WO2015122271A1 - Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet - Google Patents

Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet Download PDF

Info

Publication number
WO2015122271A1
WO2015122271A1 PCT/JP2015/052188 JP2015052188W WO2015122271A1 WO 2015122271 A1 WO2015122271 A1 WO 2015122271A1 JP 2015052188 W JP2015052188 W JP 2015052188W WO 2015122271 A1 WO2015122271 A1 WO 2015122271A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
cyclic siloxane
siloxane compound
rare earth
based magnetic
Prior art date
Application number
PCT/JP2015/052188
Other languages
French (fr)
Japanese (ja)
Inventor
晴美 永尾
山辺 秀敏
石川 尚
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2015562774A priority Critical patent/JPWO2015122271A1/en
Publication of WO2015122271A1 publication Critical patent/WO2015122271A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to rare earth-based magnetic powders, and more particularly, Nd—Fe—B or Sm—Fe used for bonded magnets and imparting excellent rust resistance and heat resistance without deteriorating magnetic properties.
  • the present invention relates to an N-based rare earth magnetic powder, a method for producing the same, a resin composition for a bonded magnet containing the rare earth magnet powder, and a bonded magnet.
  • bonded magnets have advantages such as shape flexibility and high dimensional accuracy, they have been widely used in various applications such as electrical products and automobile parts. For example, for the use of spindle motors for CDs, DVDs, HDDs, vibration motors for mobile phones, actuators for digital cameras, etc., as well as high bond magnets used to reduce the weight, save energy, and increase the functionality of automobile parts. High corrosion resistance that can withstand performance and harsh environments is strongly required.
  • bond magnets are usually manufactured by kneading a binder resin such as rubber or plastic material and magnetic powder and then molding them. That is, there is a strong demand for magnetic powder having a large residual magnetic flux density (Br) and a high coercive force (iHc) and, as a result, a large maximum magnetic energy product (BH) max.
  • a binder resin such as rubber or plastic material
  • iHc coercive force
  • magnetoplumbite type ferrite such as barium ferrite and strontium ferrite, Nd—Fe—B based magnetic powder and Sm—Fe—N based magnetic powder are known as magnetic powder.
  • Nd-Fe-B-based magnetic powders are widely deployed in high-efficiency motors because of their high saturation magnetization and anisotropic magnetic field, and sintered magnets include mobile phones and various home appliances, as well as magnetic medical diagnostics. Widely used in large magnetic circuits such as devices (MRI) and synchrotron radiation generators.
  • Sm—Fe—N based magnetic powder has recently attracted attention because it has both a high saturation magnetization value and an anisotropic magnetic field, as well as a high Curie temperature, like Nd—Fe—B based magnetic powder.
  • Nd—Fe—B based magnetic powder since it has higher rust prevention than Nd—Fe—B magnetic powder, it is expected to be used in harsh environments where bond magnets using Nd—Fe—B magnetic powder cannot be used. Yes.
  • Nd—Fe—B based magnetic powder for example, an alloy lump made of neodymium, iron and boron is treated at a high temperature in a hydrogen atmosphere to form a rare earth hydride, Fe, Fe and B compound. It can be obtained by performing hydrogenation and disproportionation treatment (HD treatment) once decomposed, then removing hydrogen, and refining fine compound crystals (DR treatment) again. It needs to be moderately sized. Therefore, it is necessary to perform the minimum necessary pulverization. However, when pulverization is performed, an active surface is exposed, and oxidation proceeds due to the surface. In particular, in a humid air, it is easily oxidized in a short time and causes a decrease in magnetic properties.
  • HD treatment hydrogenation and disproportionation treatment
  • DR treatment fine compound crystals
  • the magnetic properties are reduced by an oxidizing or reducing atmosphere and heat.
  • the Nd—Fe—B based magnetic powder is very susceptible to rust because it contains Fe, and even if it is used as a bonded magnet in a corrosive environment such as a coast, it uses a resin with low water absorption. Even when a bonded magnet is used, rust is generated.
  • Sm—Fe—N based magnetic powder can be obtained by occluding nitrogen in an alloy of samarium and iron. Limited grinding is necessary.
  • an active surface is exposed when pulverized, and oxidation proceeds due to the surface, especially in humid air for a short time. It easily oxidizes and causes a decrease in magnetic properties.
  • molding with resin it causes a fall of a magnetic characteristic with oxidizing or reducing atmosphere and heat.
  • Sm—Fe—N based magnetic powder is less rusting than Nd—Fe—B based magnetic powder, it decomposes at high temperatures.
  • rust is gradually generated by absorbing water.
  • rust is easily generated when used in a corrosive environment such as a coast.
  • super engineering plastics that are difficult to absorb water have a high melting point. Therefore, when kneaded, the coercive force of the Sm—Fe—N magnetic powder is greatly reduced, and the target magnetic properties of the bonded magnet cannot be obtained.
  • the oxidizing or reducing atmosphere received in each step of drying, surface treatment, kneading and molding, and deterioration of magnetic properties due to heat are caused. There are few, and it is strongly demanded that it is hard to rust in a corrosive environment even after making a bonded magnet.
  • the formability which is an important practical characteristic of bonded magnets, depends on the fluidity in a mixed state with the resin under high temperature and high pressure. It is important that it be a powder.
  • Patent Document 1 discloses a method of coating with a phosphoric acid compound as a surface treatment method for improving the oxidation resistance of Nd—Fe—B magnetic powder.
  • Patent Document 2 discloses forming a SiO 2 protective film on Nd—Fe—B based magnetic powder.
  • Patent Document 3 discloses a method of coating with a phosphoric acid compound as a surface treatment method for improving the oxidation resistance of the Sm—Fe—N based magnetic powder.
  • Patent Documents 7 and 8 disclose that a silica coating is formed on a Sm—Fe—N magnetic powder after coating with a phosphoric acid compound.
  • Patent Document 1 includes at least one flaky fine powder selected from Al, Mg, Ca, Zn, Si, Mn, and alloys thereof and silane and / or a partial hydrolyzate of silane. It is described that the corrosion resistance is improved by forming a treatment film with a treatment liquid that is included. However, under severe conditions after forming a bonded magnet, for example, in a severe condition such as immersing in a salt solution having a NaCl concentration of 5%, which is almost equal to the salinity concentration in the sea, or a solution containing SO 4 2- Rust is generated and the magnetic properties deteriorate.
  • a severe condition such as immersing in a salt solution having a NaCl concentration of 5%, which is almost equal to the salinity concentration in the sea, or a solution containing SO 4 2- Rust is generated and the magnetic properties deteriorate.
  • a processing liquid is processed on a molded permanent magnet with a spray gun so that the film thickness of the heating composite coating becomes 10 ⁇ m, and further, 300 in a hot air drying furnace. Since it is heat-treated at a high temperature of °C, it is difficult to say that it is practical in terms of capital investment and production efficiency.
  • Patent Document 2 describes a method of forming a protective film of silicon dioxide on the surface of an Nd—Fe—B based magnetic powder by plasma chemical vapor deposition, and the temperature is maintained at 80 ° C. and 95 RH by forming an SiO 2 film. Even after holding in a constant temperature and humidity chamber for 500 hours, the rusting state was not observed, and the decrease rate of open flux was also small. However, when a bonded magnet is produced using the treated magnetic powder, the corrosion resistance evaluation in a constant temperature and humidity chamber maintained at 80 ° C. and 95% RH described in Patent Document 2 shows a certain effect. Under more severe conditions, for example, under severe conditions such as immersion in salt water having a NaCl concentration of 5%, rust is generated and the magnetic properties are deteriorated.
  • Patent Document 3 states that the rate of decrease of open flux in the bonded magnet can be suppressed by coating with a phosphoric acid compound, but rust is not specified.
  • Patent Document 4 states that the degree of deterioration of magnetic properties after accelerated deterioration is greatly improved by forming a fine particle silica film, but this Patent Document 4 also does not specify rust.
  • Patent Document 5 when a bonded magnet is produced using a magnetic powder having a silica film formed on the particle surface, the magnetic powder having a silica film is formed when the flux is measured after heating at 100 ° C. for a predetermined time. It is said that the rate of decrease in flux of bonded magnets using copper is suppressed and the stability over time is extremely high, but rust is not specified.
  • the surface of magnetic particles is coated with a first layer made of a phosphoric acid compound, and the surface of the first layer is made of a second layer made of a composite film containing a silicon compound and a phosphoric acid compound. Rust prevention is given by covering.
  • the magnetic particles for the permanent magnet are magnetically aggregated with each other, it is difficult to form a uniform film on the aggregated surface of the magnetically agglomerated magnetic particles by wet processing, and the part where the film is not formed If the film thickness becomes uneven, such as the occurrence of a thick film, and a thick film portion is formed, the magnetic characteristics may be deteriorated.
  • the coating is formed so as to wrap the outside of the aggregated particles, even if it exhibits good corrosion resistance and the like as a powder, the agglomerated surface is exposed when it is kneaded by applying a shearing force together with a resin binder to form a bonded magnet. Since it becomes a trap, the improvement of corrosion resistance becomes incomplete.
  • Patent Documents 7 and 8 the surface of magnetic particles is coated with a first layer made of a phosphoric acid compound, and the surface of the first layer is covered with a second layer made of a silicon compound containing silica as a main component. By giving it, rust prevention is given.
  • the magnetic particles for the permanent magnet are magnetically aggregated with each other, even in the techniques of these Patent Documents 7 and 8, even in wet processing, the magnetic particles that are magnetically agglomerated are uniformly formed on the aggregation surface. It is difficult to form a thick film, resulting in unevenness in the film thickness such as a part where the film is not formed. If a thick film part is formed, the magnetic characteristics may be deteriorated.
  • the coating is formed so as to wrap the outside of the aggregated particles, even if it shows good corrosion resistance etc. as a powder, it is kneaded by applying a shearing force together with a resin binder and a bonded magnet. Then, since the aggregated surface is exposed, the improvement in corrosion resistance is incomplete.
  • the present invention has been proposed in view of such circumstances, and an Nd—Fe—B based magnetic powder capable of enhancing the rust prevention and heat resistance of a bonded magnet without deteriorating magnetic properties and It is an object of the present invention to provide Sm—Fe—N-based magnetic powder and a method for obtaining these magnetic powders by a simple treatment.
  • the present inventors have a coating having an action of suppressing the elution of the main component Fe on the particle surfaces of the Nd—Fe—B based magnetic powder and the Sm—Fe—N based magnetic powder.
  • certain cyclic siloxanes are volatilized in a vacuum vessel, and the entire surface of the magnetic powder, including the agglomerated surface of the magnetic powder that has been magnetically agglomerated, is completely covered, thereby further improving rust prevention and heat resistance.
  • the present invention has been completed. That is, the present invention is as follows.
  • a first invention of the present invention is composed of magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, and includes hexamethylcyclotrisiloxane and octamethylcyclotetrasiloxane.
  • the entire surface of the magnetic powder particles is coated with one or more cyclic siloxane compounds selected from the group consisting of 1,3,5,7-tetramethylcyclotetrasiloxane, and the coating amount of the cyclic siloxane compound is
  • the rare earth based magnetic powder is characterized in that it is 0.1 to 20 parts by mass per 1000 parts by mass of the rare earth based magnetic powder.
  • a second invention of the present invention is a rare earth-based magnetic powder according to the first invention, wherein the cyclic siloxane compound is coated on the magnetic powder previously treated with a phosphoric acid compound. is there.
  • the third invention of the present invention is the first or second invention, wherein the residual magnetic flux density is 1.2 T (12 kG) or more as magnetic characteristics in the invention of (1) or (2) above.
  • hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, a magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder The entire surface of the magnetic powder particles is coated with a gas containing one or more cyclic siloxane compounds selected from the group consisting of 1,3,5,7-tetramethylcyclotetrasiloxane.
  • the cyclic siloxane compound is placed together with the magnetic powder in a vacuum vessel, and held for 1 to 48 hours under the conditions of a vacuum pressure of ⁇ 0.1 MPa or less and a temperature of 40 to 100 ° C. Is a method for producing a rare earth-based magnetic powder.
  • only the magnetic powder obtained by coating the surface of the particles with the cyclic siloxane compound is vacuum pressure of ⁇ 0.1 MPa or less and a temperature of 80 to 110 in a vacuum vessel. It is a method for producing a rare earth-based magnetic powder characterized by being held for 1 to 12 hours under the condition of ° C.
  • hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, a magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder The entire surface of the magnetic powder particles is coated with a gas containing one or more cyclic siloxane compounds selected from the group consisting of 1,3,5,7-tetramethylcyclotetrasiloxane.
  • the cyclic siloxane compound is placed together with the magnetic powder in a container, and nitrogen and / or argon gas is allowed to flow under atmospheric pressure and at a temperature of 80 to 110 ° C.
  • a method for producing a rare earth-based magnetic powder characterized by holding for ⁇ 24 hours.
  • the magnetic powder having the particle surface coated with the cyclic siloxane compound is heated at a temperature of 80 while nitrogen and / or argon gas is circulated in the container. It is a method for producing a rare earth-based magnetic powder characterized by holding for 1 to 12 hours under a condition of ⁇ 110 ° C.
  • a phosphoric acid compound is added to the magnetic powder prior to coating the surface of the particles of the magnetic powder with the cyclic siloxane. It is a manufacturing method of the rare earth type magnetic powder characterized by processing.
  • a ninth invention of the present invention is a bonded magnet resin composition comprising the rare earth-based magnetic powder according to any one of the first to third inventions and a resin.
  • a tenth aspect of the present invention is a bonded magnet including the rare earth-based magnetic powder according to any one of the first to third aspects.
  • an extremely thin coating film of a cyclic siloxane compound is formed on the particle surface of the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, thereby reducing the magnetic properties.
  • the rust prevention and heat resistance of the bonded magnet can be improved.
  • rare earth-based magnetic powder it can be used without generating rust even in a harsh environment that could not be used in the past due to increased rust prevention.
  • this rare earth-based magnetic powder since this rare earth-based magnetic powder has excellent heat resistance, it can maintain its magnetic properties even in the process of forming a bond magnet using a high melting point poniphenylene sulfide resin, which is more severe than ever. Can also be used.
  • FIG. 5 is a schematic diagram showing the configuration of a processing apparatus used for surface treatment of magnetic powder in Examples 11 to 13.
  • the rare earth based magnetic powder according to the present embodiment is composed of a magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder. It is characterized by being coated with a coating film of a specific cyclic siloxane compound.
  • the rare earth based magnetic powder used as a starting material is either Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder.
  • the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder known ones can be used.
  • the phosphoric acid compound is treated in advance, and the particle surface is made of a phosphoric acid compound. It is preferred to use a magnetic powder that is coated.
  • the rare earth-based magnetic powder according to the present embodiment has a specific cyclic siloxane formed on the entire surface of the Nd—Fe—B-based magnetic powder or Sm—Fe—N-based magnetic powder as the starting material powder. A coating film of the compound is formed.
  • the cyclic siloxane compound to be coated is one or more cyclic groups selected from hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and decamethylcyclopentasiloxane. It is a siloxane compound. In addition, other volatile cyclic siloxane compounds can also be used.
  • the cyclic siloxane compound having volatility as described above is volatilized in an evacuated container or under an atmospheric pressure while circulating an inert gas, and the gas and A coating film of a cyclic siloxane compound is formed on the entire surface of the particle by a so-called gas phase method in which the starting raw material powder is Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder. .
  • a nano-level ultra-thin coating film layer can be uniformly formed on the particle surface, and extremely excellent rust prevention (corrosion resistance), etc. without deteriorating the magnetic properties of the magnetic powder. Can be demonstrated.
  • the amount of the cyclic siloxane compound coated by the above-described vapor phase method is 0.1 to 20 parts by mass per 1000 parts by mass of the rare earth magnetic powder. Further, it is more preferably 1 to 10 parts by mass per 1000 parts by mass of the rare earth magnetic powder.
  • the coating amount of the cyclic siloxane compound is less than 0.1 parts by mass, the coating film of the cyclic siloxane compound cannot always cover the entire surface of the magnetic powder particles, or the film thickness is sufficient even when the entire surface is coated. Therefore, it reacts with moisture in the environment and elution of Fe, which is the main component of the magnetic powder, makes it easy to generate rust. Also, sufficient heat resistance cannot be obtained. On the other hand, if the coating amount of the cyclic siloxane compound exceeds 20 parts by mass, the coating film becomes thick and the magnetic properties are deteriorated, which is not preferable.
  • the rare earth-based magnetic powder in which the coating film of the cyclic siloxane compound is formed is not particularly limited as the compression density (CD), but is preferably 4.1 g / ml or more.
  • the compression density is less than 4.1 g / ml, the density per volume at the time of injection molding at the time of molding the bonded magnet is lowered, and the magnetic properties may be lowered.
  • the BET specific surface area of the rare earth-based magnetic powder in which the coating film of the cyclic siloxane compound is formed is not particularly limited, but in the case of the Nd—Fe—B based magnetic powder, 0.01 to 3.5 m 2 / g It is preferable that it is the range of these. In the Nd—Fe—B based magnetic powder with the coating film formed, if the BET specific surface area is out of the above range, it means that proper pulverization has not been performed, and high magnetic properties cannot be obtained.
  • the BET specific surface area is more preferably in the range of 0.01 to 2.5 m 2 / g.
  • the BET specific surface area in the case of the Sm—Fe—N based magnetic powder is not particularly limited, but is preferably 0.35 to 2.6 m 2 / g.
  • the BET specific surface area in the Sm—Fe—N-based magnetic powder with the coating film formed if the BET specific surface area is outside the above range, it means that proper pulverization has not been performed, and high magnetic properties cannot be obtained.
  • the BET specific surface area is more preferably in the range of 0.35 to 2.0 m 2 / g.
  • the average particle size of the rare earth-based magnetic powder in which the coating film of the cyclic siloxane compound is formed is not particularly limited, but in the case of the Nd—Fe—B based magnetic powder, it may be 10 to 200 ⁇ m.
  • the thickness is preferably 40 to 130 ⁇ m.
  • the average particle size of the powder particles in the case of the Sm—Fe—N magnetic powder is not particularly limited, but is preferably 1.0 to 5.0 ⁇ m, and preferably 1.0 to 4.0 ⁇ m. Is more preferable.
  • the powder structure of the rare earth based magnetic powder on which the coating film of the cyclic siloxane compound is formed is not particularly limited, but the Nd—Fe—B based magnetic powder has a structure of Nd 2 Fe 14 B type. Is preferred.
  • the powder structure in the case of the Sm—Fe—N based magnetic powder is not particularly limited, but preferably has a Th 2 Zn 17 type, TbCu 7 type, or Th 2 Ni 17 type structure.
  • the rare earth-based magnetic powder according to the present embodiment has a coating film of a cyclic siloxane compound that is formed extremely thin, so that it is effectively rust-proof without deteriorating magnetic properties. And heat resistance can be improved.
  • the magnetic characteristics when Nd—Fe—B based magnetic powder is used, as a result of measuring the magnetic powder after being oriented in a magnetic field, for example, the coercive force is 478 to 1989 kA / m (6 ⁇ 25 kOe), the residual magnetic flux density is 1.1 to 1.5 T (11 to 15 kG), and the maximum magnetic energy product is 199.1 to 358 kJ / m 3 (25 to 45 MGOe).
  • the magnetic properties thereof are measured by, for example, aligning the magnetic powder in a magnetic field, and have a coercive force of 398.1 to 1592 kA / m (5 to 20 kOe). ),
  • the residual magnetic flux density is 1.0 to 1.5 T (10 to 15 kG), and the maximum magnetic energy product is 158.8 to 358.1 kJ / m 3 (20 to 45 MGOe).
  • Nd-Fe-B magnetic powder a starting alloy using any of known alloy manufacturing methods such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, and a reduction diffusion method. An Nd—Fe—B ingot is produced.
  • the produced Nd—Fe—B ingot is subjected to a homogenization treatment for the purpose of coarsening crystal grains and reducing the ⁇ -Fe phase.
  • a homogenization treatment for example, heat treatment is performed for 1 to 48 hours in an inert gas other than a nitrogen atmosphere under a temperature condition of 1000 to 1200 ° C.
  • the Nd—Fe—B ingot is composed of the main phases Nd 2 Fe 14 B phase, Nd rich phase, and B rich phase, but in addition to the Nd 2 Fe 14 B phase, ⁇ - Ferromagnetic phases such as Fe phase and Nd 2 Fe 17 phase are often present. Therefore, by performing the above-described homogenization treatment, a structure composed of only the Nd 2 Fe 14 B phase can be obtained. In addition, by performing such a homogenization treatment, the crystal grain size can be coarsened to about 100 ⁇ m or more. The coarsening of the average particle diameter is preferable because it has magnetic anisotropy.
  • the nitrogen when nitrogen is used as the inert gas atmosphere, the nitrogen reacts with the Nd—Fe—B ingot, which is not preferable. Further, if the heat treatment temperature for the homogenization treatment is less than 1000 ° C., it is not preferable because it takes time to diffuse the main component elements and increases the manufacturing cost. On the other hand, if the heat treatment temperature for the homogenization treatment exceeds 1200 ° C., the Nd—Fe—B ingot is melted, which is not preferable.
  • the homogenized Nd—Fe—B ingot is pulverized by a known pulverization method such as mechanical pulverization using a jaw crusher, hydrogen storage pulverization, pulverization using a disk mill, or the like. Apply processing.
  • the HDDr treatment can be performed on the Nd—Fe—B based magnetic powder.
  • the HDDR process is divided into a hydrogenation / disproportionation process (HD process) and a dehydrogenation / recombination process (DR).
  • HD treatment hydrogenation / disproportionation treatment
  • DR processing dehydrogenation and recombination processing
  • the Sm—Fe—N based magnetic powder as a starting material can be produced by introducing nitrogen into, for example, an Sm 2 Fe 17 alloy powder having a Th 2 Zn 17 type structure.
  • the Sm 2 Fe 17 alloy powder can be produced using any of known alloy production methods such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, and a reduction diffusion method. It is preferable to use a diffusion method.
  • iron powder and samarium oxide powder are used as raw materials, and metal calcium particles are added to and mixed with these, and heat treatment (reduction diffusion treatment) is performed in a non-oxidizing atmosphere such as Ar gas. Apply.
  • heat treatment samarium oxide is reduced by metallic calcium, and the reduced samarium is alloyed by diffusing into the iron powder.
  • the calcium oxide contained in the reaction product after the heat treatment can be removed by washing by adding the reaction product into water after cooling to form calcium hydroxide and repeating decantation.
  • Sm 2 Fe 17 introduction of nitrogen to the alloy powder is to dry the Sm 2 Fe 17 alloy powder recovered after removing the calcium component, it is subjected to heat treatment in an atmosphere containing nitrogen gas, the nitrogen, such as ammonia gas Is done by.
  • the powder obtained after the nitriding heat treatment thus obtained has a composition of Sm 2 Fe 17 N 3 . Note that nitriding may be performed on the reaction product after the reduction diffusion, and then a cleaning process for removing the calcium component may be performed.
  • Phosphate compound treatment for starting raw material powder In the method for producing a rare earth based magnetic powder according to the present embodiment, a coating film of a cyclic siloxane compound is formed on the starting raw material powder obtained as described above. Prior to the formation of the coating film, it is preferable to perform a treatment (phosphate compound treatment) for attaching (coating) a phosphate compound to the particle surface of the starting material powder.
  • the durability of the raw magnetic powder can be improved and the rust prevention property and the like can be further enhanced.
  • the phosphoric acid compound used for coating the Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder is not particularly limited.
  • orthophosphoric acid, disodium hydrogen phosphate, Pyrophosphoric acid, metaphosphoric acid, manganese phosphate, zinc phosphate, aluminum phosphate and the like can be suitably used.
  • orthophosphoric acid is particularly preferable as the phosphoric acid compound to be adhered to the particle surface.
  • IPA isopropyl alcohol
  • a stirrer is used in order to uniformly coat the surface of the magnetic powder with the phosphoric acid compound.
  • IPA isopropyl alcohol
  • a stirrer is used in order to uniformly coat the surface of the magnetic powder with the phosphoric acid compound.
  • IPA isopropyl alcohol
  • the phosphoric acid compound described above is added to the treatment solvent.
  • the magnetic powder slurry whose particle size has been adjusted is stirred and dried in a non-oxidizing atmosphere at 50 to 175 ° C. while heating for 1 to 3 hours.
  • a phosphoric acid compound coat can be formed also on the particle surface which is carrying out magnetic aggregation.
  • the addition amount (adhesion amount, coating amount) of the phosphoric acid compound is not particularly limited, but is 0.1 to 5 with respect to 100 parts by mass of the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder. About 0.0 part by mass is preferable.
  • the prepared magnetic powder is put in a heatable vacuum vessel, and another vessel containing a volatile cyclic siloxane compound is placed in the vacuum vessel. Then, after the inside of the vacuum vessel is deaerated to ⁇ 0.1 MPa or less by a vacuum pressure, the whole vacuum vessel is heated to 40 to 100 ° C. and heat treatment is performed for 1 to 48 hours.
  • the agglomerated surface is magnetically agglomerated by volatilizing the cyclic siloxane compound in a separate container and bringing the volatilized cyclic siloxane compound into contact with the magnetic powder surface in the gas phase.
  • a coating film is appropriately formed on the entire surface of the magnetic powder including (formation of a coating film by a vapor phase method).
  • the entire vacuum vessel is heated to 40 to 100 ° C., more preferably 50 to 80 ° C. as described above.
  • the processing time if the processing time is too short, the coating film is not sufficiently formed. On the other hand, even if the processing time is increased, the coating is not performed beyond a certain coating amount. Therefore, the processing time is 1 to 48 hours as described above, and more preferably 12 to 24 hours.
  • the above-described temperature conditions and processing time conditions are used, so that the magnetic powder and the volatile cyclic siloxane compound are simply installed in the vacuum vessel. Then, the volatilized cyclic siloxane compound comes into contact with the surface of the magnetic powder, and a coating film can be efficiently formed over the entire surface and details of the surface of the magnetic powder.
  • a mixing device such as a stirrer inside the vacuum vessel.
  • the magnetic powder is brought into vapor phase contact with the cyclic siloxane compound by maintaining the magnetic powder at 80 to 110 ° C. for 1 to 24 hours while flowing an inert gas under atmospheric pressure.
  • the gas species to be circulated is preferably an inert gas such as nitrogen gas or argon gas from the viewpoint of concern about the deterioration of magnetic properties due to heating in an oxygen atmosphere.
  • the process of stabilizing the cyclic siloxane compound coated by contacting in a vapor phase in a vacuum vessel is to take out only the magnetic powder that has been subjected to the coating treatment from the vessel used for the vapor phase treatment and put it in another vacuum vessel.
  • take out the vessel containing the cyclic siloxane compound replace the gas inside with the atmosphere, and then again under vacuum at a vacuum pressure of -0.1 MPa or less. Then, a drying process (heat treatment) is performed for 1 to 12 hours at a temperature of 80 to 110 ° C.
  • an inert nitrogen gas, argon gas, or the like is placed in the vessel used for the vapor phase treatment or in another vessel.
  • heat treatment is performed for 1 to 12 hours under a temperature condition of 80 to 110 ° C. while circulating the active gas.
  • the coating film can be stabilized and the excess adsorbed component can be removed by performing the heat treatment after coating the cyclic siloxane compound by vapor phase contact.
  • the temperature conditions of heat processing when it is less than 80 degreeC, the cyclic siloxane compound adhering to magnetic powder cannot fully be stabilized, On the other hand, when it exceeds 110 degreeC, the rare earth type magnetic powder obtained This is not preferable because it may affect the magnetic characteristics. Therefore, it is preferably carried out under a temperature condition of 80 to 110 ° C., more preferably under a temperature condition of 80 to 90 ° C.
  • the gas containing the vaporized cyclic siloxane compound is brought into contact with the surface of the magnetic powder in the gas phase using the vapor phase method, and the coating film To form.
  • a vapor phase method is different from a liquid phase method (wet method) in which a coating layer is formed on the surface particle surface in a liquid, for example, a nano level having a thickness of about 0.5 to 20 nm, preferably about 1 to 5 nm.
  • the uniform coating film layer can be formed on the entire surface of the magnetic powder particles.
  • an extremely thin uniform coating film layer can be formed on the particle surface of the magnetic powder, so that it has excellent rust prevention (corrosion resistance) and heat resistance without deteriorating the magnetic properties of the magnetic powder. Can be granted. Further, after the coating film is formed by the vapor phase method, the attached cyclic siloxane compound can be made denser and stabilized by performing the heat treatment again.
  • Bonded Magnet Resin Composition >> Next, the resin composition for bonded magnets using the rare earth based magnetic powder according to the present embodiment will be described.
  • the resin composition for bonded magnets is obtained by dispersing magnetic powder in a binder resin.
  • the magnetic powder is composed of Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, and a specific cyclic siloxane compound. Thus, the entire surface of the particle is covered.
  • the resin composition for bonded magnets contains the above-mentioned surface-treated Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder in a proportion of, for example, 85 to 99 mass%, with the balance being a binder resin. In addition, it is comprised with the additive added as needed.
  • the binder resin is not particularly limited and can be variously selected depending on a molding method.
  • a thermoplastic resin can be used in the case of injection molding, extrusion molding, and calendar molding, and a thermosetting resin can be used in the case of compression molding.
  • thermoplastic resins include nylon (PA), polypropylene (PP), ethylene vinyl acetate (EVA), polyphenylene sulfide (PPS), liquid crystal resin (LCP), elastomer, and rubber.
  • PA polypropylene
  • EVA ethylene vinyl acetate
  • PPS polyphenylene sulfide
  • LCP liquid crystal resin
  • elastomer elastomer
  • rubber elastomer
  • the thermosetting resin for example, an epoxy resin, a phenol resin, a silicone resin, or the like can be used.
  • the resin composition for bonded magnets can be obtained by mixing and kneading the surface-treated Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder with a binder resin at a predetermined ratio.
  • the mixing can be performed using a mixer such as a Henschel mixer, a V-shaped mixer, or a nauter.
  • the kneading is performed using a uniaxial kneader, a biaxial kneader, a mortar-type kneader, an extrusion kneader, or the like. It can be carried out.
  • the bonded magnet can be obtained using the above-described resin composition for bonded magnet.
  • the above-described resin composition for bonded magnet is molded by a known molding method such as injection molding, extrusion molding, compression molding, calender molding, and then subjected to electromagnetization or pulse magnetization according to a known method.
  • a bonded magnet can be obtained.
  • the rare earth magnetic powder according to the present embodiment is obtained by coating the entire particle surface of the Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder with a cyclic siloxane compound.
  • the surface condition is remarkably changed.
  • the coating film made of a cyclic siloxane compound on the particle surface of the magnetic powder is very thin, hardly affecting the magnetic properties, and suppressing the deterioration of the magnetic powder due to heat. Therefore, compared with the magnetic powder that is not surface-coated, i.e., does not form a coating film of a cyclic siloxane compound, the magnetic properties are not deteriorated, while it is extremely excellent in rust prevention and heat resistance. Yes.
  • the rust prevention property and heat resistance which such a magnetic powder has give the rust prevention property outstanding with respect to the bond magnet, even when it is a case where it shape
  • Example 1 50 g of anisotropic Nd—Fe—B magnetic powder (manufactured by Aichi Steel Co., Ltd., MF-18P) was placed in the lower stage of the vacuum desiccator, and 5 g of a cyclic siloxane compound (hexamethylcyclotrisiloxane) was placed on the upper stage. After reducing the pressure to ⁇ 0.1 MPa or less, the mixture was placed in a constant temperature bath at 80 ° C. for 24 hours. Thereby, the volatilized cyclic siloxane compound and the magnetic powder were brought into contact with each other in a gas phase, and the surface treatment was performed on the magnetic powder. After the treatment, the magnetic powder was taken out and dried in a vacuum dryer at 90 ° C. for 6 hours to obtain an Nd—Fe—B based magnetic powder coated with a cyclic siloxane compound.
  • anisotropic Nd—Fe—B magnetic powder manufactured by Aichi Steel Co., Ltd., MF-18P
  • the treated Nd—Fe—B magnetic powder was coated with 0.3 g of a cyclic siloxane compound (hexamethylcyclotrisiloxane). That is, the coating amount of the cyclic siloxane compound was 6 parts by mass with respect to 1000 parts by mass of the magnet powder.
  • a cyclic siloxane compound hexamethylcyclotrisiloxane
  • Example 2 In Example 2, octamethylcyclotetrasiloxane was used as the cyclic siloxane compound. In Example 3, 1,3,5,7-tetramethylcyclotetrasiloxane was used as the cyclic siloxane compound. Thus, a surface-treated Nd—Fe—B based magnetic powder was obtained.
  • a cyclic siloxane compound (Example 2: Octamethylcyclotetrasiloxane, Example 3: 1,3,5,7-tetramethylcyclotetrasiloxane) is Example 2.
  • 3 was coated with 0.2 g. That is, the coating amount of the cyclic siloxane compound was 4 parts by mass with respect to 1000 parts by mass of the magnet powder.
  • Example 4 50 g of Sm—Fe—N based magnetic powder (manufactured by Sumitomo Metal Mining Co., Ltd., SFN-C, phosphoric acid compound treated product) is placed in the lower stage of the vacuum desiccator, and the cyclic siloxane compound (hexamethylcyclotrisiloxane) is placed in the upper stage. 5 g was placed, and after reducing the pressure to ⁇ 0.1 MPa or less, each was put in a thermostat set at 50 ° C. in Example 4, 60 ° C. in Example 5, and 80 ° C. in Example 6 for 24 hours.
  • Sm—Fe—N based magnetic powder manufactured by Sumitomo Metal Mining Co., Ltd., SFN-C, phosphoric acid compound treated product
  • the cyclic siloxane compound hexamethylcyclotrisiloxane
  • the volatilized cyclic siloxane compound and the magnetic powder were brought into contact with each other in a gas phase, and the surface treatment was performed on the magnetic powder.
  • the magnetic powder was taken out and dried in a vacuum dryer at 90 ° C. for 6 hours to obtain an Sm—Fe—N based magnetic powder coated with a cyclic siloxane compound.
  • cyclic siloxane compounds (hexamethylcyclotrisiloxane) were 0.15 g (Example 4), 0.25 g (Example 5), and 0.35 g (Example 5), respectively.
  • Example 6 It was coated. That is, the coating amount of the cyclic siloxane compound with respect to 1000 parts by mass of the magnet powder was 3 parts by mass (Example 4), 5 parts by mass (Example 5), and 7 parts by mass (Example 6), respectively.
  • Example 8 is the same as Example 4 except that octamethylcyclotetrasiloxane was used as the cyclic siloxane compound and was put in a thermostatic bath at 40 ° C. in Example 7 and 80 ° C. in Example 8 for 24 hours. Thus, a surface-treated Sm—Fe—N magnetic powder was obtained.
  • the treated Sm—Fe—N magnetic powder was coated with 0.025 g (Example 7) and 0.05 g (Example 8) of a cyclic siloxane compound (octamethylcyclotetrasiloxane), respectively. That is, the coating amount of the cyclic siloxane compound was 0.5 parts by mass (Example 7) and 1 part by mass (Example 8) with respect to 1000 parts by mass of the magnet powder.
  • Example 9 1,3,5,7-tetramethylcyclotetrasiloxane was used as the cyclic siloxane compound, except that it was brought into contact with a gas phase for 24 hours in a constant temperature bath at 40 ° C. in Example 9 and 80 ° C. in Example 10. Obtained surface-treated Sm—Fe—N-based magnetic powders in the same manner as in Example 4.
  • cyclic siloxane compounds (1,3,5,7-tetramethylcyclotetrasiloxane) were 0.15 g (Example 9) and 0.2 g (Example), respectively.
  • Example 10 It was coated. That is, the coating amount of the cyclic siloxane compound was 3 parts by mass (Example 9) and 4 parts by mass (Example 10) with respect to 1000 parts by mass of the magnet powder.
  • Example 11 In Example 11, the magnetic powder was subjected to a surface treatment by bringing the magnetic powder into vapor phase contact with a cyclic siloxane compound while flowing an inert gas under atmospheric pressure using the apparatus shown in FIG.
  • the magnetic powder was taken out and dried in a vacuum dryer at 90 ° C. for 6 hours to obtain an Sm—Fe—N magnetic powder coated with a cyclic siloxane compound.
  • the treated Sm—Fe—N based magnetic powder was coated with 0.25 g of a cyclic siloxane compound (hexamethylcyclotrisiloxane). That is, the coating amount of the cyclic siloxane compound was 5 parts by mass with respect to 1000 parts by mass of the magnet powder.
  • Example 12 Example 11 was used except that octamethylcyclotetrasiloxane was used as the cyclic siloxane compound, and in Example 13, 1,3,5,7-tetramethylcyclotetrasiloxane was used as the cyclic siloxane compound.
  • Surface treatment was performed in the same manner as described above to obtain an Sm—Fe—N based magnetic powder coated with a cyclic siloxane compound.
  • a cyclic siloxane compound (Example 12: Octamethylcyclotetrasiloxane, Example 13: 1,3,5,7-tetramethylcyclotetrasiloxane) 0.04 g (Example 12) and 0.2 g (Example 13) were coated. That is, the coating amount of the cyclic siloxane compound was 0.8 parts by mass (Example 12) and 4 parts by mass (Example 13) with respect to 1000 parts by mass of the magnet powder.
  • the Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder in Examples 1 to 13 was obtained by coating a specific cyclic siloxane compound with a predetermined coating amount. It can be seen that the obtained magnetic powder has the same magnetic characteristics as the magnetic powder not subjected to the surface treatment of Comparative Example 1 or Comparative Example 2, and the magnetic characteristics are not deteriorated. On the other hand, the magnetic powders of Examples 1 to 13 have improved water repellency, and the magnetic powder and the bonded magnet formed from the magnetic powder do not generate rust and have excellent corrosion resistance. I understood.
  • the rare earth-based magnetic powder according to the present invention is obtained by coating a particle surface of a Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder with a heat-resistant cyclic siloxane compound at a predetermined coating amount. Yes, the rust prevention and heat resistance of the bonded magnet can be improved without deteriorating the magnetic properties.
  • Such rare earth based magnetic powder can be suitably used as Nd—Fe—B based magnetic powder and Sm—Fe—N based magnetic powder for bonded magnets.
  • this rare earth-based magnetic powder it is possible to use it in a severe, inferior and corrosive environment that has been difficult until now.

Abstract

Provided are a Nd-Fe-B-based magnetic powder and a Sm-Fe-N-based magnetic powder, each of which can improve an anti-corrosive property and heat resistance of a bonded magnet without deteriorating magnetic properties of the bonded magnet. A rare-earth-based magnetic powder according to the present invention comprises a magnetic powder selected from a Nd-Fe-B-based magnetic powder and a Sm-Fe-N-based magnetic powder, wherein the whole areas of the surfaces of particles of the magnetic powder are coated with at least one cyclic siloxane compound selected from the group consisting of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane and 1,3,5,7-tetramethylcyclotetrasiloxane, and wherein the coating amount of the cyclic siloxane compound is 0.1 to 20 parts by mass relative to 1000 parts by mass of the rare-earth-based magnetic powder.

Description

希土類系磁性粉末及びその製造方法、並びにボンド磁石用樹脂組成物、ボンド磁石Rare earth magnetic powder and method for producing the same, resin composition for bonded magnet, bonded magnet
 本発明は、希土類系磁性粉末に関し、より詳しくは、ボンド磁石用として用いられ、磁気特性を低下させることなく、優れた防錆性、熱耐性を付与したNd-Fe-B系又はSm-Fe-N系の希土類系磁性粉末、及びその製造方法、並びにその希土類系磁石粉末を含有するボンド磁石用樹脂組成物、ボンド磁石に関する。 The present invention relates to rare earth-based magnetic powders, and more particularly, Nd—Fe—B or Sm—Fe used for bonded magnets and imparting excellent rust resistance and heat resistance without deteriorating magnetic properties. The present invention relates to an N-based rare earth magnetic powder, a method for producing the same, a resin composition for a bonded magnet containing the rare earth magnet powder, and a bonded magnet.
 ボンド磁石は、その形状自在性や高寸法精度等の利点があるため、従来から電気製品や自動車部品等の各種用途に広く使用されている。例えば、CD、DVD、HDD用のスピンドルモータ、携帯電話用振動モータ、デジカメのアクチュエータ等の用途や、自動車部品の軽量化・省エネ化・高機能化のために、使用されるボンド磁石自体の高性能化及び苛酷な環境にも耐え得る高い耐食性が強く要求されている。 Since bonded magnets have advantages such as shape flexibility and high dimensional accuracy, they have been widely used in various applications such as electrical products and automobile parts. For example, for the use of spindle motors for CDs, DVDs, HDDs, vibration motors for mobile phones, actuators for digital cameras, etc., as well as high bond magnets used to reduce the weight, save energy, and increase the functionality of automobile parts. High corrosion resistance that can withstand performance and harsh environments is strongly required.
 また、ボンド磁石は、通常、ゴム又はプラスチック材料等の結合剤樹脂と磁性粉末とを混練した後に成形することによって製造されているため、ボンド磁石の高性能化のためには磁性粉末の高性能化、すなわち大きな残留磁束密度(Br)と高い保磁力(iHc)とを有し、その結果、最大磁気エネルギー積(BH)maxが大きな磁性粉末が強く要求されている。 In addition, bond magnets are usually manufactured by kneading a binder resin such as rubber or plastic material and magnetic powder and then molding them. That is, there is a strong demand for magnetic powder having a large residual magnetic flux density (Br) and a high coercive force (iHc) and, as a result, a large maximum magnetic energy product (BH) max.
 一般に、磁性粉末として、バリウムフェライトやストロンチウムフェライト等のマグネトプランバイト型フェライトやNd-Fe-B系磁性粉末及びSm-Fe-N系磁性粉末が知られている。Nd-Fe-B系磁性粉末は、飽和磁化値と異方性磁界がともに高いことから高効率モータに幅広く展開され、焼結磁石としては、携帯電話や各種家電製品をはじめとして、磁気医療診断装置(MRI)や放射光発生装置等の大型磁気回路にも幅広く用いられている。 In general, magnetoplumbite type ferrite such as barium ferrite and strontium ferrite, Nd—Fe—B based magnetic powder and Sm—Fe—N based magnetic powder are known as magnetic powder. Nd-Fe-B-based magnetic powders are widely deployed in high-efficiency motors because of their high saturation magnetization and anisotropic magnetic field, and sintered magnets include mobile phones and various home appliances, as well as magnetic medical diagnostics. Widely used in large magnetic circuits such as devices (MRI) and synchrotron radiation generators.
 また、Sm-Fe-N系磁性粉末は、Nd-Fe-B系磁性粉末と同じく飽和磁化値と異方性磁界がともに高く、さらに、高いキュリー温度を有することから、近年注目されている。特に、Nd-Fe-B系磁性粉末よりも高い防錆性を持っていることから、Nd-Fe-B系磁性粉末を用いたボンド磁石が使用できない苛酷な環境下での使用が期待されている。 In addition, Sm—Fe—N based magnetic powder has recently attracted attention because it has both a high saturation magnetization value and an anisotropic magnetic field, as well as a high Curie temperature, like Nd—Fe—B based magnetic powder. In particular, since it has higher rust prevention than Nd—Fe—B magnetic powder, it is expected to be used in harsh environments where bond magnets using Nd—Fe—B magnetic powder cannot be used. Yes.
 ところで、Nd-Fe-B系磁性粉末を得るためには、例えば、ネオジウムと鉄とボロンからなる合金塊を水素雰囲気中で高温処理して希土類の水素化物とFe及びFeとBの化合物とに一度分解する水素化及び不均化処理(HD処理)を行い、その後に水素を取り除き、再度微細な化合物の結晶を精製(DR処理)することによって得ることができるが、磁石に用いるためには適度な大きさにする必要がある。そのため、必要最小限の粉砕を施す必要がある。しかしながら、粉砕を施すと、活性な表面が露出することとなり、その表面に起因して酸化が進む。特に、湿度を帯びた空気中では短時間の間に容易に酸化し、磁気特性の低下を引き起こす。さらに、樹脂との混練、成形の各工程では、酸化性もしくは還元性雰囲気と熱により磁気特性の低下を引き起こす。またさらに、Nd-Fe-B系磁性粉末は、Feを含むために非常に錆びやすく、ボンド磁石とした後も、例えば海岸等の腐食環境で使用されると、吸水性の低い樹脂を用いてボンド磁石を使用した場合であっても、錆が発生する。 By the way, in order to obtain Nd—Fe—B based magnetic powder, for example, an alloy lump made of neodymium, iron and boron is treated at a high temperature in a hydrogen atmosphere to form a rare earth hydride, Fe, Fe and B compound. It can be obtained by performing hydrogenation and disproportionation treatment (HD treatment) once decomposed, then removing hydrogen, and refining fine compound crystals (DR treatment) again. It needs to be moderately sized. Therefore, it is necessary to perform the minimum necessary pulverization. However, when pulverization is performed, an active surface is exposed, and oxidation proceeds due to the surface. In particular, in a humid air, it is easily oxidized in a short time and causes a decrease in magnetic properties. Furthermore, in each step of kneading and molding with a resin, the magnetic properties are reduced by an oxidizing or reducing atmosphere and heat. Furthermore, the Nd—Fe—B based magnetic powder is very susceptible to rust because it contains Fe, and even if it is used as a bonded magnet in a corrosive environment such as a coast, it uses a resin with low water absorption. Even when a bonded magnet is used, rust is generated.
 一方、Sm-Fe-N系磁性粉末は、サマリウムと鉄との合金に窒素を吸蔵させることで得ることができるが、永久磁石にするにはやはり適度な大きさにする必要があり、必要最小限の粉砕を施す必要がある。しかしながら、このSm-Fe-N系磁性粉末においても、粉砕を施すと活性な表面が露出することとなり、その表面に起因して酸化が進み、特に湿度を帯びた空気中においては短時間の間に容易に酸化し、磁気特性の低下を引き起こす。さらに、樹脂との混練、成形の各工程においても、酸化性もしくは還元性雰囲気と、熱により、磁気特性の低下を引き起こす。またさらに、Sm-Fe-N系磁性粉末は、Nd-Fe-B系磁性粉末よりは錆びにくいものの、高温下では分解することから、ボンド磁石にする際にはエポキシ樹脂やポリアミド樹脂等の低融点樹脂でしか使用できず、吸水することで錆が徐々に発生する。例えば、海岸等の腐食環境で使用されると、容易に錆が発生する。また、吸水しにくいスーパーエンジニアリングプラスチックは、融点が高いために、混練するとSm-Fe-N系磁性粉末では保磁力が大きく低下してしまい、目標とするボンド磁石の磁気特性を得ることができない。 On the other hand, Sm—Fe—N based magnetic powder can be obtained by occluding nitrogen in an alloy of samarium and iron. Limited grinding is necessary. However, even in this Sm—Fe—N magnetic powder, an active surface is exposed when pulverized, and oxidation proceeds due to the surface, especially in humid air for a short time. It easily oxidizes and causes a decrease in magnetic properties. Furthermore, also in each process of kneading | mixing and shaping | molding with resin, it causes a fall of a magnetic characteristic with oxidizing or reducing atmosphere and heat. Furthermore, although Sm—Fe—N based magnetic powder is less rusting than Nd—Fe—B based magnetic powder, it decomposes at high temperatures. It can be used only with a melting point resin, and rust is gradually generated by absorbing water. For example, rust is easily generated when used in a corrosive environment such as a coast. In addition, super engineering plastics that are difficult to absorb water have a high melting point. Therefore, when kneaded, the coercive force of the Sm—Fe—N magnetic powder is greatly reduced, and the target magnetic properties of the bonded magnet cannot be obtained.
 すなわち、Nd-Fe-B系磁性粉末及びSm-Fe-N系磁性粉末においては、乾燥、表面処理、混練、成形の各工程で受ける酸化性若しくは還元性雰囲気と、熱による磁気特性の劣化が少なく、ボンド磁石とした後も腐食環境で錆びにくいことが強く要求されている。 That is, in the Nd—Fe—B magnetic powder and the Sm—Fe—N magnetic powder, the oxidizing or reducing atmosphere received in each step of drying, surface treatment, kneading and molding, and deterioration of magnetic properties due to heat are caused. There are few, and it is strongly demanded that it is hard to rust in a corrosive environment even after making a bonded magnet.
 また、ボンド磁石の実用特性の重要な点である成形性は、高温高圧下における樹脂との混合状態での流動性に左右されることから、樹脂との成形時における耐化学反応性を有する磁性粉末であることが重要である。 In addition, the formability, which is an important practical characteristic of bonded magnets, depends on the fluidity in a mixed state with the resin under high temperature and high pressure. It is important that it be a powder.
 このような状況において、例えば、Nd-Fe-B系磁性粉末の耐酸化性を向上させる表面処理方法として、リン酸系化合物で被膜する方法が特許文献1に開示されている。また、Nd-Fe-B系磁性粉末に対してSiO保護膜を形成することが特許文献2に開示されている。 Under such circumstances, for example, Patent Document 1 discloses a method of coating with a phosphoric acid compound as a surface treatment method for improving the oxidation resistance of Nd—Fe—B magnetic powder. Patent Document 2 discloses forming a SiO 2 protective film on Nd—Fe—B based magnetic powder.
 また、Sm-Fe-N系磁性粉末の耐酸化性を向上させる表面処理方法としては、リン酸系化合物で被膜する方法が特許文献3に開示されている。また、Sm-Fe-N系磁性粉末の耐酸化性を向上させる表面処理方法として、シリカ被膜を形成することが特許文献4~6に開示されている。さらに、Sm-Fe-N系磁性粉末に対して、リン酸系化合物で被膜した後にシリカ被膜を形成することが特許文献7、8に開示されている。 Further, as a surface treatment method for improving the oxidation resistance of the Sm—Fe—N magnetic powder, a method of coating with a phosphoric acid compound is disclosed in Patent Document 3. Patent Documents 4 to 6 disclose forming a silica film as a surface treatment method for improving the oxidation resistance of the Sm—Fe—N based magnetic powder. Further, Patent Documents 7 and 8 disclose that a silica coating is formed on a Sm—Fe—N magnetic powder after coating with a phosphoric acid compound.
特開2006-49863号公報JP 2006-49863 A 特開平8-111306号公報JP-A-8-111306 特開2000-260616号公報JP 2000-260616 A 特開2000-160205号公報JP 2000-160205 A 特開2000-309802号公報JP 2000-309802 A 特開2010-202974号公報JP 2010-202974 A 特開2009-246294号公報JP 2009-246294 A 特開2010-202974号公報JP 2010-202974 A
 具体的に、特許文献1には、Al、Mg、Ca、Zn、Si、Mn及びこれらの合金の中から選ばれる少なくとも一種のフレーク状微粉末とシラン及び/又はシランの部分加水分解物とを含む処理液による処理膜を形成することで、耐食性が向上することが記載されている。しかしながら、ボンド磁石とした後に苛酷な条件下、例えば海中の塩分濃度とほぼ同等のNaCl濃度5%の塩水中やSO 2-が含まれた溶液中に浸漬させる等の苛酷な条件下においては、錆が発生して磁気特性が劣化する。また、特許文献1に記載の方法は、成形後の永久磁石に、処理液をスプレーガンにて加熱複合被膜の膜厚が10μmになるように処理するものであり、さらに熱風乾燥炉にて300℃の高温で熱処理するため、設備投資や生産効率の面から実用的であるとは言い難いものである。 Specifically, Patent Document 1 includes at least one flaky fine powder selected from Al, Mg, Ca, Zn, Si, Mn, and alloys thereof and silane and / or a partial hydrolyzate of silane. It is described that the corrosion resistance is improved by forming a treatment film with a treatment liquid that is included. However, under severe conditions after forming a bonded magnet, for example, in a severe condition such as immersing in a salt solution having a NaCl concentration of 5%, which is almost equal to the salinity concentration in the sea, or a solution containing SO 4 2- Rust is generated and the magnetic properties deteriorate. In the method described in Patent Document 1, a processing liquid is processed on a molded permanent magnet with a spray gun so that the film thickness of the heating composite coating becomes 10 μm, and further, 300 in a hot air drying furnace. Since it is heat-treated at a high temperature of ℃, it is difficult to say that it is practical in terms of capital investment and production efficiency.
 また、特許文献2には、プラズマ化学蒸着法によりNd-Fe-B系磁性粉末表面に二酸化ケイ素の保護被膜を形成する方法が記載され、SiO被膜を形成させることによって80℃、95RHに保った恒温恒湿槽中で500時間保持した後でも発錆状態は観察できず、オープンフラックスの減少率も小さかったとしている。しかしながら、処理した磁性粉末を用いてボンド磁石を作製した場合、特許文献2に記載されている80℃、95%RHに保った恒温恒湿槽での耐食性評価には一定の効果は見られるものの、より苛酷な条件下、例えば、NaCl濃度5%の塩水中に浸漬させる等の苛酷な状況下においては錆が発生してしまい、磁気特性が劣化する。 Patent Document 2 describes a method of forming a protective film of silicon dioxide on the surface of an Nd—Fe—B based magnetic powder by plasma chemical vapor deposition, and the temperature is maintained at 80 ° C. and 95 RH by forming an SiO 2 film. Even after holding in a constant temperature and humidity chamber for 500 hours, the rusting state was not observed, and the decrease rate of open flux was also small. However, when a bonded magnet is produced using the treated magnetic powder, the corrosion resistance evaluation in a constant temperature and humidity chamber maintained at 80 ° C. and 95% RH described in Patent Document 2 shows a certain effect. Under more severe conditions, for example, under severe conditions such as immersion in salt water having a NaCl concentration of 5%, rust is generated and the magnetic properties are deteriorated.
 また、特許文献3には、リン酸化合物を被膜させることによってボンド磁石でのオープンフラックスの減少率が抑制できるとしているが、錆については明記されていない。また、特許文献4には、微粒子シリカ被膜を形成させることによって加速劣化後の磁気特性の劣化の程度が大きく改善されるとしているが、この特許文献4においても錆については明記されていない。さらに、特許文献5には、粒子表面にシリカ被膜を形成した磁性粉末を用いてボンド磁石を作製すると、100℃で所定の時間加熱した後にフラックスを測定した場合に、シリカ被膜を形成した磁性粉末を用いたボンド磁石のフラックスの減少率が抑制され、経時的安定性が極めて高いとしているが、錆については明記されていない。 Also, Patent Document 3 states that the rate of decrease of open flux in the bonded magnet can be suppressed by coating with a phosphoric acid compound, but rust is not specified. Further, Patent Document 4 states that the degree of deterioration of magnetic properties after accelerated deterioration is greatly improved by forming a fine particle silica film, but this Patent Document 4 also does not specify rust. Further, in Patent Document 5, when a bonded magnet is produced using a magnetic powder having a silica film formed on the particle surface, the magnetic powder having a silica film is formed when the flux is measured after heating at 100 ° C. for a predetermined time. It is said that the rate of decrease in flux of bonded magnets using copper is suppressed and the stability over time is extremely high, but rust is not specified.
 また、特許文献6には、磁性粒子の粒子表面がリン酸化合物からなる第一層で被膜され、その第一層の表面がケイ素化合物とリン酸化合物とを含む複合被膜からなる第二層で被覆することにより、防錆性を与えている。しかしながら、永久磁石用の磁性粒子は互いに磁気的に凝集しているため、湿式での処理では磁気凝集した磁性粒子の凝集面に均一な被膜を形成することが難しく、被膜が形成されていない部分が生じる等の膜厚にムラができてしまい、厚い被膜部分が生じれば磁気特性が低下してしまう可能性がある。被膜は、凝集した粒子の外側を包むように形成されるため、粉末として良好な耐食性等を示しても、樹脂バインダーと共にせん断力をかけて混練してボンド磁石とすると、凝集していた面が露わになるため耐食性の向上が不完全となる。 In Patent Document 6, the surface of magnetic particles is coated with a first layer made of a phosphoric acid compound, and the surface of the first layer is made of a second layer made of a composite film containing a silicon compound and a phosphoric acid compound. Rust prevention is given by covering. However, since the magnetic particles for the permanent magnet are magnetically aggregated with each other, it is difficult to form a uniform film on the aggregated surface of the magnetically agglomerated magnetic particles by wet processing, and the part where the film is not formed If the film thickness becomes uneven, such as the occurrence of a thick film, and a thick film portion is formed, the magnetic characteristics may be deteriorated. Since the coating is formed so as to wrap the outside of the aggregated particles, even if it exhibits good corrosion resistance and the like as a powder, the agglomerated surface is exposed when it is kneaded by applying a shearing force together with a resin binder to form a bonded magnet. Since it becomes a trap, the improvement of corrosion resistance becomes incomplete.
 また、特許文献7及び8には、磁性粒子の粒子表面がリン酸化合物からなる第一層で被膜され、その第一層の表面がシリカを主成分とするケイ素化合物からなる第二層で被覆することにより、防錆性を与えている。しかしながら、上述したように、永久磁石用の磁性粒子は互いに磁気的に凝集しているため、これら特許文献7及び8の技術においても、湿式での処理では磁気凝集した磁性粒子の凝集面に均一な被膜を形成することが難しく、被膜が形成されていない部分が生じる等の膜厚にムラができてしまい、厚い被膜部分が生じれば磁気特性が低下してしまう可能性がある。そして、被膜は、上述したように、凝集した粒子の外側を包むように形成されることから、粉末としては良好な耐食性等を示しても、樹脂バインダーと共にせん断力をかけて混練してボンド磁石とすると、凝集していた面が露わになるため耐食性の向上が不完全となってしまう。 In Patent Documents 7 and 8, the surface of magnetic particles is coated with a first layer made of a phosphoric acid compound, and the surface of the first layer is covered with a second layer made of a silicon compound containing silica as a main component. By giving it, rust prevention is given. However, as described above, since the magnetic particles for the permanent magnet are magnetically aggregated with each other, even in the techniques of these Patent Documents 7 and 8, even in wet processing, the magnetic particles that are magnetically agglomerated are uniformly formed on the aggregation surface. It is difficult to form a thick film, resulting in unevenness in the film thickness such as a part where the film is not formed. If a thick film part is formed, the magnetic characteristics may be deteriorated. And, as described above, since the coating is formed so as to wrap the outside of the aggregated particles, even if it shows good corrosion resistance etc. as a powder, it is kneaded by applying a shearing force together with a resin binder and a bonded magnet. Then, since the aggregated surface is exposed, the improvement in corrosion resistance is incomplete.
 以上のように、これらの先行技術においては、種々の技術的課題があり、いずれの方法によっても、これらの技術的課題を完全に解決することはできていない。例えば、モータ内でNd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末を用いたボンド磁石を使用している際に錆が発生すると、磁気特性が劣化して性能が低下したり、モーターロックを引き起こして熱損する可能性がある。また、発生した錆が機器周辺を汚染する問題がある。 As described above, there are various technical problems in these prior arts, and these technical problems cannot be completely solved by any method. For example, if rust is generated when using a bonded magnet using Nd-Fe-B magnetic powder or Sm-Fe-N magnetic powder in a motor, the magnetic characteristics deteriorate and the performance decreases. , May cause motor lock and heat loss. There is also a problem that the generated rust contaminates the periphery of the equipment.
 本発明は、このような実情に鑑みて提案されたものであり、磁気特性を低下させることなく、ボンド磁石での防錆性及び耐熱性を高めることができるNd-Fe-B系磁性粉末及びSm-Fe-N系磁性粉末、並びにこれら磁性粉末を簡便な処理により得る方法を提供することを目的とする。 The present invention has been proposed in view of such circumstances, and an Nd—Fe—B based magnetic powder capable of enhancing the rust prevention and heat resistance of a bonded magnet without deteriorating magnetic properties and It is an object of the present invention to provide Sm—Fe—N-based magnetic powder and a method for obtaining these magnetic powders by a simple treatment.
 本発明者らは、上述した課題を解決するために、Nd-Fe-B系磁性粉末及びSm-Fe-N系磁性粉末の粒子表面に、主要成分のFeの溶出を抑制する作用のある被覆膜を粒子全面に極薄く被覆することで磁気特性を低下することなく防錆性を向上させることについて鋭意検討を重ねた。その結果、特定の環状シロキサンを真空容器中で揮発させて、磁気凝集した磁性粉末の凝集面を含む、磁性粉末の表面全面を完全に被覆することによって、より防錆性及び耐熱性を高めることができることを見出し、本発明を完成するに至った。すなわち、本発明は、以下のものである。 In order to solve the above-mentioned problems, the present inventors have a coating having an action of suppressing the elution of the main component Fe on the particle surfaces of the Nd—Fe—B based magnetic powder and the Sm—Fe—N based magnetic powder. We have intensively studied to improve the anticorrosive property without deteriorating the magnetic properties by covering the entire surface with a coating film very thinly. As a result, certain cyclic siloxanes are volatilized in a vacuum vessel, and the entire surface of the magnetic powder, including the agglomerated surface of the magnetic powder that has been magnetically agglomerated, is completely covered, thereby further improving rust prevention and heat resistance. As a result, the present invention has been completed. That is, the present invention is as follows.
 (1)本発明の第1の発明は、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末により構成され、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサンからなる群から選択される一種以上の環状シロキサン化合物により前記磁性粉末の粒子表面の全面が被覆されており、前記環状シロキサン化合物の被覆量が、当該希土類系磁性粉末1000質量部当たり0.1~20質量部であることを特徴とする希土類系磁性粉末である。 (1) A first invention of the present invention is composed of magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, and includes hexamethylcyclotrisiloxane and octamethylcyclotetrasiloxane. The entire surface of the magnetic powder particles is coated with one or more cyclic siloxane compounds selected from the group consisting of 1,3,5,7-tetramethylcyclotetrasiloxane, and the coating amount of the cyclic siloxane compound is The rare earth based magnetic powder is characterized in that it is 0.1 to 20 parts by mass per 1000 parts by mass of the rare earth based magnetic powder.
 (2)本発明の第2の発明は、第1の発明において、予めリン酸化合物で処理された前記磁性粉末に、前記環状シロキサン化合物が被覆されてなることを特徴とする希土類系磁性粉末である。 (2) A second invention of the present invention is a rare earth-based magnetic powder according to the first invention, wherein the cyclic siloxane compound is coated on the magnetic powder previously treated with a phosphoric acid compound. is there.
 (3)本発明の第3の発明は、第1又は第2の発明において、上記(1)又は(2)の発明において、磁気特性として、残留磁束密度が1.2T(12kG)以上で、角形性が398kA/m(5.0kOe)以上で、保磁力が800kA/m(10kOe)以上であることを特徴とする請求項1又は2に記載の希土類系磁性粉末である。 (3) The third invention of the present invention is the first or second invention, wherein the residual magnetic flux density is 1.2 T (12 kG) or more as magnetic characteristics in the invention of (1) or (2) above. 3. The rare earth-based magnetic powder according to claim 1, wherein the squareness is 398 kA / m (5.0 kOe) or more and the coercive force is 800 kA / m (10 kOe) or more.
 (4)本発明の第4の発明は、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末に対し、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサンからなる群から選択される一種以上の環状シロキサン化合物を含む気体と接触させることにより、該磁性粉末の粒子表面の全面に該環状シロキサン化合物を被覆する工程を有し、前記工程では、前記環状シロキサン化合物を真空容器内で前記磁性粉末と共に配置し、真空圧-0.1MPa以下、温度40~100℃の条件で、1~48時間保持することを特徴とする希土類系磁性粉末の製造方法である。 (4) According to a fourth aspect of the present invention, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, a magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, The entire surface of the magnetic powder particles is coated with a gas containing one or more cyclic siloxane compounds selected from the group consisting of 1,3,5,7-tetramethylcyclotetrasiloxane. In this step, the cyclic siloxane compound is placed together with the magnetic powder in a vacuum vessel, and held for 1 to 48 hours under the conditions of a vacuum pressure of −0.1 MPa or less and a temperature of 40 to 100 ° C. Is a method for producing a rare earth-based magnetic powder.
 (5)本発明の第5の発明は、第4の発明において、前記環状シロキサン化合物を粒子表面に被覆した磁性粉末のみを、真空容器内で、真空圧-0.1MPa以下、温度80~110℃の条件で、1~12時間保持することを特徴とする希土類系磁性粉末の製造方法である。 (5) According to a fifth aspect of the present invention, in the fourth aspect of the present invention, only the magnetic powder obtained by coating the surface of the particles with the cyclic siloxane compound is vacuum pressure of −0.1 MPa or less and a temperature of 80 to 110 in a vacuum vessel. It is a method for producing a rare earth-based magnetic powder characterized by being held for 1 to 12 hours under the condition of ° C.
 (6)本発明の第6の発明は、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末に対し、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサンからなる群から選択される一種以上の環状シロキサン化合物を含む気体と接触させることにより、該磁性粉末の粒子表面の全面に該環状シロキサン化合物を被覆する工程を有し、前記工程では、前記環状シロキサン化合物を容器内で前記磁性粉末と共に配置し、大気圧下、窒素及び/又はアルゴンガスを流通させながら、温度80~110℃の条件で、1~24時間保持することを特徴とする希土類系磁性粉末の製造方法である。 (6) According to a sixth aspect of the present invention, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, a magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, The entire surface of the magnetic powder particles is coated with a gas containing one or more cyclic siloxane compounds selected from the group consisting of 1,3,5,7-tetramethylcyclotetrasiloxane. In the step, the cyclic siloxane compound is placed together with the magnetic powder in a container, and nitrogen and / or argon gas is allowed to flow under atmospheric pressure and at a temperature of 80 to 110 ° C. A method for producing a rare earth-based magnetic powder characterized by holding for ˜24 hours.
 (7)本発明の第7の発明は、第6の発明において、前記環状シロキサン化合物を粒子表面に被覆した磁性粉末のみを、容器内で、窒素及び/又はアルゴンガスを流通させながら、温度80~110℃の条件で、1~12時間保持することを特徴とする希土類系磁性粉末の製造方法である。 (7) According to a seventh aspect of the present invention, in the sixth aspect, only the magnetic powder having the particle surface coated with the cyclic siloxane compound is heated at a temperature of 80 while nitrogen and / or argon gas is circulated in the container. It is a method for producing a rare earth-based magnetic powder characterized by holding for 1 to 12 hours under a condition of ˜110 ° C.
 (8)本発明の第8の発明は、第4乃至第7のいずれかの発明において、前記磁性粉末の粒子表面に前記環状シロキサンを被覆するに先立ち、該磁性粉末に対してリン酸化合物で処理することを特徴とする希土類系磁性粉末の製造方法である。 (8) According to an eighth aspect of the present invention, in any one of the fourth to seventh aspects, prior to coating the surface of the particles of the magnetic powder with the cyclic siloxane, a phosphoric acid compound is added to the magnetic powder. It is a manufacturing method of the rare earth type magnetic powder characterized by processing.
 (9)本発明の第9の発明は、第1乃至第3のいずれかの発明に係る希土類系磁性粉末と、樹脂とを含有することを特徴とするボンド磁石用樹脂組成物である。 (9) A ninth invention of the present invention is a bonded magnet resin composition comprising the rare earth-based magnetic powder according to any one of the first to third inventions and a resin.
 (10)本発明の第10の発明は、第1乃至第3のいずれかの発明に係る希土類系磁性粉末を含むことを特徴とするボンド磁石である。 (10) A tenth aspect of the present invention is a bonded magnet including the rare earth-based magnetic powder according to any one of the first to third aspects.
 本発明によれば、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末の粒子表面に環状シロキサン化合物の極薄い被覆膜が形成されていることにより、磁気特性を低下させることなく、ボンド磁石での防錆性及び耐熱性を高めることができる。 According to the present invention, an extremely thin coating film of a cyclic siloxane compound is formed on the particle surface of the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, thereby reducing the magnetic properties. In addition, the rust prevention and heat resistance of the bonded magnet can be improved.
 また、このような希土類系磁性粉末によれば、防錆性が高まったことにより、従来使用することができなかったような苛酷な環境においても、錆を発生させることなく使用することができる。また、この希土類系磁性粉末は、耐熱性に優れるため、融点の高いポニフェニレンサルファイド樹脂を用いてボンド磁石を成形する過程においても、磁気特性を維持することができ、これまで以上に苛酷な環境においても使用することができる。 In addition, according to such rare earth-based magnetic powder, it can be used without generating rust even in a harsh environment that could not be used in the past due to increased rust prevention. In addition, since this rare earth-based magnetic powder has excellent heat resistance, it can maintain its magnetic properties even in the process of forming a bond magnet using a high melting point poniphenylene sulfide resin, which is more severe than ever. Can also be used.
実施例11~13における磁性粉末に対する表面処理で使用した処理装置の構成を示す模式図である。FIG. 5 is a schematic diagram showing the configuration of a processing apparatus used for surface treatment of magnetic powder in Examples 11 to 13.
 以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について、以下の順序で詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。
 1.希土類系磁性粉末
 2.希土類系磁性粉末の製造方法
 3.ボンド磁石用樹脂組成物
 4.ボンド磁石
Hereinafter, specific embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail in the following order. In addition, this invention is not limited to the following embodiment, A various change is possible in the range which does not change the summary of this invention.
1. 1. Rare earth magnetic powder 2. Manufacturing method of rare earth magnetic powder 3. Resin composition for bonded magnet Bond magnet
 ≪1.希土類系磁性粉末≫
 本実施の形態に係る希土類系磁性粉末は、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末により構成されるものであり、その粉末粒子表面の全面が特定の環状シロキサン化合物の被覆膜により被覆されていることを特徴としている。
<< 1. Rare earth magnetic powder >>
The rare earth based magnetic powder according to the present embodiment is composed of a magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder. It is characterized by being coated with a coating film of a specific cyclic siloxane compound.
 このように、粒子表面の全面に被覆膜を被覆することによって、磁性粉末の主要成分である鉄(Fe)の溶出を抑制することができ、磁性粉末の磁気特性の低下を防止することができる。そして、この希土類系磁性粉末では、その被覆膜として特定の環状シロキサン化合物を極薄く被覆していることにより、磁気特性を低下させることなく、効果的に防錆性や耐熱性を向上させることができる。 Thus, by covering the entire surface of the particle with the coating film, elution of iron (Fe), which is the main component of the magnetic powder, can be suppressed, and deterioration of the magnetic properties of the magnetic powder can be prevented. it can. And, in this rare earth-based magnetic powder, a specific cyclic siloxane compound is coated very thinly as its coating film, thereby effectively improving rust prevention and heat resistance without deteriorating magnetic properties. Can do.
 <1-1.出発原料>
 本実施の形態に係る希土類系磁性粉末において、出発原料として使用する希土類系の磁性粉末は、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末のいずれかである。
<1-1. Starting material>
In the rare earth based magnetic powder according to the present embodiment, the rare earth based magnetic powder used as a starting material is either Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder.
 Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末としては、公知のものを使用することができるが、その中でも、予めリン酸化合物処理されて、その粒子表面がリン酸化合物で被膜されている磁性粉末を使用するのが好ましい。 As the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, known ones can be used. Among them, the phosphoric acid compound is treated in advance, and the particle surface is made of a phosphoric acid compound. It is preferred to use a magnetic powder that is coated.
 <1-2.環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末>
 (被覆膜について)
 本実施の形態に係る希土類系磁性粉末は、上述したように、出発原料粉末であるNd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末の粒子表面の全面に、特定の環状シロキサン化合物の被覆膜を形成している。
<1-2. Rare earth-based magnetic powder with a cyclic siloxane compound coating film>
(About coating film)
As described above, the rare earth-based magnetic powder according to the present embodiment has a specific cyclic siloxane formed on the entire surface of the Nd—Fe—B-based magnetic powder or Sm—Fe—N-based magnetic powder as the starting material powder. A coating film of the compound is formed.
 具体的に、被覆する環状シロキサン化合物は、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサンから選択される一種以上の環状シロキサン化合物である。また、その他の揮発性を有する環状シロキサン化合物を使用することもできる。 Specifically, the cyclic siloxane compound to be coated is one or more cyclic groups selected from hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and decamethylcyclopentasiloxane. It is a siloxane compound. In addition, other volatile cyclic siloxane compounds can also be used.
 詳しくは後述するが、この希土類系磁性粉末においては、上述したような揮発性を有する環状シロキサン化合物を、真空容器内で、又は大気圧下で不活性ガスを流通させながら揮発させ、その気体と出発原料粉末であるNd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末とを気相接触させる、いわゆる気相法により、粒子表面の全面に環状シロキサン化合物の被覆膜を形成させる。この気相法によれば、ナノレベルの極薄い被覆膜層を粒子表面に均一に形成することができ、磁性粉末の磁気特性を低下させることなく、極めて優れた防錆性(耐食性)等を発揮させることができる。 As will be described in detail later, in this rare earth magnetic powder, the cyclic siloxane compound having volatility as described above is volatilized in an evacuated container or under an atmospheric pressure while circulating an inert gas, and the gas and A coating film of a cyclic siloxane compound is formed on the entire surface of the particle by a so-called gas phase method in which the starting raw material powder is Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder. . According to this vapor phase method, a nano-level ultra-thin coating film layer can be uniformly formed on the particle surface, and extremely excellent rust prevention (corrosion resistance), etc. without deteriorating the magnetic properties of the magnetic powder. Can be demonstrated.
 上述した気相法により被覆する環状シロキサン化合物の被覆量としては、希土類系磁性粉末1000質量部当たり0.1~20質量部とすることが重要となる。また、希土類系磁性粉末1000質量部当たり1~10質量部であることがより好ましい。 It is important that the amount of the cyclic siloxane compound coated by the above-described vapor phase method is 0.1 to 20 parts by mass per 1000 parts by mass of the rare earth magnetic powder. Further, it is more preferably 1 to 10 parts by mass per 1000 parts by mass of the rare earth magnetic powder.
 環状シロキサン化合物の被覆量が0.1質量部未満であると、環状シロキサン化合物の被覆膜が磁性粉末粒子の全面を必ずしも被覆することができず、あるいは全面に被覆されても膜厚が十分に得られないため、環境中の水分と反応し、磁性粉末の主成分であるFeが溶出することで錆が発生しやすくなる。また、耐熱性も十分に得られない。一方で、環状シロキサン化合物の被覆量が20質量部を超えると、被覆膜が厚くなり磁気特性の低下が起こるため好ましくない。 When the coating amount of the cyclic siloxane compound is less than 0.1 parts by mass, the coating film of the cyclic siloxane compound cannot always cover the entire surface of the magnetic powder particles, or the film thickness is sufficient even when the entire surface is coated. Therefore, it reacts with moisture in the environment and elution of Fe, which is the main component of the magnetic powder, makes it easy to generate rust. Also, sufficient heat resistance cannot be obtained. On the other hand, if the coating amount of the cyclic siloxane compound exceeds 20 parts by mass, the coating film becomes thick and the magnetic properties are deteriorated, which is not preferable.
 (圧縮密度について)
 環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末について、その圧縮密度(CD)としては、特に限定されないが、4.1g/ml以上であることが好ましい。圧縮密度が、4.1g/ml未満の場合には、ボンド磁石を成形する際の射出成形時における体積当たりの密度が低くなり、磁気特性が低下する可能性がある。
(About compression density)
The rare earth-based magnetic powder in which the coating film of the cyclic siloxane compound is formed is not particularly limited as the compression density (CD), but is preferably 4.1 g / ml or more. When the compression density is less than 4.1 g / ml, the density per volume at the time of injection molding at the time of molding the bonded magnet is lowered, and the magnetic properties may be lowered.
 (BET比表面積について)
 環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末について、そのBET比表面積としては、特に限定されないが、Nd-Fe-B系磁性粉末の場合は、0.01~3.5m/gの範囲であることが好ましい。被覆膜を形成したNd-Fe-B系磁性粉末において、BET比表面積が上述の範囲外であると、適切な粉砕が行われていないことを意味し、高い磁気特性を得ることができない。なお、BET比表面積として、0.01~2.5m/gの範囲であることがより好ましい。
(About BET specific surface area)
The BET specific surface area of the rare earth-based magnetic powder in which the coating film of the cyclic siloxane compound is formed is not particularly limited, but in the case of the Nd—Fe—B based magnetic powder, 0.01 to 3.5 m 2 / g It is preferable that it is the range of these. In the Nd—Fe—B based magnetic powder with the coating film formed, if the BET specific surface area is out of the above range, it means that proper pulverization has not been performed, and high magnetic properties cannot be obtained. The BET specific surface area is more preferably in the range of 0.01 to 2.5 m 2 / g.
 また、Sm-Fe-N系磁性粉末の場合におけるBET比表面積としては、特に限定されないが、0.35~2.6m/gであることが好ましい。被覆膜を形成したSm-Fe-N系磁性粉末において、BET比表面積が上述の範囲外であると、適切な粉砕が行われていないことを意味し、高い磁気特性を得ることができない。なお、BET比表面積として、0.35~2.0m/gの範囲であることがより好ましい。 Further, the BET specific surface area in the case of the Sm—Fe—N based magnetic powder is not particularly limited, but is preferably 0.35 to 2.6 m 2 / g. In the Sm—Fe—N-based magnetic powder with the coating film formed, if the BET specific surface area is outside the above range, it means that proper pulverization has not been performed, and high magnetic properties cannot be obtained. The BET specific surface area is more preferably in the range of 0.35 to 2.0 m 2 / g.
 (粉末粒子の平均粒径について)
 環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末について、その粉末粒子の平均粒径としては、特に限定されないが、Nd-Fe-B系磁性粉末の場合は、10~200μmであることが好ましく、40~130μmであることがより好ましい。
(About the average particle size of powder particles)
The average particle size of the rare earth-based magnetic powder in which the coating film of the cyclic siloxane compound is formed is not particularly limited, but in the case of the Nd—Fe—B based magnetic powder, it may be 10 to 200 μm. The thickness is preferably 40 to 130 μm.
 また、Sm-Fe-N系磁性粉末の場合における粉末粒子の平均粒径としては、特に限定されないが、1.0~5.0μmであることが好ましく、1.0~4.0μmであることがより好ましい。 The average particle size of the powder particles in the case of the Sm—Fe—N magnetic powder is not particularly limited, but is preferably 1.0 to 5.0 μm, and preferably 1.0 to 4.0 μm. Is more preferable.
 (磁性粉末の構造について)
 環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末について、その粉末構造としては、特に限定されないが、Nd-Fe-B系磁性粉末の場合は、NdFe14B型の構造を有することが好ましい。
(About the structure of magnetic powder)
The powder structure of the rare earth based magnetic powder on which the coating film of the cyclic siloxane compound is formed is not particularly limited, but the Nd—Fe—B based magnetic powder has a structure of Nd 2 Fe 14 B type. Is preferred.
 また、Sm-Fe-N系磁性粉末の場合における粉末構造としては、特に限定されないが、ThZn17型、TbCu型、又はThNi17型の構造を有することが好ましい。 The powder structure in the case of the Sm—Fe—N based magnetic powder is not particularly limited, but preferably has a Th 2 Zn 17 type, TbCu 7 type, or Th 2 Ni 17 type structure.
 (磁性粉末の磁気特性について)
 本実施の形態に係る希土類系磁性粉末は、上述したように、環状シロキサン化合物の被覆膜が極薄く形成されてなっていることにより、磁気特性を低下させることなく、効果的に防錆性や耐熱性を向上させることができる。具体的に、その磁気特性としては、Nd-Fe-B系磁性粉末を用いた場合、当該磁性粉末を磁場中で配向させて測定した結果として、例えば、保磁力が478~1989kA/m(6~25kOe)であり、残留磁束密度が1.1~1.5T(11~15kG)であり、最大磁気エネルギー積が199.1~358kJ/m(25~45MGOe)である。
(Magnetic properties of magnetic powder)
As described above, the rare earth-based magnetic powder according to the present embodiment has a coating film of a cyclic siloxane compound that is formed extremely thin, so that it is effectively rust-proof without deteriorating magnetic properties. And heat resistance can be improved. Specifically, as for the magnetic characteristics, when Nd—Fe—B based magnetic powder is used, as a result of measuring the magnetic powder after being oriented in a magnetic field, for example, the coercive force is 478 to 1989 kA / m (6 ˜25 kOe), the residual magnetic flux density is 1.1 to 1.5 T (11 to 15 kG), and the maximum magnetic energy product is 199.1 to 358 kJ / m 3 (25 to 45 MGOe).
 また、Sm-Fe-N系磁性粉末を用いた場合、その磁気特性は、当該磁性粉末を磁場中配向させて測定した結果として、例えば、保磁力が398.1~1592kA/m(5~20kOe)であり、残留磁束密度が1.0~1.5T(10~15kG)であり、最大磁気エネルギー積が158.8~358.1kJ/m(20~45MGOe)である。 Further, when the Sm—Fe—N based magnetic powder is used, the magnetic properties thereof are measured by, for example, aligning the magnetic powder in a magnetic field, and have a coercive force of 398.1 to 1592 kA / m (5 to 20 kOe). ), The residual magnetic flux density is 1.0 to 1.5 T (10 to 15 kG), and the maximum magnetic energy product is 158.8 to 358.1 kJ / m 3 (20 to 45 MGOe).
 ≪2.環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末の製造方法≫
 次に、本実施の形態に係る希土類系磁性粉末、すなわち、環状シロキサン化合物の被覆膜を形成した希土類系磁性粉末の製造方法について、Nd-Fe-B系磁性粉末の場合と、Sm-Fe-N系磁性粉末の場合とに分けて、それぞれ説明する。
≪2. Method for producing rare earth magnetic powder with a cyclic siloxane compound coating film >>
Next, regarding a method for producing a rare earth-based magnetic powder according to the present embodiment, that is, a rare earth-based magnetic powder in which a coating film of a cyclic siloxane compound is formed, the case of Nd—Fe—B based magnetic powder and Sm—Fe Each will be described separately for the case of -N-based magnetic powder.
 <2-1.出発原料粉末の調製>
 (Nd-Fe-B系磁性粉末の場合)
 先ず、Nd-Fe-B系磁性粉末の場合について説明する。出発原料となるNd-Fe-B系磁性粉末は、ブックモールド法、遠心鋳造法、ストリップキャスト法、アトマイズ法、還元拡散法等の公知の合金作製方法のいずれかを用いて、出発合金であるNd-Fe-B鋳塊を作製する。
<2-1. Preparation of starting material powder>
(Nd-Fe-B magnetic powder)
First, the case of Nd—Fe—B based magnetic powder will be described. The Nd—Fe—B magnetic powder used as a starting material is a starting alloy using any of known alloy manufacturing methods such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, and a reduction diffusion method. An Nd—Fe—B ingot is produced.
 次に、作製したNd-Fe-B鋳塊に対し、結晶粒の粗大化及びα-Fe相の減少等を目的とした均質化処理を行う。この均質化処理は、例えば、雰囲気としては窒素雰囲気以外の不活性ガス中で、1000~1200℃の温度条件で、1~48時間の加熱処理を行う。このようにして均質化処理を行うことで、Nd-Fe-B鋳塊中の主成分元素の拡散を生じさせて、各成分を均質化させることができる。 Next, the produced Nd—Fe—B ingot is subjected to a homogenization treatment for the purpose of coarsening crystal grains and reducing the α-Fe phase. In this homogenization treatment, for example, heat treatment is performed for 1 to 48 hours in an inert gas other than a nitrogen atmosphere under a temperature condition of 1000 to 1200 ° C. By performing the homogenization process in this way, the main component elements in the Nd—Fe—B ingot are diffused, and each component can be homogenized.
 ここで、Nd-Fe-B鋳塊は、主相であるNdFe14B相、Ndリッチ相、及びBリッチ相から構成されているが、NdFe14B相の他に、α-Fe相及びNdFe17相等の強磁性相が存在していることが多い。そのため、上述した均質化処理を施すことによって、NdFe14B相のみからなる組織にすることができる。また、このような均質化処理を施すことによって、結晶粒径を約100μm以上に粗大化することができる。平均粒径の粗大化は、磁気異方性を有するようになるため好ましい。 Here, the Nd—Fe—B ingot is composed of the main phases Nd 2 Fe 14 B phase, Nd rich phase, and B rich phase, but in addition to the Nd 2 Fe 14 B phase, α- Ferromagnetic phases such as Fe phase and Nd 2 Fe 17 phase are often present. Therefore, by performing the above-described homogenization treatment, a structure composed of only the Nd 2 Fe 14 B phase can be obtained. In addition, by performing such a homogenization treatment, the crystal grain size can be coarsened to about 100 μm or more. The coarsening of the average particle diameter is preferable because it has magnetic anisotropy.
 均質化処理の条件に関して、不活性ガス雰囲気として窒素を用いた場合、その窒素がNd-Fe-B鋳塊と反応するため好ましくない。また、均質化処理の熱処理温度として、1000℃未満では、主成分元素の拡散に時間がかかり製造コストを引き上げることになるため好ましくない。一方で、均質化処理の熱処理温度が1200℃を超えると、Nd-Fe-B鋳塊の融解が生じるため好ましくない。 Regarding the conditions for the homogenization treatment, when nitrogen is used as the inert gas atmosphere, the nitrogen reacts with the Nd—Fe—B ingot, which is not preferable. Further, if the heat treatment temperature for the homogenization treatment is less than 1000 ° C., it is not preferable because it takes time to diffuse the main component elements and increases the manufacturing cost. On the other hand, if the heat treatment temperature for the homogenization treatment exceeds 1200 ° C., the Nd—Fe—B ingot is melted, which is not preferable.
 次に、均質化処理が終わったNd-Fe-B鋳塊に対して、公知の粉砕方法、例えば、ジョークラッシャーなどの機械的粉砕や、水素吸蔵粉砕、ディスクミルなどを用いた粉砕等により粉砕処理を施す。 Next, the homogenized Nd—Fe—B ingot is pulverized by a known pulverization method such as mechanical pulverization using a jaw crusher, hydrogen storage pulverization, pulverization using a disk mill, or the like. Apply processing.
 粉砕処理後、Nd-Fe-B系磁性粉末においては、HDDR処理を施すことができる。HDDR処理は、水素化・不均化処理(HD処理)と、脱水素・再結合処理(DR)とに分けられる。先ず、粉砕したNd-Fe-B系粉末を真空熱処理炉に投入し、水素ガスを流通させながら、800℃~900℃の温度範囲で1~5時間、水素化・不均化処理(HD処理)を行う。その後、HD処理と同じ温度で、真空中にて脱水素・再結合処理(DR処理)を行う。このようにしてHDDR処理を行うことで、優れた磁気異方性をもった出発原料粉末であるNd-Fe-B系磁性粉末を得ることができる。 After the grinding treatment, the HDDr treatment can be performed on the Nd—Fe—B based magnetic powder. The HDDR process is divided into a hydrogenation / disproportionation process (HD process) and a dehydrogenation / recombination process (DR). First, the pulverized Nd—Fe—B powder is put into a vacuum heat treatment furnace, and hydrogenation / disproportionation treatment (HD treatment) is carried out at a temperature range of 800 ° C. to 900 ° C. for 1 to 5 hours while circulating hydrogen gas. )I do. Thereafter, dehydrogenation and recombination processing (DR processing) is performed in vacuum at the same temperature as HD processing. By performing the HDDR process in this way, it is possible to obtain an Nd—Fe—B based magnetic powder which is a starting material powder having excellent magnetic anisotropy.
 (Sm-Fe-N系磁性粉末の場合)
 次に、Sm-Fe-N系磁性粉末の場合について説明する。出発原料となるSm-Fe-N系磁性粉末は、例えばThZn17型構造を有するSmFe17合金粉末に、窒素を導入して製造することができる。SmFe17合金粉末は、ブックモールド法、遠心鋳造法、ストリップキャスト法、アトマイズ法、還元拡散法等の公知の合金作製方法のいずれかを用いて作製することができるが、その中でも、還元拡散法を用いることが好ましい。
(Sm-Fe-N magnetic powder)
Next, the case of Sm—Fe—N based magnetic powder will be described. The Sm—Fe—N based magnetic powder as a starting material can be produced by introducing nitrogen into, for example, an Sm 2 Fe 17 alloy powder having a Th 2 Zn 17 type structure. The Sm 2 Fe 17 alloy powder can be produced using any of known alloy production methods such as a book mold method, a centrifugal casting method, a strip casting method, an atomizing method, and a reduction diffusion method. It is preferable to use a diffusion method.
 ここで、還元拡散法では、例えば、鉄粉末と酸化サマリウム粉末とを原料とし、これらに金属カルシウム粒を加えて混合して、Arガス等の非酸化性雰囲気中で熱処理(還元拡散処理)を施す。この熱処理においては、金属カルシウムによって酸化サマリウムが還元され、還元されたサマリウムが鉄粉末に拡散することによって合金化する。なお、熱処理後の反応生成物中に含まれる酸化カルシウムは、冷却後に反応生成物を水中に投入して水酸化カルシウムとし、デカンテーションを繰り返すことで洗浄除去することができる。 Here, in the reduction diffusion method, for example, iron powder and samarium oxide powder are used as raw materials, and metal calcium particles are added to and mixed with these, and heat treatment (reduction diffusion treatment) is performed in a non-oxidizing atmosphere such as Ar gas. Apply. In this heat treatment, samarium oxide is reduced by metallic calcium, and the reduced samarium is alloyed by diffusing into the iron powder. The calcium oxide contained in the reaction product after the heat treatment can be removed by washing by adding the reaction product into water after cooling to form calcium hydroxide and repeating decantation.
 SmFe17合金粉末に対する窒素の導入(窒化)は、カルシウム成分を除去した後に回収したSmFe17合金粉末を乾燥し、窒素ガス、アンモニアガス等の窒素を含む雰囲気中で熱処理を施すことによって行われる。このようにして得られた窒化熱処理後の粉末は、SmFe17の組成を有している。なお、窒化を還元拡散後の反応生成物に対して行い、その後にカルシウム成分を除去する洗浄処理を行うようにしてもよい。 Sm 2 Fe 17 introduction of nitrogen to the alloy powder (nitride) is to dry the Sm 2 Fe 17 alloy powder recovered after removing the calcium component, it is subjected to heat treatment in an atmosphere containing nitrogen gas, the nitrogen, such as ammonia gas Is done by. The powder obtained after the nitriding heat treatment thus obtained has a composition of Sm 2 Fe 17 N 3 . Note that nitriding may be performed on the reaction product after the reduction diffusion, and then a cleaning process for removing the calcium component may be performed.
 そして、得られた窒化後の粉末を、例えば平均粒径が1.0~5.0μmとなるように、解砕、粉砕、分級等で粒度調整することによって、出発原料粉末であるSm-Fe-N系磁性粉末を得ることができる。 Then, by adjusting the particle size of the obtained powder after nitriding by pulverization, pulverization, classification, etc. so that the average particle size becomes 1.0 to 5.0 μm, for example, Sm—Fe as a starting material powder is obtained. -N-based magnetic powder can be obtained.
 <2-2.出発原料粉末に対するリン酸化合物処理>
 本実施の形態に係る希土類系磁性粉末の製造方法においては、上述のようにして得られた出発原料粉末に対して環状シロキサン化合物の被覆膜を形成することになるが、その環状シロキサン化合物の被覆膜の形成に先立ち、出発原料粉末の粒子表面にリン酸化合物を付着(被覆)する処理(リン酸化合物処理)を施すことが好ましい。
<2-2. Phosphate compound treatment for starting raw material powder>
In the method for producing a rare earth based magnetic powder according to the present embodiment, a coating film of a cyclic siloxane compound is formed on the starting raw material powder obtained as described above. Prior to the formation of the coating film, it is preferable to perform a treatment (phosphate compound treatment) for attaching (coating) a phosphate compound to the particle surface of the starting material powder.
 このように出発原料粉末に対してリン酸化合物処理を施すことによって、原料の磁性粉末の耐久性を向上させることができるとともに、より一層に防錆性等を高めることができる。 Thus, by subjecting the starting raw material powder to the phosphoric acid compound treatment, the durability of the raw magnetic powder can be improved and the rust prevention property and the like can be further enhanced.
 リン酸化合物処理に関して、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末に対する被覆処理に用いるリン酸化合物としては、特に限定されないが、例えば、オルトリン酸、リン酸水素二ナトリウム、ピロリン酸、メタリン酸、リン酸マンガン、リン酸亜鉛、リン酸アルミニウム等を好適に使用することができる。その中でも、粒子表面に付着させるリン酸化合物としては、オルトリン酸が特に好ましい。 With respect to the phosphoric acid compound treatment, the phosphoric acid compound used for coating the Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder is not particularly limited. For example, orthophosphoric acid, disodium hydrogen phosphate, Pyrophosphoric acid, metaphosphoric acid, manganese phosphate, zinc phosphate, aluminum phosphate and the like can be suitably used. Among these, orthophosphoric acid is particularly preferable as the phosphoric acid compound to be adhered to the particle surface.
 また、リン酸化合物処理に際しては、磁性粉末の表面に均一にリン酸化合物を被膜させるために、上述したリン酸化合物に対して、希釈溶液として例えばイソプロピルアルコール(IPA)を混合させ、撹拌機を用いて、50~175℃の温度条件で、1~3時間加熱しながら撹拌混合することが好ましい。さらに好ましくは、窒化後の粉末を、平均粒径が1.0~5.0μmとなるように解砕、粉砕、分級等で粒度調整する際に、湿式の解砕、粉砕、分級等を行い、その処理溶媒に上述したリン酸化合物を添加する。その後、粒度調整された磁性粉末スラリーを非酸化性雰囲気中50~175℃の温度条件で、1~3時間加熱しながら撹拌乾燥する。このようにすることで、磁気凝集している粒子表面にもリン酸化合物被膜を形成することができる。 In addition, in the phosphoric acid compound treatment, in order to uniformly coat the surface of the magnetic powder with the phosphoric acid compound, for example, isopropyl alcohol (IPA) is mixed as a diluted solution with the phosphoric acid compound described above, and a stirrer is used. It is preferable to stir and mix while heating at a temperature of 50 to 175 ° C. for 1 to 3 hours. More preferably, wet pulverization, pulverization, classification, and the like are performed when the particle size is adjusted by pulverization, pulverization, classification, etc. so that the average particle diameter becomes 1.0 to 5.0 μm. The phosphoric acid compound described above is added to the treatment solvent. Thereafter, the magnetic powder slurry whose particle size has been adjusted is stirred and dried in a non-oxidizing atmosphere at 50 to 175 ° C. while heating for 1 to 3 hours. By doing in this way, a phosphoric acid compound coat can be formed also on the particle surface which is carrying out magnetic aggregation.
 リン酸化合物の添加量(付着量、被覆量)としては、特に限定されないが、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末100質量部に対して、0.1~5.0質量部程度とするのが好ましい。 The addition amount (adhesion amount, coating amount) of the phosphoric acid compound is not particularly limited, but is 0.1 to 5 with respect to 100 parts by mass of the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder. About 0.0 part by mass is preferable.
 <2-3.環状シロキサン化合物に対する被覆膜の形成>
 次に、上述のようにして調製された出発原料粉末(磁性粉末)に対して、環状シロキサン化合物の被覆膜を形成する工程について説明する。
<2-3. Formation of coating film on cyclic siloxane compound>
Next, a process of forming a coating film of a cyclic siloxane compound on the starting material powder (magnetic powder) prepared as described above will be described.
 被覆膜の形成においては、先ず、加熱可能な真空容器内に調製した磁性粉末を入れるとともに、その真空容器内に揮発性を有する環状シロキサン化合物を入れた別容器を設置する。そして、その真空容器内を、真空圧で-0.1MPa以下に脱気した後、真空容器全体を40~100℃に加熱し、1~48時間に亘って加熱処理を行う。つまり、被覆膜の形成においては、別容器に入れた環状シロキサン化合物を揮発させ、磁性粉末表面に対して揮発した環状シロキサン化合物を気相で接触させるようにすることによって、磁気凝集した凝集面を含む、磁性粉末の表面の全面に適度に被覆膜を形成する(気相法による被覆膜の形成)。 In forming the coating film, first, the prepared magnetic powder is put in a heatable vacuum vessel, and another vessel containing a volatile cyclic siloxane compound is placed in the vacuum vessel. Then, after the inside of the vacuum vessel is deaerated to −0.1 MPa or less by a vacuum pressure, the whole vacuum vessel is heated to 40 to 100 ° C. and heat treatment is performed for 1 to 48 hours. In other words, in the formation of the coating film, the agglomerated surface is magnetically agglomerated by volatilizing the cyclic siloxane compound in a separate container and bringing the volatilized cyclic siloxane compound into contact with the magnetic powder surface in the gas phase. A coating film is appropriately formed on the entire surface of the magnetic powder including (formation of a coating film by a vapor phase method).
 被覆膜の形成に際しての温度条件として、真空容器全体の温度が40℃未満であると、環状シロキサン化合物の揮発が十分ではなく、磁性粉末の粒子全面を被覆することが難しくなる。一方で、温度が100℃より高温であると、環状シロキサン化合物の変質が起こる恐れがある。したがって、温度条件としては、上述のように真空容器全体を40~100℃に加熱し、より好ましくは50~80℃に加熱する。 As a temperature condition for forming the coating film, if the temperature of the entire vacuum vessel is less than 40 ° C., the volatilization of the cyclic siloxane compound is not sufficient, and it is difficult to coat the entire surface of the magnetic powder particles. On the other hand, when the temperature is higher than 100 ° C., the cyclic siloxane compound may be altered. Therefore, as a temperature condition, the entire vacuum vessel is heated to 40 to 100 ° C., more preferably 50 to 80 ° C. as described above.
 また、処理時間に関して、処理時間が少なすぎると、被覆膜の形成が十分ではなく、一方で、処理時間を長くしてもある一定の被覆量以上には被覆されない。このことから、処理時間としては、上述のように1~48時間とし、より好ましくは12時間~24時間とする。 Also, regarding the processing time, if the processing time is too short, the coating film is not sufficiently formed. On the other hand, even if the processing time is increased, the coating is not performed beyond a certain coating amount. Therefore, the processing time is 1 to 48 hours as described above, and more preferably 12 to 24 hours.
 気相法に基づく被覆膜の形成条件として、上述した温度条件、処理時間条件とすることによって、真空容器内に、磁性粉末と揮発性を有する環状シロキサン化合物を設置するという簡易な操作だけで、磁性粉末表面に、揮発した環状シロキサン化合物が接触するようになり、磁性粉末の表面の全面、また細部にわたり被覆膜を効率的に形成することができる。また、より効率的に且つより確実に、磁性粉末の粒子全面に環状シロキサン化合物を被覆させるためには、真空容器内部に、撹拌機のような混合する装置を内蔵させることが好ましい。 As the conditions for forming the coating film based on the vapor phase method, the above-described temperature conditions and processing time conditions are used, so that the magnetic powder and the volatile cyclic siloxane compound are simply installed in the vacuum vessel. Then, the volatilized cyclic siloxane compound comes into contact with the surface of the magnetic powder, and a coating film can be efficiently formed over the entire surface and details of the surface of the magnetic powder. In order to coat the entire surface of the magnetic powder particles with the cyclic siloxane compound more efficiently and reliably, it is preferable to incorporate a mixing device such as a stirrer inside the vacuum vessel.
 また、被覆膜の形成においては、磁性粉末を大気圧下で不活性ガスを流しながら、温度80~110℃の条件で1~24時間保持することによって、環状シロキサン化合物と気相接触させるようにしてもよい。流通させるガス種としては、酸素雰囲気中での加熱による磁気特性の低下が懸念される観点から、窒素ガスやアルゴンガス等の不活性ガスであることが好ましい。また、大気中で気相接触させる場合には、積極的に磁性粉末表面に環状シロキサン化合物を接触させるために、磁性粉末を撹拌しながら行うことが好ましい。 In forming the coating film, the magnetic powder is brought into vapor phase contact with the cyclic siloxane compound by maintaining the magnetic powder at 80 to 110 ° C. for 1 to 24 hours while flowing an inert gas under atmospheric pressure. It may be. The gas species to be circulated is preferably an inert gas such as nitrogen gas or argon gas from the viewpoint of concern about the deterioration of magnetic properties due to heating in an oxygen atmosphere. In addition, when the gas phase contact is performed in the atmosphere, it is preferable to carry out the stirring of the magnetic powder in order to positively bring the cyclic siloxane compound into contact with the surface of the magnetic powder.
 ここで、上述したように、磁性粉末の表面の全面に被覆膜の形成した後、表面に付着した環状シロキサン化合物の安定化を行うことが好ましい。具体的に、真空容器内で気相接触させることで被覆した環状シロキサン化合物の安定化の処理は、気相処理に用いた容器から被覆処理を施した磁性粉末のみを取り出し、別の真空容器に移すか、又は、気相処理した同じ真空容器を用いるときは、環状シロキサン化合物を入れた容器を取り出し、内部のガスを大気で置換した後、再度、真空圧で-0.1MPa以下の真空下にして、80~110℃の温度条件で1~12時間に亘って乾燥処理(熱処理)を施すようにする。 Here, as described above, after forming a coating film on the entire surface of the magnetic powder, it is preferable to stabilize the cyclic siloxane compound adhering to the surface. Specifically, the process of stabilizing the cyclic siloxane compound coated by contacting in a vapor phase in a vacuum vessel is to take out only the magnetic powder that has been subjected to the coating treatment from the vessel used for the vapor phase treatment and put it in another vacuum vessel. When using the same vacuum vessel that has been transferred or vapor-phase treated, take out the vessel containing the cyclic siloxane compound, replace the gas inside with the atmosphere, and then again under vacuum at a vacuum pressure of -0.1 MPa or less. Then, a drying process (heat treatment) is performed for 1 to 12 hours at a temperature of 80 to 110 ° C.
 また、大気下において不活性ガスを流通させながら気相接触させて環状シロキサン化合物を被覆させた場合においては、気相処理に用いた容器、又は別の容器内に、不窒素ガスやアルゴンガス等の活性ガスを流通させながら、例えば80~110℃の温度条件で1~12時間に亘って熱処理を施す。なお、上述のように真空容器内で環状シロキサン化合物を被覆させた場合においても、被覆処理を施した磁性粉末のみを別の容器に移して、大気下で、その容器内に不活性ガスを流通させた状態として、同様の処理条件で熱処理を施すようにしてもよい。 In addition, in the case where the cyclic siloxane compound is coated by vapor phase contact with an inert gas flowing in the atmosphere, an inert nitrogen gas, argon gas, or the like is placed in the vessel used for the vapor phase treatment or in another vessel. For example, heat treatment is performed for 1 to 12 hours under a temperature condition of 80 to 110 ° C. while circulating the active gas. Even when the cyclic siloxane compound is coated in a vacuum container as described above, only the magnetic powder subjected to the coating treatment is transferred to another container, and an inert gas is circulated in the container under the atmosphere. In this state, heat treatment may be performed under similar processing conditions.
 このようにして、気相接触により環状シロキサン化合物を被覆した後に熱処理を行うことで、被覆膜の安定化と、余分な吸着分の除去を行うことができる。なお、熱処理の温度条件に関して、80℃未満であると、磁性粉末に付着した環状シロキサン化合物を十分に安定化させることができず、一方で、110℃を超えると、得られる希土類系磁性粉末の磁気特性に影響を与える可能性があるため好ましくない。したがって、80~110℃の温度条件で行うことが好ましく、80~90℃の温度条件で行うことがより好ましい。 In this way, the coating film can be stabilized and the excess adsorbed component can be removed by performing the heat treatment after coating the cyclic siloxane compound by vapor phase contact. In addition, regarding the temperature conditions of heat processing, when it is less than 80 degreeC, the cyclic siloxane compound adhering to magnetic powder cannot fully be stabilized, On the other hand, when it exceeds 110 degreeC, the rare earth type magnetic powder obtained This is not preferable because it may affect the magnetic characteristics. Therefore, it is preferably carried out under a temperature condition of 80 to 110 ° C., more preferably under a temperature condition of 80 to 90 ° C.
 本実施の形態に係る希土類系磁性粉末の製造方法においては、上述したように、気相法を用い、揮発した環状シロキサン化合物を含む気体を気相で磁性粉末表面に接触させて、被覆膜を形成させるようにしている。このような気相法は、液中で表面粒子表面にコーティング層を形成する液相法(湿式法)とは異なり、例えば厚さ0.5~20nm程度、好ましくは1~5nm程度のナノレベルの均一な被覆膜層を磁性粉末の粒子表面全面に形成することができる。 In the method for producing a rare earth-based magnetic powder according to the present embodiment, as described above, the gas containing the vaporized cyclic siloxane compound is brought into contact with the surface of the magnetic powder in the gas phase using the vapor phase method, and the coating film To form. Such a vapor phase method is different from a liquid phase method (wet method) in which a coating layer is formed on the surface particle surface in a liquid, for example, a nano level having a thickness of about 0.5 to 20 nm, preferably about 1 to 5 nm. The uniform coating film layer can be formed on the entire surface of the magnetic powder particles.
 このようにして磁性粉末の粒子表面に極薄い均一な被覆膜層を形成することができることにより、磁性粉末の磁気特性を低下させることなく、極めて優れた防錆性(耐食性)、耐熱性を付与することができる。また、気相法により被覆膜を形成した後に、再度熱処理を施すことによって、付着した環状シロキサン化合物を、より緻密で、安定化させた被覆膜層とすることができる。 In this way, an extremely thin uniform coating film layer can be formed on the particle surface of the magnetic powder, so that it has excellent rust prevention (corrosion resistance) and heat resistance without deteriorating the magnetic properties of the magnetic powder. Can be granted. Further, after the coating film is formed by the vapor phase method, the attached cyclic siloxane compound can be made denser and stabilized by performing the heat treatment again.
 ≪3.ボンド磁石用樹脂組成物≫
 次に、本実施の形態に係る希土類系磁性粉末を用いたボンド磁石用樹脂組成物について説明する。
≪3. Bonded Magnet Resin Composition >>
Next, the resin composition for bonded magnets using the rare earth based magnetic powder according to the present embodiment will be described.
 ボンド磁石用樹脂組成物は、磁性粉末を結合剤樹脂中に分散してなるものである。本実施の形態に係るボンド磁石用樹脂組成物は、上述したように、その磁性粉末が、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末により構成され、特定の環状シロキサン化合物により粒子表面の全面が被覆されている。 The resin composition for bonded magnets is obtained by dispersing magnetic powder in a binder resin. In the bonded magnet resin composition according to the present embodiment, as described above, the magnetic powder is composed of Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, and a specific cyclic siloxane compound. Thus, the entire surface of the particle is covered.
 ボンド磁石用樹脂組成物は、上述した表面処理されたNd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末を例えば85~99質量%の割合で含有し、残部が結合剤樹脂と、その他必要に応じて添加された添加剤とで構成されている。 The resin composition for bonded magnets contains the above-mentioned surface-treated Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder in a proportion of, for example, 85 to 99 mass%, with the balance being a binder resin. In addition, it is comprised with the additive added as needed.
 ここで、結合剤樹脂としては、特に限定されるものではなく、成形法によって種々選択することができる。例えば、射出成形、押し出し成形、及びカレンダー成形の場合には、熱可塑性樹脂を使用することができ、圧縮成形の場合には、熱硬化性樹脂を使用することができる。熱可塑性樹脂としては、例えば、ナイロン(PA)系、ポリプロピレン(PP)系、エチレンビニルアセテート(EVA)系、ポリフェニレンサルファイド(PPS)系、液晶樹脂(LCP)系、エラストマー系、ゴム系等の樹脂を使用することができる。また、熱硬化性樹脂としては、例えば、エポキシ系、フェノール系、シリコーン系等の樹脂を使用することができる。 Here, the binder resin is not particularly limited and can be variously selected depending on a molding method. For example, a thermoplastic resin can be used in the case of injection molding, extrusion molding, and calendar molding, and a thermosetting resin can be used in the case of compression molding. Examples of thermoplastic resins include nylon (PA), polypropylene (PP), ethylene vinyl acetate (EVA), polyphenylene sulfide (PPS), liquid crystal resin (LCP), elastomer, and rubber. Can be used. In addition, as the thermosetting resin, for example, an epoxy resin, a phenol resin, a silicone resin, or the like can be used.
 また、ボンド磁石用樹脂組成物を製造するに際して、流動性、成形性等を改善し、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末の磁気特性を十分に引き出すために、必要に応じて、可塑剤、滑剤、カップリング剤等の周知の添加剤を使用することができる。また、フェライト磁石粉末等の他の種類の磁石粉末を混合してもよい。 Further, when producing a resin composition for bonded magnets, in order to improve the fluidity, moldability, etc., and sufficiently draw out the magnetic properties of the Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder, If necessary, known additives such as plasticizers, lubricants, coupling agents and the like can be used. Moreover, you may mix other types of magnet powders, such as a ferrite magnet powder.
 ボンド磁石用樹脂組成物は、表面処理したNd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末を所定の割合で結合剤樹脂と混合させ、混練することによって得ることができる。混合に際しては、ヘンシェルミキサー、V字ミキサー、ナウター等の混合機等を用いて行うことができ、混練に際しては、一軸混練機、二軸混練機、臼型混練機、押し出し混練機等を用いて行うことができる。 The resin composition for bonded magnets can be obtained by mixing and kneading the surface-treated Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder with a binder resin at a predetermined ratio. The mixing can be performed using a mixer such as a Henschel mixer, a V-shaped mixer, or a nauter. The kneading is performed using a uniaxial kneader, a biaxial kneader, a mortar-type kneader, an extrusion kneader, or the like. It can be carried out.
 ≪4.ボンド磁石≫
 ボンド磁石は、上述したボンド磁石用樹脂組成物を用いて得ることができる。具体的には、上述したボンド磁石用樹脂組成物を射出成形、押出成形、圧縮成形、カレンダー成形等の周知の成形法で成形加工した後、公知の手法に従って電磁石着磁やパルス着磁することにより、ボンド磁石とすることができる。
<< 4. Bond magnet >>
The bonded magnet can be obtained using the above-described resin composition for bonded magnet. Specifically, the above-described resin composition for bonded magnet is molded by a known molding method such as injection molding, extrusion molding, compression molding, calender molding, and then subjected to electromagnetization or pulse magnetization according to a known method. Thus, a bonded magnet can be obtained.
 本実施の形態に係る希土類系磁性粉末は、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末の粒子表面の全面を環状シロキサン化合物により被覆したものであるため、撥水性が付与されており、また表面状態が著しく変化している。磁性粉末の粒子表面の環状シロキサン化合物からなる被膜は非常に薄く、磁気特性への影響がほとんど認められず、また熱による磁性粉末の変質を抑える効果が認められる。したがって、表面被覆処理していない、すなわち環状シロキサン化合物の被覆膜を形成していない磁性粉末と比較して、磁気特性の低下がみられず、一方で極めて防錆性、耐熱性に優れている。また、このような磁性粉末が有する防錆性、耐熱性は、その磁性粉末を用いてボンド磁石に成形した場合であっても、そのボンド磁石に対して優れた防錆性を付与する。 The rare earth magnetic powder according to the present embodiment is obtained by coating the entire particle surface of the Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder with a cyclic siloxane compound. In addition, the surface condition is remarkably changed. The coating film made of a cyclic siloxane compound on the particle surface of the magnetic powder is very thin, hardly affecting the magnetic properties, and suppressing the deterioration of the magnetic powder due to heat. Therefore, compared with the magnetic powder that is not surface-coated, i.e., does not form a coating film of a cyclic siloxane compound, the magnetic properties are not deteriorated, while it is extremely excellent in rust prevention and heat resistance. Yes. Moreover, the rust prevention property and heat resistance which such a magnetic powder has give the rust prevention property outstanding with respect to the bond magnet, even when it is a case where it shape | molds to the bond magnet using the magnetic powder.
 以下に、実施例を用いて本発明を更に詳細に説明するが、本発明は下記の実施例に限定されない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
 <希土類系磁性粉末の作製>
 [実施例1]
 異方性Nd-Fe-B系磁性粉末(愛知製鋼(株)製,MF-18P)50gを真空デシケーターの下段に設置し、その上段に環状シロキサン化合物(ヘキサメチルシクロトリシロキサン)5gを置き、-0.1MPa以下に減圧後、80℃の恒温槽に24時間入れた。これにより、揮発した環状シロキサン化合物と磁性粉末とを気相で接触させ、磁性粉末に対する表面処理を行った。そして、処理後に磁性粉末を取り出し、真空乾燥機中で90℃、6時間の乾燥を行い、環状シロキサン化合物が被覆されたNd-Fe-B系磁性粉末を得た。
<Preparation of rare earth magnetic powder>
[Example 1]
50 g of anisotropic Nd—Fe—B magnetic powder (manufactured by Aichi Steel Co., Ltd., MF-18P) was placed in the lower stage of the vacuum desiccator, and 5 g of a cyclic siloxane compound (hexamethylcyclotrisiloxane) was placed on the upper stage. After reducing the pressure to −0.1 MPa or less, the mixture was placed in a constant temperature bath at 80 ° C. for 24 hours. Thereby, the volatilized cyclic siloxane compound and the magnetic powder were brought into contact with each other in a gas phase, and the surface treatment was performed on the magnetic powder. After the treatment, the magnetic powder was taken out and dried in a vacuum dryer at 90 ° C. for 6 hours to obtain an Nd—Fe—B based magnetic powder coated with a cyclic siloxane compound.
 処理後のNd-Fe-B系磁性粉末には、環状シロキサン化合物(ヘキサメチルシクロトリシロキサン)が0.3g被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は6質量部であった。 The treated Nd—Fe—B magnetic powder was coated with 0.3 g of a cyclic siloxane compound (hexamethylcyclotrisiloxane). That is, the coating amount of the cyclic siloxane compound was 6 parts by mass with respect to 1000 parts by mass of the magnet powder.
 [実施例2~3]
 実施例2では、環状シロキサン化合物としてオクタメチルシクロテトラシロキサンを用い、実施例3では、環状シロキサン化合物として1,3,5,7-テトラメチルシクロテトラシロキサンを用いたこと以外は、それぞれ実施例1と同様にして表面処理されたNd-Fe-B系磁性粉末を得た。
[Examples 2 to 3]
In Example 2, octamethylcyclotetrasiloxane was used as the cyclic siloxane compound. In Example 3, 1,3,5,7-tetramethylcyclotetrasiloxane was used as the cyclic siloxane compound. Thus, a surface-treated Nd—Fe—B based magnetic powder was obtained.
 処理後のNd-Fe-B系磁性粉末には、環状シロキサン化合物(実施例2:オクタメチルシクロテトラシロキサン、実施例3:1,3,5,7-テトラメチルシクロテトラシロキサン)が実施例2、3ともに0.2g被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は4質量部であった。 In the treated Nd—Fe—B magnetic powder, a cyclic siloxane compound (Example 2: Octamethylcyclotetrasiloxane, Example 3: 1,3,5,7-tetramethylcyclotetrasiloxane) is Example 2. 3 was coated with 0.2 g. That is, the coating amount of the cyclic siloxane compound was 4 parts by mass with respect to 1000 parts by mass of the magnet powder.
 [実施例4~6]
 Sm-Fe-N系磁性粉末(住友金属鉱山(株)製,SFN-C,リン酸化合物処理品)50gを真空デシケーターの下段に設置し、その上段に環状シロキサン化合物(ヘキサメチルシクロトリシロキサン)5gを置き、-0.1MPa以下に減圧後、実施例4では50℃、実施例5では60℃、実施例6では80℃とした恒温槽にそれぞれ24時間入れた。これにより、揮発した環状シロキサン化合物と磁性粉末とを気相で接触させ、磁性粉末に対する表面処理を行った。そして、処理後に磁性粉末を取り出し、真空乾燥機中で90℃、6時間の乾燥を行い、環状シロキサン化合物が被覆されたSm-Fe-N系磁性粉末を得た。
[Examples 4 to 6]
50 g of Sm—Fe—N based magnetic powder (manufactured by Sumitomo Metal Mining Co., Ltd., SFN-C, phosphoric acid compound treated product) is placed in the lower stage of the vacuum desiccator, and the cyclic siloxane compound (hexamethylcyclotrisiloxane) is placed in the upper stage. 5 g was placed, and after reducing the pressure to −0.1 MPa or less, each was put in a thermostat set at 50 ° C. in Example 4, 60 ° C. in Example 5, and 80 ° C. in Example 6 for 24 hours. Thereby, the volatilized cyclic siloxane compound and the magnetic powder were brought into contact with each other in a gas phase, and the surface treatment was performed on the magnetic powder. After the treatment, the magnetic powder was taken out and dried in a vacuum dryer at 90 ° C. for 6 hours to obtain an Sm—Fe—N based magnetic powder coated with a cyclic siloxane compound.
 処理後のSm-Fe-N系磁性粉末には、環状シロキサン化合物(ヘキサメチルシクロトリシロキサン)が、それぞれ、0.15g(実施例4)、0.25g(実施例5)、0.35g(実施例6)被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は、それぞれ、3質量部(実施例4)、5質量部(実施例5)、7質量部(実施例6)であった。 In the Sm—Fe—N-based magnetic powder after the treatment, cyclic siloxane compounds (hexamethylcyclotrisiloxane) were 0.15 g (Example 4), 0.25 g (Example 5), and 0.35 g (Example 5), respectively. Example 6) It was coated. That is, the coating amount of the cyclic siloxane compound with respect to 1000 parts by mass of the magnet powder was 3 parts by mass (Example 4), 5 parts by mass (Example 5), and 7 parts by mass (Example 6), respectively.
 [実施例7、8]
 環状シロキサン化合物としてオクタメチルシクロテトラシロキサンを用い、実施例7では40℃、実施例8では80℃の恒温槽に、それぞれ24時間入れて気相接触させたこと以外は、それぞれ実施例4と同様にして表面処理されたSm-Fe-N系磁性粉末を得た。
[Examples 7 and 8]
Example 8 is the same as Example 4 except that octamethylcyclotetrasiloxane was used as the cyclic siloxane compound and was put in a thermostatic bath at 40 ° C. in Example 7 and 80 ° C. in Example 8 for 24 hours. Thus, a surface-treated Sm—Fe—N magnetic powder was obtained.
 処理後のSm-Fe-N系磁性粉末には、環状シロキサン化合物(オクタメチルシクロテトラシロキサン)が、それぞれ、0.025g(実施例7)、0.05g(実施例8)被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は、それぞれ、0.5質量部(実施例7)、1質量部(実施例8)であった。 The treated Sm—Fe—N magnetic powder was coated with 0.025 g (Example 7) and 0.05 g (Example 8) of a cyclic siloxane compound (octamethylcyclotetrasiloxane), respectively. That is, the coating amount of the cyclic siloxane compound was 0.5 parts by mass (Example 7) and 1 part by mass (Example 8) with respect to 1000 parts by mass of the magnet powder.
 [実施例9、10]
 環状シロキサン化合物として1,3,5,7-テトラメチルシクロテトラシロキサンを用い、実施例9では40℃、実施例10では80℃の恒温槽に、それぞれ24時間入れた気相接触させたこと以外は、それぞれ実施例4と同様にして表面処理されたSm-Fe-N系磁性粉末を得た。
[Examples 9 and 10]
1,3,5,7-tetramethylcyclotetrasiloxane was used as the cyclic siloxane compound, except that it was brought into contact with a gas phase for 24 hours in a constant temperature bath at 40 ° C. in Example 9 and 80 ° C. in Example 10. Obtained surface-treated Sm—Fe—N-based magnetic powders in the same manner as in Example 4.
 処理後のSm-Fe-N系磁性粉末には、環状シロキサン化合物(1,3,5,7-テトラメチルシクロテトラシロキサン)が、それぞれ、0.15g(実施例9)、0.2g(実施例10)被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は、それぞれ、3質量部(実施例9)、4質量部(実施例10)であった。 In the Sm—Fe—N-based magnetic powder after the treatment, cyclic siloxane compounds (1,3,5,7-tetramethylcyclotetrasiloxane) were 0.15 g (Example 9) and 0.2 g (Example), respectively. Example 10) It was coated. That is, the coating amount of the cyclic siloxane compound was 3 parts by mass (Example 9) and 4 parts by mass (Example 10) with respect to 1000 parts by mass of the magnet powder.
 [実施例11]
 実施例11では、図1に示す装置を用い、磁性粉末を大気圧下で不活性ガスを流しながら環状シロキサン化合物と気相接触させて磁性粉末に対する表面処理を行った。
[Example 11]
In Example 11, the magnetic powder was subjected to a surface treatment by bringing the magnetic powder into vapor phase contact with a cyclic siloxane compound while flowing an inert gas under atmospheric pressure using the apparatus shown in FIG.
 すなわち、先ず、図1に示す装置における混合槽(混合容器)11内にSm-Fe-N系磁性粉末50gを投入し、撹拌しながら80℃に加熱した。一方、収容槽12内に環状シロキサン化合物(ヘキサメチルシクロトリシロキサン)20を収容して加熱し、温度50℃に保持した。そして、窒素(N)ガス30aを収容槽12内に500sccm導入し、続いてNガス30bを150sccmの量で送ることによって、環状シロキサン化合物を含んだガスを混合槽11内に24時間導入した。これにより、混合層11内の大気圧下で、揮発した環状シロキサン化合物と磁性粉末とを気相接触させ、その磁性粉末に対する表面処理を行った。 That is, first, 50 g of Sm—Fe—N-based magnetic powder was put into a mixing tank (mixing vessel) 11 in the apparatus shown in FIG. 1 and heated to 80 ° C. with stirring. On the other hand, the cyclic siloxane compound (hexamethylcyclotrisiloxane) 20 was accommodated in the storage tank 12 and heated to maintain the temperature at 50 ° C. Nitrogen (N 2 ) gas 30a is introduced into the storage tank 12 at 500 sccm, and then N 2 gas 30b is sent in an amount of 150 sccm to introduce a gas containing a cyclic siloxane compound into the mixing tank 11 for 24 hours. did. Thus, the volatilized cyclic siloxane compound and the magnetic powder were brought into vapor phase contact under atmospheric pressure in the mixed layer 11, and surface treatment was performed on the magnetic powder.
 表面処理の後、磁性粉末を取り出し、真空乾燥機中で90℃、6時間の乾燥を行い、環状シロキサン化合物が被覆されたSm-Fe-N系磁性粉末を得た。処理後のSm-Fe-N系磁性粉末には、環状シロキサン化合物(ヘキサメチルシクロトリシロキサン)が、0.25g被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は5質量部であった。 After the surface treatment, the magnetic powder was taken out and dried in a vacuum dryer at 90 ° C. for 6 hours to obtain an Sm—Fe—N magnetic powder coated with a cyclic siloxane compound. The treated Sm—Fe—N based magnetic powder was coated with 0.25 g of a cyclic siloxane compound (hexamethylcyclotrisiloxane). That is, the coating amount of the cyclic siloxane compound was 5 parts by mass with respect to 1000 parts by mass of the magnet powder.
 [実施例12、13]
 実施例12では、環状シロキサン化合物としてオクタメチルシクロテトラシロキサンを用い、実施例13では、環状シロキサン化合物として1,3,5,7-テトラメチルシクロテトラシロキサンを用いたこと以外は、それぞれ実施例11と同様にして表面処理を施し、環状シロキサン化合物が被覆されたSm-Fe-N系磁性粉末を得た。
[Examples 12 and 13]
In Example 12, Example 11 was used except that octamethylcyclotetrasiloxane was used as the cyclic siloxane compound, and in Example 13, 1,3,5,7-tetramethylcyclotetrasiloxane was used as the cyclic siloxane compound. Surface treatment was performed in the same manner as described above to obtain an Sm—Fe—N based magnetic powder coated with a cyclic siloxane compound.
 処理後のSm-Fe-N系磁性粉末には、環状シロキサン化合物(実施例12:オクタメチルシクロテトラシロキサン、実施例13:1,3,5,7-テトラメチルシクロテトラシロキサン)が、それぞれ、0.04g(実施例12)、0.2g(実施例13)被覆されていた。すなわち、磁石粉末1000質量部に対し、環状シロキサン化合物の被覆量は、それぞれ、0.8質量部(実施例12)、4質量部(実施例13)であった。 In the Sm—Fe—N-based magnetic powder after the treatment, a cyclic siloxane compound (Example 12: Octamethylcyclotetrasiloxane, Example 13: 1,3,5,7-tetramethylcyclotetrasiloxane) 0.04 g (Example 12) and 0.2 g (Example 13) were coated. That is, the coating amount of the cyclic siloxane compound was 0.8 parts by mass (Example 12) and 4 parts by mass (Example 13) with respect to 1000 parts by mass of the magnet powder.
 [比較例1、2]
 上述した実施例にて使用したNd-Fe-B系磁性粉末(比較例1)、及び、Sm-Fe-N系磁性粉末(比較例2)を、表面処理せずに用いて、以下に示すように実施例と同様にして評価した。
[Comparative Examples 1 and 2]
The Nd—Fe—B based magnetic powder (Comparative Example 1) and Sm—Fe—N based magnetic powder (Comparative Example 2) used in the above-described examples were used without surface treatment, and are shown below. Thus, it evaluated similarly to the Example.
 <ボンド磁石の作製>
 実施例1~10、比較例1、2で作製した磁性粉末を用い、それぞれにおいて磁性粉末88.81質量部と、ポリフェニレンサルファイド樹脂8.91質量部とをヘンシェルミキサーを用いて混合し、二軸押出混練機により混練(混練温度300℃)を行い、1592kA/m(20kOe)の配向磁界をかけながら20mmφ×13mmの射出成形品を作製した。
<Production of bonded magnet>
Using the magnetic powders prepared in Examples 1 to 10 and Comparative Examples 1 and 2, 88.81 parts by mass of magnetic powder and 8.91 parts by mass of polyphenylene sulfide resin were mixed using a Henschel mixer, and biaxial. The mixture was kneaded (kneading temperature 300 ° C.) with an extrusion kneader to produce an injection molded product of 20 mmφ × 13 mm while applying an orientation magnetic field of 1592 kA / m (20 kOe).
 <評価、結果>
 (磁気特性評価)
 磁気特性について、配向磁場中で成形したボンド磁石をBHトレーサー(東英工業(株)製)により測定し、残留磁束密度(kG)、角形性(kOe)、保磁力(kOe)について評価した。表1に、それぞれの結果を示す。
<Evaluation, results>
(Evaluation of magnetic properties)
Regarding the magnetic characteristics, a bonded magnet molded in an orientation magnetic field was measured with a BH tracer (manufactured by Toei Kogyo Co., Ltd.), and the residual magnetic flux density (kG), squareness (kOe), and coercive force (kOe) were evaluated. Table 1 shows the results.
 (撥水性試験)
 磁性粉末5gをステンレス板の上に盛り、水を1滴落として撥水性を観察した。磁性粉末上に水滴が丸く保持されたものは『○』、水滴が楕円形となったものは『△』、磁性粉末中に吸収されたものは『×』として評価した。表1にそれぞれの結果を示す。
(Water repellency test)
5 g of magnetic powder was placed on a stainless steel plate, one drop of water was dropped, and water repellency was observed. The case where water droplets were held round on the magnetic powder was evaluated as “◯”, the case where the water droplets became elliptical was evaluated as “Δ”, and the case where water droplets were absorbed was evaluated as “×”. Table 1 shows the results.
 (耐食性試験)
 磁性粉末5g及びボンド磁石成形体に対して、人口汗液(リン酸水素二ナトリウム0.32質量%、塩化ナトリウム0.8質量%、酢酸0.5質量%水溶液)による耐食性試験を行った。具体的には、密封容器内に人口汗液10mlを入れ、磁性粉末又はボンド磁石成形体を並べて、密封容器を30℃に加温した恒温槽内に入れた状態で24時間放置した。放置した結果、赤く錆が見られたものは『×』、変色が見られなかったものは『○』として評価した。表1に、それぞれの結果を示す。
(Corrosion resistance test)
A corrosion resistance test using artificial sweat (disodium hydrogen phosphate 0.32 mass%, sodium chloride 0.8 mass%, acetic acid 0.5 mass% aqueous solution) was performed on 5 g of the magnetic powder and the bonded magnet molded body. Specifically, 10 ml of artificial sweat was put in a sealed container, magnetic powders or bonded magnet molded bodies were arranged, and the sealed container was left in a constant temperature bath heated to 30 ° C. for 24 hours. As a result of being left as it was, the case where red rust was observed was evaluated as “×”, and the case where no discoloration was observed was evaluated as “◯”. Table 1 shows the results.
 (耐熱性試験)
 磁性粉末5gを所定温度(150~270℃)において大気中で10分間の熱処理を行い、その後の色の変化を確認した。表2に、それぞれの結果を示す。
(Heat resistance test)
5 g of the magnetic powder was heat-treated for 10 minutes in the air at a predetermined temperature (150 to 270 ° C.), and the subsequent color change was confirmed. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果に示されるように、実施例1~13における、Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末に特定の環状シロキサン化合物を所定の被覆量で被覆させて得られた磁性粉末では、比較例1又は比較例2の表面処理を施していない磁性粉末と同程度の磁気特性を有しており、磁気特性が低下していないことが分かる。一方で、それら実施例1~13の磁性粉末では、撥水性が向上し、また磁性粉末、並びにその磁性粉末から成形したボンド磁石において錆が発生せず、優れた耐食性を有していることが分かった。 As shown in the results of Table 1, the Nd—Fe—B magnetic powder or Sm—Fe—N magnetic powder in Examples 1 to 13 was obtained by coating a specific cyclic siloxane compound with a predetermined coating amount. It can be seen that the obtained magnetic powder has the same magnetic characteristics as the magnetic powder not subjected to the surface treatment of Comparative Example 1 or Comparative Example 2, and the magnetic characteristics are not deteriorated. On the other hand, the magnetic powders of Examples 1 to 13 have improved water repellency, and the magnetic powder and the bonded magnet formed from the magnetic powder do not generate rust and have excellent corrosion resistance. I understood.
 また、表2の結果から、耐熱性に関しても、表面処理を施していないNd-Fe-B系磁性粉末(比較例1)では150℃程度という比較的低い温度で変色してしまい、Sm-Fe-N系磁性粉末(比較例2)においても210℃程度の温度で変色してしまった。これに対して、実施例1~13における磁性粉末では、被覆した環状シロキサン化合物の種類に関係なく、270℃までの熱処理後の変色がなかったことから、非常に高温の環境下であっても磁性粉末の変質を抑制する効果があり、優れた耐熱性を有していることが分かった。 In addition, from the results of Table 2, regarding heat resistance, the Nd—Fe—B based magnetic powder (Comparative Example 1) not subjected to surface treatment is discolored at a relatively low temperature of about 150 ° C., and Sm—Fe Even in the -N-based magnetic powder (Comparative Example 2), the color changed at a temperature of about 210 ° C. In contrast, in the magnetic powders in Examples 1 to 13, there was no discoloration after the heat treatment up to 270 ° C. regardless of the type of the coated cyclic siloxane compound, so even in a very high temperature environment. It was found that there was an effect of suppressing the deterioration of the magnetic powder, and it had excellent heat resistance.
 本発明に係る希土類系磁性粉末は、所定の被覆量で耐熱性のある環状シロキサン化合物をNd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末の粒子表面に被覆してなるものであり、磁気特性を低下させることなく、ボンド磁石での防錆性、耐熱性を高めることができる。このような希土類系磁性粉末によれば、ボンド磁石用のNd-Fe-B系磁性粉末及びSm-Fe-N系磁性粉末として好適に用いることができる。また、この希土類系磁性粉末によれば、これまで困難であった苛酷な、劣悪な、腐食環境下での使用が可能となる。 The rare earth-based magnetic powder according to the present invention is obtained by coating a particle surface of a Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder with a heat-resistant cyclic siloxane compound at a predetermined coating amount. Yes, the rust prevention and heat resistance of the bonded magnet can be improved without deteriorating the magnetic properties. Such rare earth based magnetic powder can be suitably used as Nd—Fe—B based magnetic powder and Sm—Fe—N based magnetic powder for bonded magnets. Moreover, according to this rare earth-based magnetic powder, it is possible to use it in a severe, inferior and corrosive environment that has been difficult until now.
 11  混合槽(混合容器)
 12  収容槽
 20  環状シロキサン化合物
 
11 Mixing tank (mixing container)
12 Containment tank 20 Cyclic siloxane compound

Claims (10)

  1.  Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末により構成され、
     ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサンからなる群から選択される一種以上の環状シロキサン化合物により前記磁性粉末の粒子表面の全面が被覆されており、
     前記環状シロキサン化合物の被覆量が、当該希土類系磁性粉末1000質量部当たり0.1~20質量部である
     ことを特徴とする希土類系磁性粉末。
    Composed of magnetic powder selected from Nd—Fe—B based magnetic powder or Sm—Fe—N based magnetic powder;
    The entire surface of the magnetic powder particles is coated with one or more cyclic siloxane compounds selected from the group consisting of hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, and 1,3,5,7-tetramethylcyclotetrasiloxane. And
    The amount of the cyclic siloxane compound covered is from 0.1 to 20 parts by mass per 1000 parts by mass of the rare earth magnetic powder.
  2.  予めリン酸化合物で処理された前記磁性粉末に、前記環状シロキサン化合物が被覆されてなることを特徴とする請求項1に記載の希土類系磁性粉末。 2. The rare earth magnetic powder according to claim 1, wherein the cyclic siloxane compound is coated on the magnetic powder previously treated with a phosphoric acid compound.
  3.  磁気特性として、残留磁束密度が1.2T(12kG)以上で、角形性が398kA/m(5.0kOe)以上で、保磁力が800kA/m(10kOe)以上であることを特徴とする請求項1又は2に記載の希土類系磁性粉末。 The magnetic characteristics include a residual magnetic flux density of 1.2 T (12 kG) or more, a squareness of 398 kA / m (5.0 kOe) or more, and a coercive force of 800 kA / m (10 kOe) or more. 3. The rare earth based magnetic powder according to 1 or 2.
  4.  Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末に対し、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサンからなる群から選択される一種以上の環状シロキサン化合物を含む気体と接触させることにより、該磁性粉末の粒子表面の全面に該環状シロキサン化合物を被覆する工程を有し、
     前記工程では、前記環状シロキサン化合物を真空容器内で前記磁性粉末と共に配置し、真空圧-0.1MPa以下、温度40~100℃の条件で、1~48時間保持する
     ことを特徴とする希土類系磁性粉末の製造方法。
    Hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, 1,3,5,7-tetramethylcyclotetra can be used for magnetic powder selected from Nd-Fe-B magnetic powder or Sm-Fe-N magnetic powder. A step of coating the cyclic siloxane compound on the entire surface of the particles of the magnetic powder by contacting with a gas containing one or more cyclic siloxane compounds selected from the group consisting of siloxanes;
    In the step, the cyclic siloxane compound is placed together with the magnetic powder in a vacuum vessel, and is maintained for 1 to 48 hours under a vacuum pressure of −0.1 MPa or less and a temperature of 40 to 100 ° C. Manufacturing method of magnetic powder.
  5.  前記環状シロキサン化合物を粒子表面に被覆した磁性粉末のみを、真空容器内で、真空圧-0.1MPa以下、温度80~110℃の条件で、1~12時間保持することを特徴とする請求項4に記載の希土類系磁性粉末の製造方法。 The magnetic powder having the particle surface coated with the cyclic siloxane compound alone is held in a vacuum vessel for 1 to 12 hours under the conditions of a vacuum pressure of -0.1 MPa or less and a temperature of 80 to 110 ° C. 4. A method for producing a rare earth-based magnetic powder according to 4.
  6.  Nd-Fe-B系磁性粉末又はSm-Fe-N系磁性粉末から選択される磁性粉末に対し、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサンからなる群から選択される一種以上の環状シロキサン化合物を含む気体と接触させることにより、該磁性粉末の粒子表面の全面に該環状シロキサン化合物を被覆する工程を有し、
     前記工程では、前記環状シロキサン化合物を容器内で前記磁性粉末と共に配置し、大気圧下、窒素及び/又はアルゴンガスを流通させながら、温度80~110℃の条件で、1~24時間保持する
     ことを特徴とする希土類系磁性粉末の製造方法。
    Hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, 1,3,5,7-tetramethylcyclotetra can be used for magnetic powder selected from Nd-Fe-B magnetic powder or Sm-Fe-N magnetic powder. A step of coating the cyclic siloxane compound on the entire surface of the particles of the magnetic powder by contacting with a gas containing one or more cyclic siloxane compounds selected from the group consisting of siloxanes;
    In the step, the cyclic siloxane compound is placed together with the magnetic powder in a container, and maintained at a temperature of 80 to 110 ° C. for 1 to 24 hours while flowing nitrogen and / or argon gas under atmospheric pressure. A method for producing a rare earth-based magnetic powder.
  7.  前記環状シロキサン化合物を粒子表面に被覆した磁性粉末のみを、容器内で、窒素及び/又はアルゴンガスを流通させながら、温度80~110℃の条件で、1~12時間保持することを特徴とする請求項6に記載の希土類系磁性粉末の製造方法。 Only the magnetic powder having the particle surface coated with the cyclic siloxane compound is held in a container at a temperature of 80 to 110 ° C. for 1 to 12 hours while flowing nitrogen and / or argon gas. The method for producing a rare earth-based magnetic powder according to claim 6.
  8.  前記磁性粉末の粒子表面に前記環状シロキサンを被覆するに先立ち、該磁性粉末に対してリン酸化合物で処理することを特徴とする請求項4乃至7のいずれかに1項に記載の希土類系磁性粉末の製造方法。 The rare earth magnetism according to any one of claims 4 to 7, wherein the magnetic powder is treated with a phosphoric acid compound prior to coating the surface of the particles of the magnetic powder with the cyclic siloxane. Powder manufacturing method.
  9.  請求項1乃至3のいずれかに記載の希土類系磁性粉末と、樹脂とを含有する
     ことを特徴とするボンド磁石用樹脂組成物。
    A resin composition for bonded magnets, comprising the rare earth-based magnetic powder according to claim 1 and a resin.
  10.  請求項1乃至3のいずれかに記載の希土類系磁性粉末を含む
     ことを特徴とするボンド磁石。
     
    A bonded magnet comprising the rare earth-based magnetic powder according to claim 1.
PCT/JP2015/052188 2014-02-13 2015-01-27 Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet WO2015122271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015562774A JPWO2015122271A1 (en) 2014-02-13 2015-01-27 Rare earth magnetic powder and method for producing the same, resin composition for bonded magnet, bonded magnet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-025856 2014-02-13
JP2014025856 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122271A1 true WO2015122271A1 (en) 2015-08-20

Family

ID=53800019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052188 WO2015122271A1 (en) 2014-02-13 2015-01-27 Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet

Country Status (2)

Country Link
JP (1) JPWO2015122271A1 (en)
WO (1) WO2015122271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172922A (en) * 2015-03-16 2016-09-29 住友金属鉱山株式会社 Copper powder and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188601A (en) * 1989-12-18 1991-08-16 Shin Etsu Polymer Co Ltd Nb-fe-b plastic magnet composition
JPH06150297A (en) * 1992-10-30 1994-05-31 Toshiba Corp Magnetic recording medium and its manufacture
JP2000044583A (en) * 1998-05-27 2000-02-15 Nippon Unicar Co Ltd Composition containing siloxane
JP2004052086A (en) * 2002-07-24 2004-02-19 Sumitomo Metal Mining Co Ltd Rare-earth/transition-metal/nitrogen-based magnet powder with suppressed agglomeration, and its manufacturing method
JP2004172381A (en) * 2002-11-20 2004-06-17 Nichia Chem Ind Ltd Rare earth system magnetic powder and method for manufacturing the same
JP2004304069A (en) * 2003-03-31 2004-10-28 Toda Kogyo Corp Surface modified rare earth system magnetic particle powder for bond magnet, and bonded magnet using the surface modified rare earth system magnetic particle powder
JP2006169618A (en) * 2004-12-20 2006-06-29 Sumitomo Metal Mining Co Ltd Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188601A (en) * 1989-12-18 1991-08-16 Shin Etsu Polymer Co Ltd Nb-fe-b plastic magnet composition
JPH06150297A (en) * 1992-10-30 1994-05-31 Toshiba Corp Magnetic recording medium and its manufacture
JP2000044583A (en) * 1998-05-27 2000-02-15 Nippon Unicar Co Ltd Composition containing siloxane
JP2004052086A (en) * 2002-07-24 2004-02-19 Sumitomo Metal Mining Co Ltd Rare-earth/transition-metal/nitrogen-based magnet powder with suppressed agglomeration, and its manufacturing method
JP2004172381A (en) * 2002-11-20 2004-06-17 Nichia Chem Ind Ltd Rare earth system magnetic powder and method for manufacturing the same
JP2004304069A (en) * 2003-03-31 2004-10-28 Toda Kogyo Corp Surface modified rare earth system magnetic particle powder for bond magnet, and bonded magnet using the surface modified rare earth system magnetic particle powder
JP2006169618A (en) * 2004-12-20 2006-06-29 Sumitomo Metal Mining Co Ltd Iron based magnet alloy powder comprising rare earth element, method for producing the same, resin composition for bond magnet obtained therefrom, and bond magnet and consolidated magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172922A (en) * 2015-03-16 2016-09-29 住友金属鉱山株式会社 Copper powder and method for producing the same

Also Published As

Publication number Publication date
JPWO2015122271A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5499738B2 (en) Surface-treated rare earth magnetic powder, resin composition for bonded magnet containing the rare earth magnetic powder, and bonded magnet
US20150187494A1 (en) Process for preparing rare earth magnets
JP6202722B2 (en) R-T-B Rare Earth Sintered Magnet, R-T-B Rare Earth Sintered Magnet Manufacturing Method
US11688534B2 (en) Process for producing R-T-B-based rare earth magnet particles, R-T-B-based rare earth magnet particles, and bonded magnet
KR101543111B1 (en) NdFeB PERMANENT MAGNET AND METHOD FOR PRODUCING THE SAME
KR20170013744A (en) Method for manufacturing rare earth sintered magnet using low melting point elements
JP2005325450A (en) Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
JP2016194140A (en) Rare earth magnetic powder and production method therefor, and resin composition for bond magnet, bond magnet
JP6485066B2 (en) Iron nitride magnet
JP2007270303A (en) Sm-Fe-N BASED MAGNETIC PARTICLE POWDER FOR BONDED MAGNET AND ITS MANUFACTURING METHOD, RESIN COMPOSITION FOR BONDED MAGNET, AND BONDED MAGNET
JP6520168B2 (en) Iron nitride based magnetic powder and bonded magnet using the same
WO2015122271A1 (en) Rare-earth-based magnetic powder and method for producing same, resin composition for bonded magnets, and bonded magnet
JP4135447B2 (en) High weather-resistant magnet powder, resin composition for bonded magnet, and bonded magnet obtained using the same
JP2015120958A (en) Rare earth-iron-nitrogen based magnetic alloy and method for manufacturing the same
KR20170076166A (en) Method for manufacturing of rare-earth pearmanent magnet
JP2018199847A (en) Method for producing rare earth based magnetic powder
CN114974779A (en) Samarium-based rare earth permanent magnetic material and preparation method and application thereof
JP2001176711A (en) Method of manufacturing for bonded magnet, method of manufacturing for bonded magnet powder, bonded magnet and bonded magnet powder
US20220310292A1 (en) Method of Producing Sintered Magnet
JP5110296B2 (en) Method for producing Sm-Fe-N-based magnetic particle powder, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP2016033971A (en) Method for manufacturing rare earth-transition metal-nitrogen based magnet powder of high weather resistance, and rare earth-transition metal-nitrogen based magnet powder of high weather resistance
JP5019037B2 (en) Sm-Fe-N-based magnetic particle powder and method for producing the same, resin composition for bonded magnet containing Sm-Fe-N-based magnetic particle powder, and bonded magnet
JP6500470B2 (en) Iron nitride magnet
JP2018198280A (en) Nitride-based bond magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748499

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562774

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15748499

Country of ref document: EP

Kind code of ref document: A1