を得るためには希土類元素の含有量を理論上、最も高い特性となる量に近づける必要があり、そのためには希土類元素の含有量を7〜11原子%にすることがさらに好ましい。   The rare earth element plays an essential role in generating magnetic anisotropy and generating coercive force in the alloy material in the rare earth-transition metal-nitrogen based magnet powder. The rare earth element needs to be at least 3 to 20 atomic% in the magnet powder. If the amount is less than 3 atomic%, a large amount of α-Fe, which is a soft magnetic phase, is present in the magnet alloy, making it difficult to obtain a high coercive force. On the other hand, if it exceeds 20 atomic%, another phase is generated in addition to the magnetic phase as the main phase, the main phase volume is reduced, and the saturation magnetization of the magnet is lowered, which is not preferable. In order to obtain a high-performance magnet powder according to the present invention, it is necessary to bring the rare earth element content close to the theoretically highest characteristic amount. For this purpose, the rare earth element content should be 7 to 11 atomic%. More preferably.

磁石合金を構成する遷移金属は、磁石粉末の強磁性を担う基本元素であり、Fe、Co、Ni、Mnが一般的であるが、特に限定はされない。遷移金属として、特に好ましいのはFeであり、さらに磁気特性を損なうことなく磁石の温度特性を改善する目的で、Feの一部をCoで置換してもよい。これらの中では、磁石粉末に、少なくとも30〜83原子%含有することが必要である。30原子%より少ないと磁化が低くなり好ましくない。83原子%を超えると希土類元素の割合が少なくなりすぎ、高い保磁力が得られず好ましくない。遷移金属成分の組成範囲が65〜80原子%であれば、保磁力と磁化のバランスのとれた材料となり、本発明の高特性の磁石粉末が得ることが可能になり特に好ましい。   The transition metal constituting the magnet alloy is a basic element responsible for the ferromagnetism of the magnet powder, and Fe, Co, Ni, and Mn are common, but are not particularly limited. As the transition metal, Fe is particularly preferable, and a part of Fe may be substituted with Co for the purpose of improving the temperature characteristics of the magnet without impairing the magnetic characteristics. Among these, it is necessary to contain at least 30 to 83 atomic% in the magnet powder. If it is less than 30 atomic%, the magnetization is lowered, which is not preferable. If it exceeds 83 atomic%, the proportion of rare earth elements becomes too small, and a high coercive force cannot be obtained, which is not preferable. When the composition range of the transition metal component is 65 to 80 atomic%, a material having a balanced coercive force and magnetization is obtained, and the high-performance magnet powder of the present invention can be obtained, which is particularly preferable.

窒素は、本磁石粉末において重要な役割を果たす元素であり、例えば、SmFe17母合金を窒化する場合、NはSmFe17単位格子当たり3個までであれば、結晶構造を壊すことなく格子を広げ侵入型として固溶する。この窒素の固溶により、強い一軸磁気異方性が発現するとともに、飽和磁化、キュリ−温度も上昇する。 Nitrogen is an element that plays an important role in the magnet powder. For example, when nitriding Sm 2 Fe 17 master alloy, if N is up to 3 per Sm 2 Fe 17 unit cell, it breaks the crystal structure. Instead, it spreads the lattice and dissolves as an intrusive type. Due to the solid solution of nitrogen, strong uniaxial magnetic anisotropy is exhibited, and saturation magnetization and Curie temperature are also increased.

この磁石粉末の表面には、必要によりリン酸系化合物、あるいは各種カップリング剤などの表面処理剤で被膜を形成することができる。これにより、磁石粉末の耐候性が向上するので、ボンド磁石用組成物、およびこれを用いたボンド磁石の性能を一層優れたものとすることができる。   If necessary, a film can be formed on the surface of the magnet powder with a surface treatment agent such as a phosphoric acid compound or various coupling agents. Thereby, since the weather resistance of magnet powder improves, the performance of the composition for bond magnets and the bond magnet using the same can be made still more excellent.

3.希土類−遷移金属−窒素系ボンド磁石用組成物
本発明のボンド磁石用組成物は、基本的に、上記の希土類−遷移金属−窒素系磁石粉末とバインダー成分とを主成分として含み、必要により滑剤、安定剤などの添加剤を配合してなるものである。
3. Rare Earth-Transition Metal-Nitrogen Bond Magnet Composition The bond magnet composition of the present invention basically comprises the rare earth-transition metal-nitrogen magnet powder and a binder component as main components, and if necessary, a lubricant. And an additive such as a stabilizer.

(バインダー)
バインダー成分としては、エポキシ樹脂、ビニルエステル樹脂、フェノール樹脂、不飽和ポリエステル樹脂、キシレン樹脂、ユリア樹脂、メラニン樹脂、熱硬化型シリコーン樹脂、アルキド樹脂、フラン樹脂、熱硬化型アクリル樹脂、熱硬化型フッ素樹脂、ユリア樹脂、ジアリルフタレート樹脂、ポリウレタン樹脂、ケイ素樹脂などの熱硬化性樹脂;4−6ナイロン、12ナイロンなどのポリアミド樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリビニル系樹脂、アクリル系樹脂、アクリロニトリル系樹脂、ポリウレタン系樹脂、ポリエーテル系樹脂、ふっ素樹脂、ポリフェニレンサルファイド樹脂、塩化ビニル樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、酢酸ビニル樹脂、ABS樹脂、ポリエーテルエーテルケトンなどの熱可塑性樹脂を用いることができる。
(binder)
As binder components, epoxy resin, vinyl ester resin, phenol resin, unsaturated polyester resin, xylene resin, urea resin, melanin resin, thermosetting silicone resin, alkyd resin, furan resin, thermosetting acrylic resin, thermosetting type Thermosetting resins such as fluorine resin, urea resin, diallyl phthalate resin, polyurethane resin, silicon resin; polyamide resin such as 4-6 nylon and 12 nylon, polyolefin resin, polystyrene resin, polyvinyl resin, acrylic resin, acrylonitrile resin Thermoplastics such as resin, polyurethane resin, polyether resin, fluorine resin, polyphenylene sulfide resin, vinyl chloride resin, polycarbonate resin, polysulfone resin, vinyl acetate resin, ABS resin, polyether ether ketone Resin can be used.

本発明のボンド磁石用組成物は、上記磁石粉末にバインダーを配合した後、例えばリボンブレンダー、タンブラー、ナウターミキサー、ヘンシェルミキサー、スーパーミキサー、プラネタリーミキサー等の混合機、およびバンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を使用して混合し、混練することによって得ることができる。   The composition for bonded magnets of the present invention, after blending a binder with the magnet powder, for example, a blender such as a ribbon blender, tumbler, Nauter mixer, Henschel mixer, super mixer, planetary mixer, and Banbury mixer, kneader, It can be obtained by mixing and kneading using a kneader such as a roll, a kneader ruder, a single screw extruder, a twin screw extruder or the like.

4.ボンド磁石
本発明のボンド磁石は、上記ボンド磁石用組成物を圧縮成形または射出成形の成形方法によって得ることができる。
4). Bonded magnet The bonded magnet of the present invention can be obtained by a compression molding or injection molding method for forming the above-described bonded magnet composition.

(成形方法)
成形方法としては、熱硬化性樹脂を用いる場合は圧縮成形または射出成形を用いることが好ましい。圧縮成形の場合はボンド磁石全重量に対する樹脂量としては1〜5重量%、射出成形では樹脂粘度の調整や金型の温度等の最適条件を選択する必要があるが、7〜15重量%が好ましい。また、熱可塑性樹脂を用いる場合は射出成形を用いることが好ましく、樹脂量としては5〜20重量%が好ましい。
(Molding method)
As a molding method, when a thermosetting resin is used, it is preferable to use compression molding or injection molding. In the case of compression molding, the amount of resin relative to the total weight of the bonded magnet is 1 to 5% by weight. In the case of injection molding, it is necessary to select optimum conditions such as resin viscosity adjustment and mold temperature, but 7 to 15% by weight preferable. Moreover, when using a thermoplastic resin, it is preferable to use injection molding, and as resin amount, 5 to 20 weight% is preferable.

圧縮成形の場合は、例えば前記混合比で加圧ニーダー装置を用いて混合し、金型に磁界を印加するための電磁石を具備したプレス装置を用い、金型に800kA/m(10kOe)以上の磁界を印加しながら4ton/cmの圧力でプレス成形する。 In the case of compression molding, for example, mixing is performed using a pressure kneader at the above mixing ratio, and a press device including an electromagnet for applying a magnetic field to the die is used, and 800 kA / m (10 kOe) or more is applied to the die. Press molding at a pressure of 4 ton / cm 2 while applying a magnetic field.

また、射出成形では、例えば前記混合比で加熱加圧ニーダー装置を用いて混合し、金型に磁界を印加するための電磁石を具備したプレス装置を用い、混合物を210℃以上に加温したシリンダー中で溶融し、800kA/m(10kOe)以上の磁界が印加された金型中に射出成形する。   In injection molding, for example, a cylinder in which the mixture is heated to 210 ° C. or higher by using a press machine equipped with an electromagnet for applying a magnetic field to the mold by mixing with a heating and pressure kneader at the above mixing ratio. It is melted in and injected into a mold to which a magnetic field of 800 kA / m (10 kOe) or more is applied.

次に、実施例、比較例を用いて本発明をさらに説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   Next, although this invention is further demonstrated using an Example and a comparative example, this invention is not limited at all by these Examples.

<磁気特性>
得られた磁石粉末試料の磁気特性は、次のように測定した。まず、磁石粉末をパラフィンと混ぜてサンプルケースに詰め、その後、加熱配向、冷却固化を行い、振動試料型磁力計(VSM)(東英工業製)を用い、ヒステリシスループを描かせた(最大印加磁場1190kA/m(15kOe))。
射出成形ボンド磁石に関しては、cioffi型自記磁束計(東英工業(株)製)を用いて磁気特性を測定した。
<Magnetic properties>
The magnetic properties of the obtained magnet powder sample were measured as follows. First, magnet powder is mixed with paraffin and packed in a sample case, then heated and oriented, cooled and solidified, and a hysteresis loop is drawn using a vibrating sample magnetometer (VSM) (manufactured by Toei Kogyo) (maximum application) Magnetic field 1190 kA / m (15 kOe)).
Regarding the injection-molded bonded magnet, the magnetic properties were measured using a cioffi type self-recording magnetometer (manufactured by Toei Kogyo Co., Ltd.).

(実施例1)
原料として、純度99.4%のSm((株)トーメン製)、純度99.5%の電解鉄(Hoganas製)、純度99.3 %(ミンテックジャパン(株)製)のCaをSmFe17合金が得られる割合で混合機を用いて混合し、これを原料混合物とした。次に、この原料混合物よりもSmの使用量を増やして、Sm量が5原子%多い過剰希土類混合物(調整用原料)を調製した。そして、図2のように、この過剰希土類混合物を還元拡散用の反応容器の底に均一に入れ、続いて上記Sm、Fe、Caの原料混合物を入れた。なお、過剰希土類混合物は、Sm量が原料混合物を含めた全体の20%になる量を入れた。
この反応容器を還元拡散容器に入れた後、図1のように電気炉(還元拡散炉)に装入し、アルゴン置換し、アルゴン流量0.5〜1L/分、1200℃で8時間保持し、希土類酸化物を還元しFe中に拡散させSm−Fe母合金(還元物)を製造した。
その後、この還元物を上部、中部、下部の3つになるように略等間隔で切断し、取り分けた後に水素処理を行った。そして各還元物1kgを10Lの水とともに水槽に入れ、10分攪拌後、上澄みを抜き、この作業を10回繰り返してCaを除去した。その後、アルコールでデカンテーションし、真空中100℃で5時間乾燥し、Sm−Fe合金粉末を得た。上部、中部、下部のそれぞれの還元物で同様にSm−Fe合金粉末を製造した。
次に、上記3種類の合金を篩目開き104μm(150メッシュ)で篩い、アンモニア−水素混合ガス中、480℃で8時間、窒化処理を行い、Sm−Fe−N合金を製造した。さらに、この合金1kgをアトライター(三井鉱山(株)製)に入れ、アルコールを溶媒として用い、200rpmで2時間粉砕を行った。その後ろ過し、ヘンシェルミキサー(三井鉱山(株)製)で攪拌しながら真空加熱乾燥を行い、Sm−Fe−N微粉末を製造した。取り分けたそれぞれ上部の還元物、中部の還元物、下部の還元物を試料として、それらの磁石合金の組成を調べるとともに、その磁気特性を振動試料型磁力計で測定した。その結果を表1に示す。
Example 1
As raw materials, Sm 2 O 3 having a purity of 99.4% (manufactured by Tomen Co., Ltd.), electrolytic iron having a purity of 99.5% (manufactured by Hoganas), and Ca having a purity of 99.3% (manufactured by Mintec Japan Co., Ltd.) Were mixed using a mixer at a rate that would yield an Sm 2 Fe 17 alloy, and this was used as the raw material mixture. Next, the amount of Sm 2 O 3 used was increased from that of the raw material mixture to prepare an excess rare earth mixture (adjusting raw material) having an Sm amount of 5 atomic%. Then, as shown in FIG. 2, this excess rare earth mixture was uniformly placed in the bottom of the reaction container for reduction diffusion, and subsequently, the raw material mixture of Sm 2 O 3 , Fe, and Ca was added. The excess rare earth mixture was added so that the Sm amount was 20% of the total including the raw material mixture.
After putting this reaction vessel into a reduction diffusion vessel, it is charged into an electric furnace (reduction diffusion furnace) as shown in FIG. 1 and replaced with argon, and kept at an argon flow rate of 0.5 to 1 L / min and 1200 ° C. for 8 hours. Then, the rare earth oxide was reduced and diffused in Fe to produce an Sm—Fe master alloy (reduced product).
Thereafter, this reduced product was cut at approximately equal intervals so as to form three parts, ie, an upper part, a middle part, and a lower part. And 1 kg of each reduced product was put into a water tank with 10 L of water, and after stirring for 10 minutes, the supernatant was removed, and this operation was repeated 10 times to remove Ca. Then, it decanted with alcohol, and it dried at 100 degreeC in the vacuum for 5 hours, and obtained the Sm-Fe alloy powder. Sm—Fe alloy powders were produced in the same manner using the reduced products in the upper, middle, and lower parts.
Next, the above three types of alloys were sieved with a sieve opening of 104 μm (150 mesh) and subjected to nitriding treatment in an ammonia-hydrogen mixed gas at 480 ° C. for 8 hours to produce an Sm—Fe—N alloy. Further, 1 kg of this alloy was put into an attritor (manufactured by Mitsui Mining Co., Ltd.), and pulverized at 200 rpm for 2 hours using alcohol as a solvent. Then, it filtered and vacuum-heat-dried, stirring with a Henschel mixer (made by Mitsui Mining Co., Ltd.), and manufactured Sm-Fe-N fine powder. Using the reduced product in the upper part, the reduced product in the middle part, and the reduced product in the lower part as samples, the compositions of these magnet alloys were examined, and the magnetic properties were measured with a vibrating sample magnetometer. The results are shown in Table 1.

(比較例1)
調整用原料を還元拡散用の反応容器の底に入れずに、他の条件は実施例1と同様の方法で合金を製造した。取り分けたそれぞれ上部の還元物、中部の還元物、下部の還元物を試料として、それらの磁石合金の組成を調べるとともに、その磁気特性を振動試料型磁力計で測定した。結果を表1に示す。
(Comparative Example 1)
An alloy was produced in the same manner as in Example 1 except that the adjustment raw material was not placed in the bottom of the reaction container for reduction diffusion. Using the reduced product in the upper part, the reduced product in the middle part, and the reduced product in the lower part as samples, the compositions of these magnet alloys were examined, and the magnetic properties were measured with a vibrating sample magnetometer. The results are shown in Table 1.

(比較例2)
Sm量を30原子%多くした過剰希土類混合物を用意し、これを還元拡散用の反応容器の底に入れ、他の条件は実施例1と同様の方法で合金を製造した。取り分けたそれぞれ上部の還元物、中部の還元物、下部の還元物を試料として、それらの磁石合金の組成を調べるとともに、その磁気特性を振動試料型磁力計で測定した。その結果を表1に示す。
(Comparative Example 2)
An excess rare earth mixture having an Sm amount increased by 30 atomic% was prepared and placed in the bottom of the reaction vessel for reduction diffusion, and an alloy was produced in the same manner as in Example 1 except for the other conditions. Using the reduced product in the upper part, the reduced product in the middle part, and the reduced product in the lower part as samples, the compositions of these magnet alloys were examined, and the magnetic properties were measured with a vibrating sample magnetometer. The results are shown in Table 1.

Figure 0004345588
Figure 0004345588

「評価」
実施例1は、Sm量のばらつきが小さく磁気特性が高いことが分かる。特に、下部の還元物で製造した試料(1−C)は、実施例と同様に下部の還元物で製造した比較例1、比較例2の試料(1−c、2−c)の場合と比較して、Sm量が実施例1の上部、中部(1−A、1−B)とほぼ同じ値となっており、磁気特性も非常に高い値を示していることがわかる。
"Evaluation"
Example 1 shows that the variation in Sm amount is small and the magnetic characteristics are high. In particular, the sample (1-C) produced with the lower reductant was the same as in the case of the samples (1-c, 2-c) of Comparative Example 1 and Comparative Example 2 produced with the lower reductant as in the examples. In comparison, it can be seen that the amount of Sm is almost the same value as the upper part and the middle part (1-A, 1-B) of Example 1, and the magnetic characteristics are also very high.

(実施例2、3)
原料として純度99.4%のSm((株)トーメン製)、純度99.5%の電解鉄(Hoganas製)、純度99.3%(ミンテックジャパン(株)製)のCaをSmFe17合金が得られる割合で混合機で混合した。同様にSmとCaの調整用原料を準備し、還元拡散用の反応容器の底にSmとCaの調整用原料を入れた。調整用原料の希土類元素の含有量は、原料混合物と調整用原料との合計量の5原子%とした。続いて、Sm、Fe、Caの原料混合物を入れた。この反応容器を電気炉(還元拡散炉)に装入し、アルゴン置換し、アルゴン流量0.5〜1L/分、1200℃で8時間保持し、希土類酸化物を還元しFe中に拡散させ、Sm−Fe合金の還元物(実施例2)を作製した。
その後、この還元物を上部、中部、下部の3つに取り分け、実施例1と同様の方法で上、中、下のそれぞれの還元物でSm−Fe−N微粉末を製造した。これら試料の磁石合金の組成を調べ、磁気特性を振動試料型磁力計で測定した。その結果を表2に示す。
一方、反応容器の底にSmとCaの調整用原料に代えて、Smメタルを入れ、他の条件は実施例2と同様の方法で合金を製造し、実施例3の合金を得た。
(Examples 2 and 3)
As raw materials, Sm 2 O 3 having a purity of 99.4% (manufactured by Tomen Co., Ltd.), electrolytic iron having a purity of 99.5% (manufactured by Hoganas), and Ca having a purity of 99.3% (manufactured by Mintec Japan Co., Ltd.) The Sm 2 Fe 17 alloy was mixed with a mixer at a ratio to obtain the alloy. Similarly, raw materials for adjusting Sm 2 O 3 and Ca were prepared, and raw materials for adjusting Sm 2 O 3 and Ca were placed in the bottom of the reaction vessel for reduction diffusion. The rare earth element content of the adjustment raw material was 5 atomic% of the total amount of the raw material mixture and the adjustment raw material. Subsequently, a raw material mixture of Sm 2 O 3 , Fe, and Ca was added. This reaction vessel was charged into an electric furnace (reduction diffusion furnace), purged with argon, held at an argon flow rate of 0.5 to 1 L / min, 1200 ° C. for 8 hours, reduced rare earth oxides and diffused into Fe, A reduced product of Sm—Fe alloy (Example 2) was produced.
Then, this reduced product was divided into three parts, an upper part, a middle part, and a lower part, and Sm—Fe—N fine powders were produced with each of the upper, middle, and lower reduced substances in the same manner as in Example 1. The composition of the magnetic alloy of these samples was examined, and the magnetic properties were measured with a vibrating sample magnetometer. The results are shown in Table 2.
On the other hand, in place of the raw materials for adjusting Sm 2 O 3 and Ca, Sm metal was put at the bottom of the reaction vessel, and other conditions were used to produce an alloy by the same method as in Example 2 to obtain the alloy of Example 3. It was.

Figure 0004345588
Figure 0004345588

「評価」
実施例2、3は、比較例1と比べ、Sm量のばらつきが小さく特性が高いことが分かる。特に、下部の還元物で製造した試料(2−C、3−C)が、同様に下部の還元物で製造した比較例1の試料(1−c)よりSm量が上部、中部とほぼ同じ値で特性も非常に高い値を示している。
"Evaluation"
It can be seen that Examples 2 and 3 have small variations in Sm amount and high characteristics compared to Comparative Example 1. In particular, the samples (2-C, 3-C) produced with the reduced product in the lower part had almost the same Sm amount as the upper part and the middle part, compared with the sample (1-c) in Comparative Example 1 produced with the reduced product in the lower part. The value and the characteristic are very high.

(実施例4〜6)(比較例3、4)
実施例1〜3、及び比較例1、2で作製した磁石粉末(91.3重量%)と、熱可塑性樹脂(PA12(宇部興産(株)製))を8.7重量%の割合で混合し、ナカタニ混練機(ナカタニ製)を用いて190℃で1パス混練し、その後、シリンダー温度210℃、成形圧力1tonでφ20×13mmの形状に射出成形した。得られた射出成形ボンド磁石の磁気特性を表4に示す。
Examples 4 to 6 (Comparative Examples 3 and 4)
The magnet powder (91.3% by weight) prepared in Examples 1 to 3 and Comparative Examples 1 and 2 and a thermoplastic resin (PA12 (manufactured by Ube Industries)) were mixed at a rate of 8.7% by weight. Then, it was kneaded for 1 pass at 190 ° C. using a Nakatani kneader (manufactured by Nakatani), and then injection molded into a shape of φ20 × 13 mm at a cylinder temperature of 210 ° C. and a molding pressure of 1 ton. Table 4 shows the magnetic properties of the obtained injection-molded bonded magnet.

Figure 0004345588
Figure 0004345588

「評価」
比較例3、4に対し、実施例4〜6は、容器の上下位置によるばらつきが小さく磁気特性が高いことが分かる。下部の試料である実施例4〜6の(1−C、2−C、3−C)は、同様に下部の試料である比較例3、4の(1−c、2−c)に比較し、特性が上部、中部と変わらず高いことが分かる。
"Evaluation"
Compared with Comparative Examples 3 and 4, Examples 4 to 6 show that the variation due to the vertical position of the container is small and the magnetic characteristics are high. The lower samples (1-C, 2-C, 3-C) of Examples 4 to 6 are similarly compared to the lower samples of Comparative Examples 3, 4 (1-c, 2-c). In addition, it can be seen that the characteristics are as high as those in the upper part and the middle part.

還元拡散容器を電気炉内に設置した反応装置の全体図である。It is the whole reactor which installed the reduction | restoration diffusion container in the electric furnace. 原料混合物を導入した還元拡散用の反応容器の断面図である。It is sectional drawing of the reaction container for reduction | restoration which introduce | transduced the raw material mixture.

符号の説明Explanation of symbols

1 反応容器
2 蓋
3 希土類酸化物粉末、鉄を含む遷移金属粉末、及び希土類酸化物を還元するための還元剤を含有する原料混合物
4 調整用原料
5 煉瓦
6 ヒーター
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Lid 3 Rare earth oxide powder, transition metal powder containing iron, and raw material mixture containing reducing agent for reducing rare earth oxide 4 Adjustment raw material 5 Brick 6 Heater

Claims (8)

希土類酸化物粉末、鉄を含む遷移金属粉末、及び希土類酸化物を還元するための還元剤を含有する原料混合物を還元拡散用の反応容器に導入し、非酸化性雰囲気中で加熱焼成して希土類−遷移金属系母合金を得た後、窒化処理して、希土類元素の含有量のばらつきが抑制された希土類−遷移金属−窒素系磁石粉末を製造する方法であって、
原料混合物を還元拡散用の反応容器に導入する際に、その底部に、予め、(a)希土類金属、(b)希土類酸化物粉末と還元剤との混合物、又は(c)希土類元素の含有量が原料混合物よりも1〜30原子%多い希土類酸化物粉末、遷移金属粉末および還元剤の混合物から選ばれる調整用原料を装填してから、次いでその上に原料混合物を装填することを特徴とする希土類−遷移金属−窒素系磁石粉末の製造方法。
A raw material mixture containing a rare earth oxide powder, a transition metal powder containing iron, and a reducing agent for reducing the rare earth oxide is introduced into a reaction vessel for reduction diffusion, and then heated and fired in a non-oxidizing atmosphere to form a rare earth. A method of producing a rare earth-transition metal-nitrogen based magnet powder in which variation in the content of rare earth elements is suppressed after obtaining a transition metal based master alloy,
When the raw material mixture is introduced into the reaction container for reduction diffusion, the bottom thereof is previously provided with (a) a rare earth metal, (b) a mixture of rare earth oxide powder and a reducing agent, or (c) a rare earth element content. Is charged with a raw material for adjustment selected from a mixture of rare earth oxide powder, transition metal powder and reducing agent, which is 1 to 30 atomic% higher than the raw material mixture, and then the raw material mixture is loaded thereon. A method for producing a rare earth-transition metal-nitrogen based magnet powder.
原料混合物に含まれる希土類元素の含有量は、7〜11原子%であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   The method for producing a rare earth-transition metal-nitrogen magnet powder according to claim 1, wherein the content of the rare earth element contained in the raw material mixture is 7 to 11 atomic%. 調整用原料に含まれる希土類元素の含有量は、原料混合物と調整用原料に含まれる希土類元素の合計量に対して、2〜40%であることを特徴とする請求項1に記載の希土類−遷移金属−窒素系磁石粉末の製造方法。   2. The rare earth element according to claim 1, wherein a content of the rare earth element contained in the adjustment raw material is 2 to 40% with respect to a total amount of the rare earth element contained in the raw material mixture and the adjustment raw material. A method for producing a transition metal-nitrogen magnet powder. 請求項1〜3のいずれかに記載の製造方法により得られる希土類−遷移金属−窒素系磁石粉末。   A rare earth-transition metal-nitrogen based magnet powder obtained by the production method according to claim 1. 希土類元素の含有量が、3〜20原子%であることを特徴とする請求項4に記載の希土類−遷移金属−窒素系磁石粉末。   The rare earth-transition metal-nitrogen based magnet powder according to claim 4, wherein the rare earth element content is 3 to 20 atomic%. 希土類元素の含有量のばらつきが0.3原子%以内であることを特徴とする請求項4又は5に記載の希土類−遷移金属−窒素系磁石粉末。   6. The rare earth-transition metal-nitrogen based magnet powder according to claim 4 or 5, wherein variation in the content of rare earth elements is within 0.3 atomic%. 請求項4〜6のいずれかに記載の希土類−遷移金属−窒素系磁石粉末に、樹脂バインダーを混合して得られるボンド磁石用組成物。   A bonded magnet composition obtained by mixing a resin binder with the rare earth-transition metal-nitrogen based magnet powder according to any one of claims 4 to 6. 請求項7に記載のボンド磁石用組成物を圧縮成形又は射出成形により成形してなるボンド磁石。   The bonded magnet formed by shape | molding the composition for bonded magnets of Claim 7 by compression molding or injection molding.
JP2004185962A 2004-06-24 2004-06-24 Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained Expired - Fee Related JP4345588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004185962A JP4345588B2 (en) 2004-06-24 2004-06-24 Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004185962A JP4345588B2 (en) 2004-06-24 2004-06-24 Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained

Publications (2)

Publication Number Publication Date
JP2006009074A JP2006009074A (en) 2006-01-12
JP4345588B2 true JP4345588B2 (en) 2009-10-14

Family

ID=35776638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004185962A Expired - Fee Related JP4345588B2 (en) 2004-06-24 2004-06-24 Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained

Country Status (1)

Country Link
JP (1) JP4345588B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207665B (en) * 2007-11-05 2010-12-08 华为技术有限公司 Method for obtaining attenuation factor
JP5110296B2 (en) * 2008-04-18 2012-12-26 戸田工業株式会社 Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP5874534B2 (en) * 2012-05-23 2016-03-02 日亜化学工業株式会社 Rare earth-iron-nitrogen based magnetic material and method for producing the same
CN113770355B (en) * 2021-08-31 2023-05-09 浙江英洛华磁业有限公司 Sintering container for rare earth alloy sintering heat treatment and preparation method thereof

Also Published As

Publication number Publication date
JP2006009074A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
JP6980207B2 (en) Rare earth iron nitrogen-based magnetic powder and its manufacturing method
JP2005223263A (en) Method for manufacturing rare earth permanent magnet and resulting rare earth permanent magnet
WO2018096733A1 (en) Rare earth-iron-nitrogen system magnetic powder and method for producing same
JP5974975B2 (en) Rare earth-transition metal-nitrogen based magnet fine powder and method for producing the same
JP2021105192A (en) Rare earth-iron-nitrogen magnetic powder, bond magnet compound, bond magnet, and method for producing rare earth-iron-nitrogen magnetic powder
JPH066728B2 (en) Method for producing raw material powder for permanent magnet material
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP5104391B2 (en) Method for producing rare earth-transition metal-nitrogen based magnet powder, obtained rare earth-transition metal-nitrogen based magnet powder, composition for bonded magnet using the same, and bonded magnet
JP4345588B2 (en) Rare earth-transition metal-nitrogen magnet powder, method for producing the same, and bonded magnet obtained
JP2011214113A (en) Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby
JP2005272986A (en) Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it
JP2012132068A (en) Rare earth-transition metal-nitrogen magnet powder, method and apparatus for producing the same, composition for bond magnet using the powder, and bond magnet
JP4862269B2 (en) Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet
JP2015113481A (en) Manufacturing method of rare earth-transition metal-nitrogen alloy powder, rare earth-transition metal-nitrogen alloy powder obtained by the method, bond magnet composition using the same, and bond magnet
JP2012089774A (en) Rare earth-transition metal-nitrogen magnet powder, method and apparatus for producing the same, composition for bond magnet using the same and bond magnet
CN114255949A (en) Magnetic material and method for producing the same
JP2016037611A (en) Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder
JPS6333506A (en) Production of raw material powder for permanent magnet material
JP2010265488A (en) Method for producing rare earth-transition metal-nitrogen-based magnet powder, rare earth-transition metal-nitrogen-based magnet powder obtained thereby, composition for bond magnet using the same, and bond magnet
JP4687493B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP5235264B2 (en) Rare earth sintered magnet and manufacturing method thereof
JP2008001953A (en) Method for producing rare earth-iron-nitrogen-based alloy powder
JP2006144048A (en) Method for producing rare earth-transition metal-nitrogen based magnet powder, composition for bond magnet using the same, and bond magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees