JP6503960B2 - Method of manufacturing RTB based sintered magnet - Google Patents

Method of manufacturing RTB based sintered magnet Download PDF

Info

Publication number
JP6503960B2
JP6503960B2 JP2015147328A JP2015147328A JP6503960B2 JP 6503960 B2 JP6503960 B2 JP 6503960B2 JP 2015147328 A JP2015147328 A JP 2015147328A JP 2015147328 A JP2015147328 A JP 2015147328A JP 6503960 B2 JP6503960 B2 JP 6503960B2
Authority
JP
Japan
Prior art keywords
based sintered
sintered magnet
powder
oxide
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147328A
Other languages
Japanese (ja)
Other versions
JP2016034024A (en
Inventor
三野 修嗣
修嗣 三野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015147328A priority Critical patent/JP6503960B2/en
Publication of JP2016034024A publication Critical patent/JP2016034024A/en
Application granted granted Critical
Publication of JP6503960B2 publication Critical patent/JP6503960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、R214B型化合物を主相として有するR−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo)の製造方法に関する。 The present invention relates to a method for producing an RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co) having an R 2 T 14 B type compound as a main phase.

214B型化合物を主相とするR−T−B系焼結磁石は、永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)や、ハイブリッド車搭載用モータ等の各種モータや家電製品等に使用されている。 An RTB-based sintered magnet having an R 2 T 14 B-type compound as a main phase is known as the highest performance magnet among permanent magnets, and is used as a voice coil motor (VCM) of a hard disk drive or It is used for various motors such as motors for hybrid vehicles and household appliances.

R−T−B系焼結磁石は、高温で固有保磁力HcJ(以下、単に「HcJ」と表記する)が低下するため、不可逆熱減磁が起こる。不可逆熱減磁を回避するため、モータ用等に使用する場合、高温下でも高いHcJを維持することが要求されている。 In the RTB -based sintered magnet, irreversible heat demagnetization occurs because the intrinsic coercivity H cJ (hereinafter simply referred to as “H cJ ”) decreases at high temperature. In order to avoid irreversible heat demagnetization, it is required to maintain high H cJ even under high temperature when used for a motor or the like.

R−T−B系焼結磁石は、R214B型化合物相中のRの一部を重希土類元素RH(Dy、Tb)で置換すると、HcJが向上することが知られている。高温で高いHcJを得るためには、R−T−B系焼結磁石中に重希土類元素RHを多く添加することが有効である。しかし、R−T−B系焼結磁石において、Rとして軽希土類元素RL(Nd、Pr)を重希土類元素RHで置換すると、HcJが向上する一方、残留磁束密度Br(以下、単に「Br」と表記する)が低下してしまうという問題がある。また、重希土類元素RHは希少資源であるため、その使用量を削減することが求められている。 The RTB-based sintered magnet is known to improve H cJ when a part of R in the R 2 T 14 B type compound phase is replaced with the heavy rare earth element RH (Dy, Tb) . In order to obtain high HcJ at high temperature, it is effective to add a large amount of heavy rare earth element RH to the RTB-based sintered magnet. However, in the R-T-B based sintered magnet, when the light rare earth element RL (Nd, Pr) is replaced by the heavy rare earth element RH as R, H cJ is improved while the residual magnetic flux density B r (hereinafter simply referred to as “ There is a problem that B r "is reduced. In addition, since the heavy rare earth element RH is a scarce resource, it is required to reduce its use amount.

そこで、近年、Brを低下させないようにより少ない重希土類元素RHによってR−T−B系焼結磁石のHcJを向上させることが検討されている。例えば、重希土類元素RHを効果的にR−T−B系焼結磁石に供給し拡散させる方法として、特許文献1〜4にRH酸化物またはRHフッ化物と各種金属MまたはMの合金との混合粉末をR−T−B系焼結磁石の表面に存在させた状態で熱処理することによって、RHやMを効率よくR−T−B系焼結磁石に吸収させて、R−T−B系焼結磁石のHcJを高める方法が開示されている。 In recent years, to improve the H cJ of the R-T-B based sintered magnets have been studied with less heavy rare-earth element RH so as not to reduce the B r. For example, as a method of supplying and diffusing heavy rare earth element RH to an RTB-based sintered magnet effectively, Patent Documents 1 to 4 disclose that RH oxides or RH fluorides and alloys of various metals M or M are used. By heat treating the mixed powder on the surface of the R-T-B based sintered magnet, RH and M are efficiently absorbed by the R-T-B based sintered magnet, and R-T-B is obtained. A method is disclosed to increase the H cJ of a sintered sintered system.

特許文献1には、M(ここでMはAl、Cu、Znから選ばれる1種又は2種以上)を含有する粉末とRHフッ化物の粉末の混合粉末を用いることが開示されている。また、特許文献2には、熱処理温度で液相となるRTMAH(ここでMはAl、Cu、Zn、In、Si、Pなどから選ばれる1種または2種以上、Aはホウ素または炭素、Hは水素)からなる合金の粉末を用いることが開示されており、この合金の粉末とRHフッ化物などの粉末との混合粉末でも良いと開示されている。   Patent Document 1 discloses that a mixed powder of a powder containing M (wherein M is one or more selected from Al, Cu, and Zn) and a powder of RH fluoride is used. Further, in Patent Document 2, RTMAH (where M is one or more selected from Al, Cu, Zn, In, Si, P, etc., which is a liquid phase at a heat treatment temperature, A is boron or carbon, H It is disclosed to use a powder of an alloy consisting of hydrogen, and it is disclosed that a mixed powder of a powder of this alloy and a powder such as RH fluoride may be used.

特許文献3、特許文献4では、RM合金(ここでRは希土類元素、MはAl、Si、C、P、Tiなどから選ばれる1種または2種以上)の粉末またはM1M2合金(M1およびM2はAl、Si、C、P、Tiなどから選ばれる1種または2種以上)の粉末と、RH酸化物との混合粉末を用いることによって熱処理時にRM合金やM1M2合金によりRH酸化物を部分的に還元し、より多量のRを磁石内に導入することが可能であると開示されている。   In Patent Document 3 and Patent Document 4, powder or M1 M2 alloy (M1 and M2) of RM alloy (wherein R is a rare earth element and M is one or more selected from Al, Si, C, P, Ti, etc.) Is a partial mixture of RH oxide with RM alloy or M1M2 alloy during heat treatment by using a mixed powder of at least one powder selected from Al, Si, C, P, Ti, etc., and RH oxide. It is disclosed that it is possible to reduce to introduce more R into the magnet.

特開2007−287874号公報JP 2007-287874 A 特開2007−287875号公報Unexamined-Japanese-Patent No. 2007-287875 特開2012−248827号公報JP, 2012-248827, A 特開2012−248828号公報JP, 2012-248828, A

特許文献1〜4に記載の方法は、より多量のRHを磁石内に拡散させることができるという点で注目に値する。しかしながら、これらの方法によれば、磁石表面に存在させたRHを有効にHcJの向上に結びつけることができず、改良の余地がある。特に特許文献3では、RM合金とRH酸化物の混合粉末を用いているが、その実施例を見る限り、RM合金の拡散によるHcJの向上自体が大きく、RH酸化物を用いた効果はわずかであり、RM合金によるRH酸化物の還元効果はあまり発揮されていないと思われる。 The methods described in Patent Documents 1 to 4 are remarkable in that more RH can be diffused into the magnet. However, according to these methods, RH present on the magnet surface can not be effectively linked to the improvement of H cJ , and there is room for improvement. Particularly in Patent Document 3, although a mixed powder of RM alloy and RH oxide is used, the improvement of H cJ by diffusion of the RM alloy itself is large and the effect of using RH oxide is slight, as far as the example is seen. It seems that the reduction effect of the RH oxide by the RM alloy is not exhibited so much.

本発明は上記事情に鑑みてなされたものであり、磁石表面に存在させるRHの量を少なくし、かつ効果的に磁石内部に拡散させることによって、高いHcJを有するR−T−B系焼結磁石を製造する方法を提供することである。 The present invention has been made in view of the above circumstances, and reduces the amount of RH present on the surface of the magnet and effectively diffuses the inside of the magnet, thereby making the RTB -based burnout having high H cJ. It is an object of the present invention to provide a method of manufacturing a magnet.

本発明のR−T−B系焼結磁石の製造方法は、例示的な一態様において、用意したR−T−B系焼結磁石の表面にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RH酸化物(RHはDyおよび/またはTb)の粉末を存在させた状態でR−T−B系焼結磁石の焼結温度以下で熱処理する工程を含む。RLM合金はRLを65原子%以上含み、その融点が前記熱処理の温度以下であり、RLM合金の粉末とRH酸化物の粉末を、RLM合金:RH酸化物=9.6:0.4〜5:5の質量比率でR−T−B系焼結磁石の表面に存在させて熱処理を行う。   The method for producing an RTB-based sintered magnet according to the present invention is, in an exemplary embodiment, an RLM alloy (RL is Nd and / or Pr, M, etc.) on the surface of the prepared RTB-based sintered magnet. Is a sintered R-T-B based magnet in the presence of at least one powder of Cu, Fe, Ga, Co, Ni) and a powder of RH oxide (RH: Dy and / or Tb) Heat treatment below the sintering temperature of The RLM alloy contains at least 65 atomic% of RL, and the melting point thereof is equal to or less than the temperature of the heat treatment, the powder of RLM alloy and the powder of RH oxide, RLM alloy: RH oxide = 9.6: 0.4-5 Heat treatment is performed with the mass ratio of 5 on the surface of the R-T-B-based sintered magnet.

好ましい実施形態において、R−T−B系焼結磁石の表面に存在させる粉末中のRH元素の量が磁石表面1mm2あたり0.03〜0.35mgである。 In a preferred embodiment, the amount of RH element in the powder to be present on the surface of the RTB-based sintered magnet is 0.03 to 0.35 mg per 1 mm 2 of the magnet surface.

ある実施形態において、前記R−T−B系焼結磁石の表面において、前記RLM合金の粉末と前記RH酸化物の粉末とは混合された状態にある。   In one embodiment, the powder of the RLM alloy and the powder of the RH oxide are in a mixed state on the surface of the R-T-B-based sintered magnet.

ある好ましい実施形態では、前記RLM合金におけるRLの含有量は85原子%を超える。   In one preferred embodiment, the content of RL in the RLM alloy is over 85 at%.

実施形態において、熱処理を行う工程は、前記RLM合金を溶融させる工程、および、溶融した前記RLM合金によって前記RH酸化物を還元して前記RH酸化物中のRHを前記R−T−B系焼結磁石の内部に拡散させる工程とを含む。   In the embodiment, the step of performing the heat treatment is a step of melting the RLM alloy, and the RH oxide in the RH oxide is reduced by the RTB based reduction by reducing the RH oxide with the molten RLM alloy. And d) diffusing into the interior of the magnet.

本発明の実施形態によれば、RLM合金がRH酸化物を従来より高い効率で還元してRHをR−T−B系焼結磁石内部に拡散させることができるので、従来技術よりも少ないRH量で従来技術と同等以上にHcJを向上させることができる。 According to the embodiment of the present invention, the RLM alloy can reduce the RH oxide with higher efficiency than in the past to diffuse the RH into the R-T-B-based sintered magnet, so the RH less than the prior art can be obtained. The amount of H cJ can be improved more than in the prior art.

本発明の実施形態におけるR−T−B系焼結磁石(Rは希土類元素、TはFeまたはFeとCo、Bはボロン)の製造方法は、R−T−B系焼結磁石の表面にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RH酸化物(RHはDyおよび/またはTb)の粉末を存在させた状態でR−T−B系焼結磁石の焼結温度以下で熱処理する工程を含む。RLM合金はRLを65原子%以上含み、その融点が前記熱処理の温度以下である。上記の熱処理は、RLM合金の粉末とRH酸化物の粉末を、RLM合金:RH酸化物=9.6:0.4〜5:5の質量比率でR−T−B系焼結磁石の表面に存在させて行う。   The manufacturing method of the RTB-based sintered magnet (R is a rare earth element, T is Fe or Fe and Co, B is boron) in the embodiment of the present invention is on the surface of the RTB-based sintered magnet. Powder of RLM alloy (RL is Nd and / or Pr, M is one or more selected from Cu, Fe, Ga, Co, Ni) and powder of RH oxide (RH is Dy and / or Tb) It includes the step of heat treatment at a temperature not higher than the sintering temperature of the R-T-B-based sintered magnet. The RLM alloy contains 65 atomic% or more of RL, and the melting point thereof is equal to or less than the temperature of the heat treatment. The heat treatment described above is a powder of RLM alloy and a powder of RH oxide, the surface of R-T-B based sintered magnet with a mass ratio of RLM alloy: RH oxide = 9.6: 0.4-5: 5. To be present in

本発明者は、より少ないRHを有効に利用してHcJを向上させる方法として、R−T−B系焼結磁石表面にRH酸化物を、熱処理中にRH酸化物を還元する拡散助剤とともに存在させて熱処理する方法が有効であると考えた。本発明者の検討の結果、特定のRLとMの組み合わせの合金(RLM合金)であって、RLを65原子%以上含み、その融点が熱処理温度以下であるRLM合金が、磁石表面に存在させたRH酸化物の還元能力に優れていることを見出した。なお、本明細書において、RHを含有する物質を「拡散剤」、拡散剤のRHを還元して拡散し得る状態にする物質を「拡散助剤」と称する。 The inventor of the present invention is a diffusion aid for reducing RH oxide on the surface of RTB -based sintered magnet and reducing RH oxide during heat treatment as a method of improving H cJ by effectively using less RH. It was thought that the method of making it exist and heat-treating was effective. As a result of the inventor's investigation, it is an alloy (RLM alloy) of a specific combination of RL and M, which contains 65 atomic% or more of RL and whose melting point is equal to or less than the heat treatment temperature It was found that the reduction ability of RH oxide is excellent. In the present specification, a substance containing RH is referred to as a “diffusing agent”, and a substance that reduces the RH of the diffusing agent to a state capable of diffusing is referred to as a “diffusion aid”.

以下、本発明の好ましい実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail.

[R−T−B系焼結磁石母材]
まず、本発明では、重希土類元素RHの拡散の対象とするR−T−B系焼結磁石母材を準備する。なお、本明細書では、わかりやすさのため、重希土類元素RHの拡散の対象とするR−T−B系焼結磁石をR−T−B系焼結磁石母材と厳密に称することがあるが、「R−T−B系焼結磁石」の用語はそのような「R−T−B系焼結磁石母材」を含むものとする。このR−T−B系焼結磁石母材は公知のものが使用でき、例えば以下の組成を有する。
希土類元素R:12〜17原子%
B(B(ボロン)の一部はC(カーボン)で置換されていてもよい):5〜8原子%
添加元素M´(Al、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種):0〜2原子%
T(Feを主とする遷移金属元素であって、Coを含んでもよい)および不可避不純物:残部
[R-T-B based sintered magnet base material]
First, in the present invention, an RTB-based sintered magnet base material to be diffused of the heavy rare earth element RH is prepared. In this specification, the RTB-based sintered magnet to which the diffusion of the heavy rare earth element RH is to be subjected may be strictly referred to as RTB-based sintered magnet base material for the sake of easy understanding. The term "R-T-B-based sintered magnet" is intended to include such "R-T-B-based sintered magnet base material". A publicly known thing can be used for this RTB-based sintered magnet base material, and it has the following composition, for example.
Rare earth element R: 12 to 17 atomic%
B (part of B (boron) may be substituted by C (carbon)): 5 to 8 atomic%
Selected from the group consisting of the additive elements M ′ (Al, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi At least one kind): 0-2 atomic%
T (a transition metal element mainly composed of Fe and may contain Co) and unavoidable impurities: balance

ここで、希土類元素Rは、主として軽希土類元素RL(Ndおよび/又はPr)であるが、重希土類元素を含有していてもよい。なお、重希土類元素を含有する場合は、重希土類元素RHであるDyおよびTbの少なくとも一方を含むことが好ましい。   Here, the rare earth element R is mainly the light rare earth element RL (Nd and / or Pr), but may contain a heavy rare earth element. In the case of containing a heavy rare earth element, it is preferable to include at least one of Dy and Tb which are heavy rare earth elements RH.

上記組成のR−T−B系焼結磁石母材は、任意の製造方法によって製造される。   The R-T-B-based sintered magnet base material of the above composition is manufactured by any manufacturing method.

[拡散助剤]
拡散助剤としては、RLM合金の粉末を用いる。RLとしてはRH酸化物を還元する効果の高い軽希土類元素が適している。また、RLもMも磁石中に拡散してHcJを向上させる効果を持つ場合があるが、主相結晶粒内部にまで拡散しやすくBrを低下させやすい元素は避けるべきである。このRH酸化物を還元する効果が高く、主相結晶粒内部に拡散しにくいという観点から、RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上とする。中でもNd−Cu合金やNd−Fe合金を用いると、NdによるRH酸化物の還元能力が効果的に発揮されるので好ましい。また、RLM合金はRLを65原子%以上含み、かつ、その融点が熱処理温度以下の合金を用いる。RLM合金はRLを85原子%超含むことが好ましい。RLの含有割合がこのように大きいRLM合金は、RLがRH酸化物を還元する能力が高く、かつ、融点が熱処理温度以下である。このため、RLの含有割合がこのように大きいRLM合金を用いると、熱処理時に溶融してRH酸化物を効率よく還元する。その結果、より高い割合で還元されたRHがR−T−B系焼結磁石中に拡散して少量でも効率よくR−T−B系焼結磁石のHcJを向上させることができる。RLM合金の粉末の粒度は500μm以下が好ましい。
[Diffusion aid]
As a diffusion aid, powder of RLM alloy is used. As RL, a light rare earth element having a high effect of reducing RH oxide is suitable. Further, RL is also sometimes M also has the effect of diffused into the magnet to improve the H cJ, tends to reduce the spread easily B r to the main phase crystal grains inside the element should be avoided. From the viewpoint of the high effect of reducing the RH oxide and the difficulty of diffusion into main phase grains, RL is at least one selected from Nd and / or Pr, and M is Cu, Fe, Ga, Co, and Ni. Do. Among them, it is preferable to use Nd-Cu alloy or Nd-Fe alloy because the reduction ability of RH oxide by Nd is exhibited effectively. Further, the RLM alloy uses an alloy containing 65 atomic% or more of RL and having a melting point not higher than the heat treatment temperature. The RLM alloy preferably contains more than 85 atomic percent of RL. The RLM alloy having such a large content ratio of RL has a high ability to reduce RH oxide and the melting point is equal to or less than the heat treatment temperature. Therefore, when an RLM alloy having such a large content ratio of RL is used, it melts at the time of heat treatment and efficiently reduces the RH oxide. As a result, it is possible to diffuse the reduced RH at a higher rate into the R-T-B-based sintered magnet and improve the HcJ of the R-T-B-based sintered magnet efficiently even with a small amount. The particle size of the RLM alloy powder is preferably 500 μm or less.

[拡散剤]
拡散剤としては、RH酸化物(RHはDyおよび/又はTb)の粉末を用いる。本発明者の検討によれば、RH酸化物の粉末の粒度は100μm以下が好ましい。
[Diverging agent]
As a diffusing agent, powder of RH oxide (RH is Dy and / or Tb) is used. According to the study of the inventor, the particle size of the RH oxide powder is preferably 100 μm or less.

[拡散熱処理]
RLM合金の粉末とRH酸化物の粉末とをR−T−B系焼結磁石の表面に存在させる方法はどのようなものであってもよい。例えば、RLM合金の粉末とRH酸化物の粉末とを純水や有機溶剤などの溶媒に分散させ、これにR−T−B系焼結磁石を浸漬して引き上げる方法や、RLM合金の粉末とRH酸化物の粉末とをバインダーや溶媒と混合してスラリーを作製し、このスラリーをR−T−B系焼結磁石の表面に塗布する方法、等が挙げられる。バインダーや溶媒は、その後の熱処理(拡散熱処理)の昇温過程において、拡散助剤の融点以下の温度で熱分解や蒸発などでR−T−B系焼結磁石の表面から除去されるものであればよく、特に限定されるものではない。バインダーの例としては、ポリビニルアルコールやエチルセルロースなどがあげられる。またRLM合金の粉末とRH酸化物の粉末は、それらが混合した状態でR−T−B系焼結磁石の表面に存在させてもよいし、別々に存在させてもよい。これらの粉末を別々に存在させる場合は、まずRLM合金の粉末をR−T−B系焼結磁石の表面に存在させてから、その上面にRH酸化物の粉末を存在させることが好ましい。なお、本発明の方法においては、RLM合金はその融点が熱処理温度以下であるため熱処理の際に溶融し、それにより高い効率で還元されたRHがR−T−B系焼結磁石内部に拡散しやすい状態になる。したがって、RLM合金の粉末とRH酸化物の粉末とをR−T−B系焼結磁石の表面に存在させる前にR−T−B系焼結磁石の表面に対して酸洗などの特段の清浄化処理を行う必要はない。もちろん、そのような清浄化処理を行うことを排除するものではない。また、RLM合金粉末粒子の表面が多少酸化されていてもRH酸化物を還元する効果にほとんど影響はない。
[Diffusion heat treatment]
Any method may be used to cause the RLM alloy powder and the RH oxide powder to be present on the surface of the R-T-B sintered magnet. For example, a method of dispersing RLM alloy powder and RH oxide powder in a solvent such as pure water or an organic solvent, and immersing the RTB-based sintered magnet in this and pulling it up, or a powder of RLM alloy The method of mixing the powder of RH oxide with a binder and a solvent, producing a slurry, and apply | coating this slurry on the surface of a RTB type | system | group sintered magnet, etc. are mentioned. The binder and the solvent are removed from the surface of the R-T-B-based sintered magnet by thermal decomposition or evaporation at a temperature not higher than the melting point of the diffusion aid in the temperature raising process of the subsequent heat treatment (diffusion heat treatment) There is no particular limitation, as long as it is sufficient. Examples of the binder include polyvinyl alcohol and ethyl cellulose. Further, the powder of RLM alloy and the powder of RH oxide may be present on the surface of the R-T-B-based sintered magnet in the state of mixing them, or may be separately present. When these powders are separately present, it is preferable to first allow RLM alloy powder to be present on the surface of the RTB-based sintered magnet and then allow RH oxide powder to be present on the upper surface thereof. In the method of the present invention, since the melting point of the RLM alloy is equal to or lower than the heat treatment temperature, it melts during heat treatment, whereby the reduced RH diffuses inside the RTB-based sintered magnet. It becomes easy to do. Therefore, before the RLM alloy powder and the RH oxide powder are present on the surface of the R-T-B-based sintered magnet, the surface of the R-T-B-based sintered magnet may be specially pickled, etc. There is no need to carry out a cleaning process. Of course, it does not exclude that such cleaning treatment is performed. In addition, even if the surface of the RLM alloy powder particles is somewhat oxidized, the effect of reducing the RH oxide is hardly affected.

粉末状態にあるRLM合金およびRH酸化物のR−T−B系焼結磁石の表面における存在比率(熱処理前)は、質量比率でRLM合金:RH酸化物=9.6:0.4〜5:5とする。存在比率はRLM合金:RH酸化物=9.5:0.5〜6:4であることがより好ましい。本発明は、RLM合金およびRH酸化物の粉末以外の粉末(第三の粉末)がR−T−B系焼結磁石の表面に存在することを必ずしも排除しないが、第三の粉末がRH酸化物中のRHをR−T−B系焼結磁石の内部に拡散することを阻害しないように留意する必要がある。R−T−B系焼結磁石の表面に存在する粉末の全体に占める「RLM合金およびRH酸化物」の粉末の質量比率は、70%以上であることが望ましい。   The abundance ratio of RLM alloy and RH oxide in the powder state on the surface of the R-T-B sintered magnet (before heat treatment) is RLM alloy: RH oxide = 9.6: 0.4 to 5 in mass ratio : 5. More preferably, the abundance ratio is RLM alloy: RH oxide = 9.5: 0.5 to 6: 4. The present invention does not necessarily exclude the presence of a powder (third powder) other than RLM alloy and RH oxide powder on the surface of the RTB-based sintered magnet, but the third powder is RH oxidized. Care must be taken not to inhibit the diffusion of the RH in the substance into the interior of the RTB-based sintered magnet. It is desirable that the mass ratio of the “RLM alloy and RH oxide” powder to the whole of the powder present on the surface of the RTB-based sintered magnet be 70% or more.

本発明によれば、少ない量のRHで、効率的にR−T−B系焼結磁石のHcJを向上させることが可能である。R−T−B系焼結磁石の表面に存在させる粉末中のRH元素の量は、磁石表面1mm2あたり0.03〜0.35mgであることが好ましく、0.05〜0.25mgであることが更に好ましい。 According to the present invention, it is possible to efficiently improve the HcJ of the RTB -based sintered magnet with a small amount of RH. The amount of the RH element in the powder to be present on the surface of the R-T-B based sintered magnet is preferably 0.03 to 0.35 mg per 1 mm 2 of the magnet surface, and 0.05 to 0.25 mg. Is more preferred.

RLM合金の粉末とRH酸化物の粉末とをR−T−B系焼結磁石の表面に存在させた状態で熱処理を行う。なお、熱処理の開始後、RLM合金の粉末は溶融するため、RLM合金が熱処理中に常に「粉末」の状態を維持する必要は無い。熱処理の雰囲気は真空または不活性ガス雰囲気が好ましい。熱処理温度はR−T−B系焼結磁石の焼結温度以下(具体的には例えば1000℃以下)であり、かつ、RLM合金の融点よりも高い温度である。熱処理時間は例えば10分〜72時間である。また前記熱処理の後必要に応じてさらに400〜700℃で10分〜72時間の磁気特性向上のための熱処理を行ってもよい。   The heat treatment is performed in the state where the RLM alloy powder and the RH oxide powder are present on the surface of the RTB-based sintered magnet. In addition, since the powder of the RLM alloy is melted after the start of the heat treatment, it is not necessary to always maintain the “powder” state during the heat treatment of the RLM alloy. The atmosphere of the heat treatment is preferably a vacuum or an inert gas atmosphere. The heat treatment temperature is equal to or lower than the sintering temperature (specifically, for example, 1000 ° C. or lower) of the RTB-based sintered magnet and is higher than the melting point of the RLM alloy. The heat treatment time is, for example, 10 minutes to 72 hours. Moreover, you may heat-process for the magnetic characteristic improvement for 10 minutes-72 hours at 400-700 degreeC further as needed after the said heat processing.

[実験例1]
まず、公知の方法で、組成比Nd=13.4、B=5.8、Al=0.5、Cu=0.1、Co=1.1、残部=Fe(原子%)のR−T−B系焼結磁石を作製した(焼結温度は1050℃、焼結後の熱処理温度は500℃)。これを機械加工することにより、6.9mm×7.4mm×7.4mmのR−T−B系焼結磁石母材を得た。得られたR−T−B系焼結磁石母材の磁気特性をB−Hトレーサーによって測定したところ、HcJは1035kA/m、Brは1.45Tであった。なお、後述の通り、熱処理後のR−T−B系焼結磁石の磁気特性は、R−T−B系焼結磁石の表面を機械加工にて除去してから測定するので、R−T−B系焼結磁石母材もそれに合わせて、表面をさらにそれぞれ0.2mmずつ機械加工にて除去し、大きさ6.5mm×7.0mm×7.0mmとしてから測定した。なお、別途R−T−B系焼結磁石母材の不純物量をガス分析装置によって測定したところ、酸素が760質量ppm、窒素が490質量ppm、炭素が905質量ppmであった。
[Experimental Example 1]
First, R-T of composition ratio Nd = 13.4, B = 5.8, Al = 0.5, Cu = 0.1, Co = 1.1, balance = Fe (atomic%) by a known method A B-based sintered magnet was produced (sintering temperature: 1050 ° C., heat treatment temperature after sintering: 500 ° C.). By machining this, an RTB-based sintered magnet base material of 6.9 mm × 7.4 mm × 7.4 mm was obtained. Magnetic properties of the obtained R-T-B based sintered magnet base material where a measured by B-H tracer, H cJ is 1035kA / m, B r was 1.45 T. As described later, since the magnetic properties of the RTB-based sintered magnet after heat treatment are measured after the surface of the RTB-based sintered magnet is removed by machining, RT In accordance with this, the surface was further removed by 0.2 mm each by machining, and the size was measured as 6.5 mm × 7.0 mm × 7.0 mm. In addition, when the amount of impurities of the RTB-based sintered magnet base material was separately measured by a gas analyzer, it was 760 mass ppm for oxygen, 490 mass ppm for nitrogen, and 905 mass ppm for carbon.

次に表1に示す組成の拡散助剤を用意した。拡散助剤の粉末粒度は、超急冷法によって作製した合金薄帯をコーヒーミルで粉砕することによって150μm以下に調整した。得られた拡散助剤の粉末と拡散剤である粒度20μm以下のTb47粉末またはDy23粉末とポリビニルアルコールおよび純水を拡散助剤と拡散剤が表1に示す混合比となるように混合してスラリーを得た。このスラリーを、R−T−B系焼結磁石母材の7.4mm×7.4mmの2面に、R−T−B系焼結磁石表面(拡散面)1mm2あたりのRH量が表1の値となるように塗布した。なお、以下、本実施例における拡散助剤の融点は、RLMの二元系状態図で示される値である。このスラリーを塗布したR−T−B系焼結磁石母材をMo板上に配置し、処理容器に収容して蓋をした。(この蓋は容器内外のガスの出入りを妨げるものではない。)これを熱処理炉に収容し、100PaのAr雰囲気中、900℃で4時間の熱処理を行った。熱処理は、室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからMo板を取り出してR−T−B系焼結磁石を回収した。回収したR−T−B系焼結磁石を処理容器に戻して再び熱処理炉に収容し、10Pa以下の真空中、500℃で2時間の磁気特性向上のための熱処理を行った。この熱処理も室温から真空排気しながら昇温し、雰囲気圧力および温度が上記条件に達してから上記条件で行った。その後いったん室温まで降温してからR−T−B系焼結磁石を回収した。 Next, a diffusion aid having the composition shown in Table 1 was prepared. The powder particle size of the diffusion aid was adjusted to 150 μm or less by grinding an alloy ribbon produced by the ultra-quenching method with a coffee mill. The mixing ratio of the obtained diffusion aid powder and the diffusion agent, Tb 4 O 7 powder or Dy 2 O 3 powder with a particle size of 20 μm or less, polyvinyl alcohol and pure water, the diffusion aid and the diffusion agent become as shown in Table 1 Mixed to obtain a slurry. The amount of RH per 1 mm 2 of the R-T-B-based sintered magnet surface (diffusion surface) is shown on two faces of 7.4 mm × 7.4 mm of the R-T-B-based sintered magnet base material. It applied so that it might become a value of 1. Hereinafter, the melting point of the diffusion aid in the present example is a value shown in the binary phase diagram of RLM. The R-T-B-based sintered magnet base material coated with the slurry was placed on a Mo plate, housed in a processing vessel, and covered. (This lid does not prevent the gas from flowing in and out of the container.) This was housed in a heat treatment furnace, and heat treatment was performed at 900 ° C. for 4 hours in an Ar atmosphere of 100 Pa. The heat treatment was performed while raising the temperature while evacuating from room temperature, and was performed under the above conditions after the atmospheric pressure and temperature reached the above conditions. Thereafter, the temperature was lowered to room temperature and then the Mo plate was taken out to recover an RTB-based sintered magnet. The recovered R-T-B-based sintered magnet was returned to the processing vessel and housed again in the heat treatment furnace, and heat treatment was performed for 2 hours at 500 ° C. in a vacuum of 10 Pa or less to improve the magnetic properties. This heat treatment was also performed while raising the temperature while evacuating from room temperature, and was performed under the above conditions after the atmospheric pressure and temperature reached the above conditions. After that, the temperature was once lowered to room temperature, and then the RTB-based sintered magnet was recovered.

得られたR−T−B系焼結磁石の表面をそれぞれ0.2mmずつ機械加工にて除去し、6.5mm×7.0mm×7.0mmのサンプル1〜11、30および31を得た。得られたサンプル1〜11、30および31の磁気特性をB−Hトレーサーによって測定し、HcJとBrの変化量を求めた。結果を表2に示す。 The surface of the resulting RTB-based sintered magnet was removed by machining by 0.2 mm each to obtain samples 1 to 11, 30 and 31 of 6.5 mm × 7.0 mm × 7.0 mm. . The magnetic properties of the obtained samples 1 to 11, 30 and 31 were measured by the B-H tracer, and the change amounts of H cJ and B r were determined. The results are shown in Table 2.

Figure 0006503960
Figure 0006503960

Figure 0006503960
Figure 0006503960

表2からわかるように、本発明の製造方法によるR−T−B系焼結磁石はBrが低下することなくHcJが大きく向上しているが、RLM合金の融点が熱処理温度の900℃を超えるサンプル1、RLM合金のRLの含有割合が本発明で規定するよりも少ないサンプル6のHcJの向上は、同じ拡散剤を使用した本発明の実施例(サンプル2〜5、サンプル8〜11、サンプル30および31)に及ばないことがわかった。 As can be seen from Table 2, R-T-B based sintered magnet according to the manufacturing method of the present invention is H cJ is greatly improved without the B r decreases, 900 ° C. of the melting point of the RLM alloy heat treatment temperature The improvement of H cJ of sample 1 which is more than sample 1 and the content of RL of RLM alloy is less than specified in the present invention is an example of the present invention (samples 2 to 5, samples 8 to 8) using the same diffusing agent 11, it turned out that it did not reach to samples 30 and 31).

このことから、本発明の製造方法によるR−T−B系焼結磁石のHcJが大きく向上しているのは、拡散助剤であるRLの含有割合が本発明の範囲内であるRLM合金が熱処理温度で溶融してRH酸化物を還元し、還元されたRHが磁石内部に粒界を通じて拡散し、効率よくHcJの向上に寄与していることによると考えられる。 From this, it is the RLM alloy whose content ratio of RL which is a diffusion aid is within the scope of the present invention that HcJ of the RTB -based sintered magnet is greatly improved by the manufacturing method of the present invention. Is melted at the heat treatment temperature to reduce the RH oxide, and the reduced RH diffuses inside the magnet through grain boundaries, which is considered to contribute to the improvement of H cJ efficiently.

[実験例2]
組成がNd87Cu13およびTb74Cu26(原子%)の拡散助剤とTb47粉末(拡散剤)を表3に示す混合比となるように混合してスラリーを作製したこと以外は、実験例1と同様にしてサンプル12〜20を得た。なお、拡散助剤としてTb74Cu26を用いたサンプル20は拡散助剤と拡散剤の混合質量比が同じであるサンプル3と同じ塗布量のスラリーを塗布した。得られたサンプル12〜20の磁気特性をB−Hトレーサーによって測定し、HcJとBrの変化量を求めた。結果を表4に示す。なお、それぞれの表には比較対象の実施例としてそれぞれサンプル3の条件および測定結果を示している。
[Experimental Example 2]
A slurry was prepared by mixing a Nd 87 Cu 13 and Tb 74 Cu 26 (atomic%) diffusion aid and Tb 4 O 7 powder (diffusing agent) so that the mixing ratio was as shown in Table 3. Samples 12 to 20 were obtained in the same manner as in Experimental Example 1. Incidentally, the sample 20 using the Tb 74 Cu 26 as a diffusion aid was applied to the same coating amount of the slurry and sample 3 is the same mixing mass ratio of the diffusing agent and diffusion aid. The magnetic properties of the obtained samples 12 to 20 were measured by the B-H tracer, and the change amounts of H cJ and B r were determined. The results are shown in Table 4. In each table, the conditions and the measurement results of the sample 3 are shown as the comparative examples.

Figure 0006503960
Figure 0006503960

Figure 0006503960
Figure 0006503960

表4からわかるように、本発明の製造方法によるR−T−B系焼結磁石(サンプル3、14〜16)はBrが低下することなくHcJが大きく向上しているが、本発明で規定する混合質量比率よりもRH酸化物が多く拡散面1mm2あたりのRH量がサンプル3、14、16と同じサンプル12は、HcJの向上は本発明に及ばないことがわかった。また、サンプル13は拡散面1mm2あたりのRH量がサンプル3、14〜16よりも多いにもかかわらず、本発明で規定する混合質量比率よりもRH酸化物が多いため、HcJの向上は本発明に及ばなかった。また、本発明で規定する混合質量比率よりもRH酸化物が少ない(RH酸化物を混合していない)サンプル17、およびRH酸化物のみのサンプル18、RH酸化物のみで拡散面1mm2あたりのRH量が本発明の実施例より多いサンプル19もHcJの向上が本発明に及ばないことがわかった。また、拡散助剤としてRHM合金を用いたサンプル20は本発明の実施例と同程度にHcJが向上するものの、拡散助剤にRHを含むため拡散面1mm2あたりのRH量は本発明の実施例よりも格段に大きく、少量のRHでHcJを向上させるという効果が得られていない。すなわち、本発明で規定するRLM合金とRH酸化物を本発明で規定する混合質量比率で混合して使用した場合に限り、RLM合金がRH酸化物を効率よく還元し、十分に還元されたRHがR−T−B系焼結磁石母材中に拡散することにより、少ないRH量でHcJを大きく向上させることができたことがわかった。 As can be seen from Table 4, R-T-B based sintered magnet (Sample 3,14~16) by the manufacturing method of the present invention is H cJ is greatly improved without the B r is decreased, the present invention It was found that the sample 12 having a larger amount of RH oxide and the same RH amount per 1 mm 2 of the diffusion surface than the mixed mass ratio specified in the above does not have the improvement of H cJ according to the present invention. Also, even though the sample 13 amounts RH per diffusion surface 1 mm 2 is larger than the sample 3,14~16, since many RH oxides than mass mixing ratio defined in the present invention, improvement in H cJ is It did not reach the present invention. In addition, Sample 17 containing less RH oxide (not mixed with RH oxide) than the mixing mass ratio specified in the present invention, Sample 18 containing only RH oxide, and only RH oxide per 1 mm 2 of the diffusion surface It was found that the improvement of H cJ did not reach to the present invention also for the sample 19 having a larger amount of RH than the example of the present invention. In addition, although HcJ is improved to the same extent as in the example of the present invention in the sample 20 using the RHM alloy as the diffusion aid, the RH amount per 1 mm 2 of the diffusion surface is equal to The effect of improving H cJ by a small amount of RH is not obtained, which is much larger than the example. That is, only when RLM alloy and RH oxide specified in the present invention are mixed and used at the mixing mass ratio specified in the present invention, RLM alloy efficiently reduces RH oxide and RH is sufficiently reduced. It was found that HcJ could be greatly improved with a small amount of RH by diffusing into the RTB -based sintered magnet base material.

[実験例3]
組成がNd87Cu13(原子%)の拡散助剤とTb47粉末(拡散剤)を、拡散助剤:拡散剤が8:2となるように混合してスラリーを作製し、表5に示す条件で熱処理を行ったこと以外は、実験例1と同様にしてサンプル21〜23を得た。得られたサンプル21〜23の磁気特性をB−Hトレーサーによって測定し、HcJとBrの変化量を求めた。結果を表6に示す。
[Experimental Example 3]
A slurry was prepared by mixing a diffusion aid having a composition of Nd 87 Cu 13 (atomic%) and Tb 4 O 7 powder (a diffusion agent) so that the diffusion aid: the diffusion agent was 8: 2, Table 5 Samples 21 to 23 were obtained in the same manner as in Experimental Example 1 except that the heat treatment was performed under the conditions shown in Table 2. The magnetic properties of the obtained samples 21 to 23 were measured by a B-H tracer, and the change amounts of H cJ and B r were determined. The results are shown in Table 6.

Figure 0006503960
Figure 0006503960

Figure 0006503960
Figure 0006503960

表6からわかるように、表5で示した様々な熱処理条件で熱処理を行った場合も、本発明の製造方法によるR−T−B系焼結磁石ではBrが低下することなくHcJが大きく向上することがわかった。 As can be seen from Table 6, the H cJ without even when subjected to heat treatment at various heat treatment conditions shown in Table 5, in the R-T-B-based sintered magnet according to the manufacturing method of the invention in which B r drops It turned out that it improves greatly.

[実験例4]
R−T−B系焼結磁石母材を表7のサンプル24〜27に示す組成、焼結温度、不純物量、および磁気特性のものとしたこと以外はサンプル3と同様にしてサンプル24〜27を得た。得られたサンプル24〜27の磁気特性をB−Hトレーサーによって測定し、HcJとBrの変化量を求めた。結果を表8に示す。
[Experimental Example 4]
Samples 24 to 27 are the same as Sample 3 except that the RTB-based sintered magnet base material has the composition, sintering temperature, amount of impurities, and magnetic properties shown in Samples 24 to 27 in Table 7. I got The magnetic properties of the obtained samples 24 to 27 were measured by a B-H tracer, and the change amounts of H cJ and B r were determined. The results are shown in Table 8.

Figure 0006503960
Figure 0006503960

Figure 0006503960
Figure 0006503960

表8からわかるように、表7で示した様々なR−T−B系焼結磁石母材を使用した場合も、本発明の製造方法によるR−T−B系焼結磁石はBrが低下することなくHcJが大きく向上することがわかった。 As can be seen from Table 8, even when various RTB-based sintered magnet base materials shown in Table 7 are used, the RTB-based sintered magnet according to the manufacturing method of the present invention has B r. It was found that H cJ is greatly improved without decreasing.

[実験例5]
表9に示す拡散助剤とTb47粉末(拡散剤)を表9に示す混合比となるように混合してスラリーを作製したこと以外は実験例1と同様にしてサンプル28、29を得た。得られたサンプル28、29の磁気特性をB−Hトレーサーによって測定し、HcJとBrの変化量を求めた。結果を表10に示す。なお、それぞれの表には比較対象の実施例としてサンプル3の条件および測定結果を示している。
[Experimental Example 5]
Samples 28 and 29 were prepared in the same manner as in Experimental Example 1 except that a diffusion aid and Tb 4 O 7 powder (diffusing agent) shown in Table 9 were mixed to obtain a mixing ratio shown in Table 9 to prepare a slurry. Obtained. The magnetic properties of the obtained samples 28 and 29 were measured by the B-H tracer, and the change amounts of H cJ and B r were determined. The results are shown in Table 10. In each table, conditions and measurement results of sample 3 are shown as an example of comparison object.

Figure 0006503960
Figure 0006503960

Figure 0006503960
Figure 0006503960

表10からわかるようにサンプル28、29のいずれもHcJの向上は本発明に及ばないことがわかった。拡散助剤としてCuは融点が熱処理温度より高くRH酸化物を還元する能力もそれ自体が拡散してHcJを向上させる能力もないので、HcJはほとんど向上しなかった。また、AlもRH酸化物を還元する効果はほとんどなく、サンプル29のHcJの向上はAl自体がR−T−B系焼結磁石内に拡散したことによるものであると考えられる。すなわち、主相結晶粒と反応しやすいAlが主相結晶粒の内部にまで拡散したことによってBrが低下しているのではないかと考えられる。 As can be seen from Table 10, it is found that the improvement in H cJ of neither of Samples 28 and 29 falls below the present invention. Since the diffusion aid Cu is also capable of reducing the melting point is higher RH oxide than the heat treatment temperature itself no ability to enhance H cJ diffuse, H cJ was hardly improved. Further, Al also has little effect of reducing RH oxide, and it is considered that the improvement of H cJ of sample 29 is due to Al itself diffused into the R-T-B-based sintered magnet. That is, it is considered that Br is lowered by the diffusion of Al that easily reacts with the main phase crystal grains to the inside of the main phase crystal grains.

[実験例6]
拡散助剤を常温大気中に50日間放置することにより、表面を酸化させた拡散助剤を用意した。この点以外はサンプル5と同様にしてサンプル32を作製した。なお、50日間の放置後の拡散助剤は、放置前に1800ppmであった酸素含有量が6600ppmに上昇した。
[Experimental Example 6]
The diffusion aid was left to stand in a normal temperature atmosphere for 50 days to prepare a diffusion aid with the surface oxidized. A sample 32 was produced in the same manner as the sample 5 except this point. In addition, as for the diffusion adjuvant after leaving-to-stand for 50 days, the oxygen content which was 1800 ppm before leaving-to-stand rose to 6600 ppm.

R−T−B系焼結磁石母材を、相対湿度90%、温度60℃の雰囲気に100時間放置し、その表面に多数の赤錆を発生させた。そのようなR−T−B系焼結磁石母材を用いたこと以外は、サンプル5と同様にしてサンプル33を作製した。得られたサンプル32、33の磁気特性をB−Hトレーサーによって測定し、HcJとBrの変化量を求めた。結果を表11に示す。表11には比較としてサンプル5の結果も示している。 The R-T-B based sintered magnet base material was left in an atmosphere with a relative humidity of 90% and a temperature of 60 ° C. for 100 hours to generate many red rusts on the surface. A sample 33 was produced in the same manner as the sample 5 except that such an RTB-based sintered magnet base material was used. The magnetic properties of the obtained samples 32 and 33 were measured by a B-H tracer, and the change amounts of H cJ and B r were determined. The results are shown in Table 11. Table 11 also shows the results of sample 5 as a comparison.

Figure 0006503960
Figure 0006503960

表11から、拡散助剤およびR−T−B系焼結磁石母材の表面が酸化されていても、HcJの向上にはほとんど影響しないことがわかった。 It was found from Table 11 that even if the surfaces of the diffusion aid and the RTB -based sintered magnet base material were oxidized, the improvement of H cJ was hardly affected.

本発明によるR−T−B系焼結磁石の製造方法は、より少ない重希土類元素RHによってHcJを向上させたR−T−B系焼結磁石が提供し得る。 The method for producing an RTB-based sintered magnet according to the present invention can provide an RTB -based sintered magnet in which H cJ is improved by using less heavy rare earth elements RH.

Claims (4)

R−T−B系焼結磁石を用意する工程と、
前記R−T−B系焼結磁石の表面にRLM合金(RLはNdおよび/またはPr、MはCu、Fe、Ga、Co、Niから選ばれる1種以上)の粉末と、RH酸化物(RHはDyおよび/またはTb)の粉末とを存在させた状態において、前記R−T−B系焼結磁石の焼結温度以下で熱処理を行う工程と、
を含み、
前記RLM合金はRLを65原子%以上含み、かつ、前記RLM合金の融点は前記熱処理の温度以下であり、
前記熱処理は、前記RLM合金の粉末と前記RH酸化物の粉末とが、RLM合金:RH酸化物=9.6:0.4〜5:5の質量比率で前記R−T−B系焼結磁石の表面に存在する状態で行われ、
前記熱処理を行う工程は、前記RLM合金を溶融させる工程、および、溶融した前記RLM合金によって前記RH酸化物を還元して前記RH酸化物中のRHを前記R−T−B系焼結磁石の内部に拡散させる工程とを含む、R−T−B系焼結磁石の製造方法。
Preparing an RTB-based sintered magnet;
A powder of RLM alloy (RL is Nd and / or Pr, M is one or more selected from Cu, Fe, Ga, Co, Ni) on the surface of the RTB-based sintered magnet, and RH oxide ( Performing a heat treatment at a temperature equal to or lower than the sintering temperature of the R-T-B-based sintered magnet in the presence of RH and a powder of Dy and / or Tb);
Including
The RLM alloy contains 65 atomic% or more of RL, and the melting point of the RLM alloy is equal to or less than the temperature of the heat treatment,
In the heat treatment, the RLM alloy powder and the RH oxide powder are sintered at the mass ratio of RLM alloy: RH oxide = 9.6: 0.4-5: 5. Done on the surface of the magnet ,
In the step of performing the heat treatment, the step of melting the RLM alloy, and the step of reducing the RH oxide with the molten RLM alloy to reduce the RH in the RH oxide by the RTB-based sintered magnet And D. diffusing into the interior .
前記R−T−B系焼結磁石の表面において、前記RH酸化物の粉末に含まれるRH元素の質量は、前記表面の1mmあたりで0.03〜0.35mgである請求項1に記載のR−T−B系焼結磁石の製造方法。 The mass of the RH element contained in the powder of the RH oxide on the surface of the RTB-based sintered magnet is 0.03 to 0.35 mg per 1 mm 2 of the surface. The manufacturing method of the RTB-based sintered magnet. 前記R−T−B系焼結磁石の表面において、前記RLM合金の粉末と前記RH酸化物の粉末とは混合された状態にある、請求項1または2に記載のR−T−B系焼結磁石の製造方法。   The R-T-B-based sintered material according to claim 1 or 2, wherein the RLM alloy powder and the RH oxide powder are mixed on the surface of the R-T-B-based sintered magnet. Method of manufacturing a magnet 前記RLM合金におけるRLの含有量は85原子%を超える、請求項1から3のいずれかに記載のR−T−B系焼結磁石の製造方法。   The method for producing an RTB-based sintered magnet according to any one of claims 1 to 3, wherein the content of RL in the RLM alloy is over 85 at%.
JP2015147328A 2014-07-29 2015-07-27 Method of manufacturing RTB based sintered magnet Active JP6503960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147328A JP6503960B2 (en) 2014-07-29 2015-07-27 Method of manufacturing RTB based sintered magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014153732 2014-07-29
JP2014153732 2014-07-29
JP2015147328A JP6503960B2 (en) 2014-07-29 2015-07-27 Method of manufacturing RTB based sintered magnet

Publications (2)

Publication Number Publication Date
JP2016034024A JP2016034024A (en) 2016-03-10
JP6503960B2 true JP6503960B2 (en) 2019-04-24

Family

ID=55452776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147328A Active JP6503960B2 (en) 2014-07-29 2015-07-27 Method of manufacturing RTB based sintered magnet

Country Status (1)

Country Link
JP (1) JP6503960B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418171B2 (en) * 2014-12-12 2019-09-17 Hitachi Metals, Ltd. Production method for R—T—B-based sintered magnet
WO2016093174A1 (en) * 2014-12-12 2016-06-16 日立金属株式会社 Production method for r-t-b-based sintered magnet
CN105957679B (en) * 2016-07-18 2018-06-01 江苏东瑞磁材科技有限公司 A kind of Nd-Fe-B permanent magnet material and its manufacturing method of high energy product high-coercive force
JP2018026390A (en) * 2016-08-08 2018-02-15 日立金属株式会社 Method for manufacturing r-t-b based sintered magnet
JP6860808B2 (en) * 2016-08-17 2021-04-21 日立金属株式会社 Manufacturing method of RTB-based sintered magnet
JP6443584B2 (en) * 2016-09-29 2018-12-26 日立金属株式会社 Method for producing RTB-based sintered magnet
EP3579257A4 (en) * 2017-01-31 2020-02-19 Hitachi Metals, Ltd. Method for producing r-t-b sintered magnet
JP7188202B2 (en) * 2018-03-29 2022-12-13 Tdk株式会社 RTB system permanent magnet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5742776B2 (en) * 2011-05-02 2015-07-01 信越化学工業株式会社 Rare earth permanent magnet and manufacturing method thereof
JP5751237B2 (en) * 2012-11-02 2015-07-22 トヨタ自動車株式会社 Rare earth magnet and manufacturing method thereof
JP5870914B2 (en) * 2012-12-25 2016-03-01 トヨタ自動車株式会社 Rare earth magnet manufacturing method

Also Published As

Publication number Publication date
JP2016034024A (en) 2016-03-10

Similar Documents

Publication Publication Date Title
JP6503960B2 (en) Method of manufacturing RTB based sintered magnet
JP5884957B1 (en) Method for producing RTB-based sintered magnet
JP6414597B2 (en) Method for producing RTB-based sintered magnet
JP6414598B2 (en) Method for producing RTB-based sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
WO2018034264A1 (en) R-t-b sintered magnet
JP6391915B2 (en) Grain boundary modification method for Nd-Fe-B magnet
US10410776B2 (en) Production method for R-T-B-based sintered magnet
US10418171B2 (en) Production method for R—T—B-based sintered magnet
JPWO2012099188A1 (en) R-T-B sintered magnet
JP2018093202A (en) R-t-b based permanent magnet
JP2012079726A (en) Production method of alloy for r-t-b-m based sintered magnet and production method of r-t-b-m based sintered magnet
JP6717230B2 (en) Method for manufacturing sintered RTB magnet
JP2013153172A (en) Manufacturing method of neodymium-iron-boron sintered magnet
JP4179973B2 (en) Manufacturing method of sintered magnet
JP2020161811A (en) R-t-b based permanent magnet
JP6717231B2 (en) Method for manufacturing sintered RTB magnet
JP6414592B2 (en) Method for producing RTB-based sintered magnet
JP6743650B2 (en) Method for manufacturing RTB-based sintered magnet
WO2017068946A1 (en) R-t-b based sintered magnet manufacturing method and r-t-b based sintered magnet
JP7228096B2 (en) Method for producing RTB based sintered magnet
JP6743649B2 (en) Method for manufacturing RTB-based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190311

R150 Certificate of patent or registration of utility model

Ref document number: 6503960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350