JP2020107888A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2020107888A
JP2020107888A JP2019231381A JP2019231381A JP2020107888A JP 2020107888 A JP2020107888 A JP 2020107888A JP 2019231381 A JP2019231381 A JP 2019231381A JP 2019231381 A JP2019231381 A JP 2019231381A JP 2020107888 A JP2020107888 A JP 2020107888A
Authority
JP
Japan
Prior art keywords
sintered magnet
based sintered
rtb
magnet material
diffusion source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019231381A
Other languages
Japanese (ja)
Inventor
大介 山道
Daisuke Yamamichi
大介 山道
三野 修嗣
Nobutsugu Mino
修嗣 三野
大 関根
Masaru Sekine
大 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2020107888A publication Critical patent/JP2020107888A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for manufacturing an R-T-B based sintered magnet having high HcJ while reducing an amount of use of heavy rare earth RH and suppressing Br from lowering.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises: a step of preparing an R-T-B based sintered magnet material having, as a main phase, R2Fe14B type compound crystal grains containing a light rare earth element RL as a main rare earth element R; a step of preparing diffusion source powder to be formed from powder of an alloy or compound containing a heavy rare earth element RH; a step of bringing at least part of the diffusion source powder into contact with at least part of the surface of the R-T-B based sintered magnet material; and a diffusion step of performing a thermal treatment for heating the R-T-B based sintered magnet material with the diffusion source powder put in contact therewith at a temperature of 800°C or higher and a sintering temperature of the R-T-B based sintered magnet material or lower for 30 hours or longer, thereby diffusing the heavy rare earth element RH included in the diffusion source powder from the surface of the R-T-B based sintered magnet material to inside.SELECTED DRAWING: None

Description

本開示は、R−T−B系焼結磁石の製造方法に関する。 The present disclosure relates to a method for manufacturing an RTB-based sintered magnet.

Fe14B型化合物を主相とするR−T−B系焼結磁石(Rは希土類元素、TはFe又はFeとCo)は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等に使用されている。 The R-T-B system sintered magnet (R is a rare earth element, T is Fe or Fe and Co) having an R 2 Fe 14 B type compound as a main phase is known as the most high-performance magnet among permanent magnets. It is used for various motors such as voice coil motors (VCM) of hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home electric appliances.

R−T−B系焼結磁石は、主としてRFe14B型化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるRFe14B型化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。 The RTB sintered magnet is mainly composed of a main phase composed of an R 2 Fe 14 B type compound and a grain boundary phase located in a grain boundary portion of the main phase. The main phase R 2 Fe 14 B type compound is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field, and forms the basis of the characteristics of the RTB sintered magnet.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」という)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 Since the intrinsic coercive force H cJ (hereinafter, simply referred to as “H cJ ”) of the RTB -based sintered magnet decreases at high temperature, irreversible thermal demagnetization occurs. In order to avoid irreversible thermal demagnetization, when used for a motor or the like, it is required to maintain high H cJ even at high temperatures.

R−T−B系焼結磁石は、RFe14B型化合物相中のRの一部を重希土類元素RH(Dy、Tb等)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度B(以下、単に「B」という)が低下してしまうという問題がある。また、重希土類元素RHは希少資源である。これらの理由により重希土類元素RHの使用量を削減することが求められている。 It is known that in the RTB sintered magnet, H cJ is improved when a part of R in the R 2 Fe 14 B type compound phase is replaced with a heavy rare earth element RH (Dy, Tb, etc.). There is. In order to obtain high HcJ at high temperature, it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet. However, the R-T-B based sintered magnet, replacing light rare-earth element RL as R a (Nd, Pr) in the heavy rare-earth element RH, while the H cJ is improved, the residual magnetic flux density B r (hereinafter, simply " B r )) is decreased. Further, the heavy rare earth element RH is a rare resource. For these reasons, it is required to reduce the amount of heavy rare earth element RH used.

そこで、近年、より少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させるために、R−T−B系焼結磁石表面にTb、Dy等の重希土類元素RHを供給し、その重希土類元素RHを磁石内部に拡散させることが提案されている。これにより、主相外殻部(粒界近傍)に重希土類元素RHを多く分布させることができる。主相外殻部(粒界近傍)に重希土類元素RHの薄いシェル層(RH濃化層)を分布させることによりBの低下を抑制することができ、さらに、R−T−B系焼結磁石のHcJ発生機構は核生成型(ニュークリエーション型)であるため、主相外殻部(粒界近傍)に重希土類元素RHの薄いシェル層を分布させることにより結晶粒全体の結晶磁気異方性が高められ、逆磁区の核生成が妨げられ、その結果、HcJが向上する。 Therefore, in recent years, in order to improve the HcJ of the RTB -based sintered magnet with a smaller amount of the heavy rare-earth element RH, a heavy rare-earth element RH such as Tb or Dy is added to the surface of the RTB-based sintered magnet. It is proposed to supply and diffuse the heavy rare earth element RH inside the magnet. As a result, a large amount of heavy rare earth element RH can be distributed in the outer shell of the main phase (near the grain boundary). It is possible to suppress a decrease in B r by distributing the outer periphery of the main phase (grain boundary vicinity) heavy rare-earth element RH thin shell layer (RH concentrated layer), further, R-T-B based sintered Since the H cJ generation mechanism of the binder magnet is a nucleation type (nucleation type), it is possible to distribute the thin shell layer of the heavy rare earth element RH in the outer shell of the main phase (near the grain boundary) to obtain the crystal magnetism of the entire crystal grain. The anisotropy is enhanced and the nucleation of the reverse domain is prevented, resulting in an improved H cJ .

特許文献1には、DyおよびTb等を含有する粉末を焼結体表面に存在させた状態で焼結温度よりも低い温度で加熱することで、前記粉末からDyおよびTb等を焼結体に拡散させる方法が記載されている。 In Patent Document 1, by heating a powder containing Dy, Tb, etc. at a temperature lower than the sintering temperature in the state of being present on the surface of the sintered body, Dy, Tb, etc. are converted from the powder into a sintered body. The method of diffusion is described.

特許文献2および特許文献3には、焼結磁石(特許文献3は焼結体)とDy等を含有する蒸発材料(特許文献3はバルク体)とを網を介して離間して配置し、焼結磁石と蒸発材料とを所定温度に加熱することにより、蒸発材料からDy等を焼結磁石に拡散させる方法が記載されている。 In Patent Document 2 and Patent Document 3, a sintered magnet (Patent Document 3 is a sintered body) and an evaporation material containing Dy and the like (Patent Document 3 is a bulk body) are spaced apart via a net, A method is disclosed in which Dy or the like is diffused from the evaporation material into the sintered magnet by heating the sintering magnet and the evaporation material to a predetermined temperature.

特許文献4には、複数個のR−T−B系焼結磁石体とDy等を含有する複数個のRH拡散源とを相対的に移動可能かつ近接又は接触可能に処理室内に挿入し、前記R−T−B系焼結磁石体と前期RH拡散源とを前記処理室内にて連続的に又は断続的に移動させながら加熱することによって、前記RH拡散源からDy等をR−T−B系焼結磁石体に拡散させる方法が記載されている。 In Patent Document 4, a plurality of RTB-based sintered magnet bodies and a plurality of RH diffusion sources containing Dy or the like are inserted into a processing chamber so as to be relatively movable and close to or in contact with each other, By heating the R-T-B based sintered magnet body and the former RH diffusion source while continuously or intermittently moving in the processing chamber, Dy and the like from the RH diffusion source are RT-. A method of diffusing into a B-based sintered magnet body is described.

特開2008−147634号公報JP, 2008-147634, A 特開2008−171995号公報JP, 2008-171995, A 国際公開第2007/102391号International Publication No. 2007/102391 国際公開第2011/007758号International Publication No. 2011/007758

しかし、特許文献1に記載の方法によれば、焼結体表面に蓄積された重希土類元素RHが一気に焼結体内部に拡散するため、焼結体の表層領域において主相の中央部分に近いところまでも重希土類元素RHが拡散する。これによりBの低下を招く。また、焼結体の表層領域において多くの重希土類元素RHが消費されるため、磁石体の表層領域からさらに奥の領域(磁石の中央部分)にまで十分な重希土類元素RHを拡散させることが困難となる。 However, according to the method described in Patent Document 1, the heavy rare-earth element RH accumulated on the surface of the sintered body diffuses into the inside of the sintered body at once, so that it is close to the central portion of the main phase in the surface layer region of the sintered body. Even so, the heavy rare earth element RH diffuses. Thus lowering the B r. Further, since a large amount of heavy rare earth element RH is consumed in the surface layer region of the sintered body, it is possible to diffuse sufficient heavy rare earth element RH from the surface layer region of the magnet body to a region further inside (the central portion of the magnet). It will be difficult.

また、特許文献2〜4に記載の方法によれば、重希土類元素RHが表面に衝突したあと焼結磁石内部に速やかに拡散する。しかし、重希土類元素RHの供給が磁石表面に逐次行われるため、焼結磁石の表層領域からさらに奥の領域(磁石の中央部分)にまで十分な重希土類元素RHを拡散しようとすると、焼結磁石の表層領域の主相において比較的厚い重希土類元素RHのシェル層が形成されてしまう場合がある。 Further, according to the methods described in Patent Documents 2 to 4, the heavy rare earth element RH rapidly diffuses inside the sintered magnet after colliding with the surface. However, since the heavy rare earth element RH is sequentially supplied to the surface of the magnet, if an attempt is made to diffuse sufficient heavy rare earth element RH from the surface layer region of the sintered magnet to a further inner region (the central portion of the magnet), sintering will occur. A relatively thick shell layer of the heavy rare earth element RH may be formed in the main phase of the surface layer region of the magnet.

このように、特許文献1〜4に記載の方法では、焼結磁石の表層領域において、重希土類元素RHが主相外殻部(粒界近傍)のみならず主相内部にまで拡散したり、比較的厚い重希土類元素RHのシェル層が形成される場合があるため、必ずしも十分にBの低下を抑制しつつ、HcJを向上させているとは言い難い。 As described above, in the methods described in Patent Documents 1 to 4, in the surface layer region of the sintered magnet, the heavy rare earth element RH diffuses not only into the main phase outer shell (near the grain boundary) but also into the main phase, since there is a case where relatively thick heavy rare-earth element RH in the shell layer is formed, while always sufficiently suppress a decrease in B r, it is hard to say that which improves the H cJ.

本開示の様々な実施形態は、重希土類RHの使用量を低減し、Bの低下を抑制しつつ高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure is to reduce the amount of heavy rare-earth RH, to provide a method of manufacturing a R-T-B based sintered magnet having a high H cJ while suppressing a decrease in B r.

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、軽希土類元素RL(RLはNd、PrおよびCeからなる群から選択された少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−T−B系焼結磁石素材(TはFe又はFeとCo)を用意する工程と、重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含む合金または化合物の粉末から形成した拡散源粉末を用意する工程と、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程と、前記拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、800℃以上前記R−T−B系焼結磁石素材の焼結温度以下の温度で30時間以上加熱する熱処理をして、前記拡散源粉末に含まれる重希土類元素RHを前記R−T−B系焼結磁石素材の表面から内部に拡散する拡散工程と、を含む。 In an exemplary embodiment, a method for manufacturing an RTB-based sintered magnet according to the present disclosure is a rare earth having a light rare earth element RL (RL is at least one selected from the group consisting of Nd, Pr, and Ce) as a main rare earth element. A step of preparing an RTB-based sintered magnet material (T is Fe or Fe and Co) having R 2 Fe 14 B type compound crystal grains contained as an element R as a main phase; and a heavy rare earth element RH (RH Is a step of preparing a diffusion source powder formed from a powder of an alloy or compound containing at least one selected from the group consisting of Tb, Dy and Ho, and a step of preparing a surface of the R-T-B based sintered magnet material. The step of bringing at least a portion of the diffusion source powder into contact with at least a portion, and the RTB-based sintered magnet material in a state where the diffusion source powder is in contact with the RTB-based sintered body at 800° C. or higher. Heat treatment is performed by heating the sintered magnet material at a temperature equal to or lower than the sintering temperature for 30 hours or more to transfer the heavy rare earth element RH contained in the diffusion source powder from the surface of the RTB-based sintered magnet material to the inside. And a diffusion step of diffusing.

ある実施形態は、前記拡散工程において、前記拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、前記R−T−B系焼結磁石素材の焼結温度以下の温度で30時間以上45時間以下加熱する熱処理をする。 In one embodiment, in the diffusion step, the RTB-based sintered magnet material in a state where the diffusion source powder is in contact is used at a temperature equal to or lower than the sintering temperature of the RTB-based sintered magnet material. Heat treatment is performed by heating for 30 hours or more and 45 hours or less.

ある実施形態は、前記拡散工程において、前記拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、前記R−T−B系焼結磁石素材の焼結温度以下の温度で35時間以上40時間以下加熱する熱処理をする。 In one embodiment, in the diffusion step, the RTB-based sintered magnet material in a state where the diffusion source powder is in contact is used at a temperature equal to or lower than the sintering temperature of the RTB-based sintered magnet material. Heat treatment is performed by heating for 35 hours or more and 40 hours or less.

ある実施形態において、前記拡散源粉末は、RHM合金粉末(MはNd、Pr、Ce、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1種)である。 In one embodiment, the diffusion source powder is RHM alloy powder (M is at least one selected from the group consisting of Nd, Pr, Ce, Cu, Ga, Fe, Co, Ni, and Al).

ある実施形態において、前記拡散源粉末は、Cuを含む。 In one embodiment, the diffusion source powder contains Cu.

ある実施形態において、前記R−T−B系焼結磁石素材の厚さ方向の寸法は1mm以上5mm以下である。 In one embodiment, the thickness of the RTB-based sintered magnet material in the thickness direction is 1 mm or more and 5 mm or less.

ある実施形態において、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程は、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を付着させる工程である。 In one embodiment, the step of bringing at least a part of the diffusion source powder into contact with at least a part of the surface of the RTB-based sintered magnet material is performed by It is a step of adhering at least a part of the diffusion source powder to at least a part of the surface.

本開示により、重希土類RHの使用量を低減し、Bの低下を抑制しつつ高いHcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 The present disclosure reduces the amount of heavy rare-earth RH, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high H cJ while suppressing a decrease in B r.

本発明者らは、特許文献1に記載の方法、例えば、R−T−B系焼結磁石素材の表面に重希土類元素RHを含む拡散源粉末を接触させ、拡散源粉末を接触させた状態のR−T−B系焼結磁石を加熱する熱処理をして重希土類元素RHをR−T−B系焼結磁石素材内部に拡散させる場合に、R−T−B系焼結磁石の表層領域において、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができないかの検討を行った。 The present inventors have made a method described in Patent Document 1, for example, a state in which a diffusion source powder containing a heavy rare earth element RH is brought into contact with the surface of an RTB-based sintered magnet material, and the diffusion source powder is brought into contact with the surface. When the heavy rare earth element RH is diffused into the RTB-based sintered magnet material by heat treatment for heating the RTB-based sintered magnet, the surface layer of the RTB-based sintered magnet. In the region, it was investigated whether or not the heavy rare earth element RH could not be diffused into the main phase shell part (near the grain boundary).

通常、拡散工程における加熱時間は、加熱時間を長くしていくと(例えば5時間から10時間)磁石の表層領域において主相内部への重希土類元素RHの拡散が進んでいく。よって、従来、加熱時間を長くすればするほど、磁石の表層領域において主相内部へ重希土類元素RHが拡散され、これによりBの低下を招き、さらに表層領域において多くの重希土類元素RHが消費されることで磁石の中央部分にまで十分な重希土類元素RHを拡散させることが困難となりHcJの向上が妨げられると考えられてきた。しかし、検討の結果、全く意外なことに、加熱時間を30時間以上行うと、主相内部に重希土類元素RHが拡散されず、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができることが分かった。また、磁石の表層領域からさらに奥の領域(磁石の中央部分)にまで重希土類元素RHを拡散させることができることが分かった。詳しいメカニズムは不明であるが、一度主相内部へ拡散された重希土類元素RHが長時間の加熱を行うことにより、今度は粒界へ逆に拡散され、逆に拡散された重希土類元素RHが粒界をとおって磁石の表層領域からさらに奥の領域へ拡散されたと考えられる。これによりBの低下を抑制しつつ高いHcJを有するR−T−B系焼結磁石を得ることができたと考えられる。また、この現象は、特許文献2〜4のような方法においては起こらないことが分かった。これは、特許文献1とは異なり重希土類元素RHが磁石表面に逐次新たに導入されるからだと考えられる。 Usually, the heating time in the diffusion step is such that as the heating time is lengthened (for example, 5 to 10 hours), diffusion of the heavy rare earth element RH into the main phase progresses in the surface layer region of the magnet. Therefore, conventionally, the more you increase the heating time, the heavy rare-earth element RH into the main phase inside the surface region of the magnet is diffused, thereby leading to decrease in B r, many heavy rare-earth element RH in the further surface region It has been considered that when consumed , it becomes difficult to diffuse sufficient heavy rare earth element RH to the central portion of the magnet, and improvement of H cJ is hindered. However, as a result of the investigation, surprisingly, when the heating time is longer than 30 hours, the heavy rare earth element RH is not diffused inside the main phase, and the heavy rare earth element RH is diffused into the outer phase of the main phase (near the grain boundary). It turned out that it can be diffused. It was also found that the heavy rare earth element RH can be diffused from the surface layer region of the magnet to a region further inside (the central portion of the magnet). Although the detailed mechanism is unknown, the heavy rare earth element RH once diffused inside the main phase is inversely diffused to the grain boundary by heating for a long time, and the diffused heavy rare earth element RH is inversely diffused. It is considered that the particles diffused from the surface layer region of the magnet to the inner region through the grain boundary. It believed it was possible to thereby obtain a R-T-B based sintered magnet having a high H cJ while suppressing a decrease in B r. It was also found that this phenomenon does not occur in the methods of Patent Documents 2 to 4. It is considered that this is because, unlike Patent Document 1, the heavy rare earth element RH is successively newly introduced to the magnet surface.

特許文献1には、拡散時間として1分〜100時間と非常に広い範囲で記載されているが、実施例は5時間〜20時間の範囲であり、好ましい範囲として5分〜8時間、特に10分〜6時間であると記載されている。また、特許文献2には、拡散時間として48時間及び60時間の記載があるが、上述したように、特許文献2に記載の方法では重希土類元素RHが磁石表面に逐次新たに導入されており、R−T−B系焼結磁石の表層領域において、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができない。 In Patent Document 1, the diffusion time is described in a very wide range of 1 minute to 100 hours, but the examples are in the range of 5 hours to 20 hours, and the preferable range is 5 minutes to 8 hours, and particularly 10 minutes. It is stated to be from minutes to 6 hours. Further, although Patent Document 2 describes that the diffusion time is 48 hours and 60 hours, as described above, in the method described in Patent Document 2, the heavy rare earth element RH is successively newly introduced onto the magnet surface. , R-T-B based sintered magnet, the heavy rare earth element RH cannot be diffused into the main phase shell part (near the grain boundary) in the surface layer region.

なお、本開示において、拡散工程前および拡散工程中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」と称し、拡散工程後のR−T−B系焼結磁石を単に「R−T−B系焼結磁石」と称する。また、本開示において「表層領域」とは、磁石表面から深さでおよそ20μm程度までの領域のことをいう。 In the present disclosure, the RTB-based sintered magnet before and during the diffusion step is referred to as an “RTB-based sintered magnet material”, and the RTB-based sintered magnet after the diffusion step is referred to. The binder magnet is simply referred to as "RTB-based sintered magnet". Further, in the present disclosure, the “surface layer region” refers to a region from the magnet surface to a depth of about 20 μm.

(R−T−B系焼結磁石素材を用意する工程)
軽希土類元素RL(RLはNd、PrおよびCeからなる群から選択された少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−T−B系焼結磁石素材(TはFe又はFeとCo)を用意する。
(Process of preparing R-T-B system sintered magnet material)
R-T-B having R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (RL is at least one selected from the group consisting of Nd, Pr and Ce) as a main rare earth element R as a main phase A sintered magnet material (T is Fe or Fe and Co) is prepared.

R−T−B系焼結磁石素材は公知のものが使用できる。例えば、以下の組成を有する。
希土類元素R:27.5〜35.0質量%、
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):0.80〜1.20質量%、
Ga:0〜0.8質量%、
添加元素M(Al、Cu、Zr、Nbからなる群から選択された少なくとも1種):0〜2質量%、
T(TはFe又はFeとCo)及び不可避不純物:残部。
As the RTB-based sintered magnet material, known materials can be used. For example, it has the following composition.
Rare earth element R: 27.5 to 35.0 mass%,
B (some of B (boron) may be substituted with C (carbon)): 0.80 to 1.20% by mass,
Ga: 0 to 0.8 mass%,
Additive element M (at least one selected from the group consisting of Al, Cu, Zr, and Nb): 0 to 2% by mass,
T (T is Fe or Fe and Co) and inevitable impurities: balance.

希土類元素Rは主として軽希土類元素RLを含有するが、重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含有していてもよい。 The rare earth element R mainly contains a light rare earth element RL, but may contain a heavy rare earth element RH (RH is at least one selected from the group consisting of Tb, Dy and Ho).

上記組成のR−T−B系焼結磁石素材は、公知の任意の製造方法によって製造される。R−T−B系焼結磁石素材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。 The RTB based sintered magnet material having the above composition is manufactured by any known manufacturing method. The RTB-based sintered magnet material may be as-sintered or may be subjected to cutting or polishing.

また、R−T−B系焼結磁石素材は、その厚さ方向の寸法が1mm以上5mm以下であることが好ましい。厚さ方向とは、例えば、磁石が矩形状で、4mm×4mm×2mmの場合は、2mmが厚さ方向となる。また、寸法が同じ場合、例えば、2mm×2mm×2mmの場合は、2mmが厚さ方向となる。厚さ方向の寸法が1mm未満になると強度不足によるひびや割れが発生する可能性があり、5mmを超えると、R−T−B系焼結磁石素材の中央部分にまで十分な重希土類元素RHを拡散させることが困難になる可能性がある。また、必ずしも厚さ方向が磁化方向である必要はなく、厚さ方向と異なる方向が磁化方向であってもよい。 Further, the RTB sintered magnet material preferably has a dimension in the thickness direction of 1 mm or more and 5 mm or less. For example, when the magnet has a rectangular shape and has a size of 4 mm×4 mm×2 mm, 2 mm is the thickness direction. When the dimensions are the same, for example, 2 mm×2 mm×2 mm, 2 mm is the thickness direction. If the dimension in the thickness direction is less than 1 mm, cracks and cracks may occur due to insufficient strength, and if it exceeds 5 mm, the heavy rare earth element RH sufficient to reach the central portion of the R-T-B based sintered magnet material is obtained. Can be difficult to spread. Further, the thickness direction does not necessarily have to be the magnetization direction, and a direction different from the thickness direction may be the magnetization direction.

(拡散源粉末を用意する工程)
重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含む合金または化合物の粉末から形成した拡散源粉末を用意する。
(Process of preparing diffusion source powder)
A diffusion source powder formed from an alloy or compound powder containing a heavy rare earth element RH (RH is at least one selected from the group consisting of Tb, Dy and Ho) is prepared.

拡散源粉末は、例えばRHM合金粉末(MはNd、Pr、Ce、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1種)である。 The diffusion source powder is, for example, a RHM alloy powder (M is at least one selected from the group consisting of Nd, Pr, Ce, Cu, Ga, Fe, Co, Ni, and Al).

RHM合金粉末の作製方法は、特に限定されない。ロール急冷法によって合金薄帯を作製し、この合金薄帯を粉砕する方法で作製してもよいし、遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい
。鋳造法で作製したインゴットを粉砕してもよい。RHM合金粉末の典型例は、DyFe合金粉末、DyAl合金粉末、DyCu合金粉末、TbFe合金粉末、TbAl合金粉末、TbCu合金粉末、DyFeCu合金粉末、TbCuAl合金粉末、TbNdPrCu合金粉末、TbNdCePrCu合金粉末、TbNdGa合金粉末、TbNdPrGaCu合金粉末などである。また、RHM合金粉末は、好ましくはCuを含む。Cuを含むことにより、R−T−B系焼結磁石素材の表層領域からさらに奥の領域(磁石の中央部分)にまで十分な重希土類元素RHを拡散させることができる。RHM合金粉末の粒度は、例えば500μm以下であり、小さいものは10μm程度である。
The method for producing the RHM alloy powder is not particularly limited. The alloy ribbon may be prepared by a roll quenching method, and the alloy ribbon may be crushed by a known atomizing method such as a centrifugal atomizing method, a rotating electrode method, a gas atomizing method, or a plasma atomizing method. May be. You may grind the ingot produced by the casting method. Typical examples of the RHM alloy powder are DyFe alloy powder, DyAl alloy powder, DyCu alloy powder, TbFe alloy powder, TbAl alloy powder, TbCu alloy powder, DyFeCu alloy powder, TbCuAl alloy powder, TbNdPrCu alloy powder, TbNdCePrCu alloy powder, TbNdGa alloy. Powder, TbNdPrGaCu alloy powder, and the like. Further, the RHM alloy powder preferably contains Cu. By containing Cu, it is possible to diffuse sufficient heavy rare earth element RH from the surface layer region of the R-T-B based sintered magnet material to a further inner region (center portion of the magnet). The particle size of the RHM alloy powder is, for example, 500 μm or less, and the small one is about 10 μm.

重希土類元素RHの化合物は、RHフッ化物、RH酸フッ化物、RH酸化物から選ばれる1種以上であり、これらを総称してRH化合物と称する。RH酸フッ化物は、RHフッ化物の製造工程における中間物質としてRHフッ化物に含まれるものであってもよい。入手可能な多くのRH化合物の粉末の粒度は、凝集した2次粒子の大きさにおいて、20μm以下、典型的には10μm以下、小さいものは1次粒子で数μm程度である。 The compound of the heavy rare earth element RH is at least one selected from RH fluorides, RH oxyfluorides, and RH oxides, and these are collectively referred to as RH compounds. The RH oxyfluoride may be contained in the RH fluoride as an intermediate substance in the production process of the RH fluoride. The particle size of many available RH compound powders is 20 μm or less, typically 10 μm or less in the size of agglomerated secondary particles, and the small one is about several μm in primary particles.

(R−T−B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を接触させる工程)
前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる。R−T−B系焼結磁石素材の表面に拡散源粉末を接触させる方法は特に問わない。R−T−B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を付着させることができればどのような方法でも良い。例えば、スプレー法、浸漬法、ディスペンサーによる塗布などがあげられる。また、R−T−B系焼結磁石素材の表面に粘着剤を塗布し、粘着剤が付着したR−T−B系焼結磁石素材の表面に拡散源粉末を散布する方法により付着させてもよい。例えば、流動させた拡散源粉末の中に粘着剤が塗布されたR−T−B系焼結磁石素材を浸漬させる方法いわゆる流動浸漬法(fluidized bed coating process)を用いてもよい。以下、流動浸漬法を応用する例について説明する。
(Step of contacting at least a part of the diffusion source powder with at least a part of the surface of the RTB-based sintered magnet material)
At least a part of the diffusion source powder is brought into contact with at least a part of the surface of the R-T-B based sintered magnet material. The method of bringing the diffusion source powder into contact with the surface of the RTB-based sintered magnet material is not particularly limited. Any method may be used as long as at least a part of the diffusion source powder can be attached to at least a part of the surface of the RTB-based sintered magnet material. For example, a spray method, a dipping method, coating with a dispenser, etc. may be mentioned. Also, by applying a pressure sensitive adhesive to the surface of the R-T-B type sintered magnet material, and by applying a diffusion source powder to the surface of the R-T-B type sintered magnet material with the pressure sensitive adhesive attached, Good. For example, a so-called fluidized bed coating process may be used in which an RTB-based sintered magnet material coated with an adhesive is immersed in a fluidized diffusion source powder. Hereinafter, an example of applying the fluidized-bed method will be described.

流動浸漬法は、従来、粉体塗装の分野で広く行われている方法であり、流動させた熱可塑性の粉体塗料の中に加熱した被塗物を浸漬し被塗物表面の熱によって塗料を融着させる方法である。この例では流動浸漬法を磁石に応用するために、熱可塑性の粉体塗料の代わりに上述の拡散源粉末を用い、加熱した塗布物の代わりに粘着剤が塗布されたR−T−B系焼結磁石素材を用いる。拡散源粉末を流動させる方法はどのような方法でも良い。例えば、1つの具体例として、下部に多孔質の隔壁を設けた容器を用いる方法を説明する。この例では、容器内に拡散源粉末を入れ、隔壁の下部から大気又は不活性ガスなどの気体に圧力をかけて容器内に注入し、その圧力又は気流で隔壁上方の拡散源粉末を浮かせて流動させることができる。 The fluidized dipping method has been widely used in the field of powder coating, and the heated coating material is dipped in the fluidized thermoplastic powder coating material to heat the surface of the coating material. Is a method of fusing. In this example, in order to apply the fluidized-bed method to a magnet, the above-mentioned diffusion source powder is used in place of the thermoplastic powder coating material, and an R-T-B system in which a pressure-sensitive adhesive is applied instead of the heated coating material. Use a sintered magnet material. Any method may be used for flowing the diffusion source powder. For example, as one specific example, a method of using a container provided with a porous partition wall in the lower part will be described. In this example, the diffusion source powder is put in a container, and a gas such as the atmosphere or an inert gas is injected into the container by applying pressure from the lower part of the partition wall, and the diffusion source powder above the partition wall is floated by the pressure or air flow. Can be fluidized.

容器の内部で流動する拡散源粉末に粘着剤が塗布されたR−T−B系焼結磁石素材を浸漬させる(あるいは配置する又は通過させる)ことで拡散源粉末をR−T−B系焼結磁石素材に付着させる。粘着剤が塗布されたR−T−B系焼結磁石素材を浸漬する時間は、例えば0.5〜5.0秒程度である。流動浸漬法を用いることで、容器内に拡散源粉末が流動(撹拌)されるため、比較的大きい粉末粒子が偏って磁石表面に付着したり、逆に比較的小さい粉末粒子が隔たって磁石表面に付着したりすることが抑制される。そのため、より均一にR−T−B系焼結磁石素材に拡散源粉末を付着させることができる。 The diffusion source powder is burnt in the RTB system by immersing (or placing or passing) the RTB system sintered magnet material coated with an adhesive in the diffusion source powder flowing inside the container. Attach it to the magnet material. The time for immersing the RTB-based sintered magnet material coated with the adhesive is, for example, about 0.5 to 5.0 seconds. By using the fluidized dipping method, the diffusion source powder is flown (stirred) in the container, so that relatively large powder particles are unevenly attached to the magnet surface, or conversely, relatively small powder particles are separated and the magnet surface It is suppressed that it adheres to. Therefore, the diffusion source powder can be more uniformly adhered to the RTB-based sintered magnet material.

(拡散工程)
拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、800℃以上R−T−B系焼結磁石素材の焼結温度以下の温度で30時間以上加熱する熱処理をして、前記拡散源粉末に含まれる重希土類元素RHを前記R−T−B系焼結磁石素材の表面から内部に拡散させる。加熱温度が800℃以下であると、重希土類元素RHを含む液相量が少なすぎてR−T−B系焼結磁石の内部への拡散が不十分となり高いHcJを得ることが出来ない可能性があり、焼結温度を超えると異常粒成長が発生し、B及びHcJが大きく低下する可能性がある。加熱温度は、好ましくは850℃以上950℃以下である。より高いHcJを得ることができる。また、熱処理は、公知の熱処理装置を用いて行うことができる。
(Diffusion process)
The heat treatment is performed by heating the RTB-based sintered magnet material in a state in which the diffusion source powder is in contact with the sintered material of the RTB-based sintered magnet material at a temperature of 800° C. or higher for 30 hours or more. The heavy rare earth element RH contained in the diffusion source powder is diffused from the surface of the RTB-based sintered magnet material to the inside. When the heating temperature is 800° C. or lower, the amount of the liquid phase containing the heavy rare earth element RH is too small and diffusion into the inside of the RTB -based sintered magnet is insufficient, so that high H cJ cannot be obtained. may, abnormal grain growth exceeds the sintering temperature occurs, there is a possibility that the B r and H cJ is reduced significantly. The heating temperature is preferably 850° C. or higher and 950° C. or lower. Higher H cJ can be obtained. The heat treatment can be performed using a known heat treatment device.

上述したように、加熱時間を30時間以上行うことにより、R−T−B系焼結磁石の表層領域において、重希土類元素RHを主相外殻部(粒界近傍)に拡散させることができ、磁石の表層領域からさらに奥の領域(磁石の中央部分)にまで重希土類元素RHを拡散させることができる。これにより、Bの低下を抑制しつつ高いHcJを有するR−T−B系焼結磁石を得ることができる。 As described above, by performing the heating time for 30 hours or more, the heavy rare earth element RH can be diffused into the main phase shell portion (near the grain boundary) in the surface layer region of the RTB sintered magnet. The heavy rare earth element RH can be diffused from the surface layer region of the magnet to a region further inside (the central portion of the magnet). Thus, it is possible to obtain the R-T-B based sintered magnet having a high H cJ while suppressing a decrease in B r.

本開示の拡散工程における加熱時間は、R−T−B系焼結磁石素材の温度が設定温度になった時(例えば設定温度が920℃の場合は920℃になった時)を開始点とし、設定温度よりも20℃を超えて低くなった時(例えば設定温度が920℃の場合は900℃未満になった時)を終了点とする。熱処理を2回以上に分けて行う場合は、合計時間が30時間以上になればよい。また、R−T−B系焼結磁石素材の温度は、例えば、磁石素材に熱電対をとりつけることにより測定することができる。加熱時間は、好ましくは30時間以上45時間以下であり、より好ましくは35時間以上40時間以下である。 The heating time in the diffusion step of the present disclosure has a starting point when the temperature of the RTB-based sintered magnet material reaches a set temperature (for example, when the set temperature is 920° C., it becomes 920° C.). The end point is when the temperature becomes lower than the set temperature by more than 20° C. (for example, when the set temperature is 920° C., the temperature becomes less than 900° C.). When the heat treatment is performed twice or more, the total time may be 30 hours or more. The temperature of the RTB-based sintered magnet material can be measured, for example, by attaching a thermocouple to the magnet material. The heating time is preferably 30 hours or longer and 45 hours or shorter, and more preferably 35 hours or longer and 40 hours or shorter.

拡散工程を行った後のR−T−B系焼結磁石は、磁気特性を向上させることを目的とした第二の熱処理を行ってもよい。第二の熱処理における温度、時間などの条件は、焼結磁石の熱処理条件として公知の条件(例えば、500℃で3時間)を採用することができる。また、最終的な磁石寸法の調整を研削などの機械加工等により行ってもよい。この場合、第二の熱処理の前に行っても、後に行ってもよい。 The RTB-based sintered magnet after the diffusion step may be subjected to a second heat treatment for the purpose of improving magnetic properties. As the conditions such as temperature and time in the second heat treatment, known conditions as heat treatment conditions for the sintered magnet (for example, 500° C. for 3 hours) can be adopted. Further, the final adjustment of the magnet size may be performed by machining such as grinding. In this case, it may be performed before or after the second heat treatment.

本開示を実施例によりさらに詳細に説明するが、本開示はそれらに限定されるものではない。 The present disclosure will be described in more detail by way of examples, but the present disclosure is not limited thereto.

実験例1
(R−T−B系焼結磁石素材を用意する工程)
R−T−B系焼結磁石素材がおよそ表1の符号1−Aの組成となるよう各元素を秤量しストリップキャスト法により鋳造し、厚み0.2〜0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
(Process of preparing R-T-B system sintered magnet material)
Each element is weighed and cast by the strip casting method so that the RTB sintered magnet material has a composition of 1-A in Table 1, and a flaky raw material alloy having a thickness of 0.2 to 0.4 mm. Got The obtained flaky raw material alloy was pulverized with hydrogen and then subjected to a dehydrogenation treatment of heating in vacuum to 550° C. and then cooling to obtain coarsely pulverized powder. Next, zinc stearate as a lubricant was added to the obtained coarsely pulverized powder in an amount of 0.04% by mass relative to 100% by mass of the coarsely pulverized powder, and the mixture was mixed. After dry pulverization in a nitrogen stream, finely pulverized powder (alloy powder) having a particle size D 50 of 4 μm was obtained. The particle diameter D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.

前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100質量%に対して0.05質量%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate as a lubricant was added to the finely pulverized powder in an amount of 0.05% by mass relative to 100% by mass of the finely pulverized powder, and the mixture was molded in a magnetic field to obtain a molded body. A so-called orthogonal magnetic field molding device (transverse magnetic field molding device) in which the magnetic field applying direction and the pressurizing direction are orthogonal to each other was used as the molding device.

得られた成形体を4時間焼結(焼結による緻密化が十分起こる温度を選定)し、R−T−B系焼結磁石素材(No.1−A)を複数個用意した。得られたR−T−B系焼結磁石素材の密度は7.5Mg/m以上であった。得られたR−T−B系焼結磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP−OES)を使用して測定した。なお、焼結体の酸素量をガス融解−赤外線
吸収法で測定した結果、0.1質量%前後であることを確認した。また、No.1−AのR−T−B系焼結磁石素材を切断、切削加工し、4.4mm×10.0mm×11.0mmの直方体(10.0mm×11.0mmの面が配向方向と垂直な面、4.4mm方向が厚み方向であり、配向方向)とした。
The obtained molded body was sintered for 4 hours (a temperature at which sufficient densification by sintering was sufficient was selected), and a plurality of RTB-based sintered magnet materials (No. 1-A) were prepared. The density of the obtained RTB-based sintered magnet material was 7.5 Mg/m 3 or more. The results of the components of the obtained RTB-based sintered magnet material are shown in Table 1. In addition, each component in Table 1 was measured using the high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the sintered body by a gas melting-infrared absorption method, it was confirmed that the oxygen content was around 0.1 mass %. In addition, No. The 1-A RTB-based sintered magnet material was cut and cut to obtain a rectangular parallelepiped of 4.4 mm x 10.0 mm x 11.0 mm (a plane of 10.0 mm x 11.0 mm is perpendicular to the orientation direction). In the plane, the 4.4 mm direction is the thickness direction and is the orientation direction).

(拡散源粉末を用意する工程)
表2のNo.1−aに示す組成の合金粉末をアトマイズ法により作成することにより、拡散源粉末を用意した。得られた拡散源粉末の粒度は106μm以下であった。
(Process of preparing diffusion source powder)
No. of Table 2 A diffusion source powder was prepared by preparing an alloy powder having a composition shown in 1-a by an atomizing method. The particle size of the obtained diffusion source powder was 106 μm or less.

(R−T−B系焼結磁石素材の表面の少なくとも一部に、拡散源粉末の少なくとも一部を接触させる工程)
次に、表1のNo.1−AのR−T−B系焼結磁石素材表面全面に粘着剤を塗布した。塗布方法は、R−T−B系焼結磁石素材をホットプレート上で60℃に加熱後、スプレー法でR−T−B系焼結磁石素材に粘着剤を塗布した。粘着剤としてPVP(ポリビニルピロリドン)を用いた。
(Step of contacting at least a part of the diffusion source powder with at least a part of the surface of the RTB-based sintered magnet material)
Next, in Table 1, No. An adhesive was applied to the entire surface of the 1-A RTB-based sintered magnet material. As an application method, an RTB-based sintered magnet material was heated to 60° C. on a hot plate, and then an adhesive was applied to the RTB-based sintered magnet material by a spray method. PVP (polyvinylpyrrolidone) was used as an adhesive.

次に、粘着剤を塗布したR−T−B系焼結磁石素材(No.1−A)に対して、表2のNo.1−aの拡散源粉末を付着させた。付着方法は、容器に拡散源粉末を広げ、容器内で拡散源粉末を、粘着剤を塗布したR−T−B系焼結磁石素材全面にまぶすように付着させた。 Next, with respect to the RTB-based sintered magnet material (No. 1-A) coated with an adhesive, the No. The diffusion source powder of 1-a was attached. As the adhesion method, the diffusion source powder was spread in a container, and the diffusion source powder was adhered to the entire surface of the R-T-B based sintered magnet material coated with the pressure-sensitive adhesive in the container.

(拡散工程)
管状流気炉を用いて、200Paに制御した減圧アルゴン中で、拡散源粉末(No.1−a)が接触した状態のR−T−B系焼結磁石素材を、920℃で36時間加熱する熱処理(拡散処理)を行った。更に拡散処理後のR−T−B系焼結磁石に対し、490℃で6時間加熱する第二の熱処理を行いR−T−B系焼結磁石(No.1−1)を得た。また、拡散処理における加熱時間を36時間から10時間に変更する以外はNo.1−1のR−T−B系焼結磁石と同様にしてR−T−B系焼結磁石(No.1−2)を作製した。得られたR−T−B系焼結磁石(No.1−1及びNo.1−2)の磁気特性をB−Hトレーサによって測定した。各試料のB及びHcJを測定した。結果を表3に示す。
(Diffusion process)
Using a tubular flow furnace, the RTB-based sintered magnet material in a state in which the diffusion source powder (No. 1-a) was in contact was heated at 920° C. for 36 hours in reduced pressure argon controlled to 200 Pa. Heat treatment (diffusion treatment) was performed. Further, the RTB-based sintered magnet after the diffusion treatment was subjected to a second heat treatment of heating at 490° C. for 6 hours to obtain an RTB-based sintered magnet (No. 1-1). In addition, except that the heating time in the diffusion process was changed from 36 hours to 10 hours. An RTB-based sintered magnet (No. 1-2) was produced in the same manner as the RTB-based sintered magnet of 1-1. The magnetic characteristics of the obtained RTB-based sintered magnets (No. 1-1 and No. 1-2) were measured by a BH tracer. The B r and H cJ of each sample was measured. The results are shown in Table 3.

表3に示すように、加熱時間を36時間行うことにより、Bの低下を抑制しつつ、高いHcJが得られている。 As shown in Table 3, by heating time 36 hours, while suppressing a decrease in B r, a high H cJ are achieved.

No.1−1(本発明例)およびNo.1−2(比較例)の磁石表面近傍の断面を走査電子顕微鏡(SEM:日本電子製JCM−6000)で観察し、主相結晶粒におけるTbの濃化層を確認した。その結果、本発明例(No.1−1)は、R−T−B系焼結磁石の表層領域において、主相外殻部に重希土類元素RH(Tb)の薄いシャル相(RH濃化層)が分布しているのを確認できたのに対し、比較例(No.2−1)は、R−T−B系焼結磁石の表層領域において、主相の中央部分に近いところまでも重希土類元素RH(Tb)が拡散していることを確認した。 No. 1-1 (Example of the present invention) and No. A cross section near the magnet surface of 1-2 (Comparative Example) was observed with a scanning electron microscope (SEM: JCM-6000 manufactured by JEOL Ltd.) to confirm a concentrated layer of Tb in the main phase crystal grains. As a result, in the example of the present invention (No. 1-1), in the surface layer region of the R-T-B system sintered magnet, a thin char phase (RH concentration) of the heavy rare earth element RH(Tb) is present in the outer shell of the main phase. However, in the comparative example (No. 2-1), in the surface layer region of the RTB-based sintered magnet, it is possible to reach a position close to the central portion of the main phase. It was also confirmed that the heavy rare earth element RH(Tb) was diffused.

また、No.1−1及びNo.1−2の磁石中央部におけるTbの量を測定した所、No.1−1はTbが測定されたのに対し、No.1−2はTbが測定されなかった。 In addition, No. 1-1 and No. When the amount of Tb in the central portion of the magnet No. 1-2 was measured, No. In No. 1-1, Tb was measured, whereas in No. 1-1. 1-2, Tb was not measured.

実験例2
実施例1のNo.1-AのR−T−B系焼結磁石素材を準備した。そして、表3のNo.2−a〜2−eに示す組成の合金粉末をアトマイズ法により作成することにより、拡散源粉末を用意した。得られた拡散源粉末の粒度は106μm以下であった。
Experimental example 2
No. 1 of the first embodiment. A 1-A RTB sintered magnet material was prepared. Then, in Table 3, No. Diffusion source powders were prepared by making alloy powders having compositions shown in 2-a to 2-e by an atomizing method. The particle size of the obtained diffusion source powder was 106 μm or less.

次に、表5の加熱時間にて行う以外は、実施例1と同様にして熱処理(拡散処理)を行った。更に拡散処理後のR−T−B系焼結磁石に対し、実施例1と同様にして第二の熱処理を行いR−T−B系焼結磁石(No.2−1〜2−11)を得た。得られたR−T−B系焼結磁石(No.2−1〜2−11)の磁気特性をB−HトレーサによってB及びHcJを測定した。結果を表5に示す。 Next, heat treatment (diffusion treatment) was performed in the same manner as in Example 1 except that the heating time shown in Table 5 was used. Furthermore, the RTB-based sintered magnet after the diffusion treatment is subjected to the second heat treatment in the same manner as in Example 1, and the RTB-based sintered magnet (No. 2-1 to 2-11). Got Magnetic properties of the obtained R-T-B based sintered magnet (No.2-1~2-11) the by B-H tracer was measured B r and H cJ. The results are shown in Table 5.

表5に示すように、同じR−T−B系焼結磁石素材および拡散源粉末を用いた本発明例と比較例(No.2−1および2−2、No.2−3および2−4、No.2−5および2−6、No.2−7および2−8、No.2−9および2−10)をそれぞ比べると、いずれも本発明例の方がBの低下を抑制しつつ、高いHcJが得られている。また、No.2−9(加熱時間:38時間)とNo.2−11(加熱時間:45時間)の本発明例を比べると同等の磁気特性レベルである。そのため、加熱する時間は30時間以上45時間以下が好ましく、30時間以上40時間以下がさらに好ましい。 As shown in Table 5, examples of the present invention and comparative examples (No. 2-1 and 2-2, No. 2-3 and 2-) using the same RTB-based sintered magnet material and diffusion source powder. 4, No. 2-5 and 2-6, Nanba2-7 and 2-8, when compared respectively it No.2-9 and 2-9), both decrease toward the present invention examples of B r While high H cJ is obtained. In addition, No. 2-9 (heating time: 38 hours) and No. 2-11 (heating time: 45 hours) has the same magnetic characteristic level when compared with the examples of the present invention. Therefore, the heating time is preferably 30 hours or more and 45 hours or less, and more preferably 30 hours or more and 40 hours or less.

本開示により得られたR−T−B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)や、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品等などに好適に利用することができる。 The RTB-based sintered magnet obtained according to the present disclosure is used in various types of motors such as voice coil motors (VCM) for hard disk drives, electric vehicle (EV, HV, PHV, etc.) motors, industrial equipment motors, and the like. It can be suitably used for home electric appliances and the like.

Claims (7)

軽希土類元素RL(RLはNd、PrおよびCeからなる群から選択された少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有
するR−T−B系焼結磁石素材(TはFe又はFeとCo)を用意する工程と、
重希土類元素RH(RHはTb、DyおよびHoからなる群から選択された少なくとも1種)を含む合金または化合物の粉末から形成した拡散源粉末を用意する工程と、
前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程と、
前記拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、800℃以上前記R−T−B系焼結磁石素材の焼結温度以下の温度で30時間以上加熱する熱処理をして、前記拡散源粉末に含まれる重希土類元素RHを前記R−T−B系焼結磁石素材の表面から内部に拡散する拡散工程と、
を含む、R−T−B系焼結磁石の製造方法。
R-T-B having R 2 Fe 14 B type compound crystal grains containing a light rare earth element RL (RL is at least one selected from the group consisting of Nd, Pr and Ce) as a main rare earth element R as a main phase Of preparing a system-based sintered magnet material (T is Fe or Fe and Co),
Providing a diffusion source powder formed from an alloy or compound powder containing a heavy rare earth element RH (RH is at least one selected from the group consisting of Tb, Dy and Ho);
Contacting at least a portion of the diffusion source powder with at least a portion of the surface of the RTB-based sintered magnet material,
A heat treatment for heating the RTB-based sintered magnet material in a state where the diffusion source powder is in contact with the RTB-based sintered magnet material at a temperature of 800° C. or higher and a temperature not higher than the sintering temperature of the RTB-based sintered magnet material for 30 hours or more. And a diffusion step of diffusing the heavy rare earth element RH contained in the diffusion source powder from the surface of the RTB-based sintered magnet material to the inside,
The manufacturing method of the RTB type|system|group sintered magnet containing.
前記拡散工程において、前記拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、前記R−T−B系焼結磁石素材の焼結温度以下の温度で30時間以上45時間以下加熱する熱処理をする、請求項1に記載のR−T−B系焼結磁石の製造方法。 In the diffusion step, the RTB-based sintered magnet material in a state where the diffusion source powder is in contact with the RTB-based sintered magnet material is at a temperature not higher than the sintering temperature of the RTB-based sintered magnet material for 30 hours or more and 45 hours. The method for producing an RTB-based sintered magnet according to claim 1, wherein a heat treatment of heating is performed below. 前記拡散工程において、前記拡散源粉末が接触した状態のR−T−B系焼結磁石素材を、前記R−T−B系焼結磁石素材の焼結温度以下の温度で35時間以上40時間以下加熱する熱処理をする、請求項1に記載のR−T−B系焼結磁石の製造方法。 In the diffusion step, the RTB-based sintered magnet material in a state where the diffusion source powder is in contact with the RTB-based sintered magnet material is at a temperature equal to or lower than the sintering temperature of the RTB-based sintered magnet material for 35 hours or more and 40 hours. The method for producing an RTB-based sintered magnet according to claim 1, wherein a heat treatment of heating is performed below. 前記拡散源粉末は、RHM合金粉末(MはNd、Pr、Ce、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1種)である、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。 The diffusion source powder is a RHM alloy powder (M is at least one selected from the group consisting of Nd, Pr, Ce, Cu, Ga, Fe, Co, Ni, and Al). The method for manufacturing an RTB-based sintered magnet according to any one of claims. 前記拡散源粉末は、Cuを含む、請求項1から4のいずれかに記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, wherein the diffusion source powder contains Cu. 前記R−T−B系焼結磁石素材の厚さ方向の寸法は1mm以上5mm以下である、請求項1から5のいずれかに記載のR−T−B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to claim 1, wherein a dimension of the RTB-based sintered magnet material in a thickness direction is 1 mm or more and 5 mm or less. 前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を接触させる工程は、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記拡散源粉末の少なくとも一部を付着させる工程である、請求項1から6のいずれかに記載のR−T−B系焼結磁石の製造方法。 The step of bringing at least a part of the diffusion source powder into contact with at least a part of the surface of the RTB-based sintered magnet material includes at least a part of the surface of the RTB-based sintered magnet material. The method for producing an RTB-based sintered magnet according to claim 1, which is a step of adhering at least a part of the diffusion source powder to.
JP2019231381A 2018-12-25 2019-12-23 Method for manufacturing r-t-b based sintered magnet Pending JP2020107888A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240701 2018-12-25
JP2018240701 2018-12-25

Publications (1)

Publication Number Publication Date
JP2020107888A true JP2020107888A (en) 2020-07-09

Family

ID=71449480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231381A Pending JP2020107888A (en) 2018-12-25 2019-12-23 Method for manufacturing r-t-b based sintered magnet

Country Status (1)

Country Link
JP (1) JP2020107888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001041A1 (en) * 2022-06-30 2024-01-04 浙江东阳东磁稀土有限公司 Modified sintered neodymium-iron-boron permanent magnet material and preparation method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114200A (en) * 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet
JP2011082467A (en) * 2009-10-10 2011-04-21 Toyota Central R&D Labs Inc Rare earth magnetic material and method for producing the same
US20170103835A1 (en) * 2015-10-07 2017-04-13 Tdk Corporation R-t-b based sintered magnet
JP2017073463A (en) * 2015-10-07 2017-04-13 Tdk株式会社 R-T-B based sintered magnet
JP2018142641A (en) * 2017-02-28 2018-09-13 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2019062152A (en) * 2017-09-28 2019-04-18 日立金属株式会社 Diffusion source

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010114200A (en) * 2008-11-05 2010-05-20 Daido Steel Co Ltd Method of manufacturing rare-earth magnet
JP2011082467A (en) * 2009-10-10 2011-04-21 Toyota Central R&D Labs Inc Rare earth magnetic material and method for producing the same
US20170103835A1 (en) * 2015-10-07 2017-04-13 Tdk Corporation R-t-b based sintered magnet
JP2017073465A (en) * 2015-10-07 2017-04-13 Tdk株式会社 R-T-B based sintered magnet
JP2017073463A (en) * 2015-10-07 2017-04-13 Tdk株式会社 R-T-B based sintered magnet
JP2018142641A (en) * 2017-02-28 2018-09-13 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP2019062152A (en) * 2017-09-28 2019-04-18 日立金属株式会社 Diffusion source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001041A1 (en) * 2022-06-30 2024-01-04 浙江东阳东磁稀土有限公司 Modified sintered neodymium-iron-boron permanent magnet material and preparation method therefor

Similar Documents

Publication Publication Date Title
JP6361813B2 (en) Method for producing RTB-based sintered magnet
JP6005768B2 (en) NdFeB sintered magnet and manufacturing method thereof
JP6488976B2 (en) R-T-B sintered magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
JP6521391B2 (en) Method of manufacturing RTB based sintered magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP2015179841A (en) Method for manufacturing r-t-b-based sintered magnet
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
JP6733398B2 (en) Method for manufacturing RTB-based sintered magnet
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
JP2019169542A (en) Method for manufacturing r-t-b based sintered magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6946905B2 (en) Diffusion source
JP6939339B2 (en) Manufacturing method of RTB-based sintered magnet
JP7424126B2 (en) RTB series permanent magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP6946904B2 (en) Diffusion source
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP6623998B2 (en) Method for producing RTB based sintered magnet
JP2022008212A (en) R-t-b based permanent magnet and motor
CN111489874A (en) Method for producing R-T-B sintered magnet
JP2020120101A (en) Method for manufacturing r-t-b based sintered magnet
JP7447573B2 (en) RTB series permanent magnet
CN111724961B (en) R-T-B permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240318