JP2018142641A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2018142641A
JP2018142641A JP2017036527A JP2017036527A JP2018142641A JP 2018142641 A JP2018142641 A JP 2018142641A JP 2017036527 A JP2017036527 A JP 2017036527A JP 2017036527 A JP2017036527 A JP 2017036527A JP 2018142641 A JP2018142641 A JP 2018142641A
Authority
JP
Japan
Prior art keywords
sintered magnet
alloy
compound
based sintered
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017036527A
Other languages
Japanese (ja)
Other versions
JP6717231B2 (en
Inventor
三野 修嗣
Nobutsugu Mino
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2017036527A priority Critical patent/JP6717231B2/en
Publication of JP2018142641A publication Critical patent/JP2018142641A/en
Application granted granted Critical
Publication of JP6717231B2 publication Critical patent/JP6717231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an R-T-B based sintered magnet which is increased in intrinsic coercive force and corrosion resistance.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises the steps of: preparing an R-T-B based sintered magnet; and performing a thermal treatment at a sintering temperature or below in a state in which powder of RLRHM1 alloy (RL represents Nd and/or Pr, RH represents Dy and/or Tb, M1 represents one or more kinds selected from Al, Cu, Fe, Ga, Co, Ni and Zn) and powder of M2 compound (M2 represents one or more kinds selected from Al, Li, Fe and Cu, and the M2 compound is M2 fluoride and/or M2 oxide) are present on the surface of the magnet. The alloy includes RL+RH at 50 atom% or more to a whole amount thereof, and M1 at 10 atom% or more, provided that the atomic ratio of RL and RH is given by RL:RH=96:4-10:90. The alloy has a melting point equal to or below the temperature of the thermal treatment. The thermal treatment is performed in a state in which the alloy powder and the M2 compound powder are present on the surface of the magnet at a mass ratio given by Alloy:M2 compound=97:3-80:20.SELECTED DRAWING: None

Description

本発明は、R14B型化合物を主相として有するR−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo、Bはホウ素)の製造方法に関する。 The present invention relates to a method for producing an R-T-B based sintered magnet (R is a rare earth element, T is Fe or Fe and Co, and B is boron) having an R 2 T 14 B type compound as a main phase.

14B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 An RTB-based sintered magnet mainly composed of an R 2 T 14 B-type compound is known as the most powerful magnet among permanent magnets. It is used for various motors such as motors for automobiles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 The RTB -based sintered magnet has irreversible thermal demagnetization because its intrinsic coercive force H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperatures. In order to avoid irreversible thermal demagnetization, when used for motors, etc., it is required to maintain a high HcJ even at high temperatures.

R−T−B系焼結磁石は、主相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度B(以下、単に「B」と表記する)が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。 It is known that the RTB-based sintered magnet improves HcJ when a part of R in the main phase is replaced with a heavy rare earth element RH (Dy, Tb). In order to obtain high HcJ at a high temperature, it is effective to add a large amount of heavy rare earth element RH in the RTB-based sintered magnet. However, when the light rare earth element RL (Nd, Pr) is substituted as R in the RTB-based sintered magnet with the heavy rare earth element RH, H cJ is improved, while the residual magnetic flux density B r (hereinafter simply “ There is a problem that “B r ”) is reduced. Further, since the heavy rare earth element RH is a rare resource, it is required to reduce the amount of use thereof.

そこで、近年、Bを低下させないように、より少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHを効果的にR−T−B系焼結磁石に供給し拡散させる方法として、特許文献1、2にRHと、各種金属Mの合金をR−T−B系焼結磁石の表面に存在させた状態で熱処理することによって、RHやMを効率よくR−T−B系焼結磁石に拡散させて、R−T−B系焼結磁石のHcJを高める方法が開示されている。 In recent years, so as not to reduce the B r, to improve the H cJ of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH. For example, as a method for effectively supplying and diffusing heavy rare earth elements RH to an RTB-based sintered magnet, Patent Documents 1 and 2 disclose that RH and alloys of various metals M are RTB-based sintered. There is a method in which RH and M are efficiently diffused into the RTB -based sintered magnet by heat treatment in the state of being present on the surface of the magnet, thereby increasing the HcJ of the RTB -based sintered magnet. It is disclosed.

特開2008−263179号公報JP 2008-263179 A 特開2011−14668号公報JP 2011-14668 A

R−T−B系焼結磁石は、反応性の高いRを含むため、大気中で酸化腐食されやすく、耐食性の上で弱点を有している。このため、通常のR−T−B系焼結磁石は、その表面に金属被膜や樹脂被膜などの耐食性被膜が形成された状態で実用に供される。   Since the RTB-based sintered magnet contains R having high reactivity, it is easily oxidized and corroded in the atmosphere, and has a weak point in terms of corrosion resistance. For this reason, an ordinary RTB-based sintered magnet is put to practical use in a state where a corrosion-resistant film such as a metal film or a resin film is formed on the surface thereof.

一方、IPM(Interior Permanent Magnet)モータなどのように磁石が部品に埋め込まれて使用される場合は、耐食性被膜を磁石の表面に形成することは必要とされない。しかし、磁石が製造されてから部品に埋め込まれるまでの期間においては、磁石の耐食性を確保することが必要になる。このため、種々の簡易耐食性向上技術が提案されているが、それらは、耐食性を向上させるためだけの特別の工程を必要とする。   On the other hand, when a magnet is used by being embedded in a component, such as an IPM (Interior Permanent Magnet) motor, it is not necessary to form a corrosion-resistant coating on the surface of the magnet. However, it is necessary to ensure the corrosion resistance of the magnet in the period from when the magnet is manufactured to when it is embedded in the component. For this reason, various simple corrosion resistance improvement techniques have been proposed, but they require a special process only for improving the corrosion resistance.

本発明の実施形態は、耐食性を向上させるための特別の工程を付加することなく、R−T−B系焼結磁石のHcJ向上および耐食性向上の両方を達成できることのできるR−T−B系焼結磁石の製造方法を提供する。 In the embodiment of the present invention, R-T-B can achieve both improvement of HcJ and improvement of corrosion resistance of an R-T-B type sintered magnet without adding a special step for improving the corrosion resistance. A method for producing a sintered magnet is provided.

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo、Bはホウ素)を用意する工程と、前記R−T−B系焼結磁石の表面にRLRHM1合金(RLはNdおよび/またはPr、RHはDyおよび/またはTb、M1はAl、Cu、Fe、Ga、Co、Ni、Znからなる群から選ばれる1種以上)の粉末と、M2化合物(M2はAl、Li、Fe、Cuからなる群から選ばれる1種以上、M2化合物はM2フッ化物および/またはM2酸化物)の粉末とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程とを含み、前記RLRHM1合金はRL+RHをRLRHM1合金全体の50原子%以上、M1をRLRHM1合金全体の10原子%以上、かつ、RLとRHをRL:RH=96:4〜10:90の原子比で含み、かつ、前記RLRHM1合金の融点は前記熱処理の温度以下であり、
前記熱処理は、前記RLRHM1合金の粉末と前記M2化合物の粉末とが、RLRHM1合金:M2化合物=97:3〜80:20の質量比で前記R−T−B系焼結磁石の前記表面に存在する状態で行われる。
In the exemplary embodiment, the manufacturing method of the RTB-based sintered magnet of the present disclosure includes an RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co, and B is boron. ) And an RLRHM1 alloy (RL is Nd and / or Pr, RH is Dy and / or Tb, M1 is Al, Cu, Fe, Ga, Co) , One or more selected from the group consisting of Ni, Zn) and an M2 compound (M2 is one or more selected from the group consisting of Al, Li, Fe, Cu), and the M2 compound is M2 fluoride and / or M2 And a heat treatment at a temperature lower than the sintering temperature of the RTB-based sintered magnet, and the RLRHM1 alloy contains RL + RH at 50 atomic% of the entire RLRHM1 alloy. M1 is now RLR M1 alloy entire 10 atomic% or more, and, the RH and RL RL: RH = 96: 4~10: contains an atomic ratio of 90, and the melting point of the RLRHM1 alloy is less than the temperature of the heat treatment,
In the heat treatment, the RLRHM1 alloy powder and the M2 compound powder are present on the surface of the RTB-based sintered magnet in a mass ratio of RLRHM1 alloy: M2 compound = 97: 3 to 80:20. To be done.

ある実施形態において、前記M2化合物はAlフッ化物である。   In one embodiment, the M2 compound is Al fluoride.

ある実施形態において、前記M2化合物はAlである。 In certain embodiments, the M2 compound is Al 2 O 3.

本開示の実施形態によると、耐食性を向上させるための特別の工程を付加することなく、R−T−B系焼結磁石のHcJ向上および耐食性向上の両方を達成できる。 According to the embodiment of the present disclosure, both the HcJ improvement and the corrosion resistance improvement of the RTB -based sintered magnet can be achieved without adding a special process for improving the corrosion resistance.

R−T−B系焼結磁石のPCT試験による減耗量とM2化合物との関係を示すグラフである。It is a graph which shows the relationship between the amount of wear by the PCT test of a RTB system sintered magnet, and M2 compound.

本発明者は、R−T−B系焼結磁石のHcJ向上と耐食性向上をともに達成できる工程として、R−T−B系焼結磁石の表面にRLRHM1合金と、M2化合物(M2はAl、Li、Fe、Cuからなる群から選ばれる1種以上、M2化合物はM2フッ化物および/またはM2酸化物)とを存在させて熱処理する工程を行うことが有効であることを見出した。 As a process that can achieve both improvement of HcJ and corrosion resistance of the R-T-B system sintered magnet, the present inventor has developed an RLRHM1 alloy, M2 compound (M2 is Al on the surface of the R-T-B system sintered magnet). It has been found that it is effective to perform a heat treatment in the presence of one or more selected from the group consisting of Li, Fe, Cu, M2 compound and M2 fluoride and / or M2 oxide).

[R−T−B系焼結磁石母材の準備]
重希土類元素RHの拡散の対象とするR−T−B系焼結磁石母材を準備する。本明細書では、わかりやすさのため、重希土類元素RHの拡散の対象とするR−T−B系焼結磁石をR−T−B系焼結磁石母材と厳密に称することがあるが、「R−T−B系焼結磁石」の用語はそのような「R−T−B系焼結磁石母材」を含むものとする。このR−T−B系焼結磁石母材は公知のものが使用でき、例えば以下の組成を有する。
希土類元素R:12〜17原子%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):5〜8原子%
添加元素M´(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0〜2原子%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)および不可避不純物:残部
[Preparation of RTB-based sintered magnet base material]
An RTB-based sintered magnet base material to be diffused of the heavy rare earth element RH is prepared. In this specification, for the sake of easy understanding, an RTB-based sintered magnet that is an object of diffusion of the heavy rare earth element RH may be strictly referred to as an RTB-based sintered magnet base material. The term “RTB-based sintered magnet” includes such an “RTB-based sintered magnet base material”. As this RTB-based sintered magnet base material, a known material can be used, for example, having the following composition.
Rare earth element R: 12-17 atom%
B (a part of B (boron) may be substituted with C (carbon)): 5 to 8 atomic%
Additive element M ′ (selected from the group consisting of Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one): 0 to 2 atomic%
T (a transition metal element mainly composed of Fe and may contain Co) and inevitable impurities: balance

ここで、希土類元素Rは、主として軽希土類元素RL(Nd、Prから選択される少なくとも1種の元素)であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、DyおよびTbの少なくとも一方を含むことが好ましい。   Here, the rare earth element R is mainly a light rare earth element RL (at least one element selected from Nd and Pr), but may contain a heavy rare earth element. In addition, when a heavy rare earth element is contained, it is preferable that at least one of Dy and Tb is included.

上記組成のR−T−B系焼結磁石母材は、任意の製造方法によって製造される。R−T−B系焼結磁石母材は焼結上がりでもよいし、切削加工や研磨加工が施されていてもよい。   The RTB-based sintered magnet base material having the above composition is manufactured by an arbitrary manufacturing method. The RTB-based sintered magnet base material may be sintered, or may be subjected to cutting or polishing.

[RLRHM1合金]
RLRHM1合金のRLは、Ndおよび/またはPrであり、RHはDyおよび/またはTbであり、M1はAl、Cu、Fe、Ga、Co、Ni、Znからなる群から選ばれる1種以上である。RLRHM1合金は、RL+RHをRLRHM1合金全体の50原子%以上、M1をRLRHM1合金全体の10原子%以上、かつ、RLとRHをRL:RH=96:4〜10:90の原子比で含む。RL:RHは90:10〜20:80が好ましい。RLRHM1合金の融点は拡散熱処理の温度以下である。
[RLLRHM1 alloy]
In the RLRHM1 alloy, RL is Nd and / or Pr, RH is Dy and / or Tb, and M1 is one or more selected from the group consisting of Al, Cu, Fe, Ga, Co, Ni, and Zn. . The RLRHM1 alloy contains RL + RH at 50 atomic% or more of the entire RLRHM1 alloy, M1 at 10 atomic% or more of the entire RLRHM1 alloy, and RL and RH in an atomic ratio of RL: RH = 96: 4 to 10:90. RL: RH is preferably 90:10 to 20:80. The melting point of the RLRHM1 alloy is lower than the temperature of the diffusion heat treatment.

RLとしては、M2化合物を還元する効果が高いNdおよび/またはPrとする。M1は、RLRHM1合金の融点を後述の拡散熱処理温度以下に下げ、かつ、磁石特性に悪影響を与えない、Al、Cu、Fe、Ga、Co、Ni、Znからなる群から選ばれる1種以上とする。   RL is Nd and / or Pr, which has a high effect of reducing the M2 compound. M1 is one or more selected from the group consisting of Al, Cu, Fe, Ga, Co, Ni, and Zn, which lowers the melting point of the RLRHM1 alloy below the diffusion heat treatment temperature described below and does not adversely affect the magnet properties. To do.

RLRHM1合金は、磁石内に拡散させてHcJを向上させるRHを供給する拡散剤の役割と、M2化合物を還元する還元剤の役割の両方を果たすと考えられる。RL:RHが96:4よりRHが少ない側、すなわち、RHがRL+RHの4原子%未満であると、十分にHcJを向上させるに足るRHを供給することができない。RL:RHが10:90よりRLが少ない側であると、すなわち、RLがRL+RHの10原子%未満であると、M2化合物を還元する力が足りず、HcJを向上させる効果が発揮できにくい。 The RLRHM1 alloy is thought to play both the role of a diffusing agent that diffuses in the magnet to improve HcJ and the role of a reducing agent that reduces the M2 compound. When RH: RH is less than 96: 4, that is, when RH is less than 4 atom% of RL + RH, RH sufficient to sufficiently improve HcJ cannot be supplied. When RL: RH is on the side where RL is less than 10:90, that is, when RL is less than 10 atomic% of RL + RH, the ability to reduce the M2 compound is insufficient and the effect of improving HcJ is difficult to be exhibited. .

RHを十分に磁石中に拡散させ、M2化合物を還元するために、RLRHM1合金は拡散熱処理の際に溶融することが好ましい。したがって、RLRHM1合金の融点は拡散熱処理の温度以下であることが好ましいが、そのためには、M1がRLRHM1合金全体の10原子%以上必要である。   In order to sufficiently diffuse RH into the magnet and reduce the M2 compound, the RLRHM1 alloy is preferably melted during the diffusion heat treatment. Therefore, the melting point of the RLRHM1 alloy is preferably equal to or lower than the temperature of the diffusion heat treatment. For this purpose, M1 is required to be 10 atomic% or more of the entire RLRHM1 alloy.

RLRHM1合金の製法はどんなものでも良く、ロール急冷法やアトマイズ法などの急冷法、RLRHM1合金のインゴットを粉砕する方法などがあげられる。RLRHM1合金の粉末の粒度は500μm以下が好ましく、10〜300μmがより好ましい。なお、本開示において粉末の粒度は、例えば顕微鏡観察によって測定すればよい。また、市販の粒度分布測定装置(例えば、マイクロトラック・ベル社製レーザー回折・散乱式 粒子径分布測定装置等)を用いて測定することもできる。   Any method may be used for producing the RLRHM1 alloy, and examples thereof include a rapid cooling method such as a roll quenching method and an atomizing method, and a method of pulverizing an ingot of the RLRHM1 alloy. The particle size of the RLRHM1 alloy powder is preferably 500 μm or less, and more preferably 10 to 300 μm. In the present disclosure, the particle size of the powder may be measured by, for example, microscopic observation. It can also be measured using a commercially available particle size distribution measuring device (for example, a laser diffraction / scattering particle size distribution measuring device manufactured by Microtrack Bell).

[M2化合物]
M2化合物は、Al、Li、Fe、Cuからなる群から選ばれる1種以上のフッ化物および/または酸化物である。M2は、RHとともに粒界を介して磁石内部に拡散すると考えられる。M2化合物の典型例は、AlF、Al、LiF、FeF、CuFなどである。これらの典型例の中でもAl化合物が好ましい。これらの化合物は他の化合物と比較して保磁力HcJの向上効果が大きい。M2化合物の製法はどのようなものでも良く、市販のM2化合物を使用できる。M2化合物の粒度は100μm以下が好ましい。
[M2 compound]
The M2 compound is at least one fluoride and / or oxide selected from the group consisting of Al, Li, Fe, and Cu. M2 is considered to diffuse inside the magnet through the grain boundary together with RH. Typical examples of the M2 compound include AlF 3 , Al 2 O 3 , LiF, FeF 3 , CuF 2 and the like. Among these typical examples, an Al compound is preferable. These compounds have a greater effect of improving the coercive force H cJ than other compounds. Any method for producing the M2 compound may be used, and a commercially available M2 compound may be used. The particle size of the M2 compound is preferably 100 μm or less.

本発明者らの検討によれば、R−T−B系焼結磁石表面にRLRHM1合金の粉末を、M2化合物の粉末とともに存在させて熱処理することによって、R−T−B系焼結磁石のHcJ向上と耐食性向上をともに達成できることがわかった。 According to the study by the present inventors, the RLTHM1 alloy powder is present together with the M2 compound powder on the surface of the RTB-based sintered magnet and heat-treated. It was found that both HcJ improvement and corrosion resistance improvement can be achieved.

[塗布]
RLRHM1合金の粉末とM2化合物の粉末とをR−T−B系焼結磁石の表面に存在させる方法はどのようなものであってもよい。例えば、RLRHM1合金の粉末とM2化合物の粉末をR−T−B系焼結磁石の表面に散布する方法、RLRHM1合金の粉末とM2化合物の粉末とを純水や有機溶剤などの溶媒に分散させ、これにR−T−B系焼結磁石を浸漬して引き上げる方法、RLRHM1合金の粉末とM2化合物の粉末とをバインダや溶媒と混合してスラリーを作製し、このスラリーをR−T−B系焼結磁石の表面に塗布する方法、RLRHM1合金の粉末とM2化合物の粉末をバインダと共に造粒して造粒粉末を作製し、この造粒粉末をR−T−B系焼結磁石の表面に付着させる方法のいずれもが実行され得る。
[Application]
Any method may be used in which the powder of the RLRHM1 alloy and the powder of the M2 compound are present on the surface of the RTB-based sintered magnet. For example, a method in which RLRHM1 alloy powder and M2 compound powder are dispersed on the surface of an R-T-B system sintered magnet, and RLRHM1 alloy powder and M2 compound powder are dispersed in a solvent such as pure water or an organic solvent. , A method of immersing an RTB-based sintered magnet and pulling it up, a powder of RLRHM1 alloy and a powder of M2 compound are mixed with a binder or a solvent to produce a slurry, and this slurry is prepared as RTB A method of applying to the surface of a sintered magnet, granulating the RLRHM1 alloy powder and M2 compound powder together with a binder to produce a granulated powder, and applying this granulated powder to the surface of the RTB-based sintered magnet Any of the methods of attaching to can be performed.

バインダおよび溶媒は、その後の熱処理の昇温過程において、拡散助剤の融点以下の温度で熱分解または蒸発などでR−T−B系焼結磁石の表面から実質的に除去されるものであればよく、特に限定されない。バインダの例としては、ポリビニルアルコール、エチルセルロース、ポリエステルなどがあげられる。またRLRHM1合金の粉末とM2化合物の粉末は、それらが混合した状態でR−T−B系焼結磁石の表面に存在してもよいし、別々に存在してもよい。   The binder and the solvent should be substantially removed from the surface of the RTB-based sintered magnet by thermal decomposition or evaporation at a temperature lower than the melting point of the diffusion aid in the subsequent heating process. There is no particular limitation. Examples of the binder include polyvinyl alcohol, ethyl cellulose, polyester and the like. The RLRHM1 alloy powder and the M2 compound powder may be present on the surface of the R-T-B system sintered magnet in a state where they are mixed, or may be present separately.

なお、本開示の方法において、RLRHM1合金はその融点が熱処理温度以下であるため熱処理の際に溶融し、R−T−B系焼結磁石の表面はRHがR−T−B系焼結磁石内部に拡散しやすい状態になる。RLRHM1合金の粉末とM2化合物の粉末とをR−T−B系焼結磁石の表面に存在させる前にR−T−B系焼結磁石の表面に対して酸洗などの特段の清浄化処理を行う必要はない。もちろん、そのような清浄化処理を行うことを排除するものではない。また、RLRHM1合金粉末粒子の表面が多少酸化されていてもRHの拡散やM2化合物を還元する効果にほとんど影響はない。   In the method of the present disclosure, since the RLRHM1 alloy has a melting point lower than the heat treatment temperature, it melts during the heat treatment, and the surface of the R-T-B system sintered magnet has RH of the R-T-B system sintered magnet. It becomes easy to diffuse inside. Special cleaning treatment such as pickling the surface of the R-T-B system sintered magnet before the RLRHM1 alloy powder and the M2 compound powder are present on the surface of the R-T-B system sintered magnet. There is no need to do. Of course, it does not exclude performing such a cleaning process. Further, even if the surface of the RLRHM1 alloy powder particles is somewhat oxidized, there is almost no influence on the diffusion of RH and the effect of reducing the M2 compound.

本開示の製造方法は、RLRHM1合金およびM2化合物の粉末以外の粉末(第三の粉末)がR−T−B系焼結磁石の表面に存在することを必ずしも排除しないが、第三の粉末がM2化合物中のRHをR−T−B系焼結磁石の内部に拡散することを阻害しないように留意する必要がある。R−T−B系焼結磁石の表面に存在する粉末の全体に占める「RLRHM1合金およびM2化合物」の粉末の質量比は、70%以上であることが望ましい。   Although the manufacturing method of the present disclosure does not necessarily exclude the presence of powder (third powder) other than the powder of RLRHM1 alloy and M2 compound on the surface of the R-T-B system sintered magnet, Care must be taken not to inhibit diffusion of RH in the M2 compound into the interior of the RTB-based sintered magnet. The mass ratio of the “RLLRHM1 alloy and M2 compound” powder in the entire powder existing on the surface of the RTB-based sintered magnet is desirably 70% or more.

本開示の製造方法によれば、少ない量のRHで、効率的にR−T−B系焼結磁石のHcJを向上させることが可能である。R−T−B系焼結磁石の表面に存在させる粉末中のRH元素の量は、R−T−B系焼結磁石に対して0.2〜1.5質量%であることが好ましい。 According to the manufacturing method of the present disclosure, it is possible to efficiently improve the HcJ of the RTB -based sintered magnet with a small amount of RH. The amount of RH element in the powder present on the surface of the RTB-based sintered magnet is preferably 0.2 to 1.5 mass% with respect to the RTB-based sintered magnet.

[拡散熱処理]
拡散のための熱処理温度はR−T−B系焼結磁石の焼結温度以下(具体的には例えば1000℃以下)であり、かつ、RLRHM1合金の粉末の融点よりも高い温度である。具体的には、熱処理温度はR−T−B系焼結磁石の温度で500℃以上が好ましい。熱処理時間は例えば10分〜72時間である。また拡散のための熱処理の後必要に応じてさらに400〜700℃で10分〜72時間の熱処理を行ってもよい。
[Diffusion heat treatment]
The heat treatment temperature for diffusion is not higher than the sintering temperature of the RTB-based sintered magnet (specifically, for example, 1000 ° C. or lower), and is higher than the melting point of the RLRHM1 alloy powder. Specifically, the heat treatment temperature is preferably 500 ° C. or higher as the temperature of the RTB-based sintered magnet. The heat treatment time is, for example, 10 minutes to 72 hours. Moreover, you may perform the heat processing for 10 minutes-72 hours at 400-700 degreeC as needed after the heat processing for diffusion.

(実験例1)
まず、公知の方法で、組成比Nd=13.4、B=5.8、Al=0.5、Cu=0.1、Co=1.1、残部=Fe(原子%)のR−T−B系焼結磁石を作製した。これを機械加工することにより、4.9mm×10mm×24.5mmのR−T−B系焼結磁石母材を得た。得られたR−T−B系焼結磁石母材の磁気特性をB−Hトレーサーによって測定したところ、HcJは1035kA/m、Bは1.45Tであった。
(Experimental example 1)
First, by a known method, the composition ratio Nd = 13.4, B = 5.8, Al = 0.5, Cu = 0.1, Co = 1.1, and the balance = Fe (atomic%) RT -B system sintered magnet was produced. By machining this, a 4.9 mm × 10 mm × 24.5 mm RTB-based sintered magnet base material was obtained. Magnetic properties of the obtained R-T-B based sintered magnet base material where a measured by B-H tracer, H cJ is 1035kA / m, B r was 1.45 T.

なお、後述の通り、熱処理後のR−T−B系焼結磁石の磁気特性は、R−T−B系焼結磁石の表面を機械加工にて除去してから測定する。このため、R−T−B系焼結磁石母材もそれに合わせて、表面をさらにそれぞれ0.2mmずつ機械加工にて除去し、大きさ4.5mm×9.6mm×24.1mmとしてから測定した。また、別途R−T−B系焼結磁石母材の不純物量をガス分析装置によって測定したところ、酸素が810ppm、窒素が370ppm、炭素が870ppmであった。   As will be described later, the magnetic properties of the RTB-based sintered magnet after heat treatment are measured after removing the surface of the RTB-based sintered magnet by machining. For this reason, the R-T-B system sintered magnet base material is also measured in accordance with it by further removing the surface by 0.2 mm each by machining to a size of 4.5 mm × 9.6 mm × 24.1 mm. did. Moreover, when the impurity amount of the R-T-B system sintered magnet base material was separately measured with a gas analyzer, oxygen was 810 ppm, nitrogen was 370 ppm, and carbon was 870 ppm.

次にRLRHM1合金として組成がNd57Tb13Cu30(原子%)(融点570℃)の合金を用意した。合金はアトマイズ法によって作製した粒度106μm以下の粉末である。得られた合金の粉末と表1に示すM2化合物の粉末を質量比、Nd57Tb13Cu30:M2化合物=90:10で混合し、混合粉末を得た(表1のNdTbCu=Nd57Tb13Cu30)。この混合粉末とポリビニルアルコールおよび水を混合してスラリーを得た。このスラリーを、R−T−B系焼結磁石母材の10mm×24.5mmの2面に、RH(Tb)量がR−T−B系磁石母材に対して両面あわせて1.0質量%となるように塗布し、乾燥した。 Next, an alloy having a composition of Nd 57 Tb 13 Cu 30 (atomic%) (melting point: 570 ° C.) was prepared as an RLRHM1 alloy. The alloy is a powder having a particle size of 106 μm or less prepared by an atomizing method. The powder of the obtained alloy and the powder of the M2 compound shown in Table 1 were mixed at a mass ratio of Nd 57 Tb 13 Cu 30 : M2 compound = 90: 10 to obtain a mixed powder (NdTbCu = Nd 57 Tb in Table 1). 13 Cu 30 ). This mixed powder was mixed with polyvinyl alcohol and water to obtain a slurry. This slurry was added to two surfaces of an R-T-B system sintered magnet base material of 10 mm × 24.5 mm, and the amount of RH (Tb) was 1.0 on both surfaces with respect to the R-T-B system magnet base material. It apply | coated so that it might become mass%, and it dried.

このR−T−B系焼結磁石母材を配置したMo板を処理容器に収容して蓋をした。この蓋は容器内外のガスの出入りを妨げるものではない。これを熱処理炉に収容し、100PaのAr雰囲気中、900℃で10時間の熱処理を行った。熱処理は、室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからMo板を取り出してR−T−B系焼結磁石を回収した。回収したR−T−B系焼結磁石を処理容器に戻して再び熱処理炉に収容し、10Pa以下の真空中、490℃で3時間の熱処理を行った。この熱処理も室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR−T−B系焼結磁石を回収した。   The Mo plate on which this RTB-based sintered magnet base material was placed was accommodated in a processing container and covered. This lid does not prevent the gas from entering or leaving the container. This was accommodated in a heat treatment furnace and heat-treated at 900 ° C. for 10 hours in an Ar atmosphere of 100 Pa. The heat treatment was carried out under the above conditions after the temperature was raised while evacuating from room temperature and the atmospheric pressure and temperature reached the above conditions. Then, after the temperature was lowered to room temperature, the Mo plate was taken out and the RTB-based sintered magnet was collected. The recovered RTB-based sintered magnet was returned to the processing vessel and accommodated again in a heat treatment furnace, and heat treatment was performed at 490 ° C. for 3 hours in a vacuum of 10 Pa or less. This heat treatment was also performed under the above conditions after the temperature was raised while evacuating from room temperature and the atmospheric pressure and temperature reached the above conditions. Thereafter, the temperature was lowered to room temperature, and then the R-T-B sintered magnet was collected.

得られたR−T−B系焼結磁石の表面をそれぞれ0.2mmずつ機械加工によって研磨除去し、4.5mm×9.6mm×24.1mmのサンプルNo.1〜7を得た。得られたサンプルNo.1〜7の磁気特性をB−Hトレーサーによって測定し、HcJとBを求めた。結果を表1に示す。 The surface of the obtained RTB-based sintered magnet was polished and removed by machining by 0.2 mm each, and sample No. 4.5 mm × 9.6 mm × 24.1 mm was removed. 1-7 were obtained. The obtained sample No. The magnetic properties of 1-7 was measured by B-H tracer was determined H cJ and B r. The results are shown in Table 1.

Figure 2018142641
Figure 2018142641

さらに、サンプルNo.1〜7について、エタノール中で超音波洗浄を行った後、温度120℃、相対湿度100%RH、0.2MPaで12時間×3サイクルのプレッシャークッカーテスト(PCT試験)を行った。   Furthermore, sample no. About 1-7, after performing ultrasonic cleaning in ethanol, the pressure cooker test (PCT test) of 12 hours x3 cycles was performed at a temperature of 120 ° C., a relative humidity of 100% RH, and 0.2 MPa.

図1は、M2化合物の種類ごとにPCT試験後の磁石の減耗量を示すグラフである。磁石の減耗量は、スラリーを塗布していない側面における減耗量を含んでいる。   FIG. 1 is a graph showing the amount of magnet wear after the PCT test for each type of M2 compound. The amount of wear of the magnet includes the amount of wear on the side surface where the slurry is not applied.

表1および図1から、M2化合物をRHRLM1合金とともにR−T−B系焼結磁石母材の表面に存在させて熱処理した磁石は、HcJ向上と耐食性向上をともに達成できることがわかった。 From Table 1 and FIG. 1, it was found that a magnet heat-treated with the M2 compound and the RHRLM1 alloy present on the surface of the RTB-based sintered magnet base material can achieve both improved HcJ and improved corrosion resistance.

本発明によるR−T−B系焼結磁石の製造方法は、より少ない重希土類元素RHによってHcJを向上させ、かつ、耐食性も向上したR−T−B系焼結磁石を提供し得る。 The method for producing an RTB-based sintered magnet according to the present invention can provide an RTB-based sintered magnet that improves HcJ with less heavy rare earth element RH and also has improved corrosion resistance.

Claims (3)

R−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo、Bはホウ素)を用意する工程と、
前記R−T−B系焼結磁石の表面にRLRHM1合金(RLはNdおよび/またはPr、RHはDyおよび/またはTb、M1はAl、Cu、Fe、Ga、Co、Ni、Znからなる群から選ばれる1種以上)の粉末と、M2化合物(M2はAl、Li、Fe、Cuからなる群から選ばれる1種以上、M2化合物はM2フッ化物および/またはM2酸化物)の粉末とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程と、
を含み、
前記RLRHM1合金はRL+RHをRLRHM1合金全体の50原子%以上、M1をRLRHM1合金全体の10原子%以上、かつ、RLとRHをRL:RH=96:4〜10:90の原子比で含み、かつ、前記RLRHM1合金の融点は前記熱処理の温度以下であり、
前記熱処理は、前記RLRHM1合金の粉末と前記M2化合物の粉末とが、RLRHM1合金:M2化合物=97:3〜80:20の質量比で前記R−T−B系焼結磁石の前記表面に存在する状態で行われる、R−T−B系焼結磁石の製造方法。
Preparing a R-T-B sintered magnet (R is a rare earth element, T is Fe or Fe and Co, and B is boron);
An RLRHM1 alloy (RL is Nd and / or Pr, RH is Dy and / or Tb, M1 is a group consisting of Al, Cu, Fe, Ga, Co, Ni, Zn on the surface of the RTB-based sintered magnet) And a powder of M2 compound (M2 is one or more selected from the group consisting of Al, Li, Fe and Cu, and M2 compound is M2 fluoride and / or M2 oxide). A step of performing a heat treatment at a temperature equal to or lower than a sintering temperature of the R-T-B system sintered magnet in a state of being present;
Including
The RLRHM1 alloy includes RL + RH at least 50 atomic% of the entire RLRHM1 alloy, M1 at least 10 atomic% of the entire RLRHM1 alloy, and RL and RH in an atomic ratio of RL: RH = 96: 4 to 10:90, and The melting point of the RLRHM1 alloy is equal to or lower than the temperature of the heat treatment,
In the heat treatment, the RLRHM1 alloy powder and the M2 compound powder are present on the surface of the RTB-based sintered magnet in a mass ratio of RLRHM1 alloy: M2 compound = 97: 3 to 80:20. The manufacturing method of the RTB system sintered magnet performed in the state to do.
前記M2化合物はAlフッ化物である、請求項1に記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to claim 1, wherein the M2 compound is Al fluoride. 前記M2化合物はAlである、請求項1に記載のR−T−B系焼結磁石の製造方法。 The method for producing an RTB-based sintered magnet according to claim 1, wherein the M2 compound is Al 2 O 3 .
JP2017036527A 2017-02-28 2017-02-28 Method for manufacturing sintered RTB magnet Active JP6717231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036527A JP6717231B2 (en) 2017-02-28 2017-02-28 Method for manufacturing sintered RTB magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036527A JP6717231B2 (en) 2017-02-28 2017-02-28 Method for manufacturing sintered RTB magnet

Publications (2)

Publication Number Publication Date
JP2018142641A true JP2018142641A (en) 2018-09-13
JP6717231B2 JP6717231B2 (en) 2020-07-01

Family

ID=63528339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036527A Active JP6717231B2 (en) 2017-02-28 2017-02-28 Method for manufacturing sintered RTB magnet

Country Status (1)

Country Link
JP (1) JP6717231B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107888A (en) * 2018-12-25 2020-07-09 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
WO2021132476A1 (en) * 2019-12-26 2021-07-01 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet, and r-t-b based sintered magnet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098115A (en) * 2008-10-16 2010-04-30 Daido Steel Co Ltd Method of manufacturing rare earth magnet
JP2011082467A (en) * 2009-10-10 2011-04-21 Toyota Central R&D Labs Inc Rare earth magnetic material and method for producing the same
JP2013042152A (en) * 2012-09-25 2013-02-28 Tdk Corp Magnet manufacturing method
JP2013105903A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Manufacturing method of rare earth magnet
JP2015050427A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Method for manufacturing oriented magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098115A (en) * 2008-10-16 2010-04-30 Daido Steel Co Ltd Method of manufacturing rare earth magnet
JP2011082467A (en) * 2009-10-10 2011-04-21 Toyota Central R&D Labs Inc Rare earth magnetic material and method for producing the same
JP2013105903A (en) * 2011-11-14 2013-05-30 Toyota Motor Corp Manufacturing method of rare earth magnet
JP2013042152A (en) * 2012-09-25 2013-02-28 Tdk Corp Magnet manufacturing method
JP2015050427A (en) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 Method for manufacturing oriented magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020107888A (en) * 2018-12-25 2020-07-09 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
WO2021132476A1 (en) * 2019-12-26 2021-07-01 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet, and r-t-b based sintered magnet

Also Published As

Publication number Publication date
JP6717231B2 (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP6414597B2 (en) Method for producing RTB-based sintered magnet
JP5884957B1 (en) Method for producing RTB-based sintered magnet
JP6675855B2 (en) Rare earth permanent magnet and method of manufacturing the same
JP5929766B2 (en) R-T-B sintered magnet
JP6503960B2 (en) Method of manufacturing RTB based sintered magnet
JP6414598B2 (en) Method for producing RTB-based sintered magnet
JPWO2010082492A1 (en) Method for producing RTB-based sintered magnet
JPWO2016093173A1 (en) Method for producing RTB-based sintered magnet
JP2014017480A (en) GRAIN BOUNDARY MODIFICATION METHOD OF Nd-Fe-B-BASED MAGNET
JP6604381B2 (en) Manufacturing method of rare earth sintered magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP6717230B2 (en) Method for manufacturing sintered RTB magnet
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
JP6733533B2 (en) Method for manufacturing RTB-based sintered magnet
JP4179973B2 (en) Manufacturing method of sintered magnet
JP2009224413A (en) MANUFACTURING METHOD OF NdFeB SINTERED MAGNET
JP2013153172A (en) Manufacturing method of neodymium-iron-boron sintered magnet
JP6717231B2 (en) Method for manufacturing sintered RTB magnet
JP7424126B2 (en) RTB series permanent magnet
JP6414592B2 (en) Method for producing RTB-based sintered magnet
JP6743650B2 (en) Method for manufacturing RTB-based sintered magnet
JP6794993B2 (en) Manufacturing method of RTB-based sintered magnet and RTB-based sintered magnet
JP6743649B2 (en) Method for manufacturing RTB-based sintered magnet
JP2020161812A (en) R-t-b based permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200525

R150 Certificate of patent or registration of utility model

Ref document number: 6717231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350