JP2013153172A - Manufacturing method of neodymium-iron-boron sintered magnet - Google Patents

Manufacturing method of neodymium-iron-boron sintered magnet Download PDF

Info

Publication number
JP2013153172A
JP2013153172A JP2013031636A JP2013031636A JP2013153172A JP 2013153172 A JP2013153172 A JP 2013153172A JP 2013031636 A JP2013031636 A JP 2013031636A JP 2013031636 A JP2013031636 A JP 2013031636A JP 2013153172 A JP2013153172 A JP 2013153172A
Authority
JP
Japan
Prior art keywords
magnet
powder
grain boundary
base material
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013031636A
Other languages
Japanese (ja)
Other versions
JP5643355B2 (en
JP2013153172A5 (en
Inventor
Masato Sagawa
眞人 佐川
Naoteru Fujimoto
尚輝 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermetallics Co Ltd
Original Assignee
Intermetallics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermetallics Co Ltd filed Critical Intermetallics Co Ltd
Priority to JP2013031636A priority Critical patent/JP5643355B2/en
Publication of JP2013153172A publication Critical patent/JP2013153172A/en
Publication of JP2013153172A5 publication Critical patent/JP2013153172A5/ja
Application granted granted Critical
Publication of JP5643355B2 publication Critical patent/JP5643355B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a NdFeB sintered magnet with high coercive force and high square-shape property for the magnetization curve.SOLUTION: The manufacturing method of the NdFeB sintered magnet comprises a grain boundary diffusion treatment. In the grain boundary diffusion treatment, Dy and/or Tb in a layer comprising Dy and/or Tb are diffused to an inner part of a magnet base through a crystal grain boundary of the magnet base, by forming the layer on a surface of the NdFeB sintered magnet base, and heating it to a temperature of not higher than the sintering temperature of the magnet base; a rare earth amount in a metal state, which is included in the magnet base, is not less than 12.9 atom%; and the layer comprises fluoride of Dy and/or fluoride of Tb of not lower than 50 mass%. Even if the magnet has a thickness of 3-6 mm which is difficult for improvement of a characteristic in conventional cases, the NdFeB sintered magnet having high coercive force of not lower than 1.4 mA/m and high square-shape property of the magnetization curve can be manufactured.

Description

本発明は、高い保磁力を有するNdFeB焼結磁石の製造方法に関する。   The present invention relates to a method for producing a sintered NdFeB magnet having a high coercive force.

NdFeB焼結磁石は、ハイブリッドカーのモータ用磁石等として今後ますます需要が拡大することが予想されている。自動車用モータでは重量の更なる軽減が望まれており、そのために、NdFeB焼結磁石の保磁力HcJを一段と大きくすることが要望されている。NdFeB焼結磁石の保磁力HcJを高める方法の一つに、Ndの一部をDy及び/又はTbで置換する方法が知られている。しかし、この方法には、DyやTbの資源が世界的に乏しくかつ偏在していること、及び残留磁束密度Brや最大エネルギー積(BH)maxを低下させること、という問題がある。 NdFeB sintered magnets are expected to increase in demand in the future as magnets for motors of hybrid cars. For motors for automobiles, further reduction in weight is desired, and for that purpose, it is desired to further increase the coercive force HcJ of the NdFeB sintered magnet. As one of the methods for increasing the coercive force HcJ of the NdFeB sintered magnet, a method of replacing a part of Nd with Dy and / or Tb is known. However, this method has problems that Dy and Tb resources are scarce and unevenly distributed worldwide, and that the residual magnetic flux density Br and the maximum energy product (BH) max are reduced.

特許文献1には、NdFeB焼結磁石の表面を加工した際に生じる保磁力の低下を防ぐために、NdFeB焼結磁石の表面にNd、Pr、Dy、Ho、Tbのうち少なくとも1種類を被着させることが記載されている。また、特許文献2には、NdFeB焼結磁石の表面にTb、Dy、Al、Gaのうち少なくとも1種類を拡散させることにより、高温時に生じる不可逆減磁を抑制することが記載されている。   In Patent Literature 1, at least one of Nd, Pr, Dy, Ho, and Tb is deposited on the surface of the NdFeB sintered magnet in order to prevent a decrease in coercive force that occurs when the surface of the NdFeB sintered magnet is processed. Is described. Patent Document 2 describes that irreversible demagnetization that occurs at high temperatures is suppressed by diffusing at least one of Tb, Dy, Al, and Ga on the surface of the NdFeB sintered magnet.

また、最近、粒界拡散法と呼ばれる方法で、磁石の残留磁束密度Brをほとんど低下させることなく保磁力HcJを大きくできることが見出された(非特許文献1〜3)。粒界拡散法の原理は次の通りである。
スパッタリングによりNdFeB焼結磁石の表面にDy及び/又はTbを付着させ、700〜1000℃で加熱すると、磁石表面のDy及び/又はTbは焼結体の粒界を通じて焼結体内部に入り込んでゆく。NdFeB焼結磁石中の粒界には希土類に富んだNdリッチ相と呼ばれる粒界相が存在している。このNdリッチ相は融点が磁石粒子よりも低く上記加熱温度で溶融している。そのため、上記Dy及び/又はTbは粒界の液体に溶け込み、焼結体表面から焼結体内部に拡散していく。物質の拡散は固体中よりも液体中のほうがずっと速いので、上記Dy及び/又はTb粒界から粒内に拡散していくよりも、溶融している粒界を通じて焼結体内部に拡散していく速度のほうがはるかに大きい。この拡散速度の差を利用して、熱処理温度と時間を適切な値に設定することにより、焼結体全体にわたって、焼結体中の主相粒子の粒界にごく近い領域(表面領域)においてのみDy及び/又はTbの濃度が高い状態を実現することができる。Dy及び/又はTbの濃度が高くなると磁石の残留磁束密度Brが低下するが、そのような領域は各主相粒子の表面領域だけであるため、主相粒子全体としては残留磁束密度Brは殆ど低下しない。こうして、保磁力HcJが大きく、残留磁束密度BrはDyやTbで置換しないNdFeB焼結磁石とあまり変らない高性能磁石が製造できる。
Also, recently, a method called a grain boundary diffusion method, it has been found that can increase the coercive force H cJ with little lowering the residual magnetic flux density B r of the magnet (Non-Patent Documents 1 to 3). The principle of the grain boundary diffusion method is as follows.
When Dy and / or Tb is deposited on the surface of a NdFeB sintered magnet by sputtering and heated at 700 to 1000 ° C., the Dy and / or Tb on the magnet surface enters the inside of the sintered body through the grain boundary of the sintered body. . A grain boundary phase called an Nd-rich phase rich in rare earth exists at the grain boundary in the NdFeB sintered magnet. The Nd-rich phase has a melting point lower than that of the magnet particles and is melted at the heating temperature. Therefore, the Dy and / or Tb dissolves in the liquid at the grain boundary and diffuses from the sintered body surface into the sintered body. Since the diffusion of the material is much faster in the liquid than in the solid, it diffuses into the sintered body through the molten grain boundary rather than diffusing into the grain from the Dy and / or Tb grain boundary. The speed to go is much greater. By utilizing the difference in diffusion rate and setting the heat treatment temperature and time to appropriate values, the entire sintered body is in a region (surface region) very close to the grain boundary of the main phase particles in the sintered body. Only a high concentration of Dy and / or Tb can be realized. When the concentration of Dy and / or Tb increases, the residual magnetic flux density B r of the magnet decreases. However, since such a region is only the surface region of each main phase particle, the residual magnetic flux density B r as the main phase particle as a whole. Is hardly reduced. Thus, a large coercive force H cJ, remanence B r can performance magnet production unchanged so the NdFeB sintered magnet is not replaced with Dy or Tb.

粒界拡散法によるNdFeB焼結磁石の工業的製造方法として、Dy及び/又はTbのフッ化物や酸化物の粉体層をNdFeB焼結磁石の基材(以下、「磁石基材」とする)の表面に形成して加熱する方法(特許文献3)や、Dy及び/又はTbのフッ化物の粉末と水素化Caの粉末の混合粉末の中に磁石基材を埋めこんで加熱する方法がすでに発表されている(非特許文献4、5)。   As an industrial manufacturing method for NdFeB sintered magnets by the grain boundary diffusion method, a powder layer of fluoride or oxide of Dy and / or Tb is used as a base material for NdFeB sintered magnet (hereinafter referred to as “magnet base material”). A method of heating by forming on the surface of a metal (Patent Document 3) and a method of heating by embedding a magnet base material in a mixed powder of Dy and / or Tb fluoride powder and hydrogenated Ca powder. It has been announced (Non-Patent Documents 4 and 5).

さらに最近、Dy及び/又はTbとその他の金属との合金粉末をNdFeB焼結磁石体表面に堆積させた後に熱処理を行うこと(特許文献4)や、Dy及び/又はTbのフッ化物粉末とAl、Cu、Znから選ばれる1種類以上の粉末との混合粉末を堆積させた後に熱処理を行うこと(特許文献5)により高保磁力化を実現する方法が見出された。   More recently, an alloy powder of Dy and / or Tb and other metals is deposited on the surface of the NdFeB sintered magnet body, and then heat treatment is performed (Patent Document 4), fluoride powder of Dy and / or Tb and Al A method for realizing a high coercive force has been found by performing heat treatment after depositing a mixed powder of one or more kinds selected from Cu, Zn and Zn (Patent Document 5).

特開昭62-074048号公報JP 62-074048 特開平01-117303号公報Japanese Unexamined Patent Publication No. 01-117303 国際公開W02006/043348A1号パンフレットInternational Publication W02006 / 043348A1 Pamphlet 特開2007-287875公報JP2007-287875 特開2007-287874公報JP 2007-287874

K. T. Park他、「Nd-Fe-B薄膜焼結磁石の保磁力への金属被覆と加熱の効果」、第16回希土類磁石とその応用に関する国際会議会議録、社団法人日本金属学会発表、2000年、第257-264頁(K. T. Park et al., "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceeding of the Sixteenth International Workshop on Rare-Earth Magnets and their Appiications (2000), pp. 257-264.)KT Park et al., "Effects of metal coating and heating on the coercivity of Nd-Fe-B thin film sintered magnets", Proceedings of the 16th International Conference on Rare Earth Magnets and their Applications, Japan Institute of Metals, 2000 257-264 (KT Park et al., "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceeding of the Sixteenth International Workshop on Rare-Earth Magnets and their Appiications (2000), pp. 257-264.) 石垣尚幸 他、「ネオジム系微小焼結磁石の表面改質と特性向上」、NEOMAX技報、株式会社NEOMAX発行、2005年、第15巻、第15-19頁Naoyuki Ishigaki et al., “Surface modification and improvement of properties of neodymium-based sintered magnets”, published by NEOMAX Technical Report, NEOMAX Co., Ltd., 2005, Volume 15, Pages 15-19 町田憲一 他、「Nd-Fe-B系焼結磁石の粒界改質と磁気特性」、粉体粉末冶金協会平成16年春季大会講演概要集、粉体粉末冶金協会発行、1-47AKenichi Machida et al., "Grain boundary modification and magnetic properties of Nd-Fe-B sintered magnets", Summary of the 2004 Spring Meeting of the Powder and Powder Metallurgy Association, published by the Powder and Powder Metallurgy Association, 1-47A 廣田晃一 他、「粒界拡散法によるNd-Fe-B系焼結磁石の高保磁力化」、粉体粉末冶金協会平成17年春季大会講演概要集、粉体粉末冶金協会発行、第143頁Junichi Hamada et al., “High coercivity of Nd-Fe-B sintered magnets by grain boundary diffusion method”, Powder and Powder Metallurgy Association 2005 Spring Meeting Abstracts, Issued by Powder and Powder Metallurgy Association, page 143 町田憲一 他、「粒界改質型Nd-Fe-B系焼結磁石の磁気特性」、粉体粉末冶金協会平成17年春季大会講演概要集、粉体粉末冶金協会発行、第144頁Kenichi Machida et al., “Magnetic Properties of Grain Boundary Modified Nd-Fe-B System Sintered Magnets”, Summary of Presentations of the 2005 Spring Meeting of the Powder Powder Metallurgy Association, Issued by the Powder Powder Metallurgy Association, page 144

上記従来技術には次のような問題があった。
(1) 特許文献1及び2に記載の方法は保磁力向上の効果が低い。
(2) スパッタリング法やイオンプレーティング法により磁石表面にDyやTbを含む成分を付着させる方法(非特許文献1〜3)は、処理費が高額になるため実用的ではない。
(3) DyF3やDy2O3あるいはTbF3やTb2O3の粉末を磁石基材の表面に塗布する方法(特許文献3)は、DyやTbを含む成分を付着させる方法としては処理費が安価である点で有利であり、特にDyF3やTbF3を使用する方法は粒界拡散法による保磁力向上効果が顕著であるので、工業的に価値のある技術として期待されている。しかし、この方法が適用できるのは、磁石基材の厚さが3mm以下の場合に限られている。そのため、この方法は、高保磁力が必要な比較的大型のモータや発電機に使用される厚い磁石を製造することができない、という大きな問題を有する。
The above prior art has the following problems.
(1) The methods described in Patent Documents 1 and 2 have a low effect of improving the coercive force.
(2) A method of attaching a component containing Dy or Tb to the magnet surface by sputtering or ion plating (Non-Patent Documents 1 to 3) is not practical because of high processing costs.
(3) The method of applying a DyF 3 or Dy 2 O 3 or TbF 3 or Tb 2 O 3 powder to the surface of a magnetic substrate (Patent Document 3) is a process for attaching a component containing Dy or Tb. It is advantageous in that the cost is low, and in particular, the method using DyF 3 or TbF 3 is expected as an industrially valuable technique because the effect of improving the coercive force by the grain boundary diffusion method is remarkable. However, this method can be applied only when the thickness of the magnet substrate is 3 mm or less. Therefore, this method has a big problem that a thick magnet used for a relatively large motor or generator that requires a high coercive force cannot be manufactured.

特許文献4及び5並びに非特許文献4には厚さが3mm以上の磁石基材を用いた実施例(実験結果)が記載されている。しかし、これらの実施例においても、厚さが3mm以上になると、磁石基材の厚さが増加するほど保磁力HcJの値が低下することが示されている。例えば非特許文献4では、DyやTbを含まない磁石基材に対してTb粉末による粒界拡散法を施すことにより、磁石基材の厚さが3mmのとき、保磁力が1.2Tであることが示されている。一般にDyよりも粒界拡散処理による効果が高いTbを使用しても保磁力が1.2Tしか得られないという事実は、粒界拡散法において単にフッ化物粉末を使用しただけでは保磁力向上効果に限界があることを示している。なお、非特許文献5には3mm以上の厚さを有する磁石基材に対する実験結果は記載されていない。 Patent Documents 4 and 5 and Non-Patent Document 4 describe examples (experimental results) using a magnet base material having a thickness of 3 mm or more. However, these examples also show that when the thickness is 3 mm or more, the value of the coercive force H cJ decreases as the thickness of the magnet base increases. For example, in Non-Patent Document 4, the coercive force is 1.2 T when the thickness of the magnet substrate is 3 mm by applying a grain boundary diffusion method with Tb powder to a magnet substrate that does not contain Dy or Tb. It is shown. In general, the coercive force of only 1.2T can be obtained even when Tb, which has a higher effect by grain boundary diffusion treatment than Dy, is used. Indicates that there is a limit. Non-Patent Document 5 does not describe experimental results for a magnet base material having a thickness of 3 mm or more.

非特許文献5には5mm角立方体のNdFeB焼結体試料についての実験結果が記載されているが、このような立方体試料はモータ用磁石としては磁極面積が小さすぎる。モータ用磁石は平板状やかわら状などの板状の形状を有し磁極の一辺の長さが厚さよりも3倍以上大きいのが普通である。立方体試料は、磁極面以外の各側面からのDy及び/又はTbの拡散量が磁極面からの拡散量とほぼ同じあるため、立方体試料についての実験結果は普通のモータ用板状磁石に対しては適用できない。例えばDy及び/又はTbが表面から1mm拡散できるとすると、一辺5mmの立方体では全体の80%の体積にDy及び/又はTbが拡散したことになるが、十分に大きい磁極面を持つ板状の試料では40%にしかならない。従って、一辺5mmの立方体試料についての実験結果は、厚さが2.5mmの板状試料についての実験結果と等価であるということができる。また非特許文献5では粒界拡散後の磁石についての磁化曲線の角型性に関する記述がない。磁化曲線の角型性が高いことは高性能モータ用磁石として必須の要件である。したがって、この非特許文献5に示された磁石が一般のモータ用磁石として、さらに、3mm以上の厚さに対して適用可能かどうかは示されていないといえる。   Non-Patent Document 5 describes the experimental results of a 5 mm square cubic NdFeB sintered body sample, but such a cubic sample has a magnetic pole area that is too small for a motor magnet. The magnet for a motor has a plate shape such as a flat plate shape or a straw shape, and the length of one side of the magnetic pole is usually three times larger than the thickness. Since the amount of diffusion of Dy and / or Tb from each side surface other than the magnetic pole surface is almost the same as the amount of diffusion from the magnetic pole surface, the experimental results for the cubic sample are in comparison with a normal plate magnet for motors. Is not applicable. For example, if Dy and / or Tb can diffuse from the surface by 1 mm, a cube with a side of 5 mm would have Dy and / or Tb diffused to 80% of the total volume. Only 40% of the sample. Therefore, it can be said that the experimental result for a cube sample having a side of 5 mm is equivalent to the experimental result for a plate sample having a thickness of 2.5 mm. Non-Patent Document 5 does not describe the squareness of the magnetization curve of the magnet after grain boundary diffusion. A high squareness of the magnetization curve is an essential requirement for a high performance motor magnet. Therefore, it can be said that it is not shown whether the magnet shown in Non-Patent Document 5 is applicable as a general motor magnet to a thickness of 3 mm or more.

本願発明者は、NdFeB焼結磁石をモータや発電機に応用する際には、保磁力HcJが充分に高いことのみならず、上記文献では十分に検討されていない磁化曲線の角型性を高めることが極めて重要である、と考える。以下、磁化曲線の角型性の重要性について説明する。
モータや発電機では、磁石は200℃程度の高温にさらされることが多い。このような高温条件下では、磁化曲線の角型性が低いと不可逆減磁が生じる。そのため、たとえ保磁力が高くとも、磁化曲線の角型性が低ければ、そのような磁石はハイブリッドカーなど高度技術製品には使用することができない。上記文献で示されたDyF3やTbF3の粉末を使用する粒界拡散法では、磁石基材の厚さが3mmを越えると、粒界拡散の効果を最大限に発揮することができず、その結果、保磁力が高く且つ磁化曲線の角型性が充分に高いNdFeB焼結磁石を作製することができなかった。
When applying the NdFeB sintered magnet to a motor or generator, the inventor of the present application not only has a sufficiently high coercive force H cJ, but also has a squareness of a magnetization curve that has not been sufficiently studied in the above document. I think that raising it is extremely important. Hereinafter, the importance of the squareness of the magnetization curve will be described.
In motors and generators, magnets are often exposed to temperatures as high as 200 ° C. Under such high temperature conditions, irreversible demagnetization occurs if the squareness of the magnetization curve is low. Therefore, even if the coercive force is high, if the squareness of the magnetization curve is low, such a magnet cannot be used for high-tech products such as hybrid cars. In the grain boundary diffusion method using the powder of DyF 3 and TbF 3 shown in the above document, if the thickness of the magnet substrate exceeds 3 mm, the effect of grain boundary diffusion cannot be maximized, As a result, an NdFeB sintered magnet having high coercive force and sufficiently high squareness of the magnetization curve could not be produced.

ここで磁化曲線の角型性の定義を説明する。磁化曲線で磁化が残留磁化の値から10%低下したときの磁界の絶対値をHK値とし、磁化が0になる磁界の絶対値である保磁力HcJでHK値を除した値HK/HcJをSQ値とする。本願では、このSQ値を磁化曲線の角型性の指標とする。ここで角型性が高いとは、実施例に示すパルス磁化測定器で測定したときのSQ値が85%以上、好ましくは90%以上であることを意味する。 Here, the definition of the squareness of the magnetization curve will be described. The absolute value of the magnetic field when the magnetization in the magnetization curve has dropped by 10% from the value of the residual magnetization and H K value, the value H which magnetization is obtained by dividing the H K value in coercivity H cJ is the absolute value of the magnetic field becomes 0 Let K / H cJ be the SQ value. In the present application, this SQ value is used as an index of the squareness of the magnetization curve. Here, high squareness means that the SQ value measured by the pulse magnetometer shown in the examples is 85% or more, preferably 90% or more.

ところで、粒界拡散処理が行われたNdFeB磁石の保磁力や磁化曲線の角型性などの特性は、磁石基材の表面に付着させた(DyやTbを含む)物質(以下、「付着物」とする)の組成に依存するのに加えて、磁石基材の組成にも依存する。これらの組成においてとりわけDyやTbの量が特性に大きく影響する。これまでの公知文献では、磁石基材と付着物を様々に組み合わせたもの同士で特性の比較が行われているため、粒界拡散の効果について優劣を比較することが容易ではなかった。そのため、本願発明者は、粒界拡散の効果を適切に比較するために、以下のように単純且つ特性向上のためには厳しい条件で比較を行う必要があると考えた。
条件(1):磁石基材にはDy、Tbのいずれも含まないものを用いる。
条件(2):付着物にはDyを含むものを用い、Tbを含むものは用いない。
条件(1)は、磁石基材にDyやTbが含まれていると、そのこと自体で磁石の特性が向上するため、その影響を排除することを目的としている。条件(2)は、一般に磁石特性向上の効果はTbよりもDyの方が小さいため、より条件の厳しいDyを用いて比較を行うことにより粒界拡散の効果を浮き彫りにすることを目的としている。また、TbはDyよりはるかに希少な物質であり工業的に使用することはますます困難になってきているため、(2)の限定は実用時の条件に即しているといえる。これら(1)(2)の条件下で所定以上の高い特性を得ることができる方法が見出されれば、その方法を用いて(1)(2)以外の条件(磁石基材がDy及び/又はTbを含む場合、付着物がTbを含む場合)下でも所定以上の高い特性を持つNdFeB焼結磁石を得ることができる。
By the way, characteristics such as coercive force and squareness of the magnetization curve of NdFeB magnets that have undergone grain boundary diffusion treatment are the substances (including Dy and Tb) that are attached to the surface of the magnet substrate (hereinafter referred to as “attachments”). ")" And also depends on the composition of the magnet substrate. Among these compositions, the amount of Dy or Tb has a great influence on the characteristics. In the known literatures so far, since characteristics are compared between various combinations of magnet base materials and deposits, it is not easy to compare superiority and inferiority with respect to the effect of grain boundary diffusion. Therefore, in order to appropriately compare the effects of grain boundary diffusion, the inventor of the present application considered that it is necessary to perform comparison under strict conditions for simple and improved characteristics as follows.
Condition (1): A magnet base material containing neither Dy nor Tb is used.
Condition (2): Use deposits containing Dy, not Tb.
The condition (1) aims to eliminate the influence of Dy and Tb contained in the magnet base material because the characteristics of the magnet itself improve. Condition (2) is intended to highlight the effect of grain boundary diffusion by making a comparison using Dy, which is more stringent, since the effect of improving magnet properties is generally smaller than Tb. . In addition, Tb is a much rarer substance than Dy, and it is becoming increasingly difficult to use it industrially. Therefore, it can be said that the limitation in (2) is in line with the conditions in practical use. If a method capable of obtaining a property higher than a predetermined value under the conditions of (1) and (2) is found, the method is used to satisfy the conditions other than (1) and (2) (the magnetic substrate is Dy and / or When Tb is included, an NdFeB sintered magnet having a property higher than a predetermined value can be obtained even when the deposit contains Tb).

この観点から上記文献に記載の事項を整理すると、従来の粒界拡散法では、上記(1)(2)の条件下において(i)3mm以上の厚さを有し、(ii)1.4MA/m以上の保磁力で、(iii)85%以上の磁化曲線の角型性を持つNdFeB焼結磁石を製造することはできなかった。   From this viewpoint, the matters described in the above documents are arranged.In the conventional grain boundary diffusion method, under the conditions (1) and (2) above, (i) has a thickness of 3 mm or more, and (ii) 1.4 MA / An NdFeB sintered magnet with a coercive force of m or more and (iii) a squareness of a magnetization curve of 85% or more could not be produced.

本発明が解決しようとする課題は、上記(1)(2)の厳しい条件下においても、保磁力及び磁化曲線の角型性が高く、3mm以上という厚い磁石にも適用することができるNdFeB焼結磁石を製造する方法を提供することである。なお、本発明で提供される方法は、上記(1)(2)以外の条件の場合でも、従来の方法よりも特性を向上させることができる。そのため、上記(1)(2)の条件は本発明の範囲を限定するものではない。   The problem to be solved by the present invention is that NdFeB sintering can be applied even to a thick magnet of 3 mm or more with high coercivity and squareness of the magnetization curve even under the severe conditions of (1) and (2) above. It is to provide a method for manufacturing a magnetized magnet. Note that the method provided by the present invention can improve characteristics over the conventional method even under conditions other than the above (1) and (2). Therefore, the above conditions (1) and (2) do not limit the scope of the present invention.

上記課題を解決するために成された本発明に係るNdFeB焼結磁石の製造方法は、NdFeB焼結磁石基材の表面にDy及び/又はTbを含む層を形成した後に前記磁石基材の焼結温度以下の温度に加熱することにより、前記層中のDy及び/又はTbを前記磁石基材の結晶粒界を通じて前記磁石基材内部に拡散させる粒界拡散処理を行う方法において、
a) 前記磁石基材中に含まれる金属状態の希土類の量が12.9原子%以上であり、
b) 前記層が50質量%以上のDyのフッ化物及び/又はTbのフッ化物を含有する、
ことを特徴とする。
In order to solve the above problems, a method for producing a sintered NdFeB magnet according to the present invention comprises forming a layer containing Dy and / or Tb on the surface of a NdFeB sintered magnet substrate and then firing the magnet substrate. In a method of performing a grain boundary diffusion treatment in which Dy and / or Tb in the layer is diffused into the inside of the magnet base material through crystal grain boundaries of the magnet base material by heating to a temperature equal to or lower than the sintering temperature.
a) The amount of the rare earth element contained in the magnet base material is 12.9 atomic% or more,
b) the layer contains 50% by weight or more of Dy fluoride and / or Tb fluoride;
It is characterized by that.

本発明において「金属状態の希土類」は、NdFeB焼結磁石の中で金属の状態で存在している物質を構成している希土類を意味する。ここで金属とは、純金属、合金、及び母相であるNd2Fe14B相を含む金属間化合物を指す。希土類の酸化物、フッ化物、炭化物、窒化物などのイオン性あるいは共有結合性を持つ化合物は、「金属状態の希土類」には含まれない。 In the present invention, “a rare earth in a metallic state” means a rare earth constituting a substance existing in a metallic state in a sintered NdFeB magnet. Here, the metal refers to an intermetallic compound including a pure metal, an alloy, and an Nd 2 Fe 14 B phase which is a parent phase. Ionic or covalent compounds such as rare earth oxides, fluorides, carbides and nitrides are not included in the “metallic rare earth”.

まず、a)の技術的意義を説明する。
NdFeB磁石の主相はNd2Fe14B化合物であり、化学量論組成即ちNd:Fe:B=2:14:1の組成では、希土類が占める原子比は2/17=11.76原子%である。NdFeB焼結磁石には、主相以外に、化学量論組成の場合よりもNdの量が多いNdリッチ相と、Bの量が多いBリッチ相が存在する。本願発明者は、NdFeB焼結磁石の粒界拡散法が有効に働くためには、十分な量のNdリッチ相が結晶粒界に存在することが必要であることを見出した。その理由は、磁石基材表面に形成された層からDyやTbが粒界を通じて磁石基材の内部に送りこまれる際に、DyやTbの拡散の速度を上げて基材深部への拡散を促進するために、溶融したNdリッチ相による太い通路を粒界に形成し、DyやTbを基材深部に速く拡散させることにある。その結果、従来のDyのフッ化物粉末による粒界拡散法では不可能であった、厚い基材に対して高角型性を維持しつつ高保磁力化することが、本発明により可能になる。本願発明者は実験により、基材の厚さが3mmを越えるときには、磁石基材が上述の化学量論量である11.76原子%よりも1.14原子%過剰な12.9原子%以上の金属状態の希土類を持つことが必要であることを見出した。
First, the technical significance of a) will be explained.
The main phase of the NdFeB magnet is an Nd 2 Fe 14 B compound, and in the stoichiometric composition, that is, the composition of Nd: Fe: B = 2: 14: 1, the atomic ratio occupied by the rare earth is 2/17 = 11.76 atomic%. . In the NdFeB sintered magnet, in addition to the main phase, there are an Nd-rich phase with a larger amount of Nd than a stoichiometric composition and a B-rich phase with a larger amount of B. The inventor of the present application has found that a sufficient amount of Nd-rich phase needs to be present at the grain boundaries in order for the grain boundary diffusion method of the NdFeB sintered magnet to work effectively. The reason is that when Dy and Tb are sent from the layer formed on the surface of the magnet base material to the inside of the magnetic base material through the grain boundary, the diffusion speed of Dy and Tb is increased to promote the diffusion to the deep part of the base material. In order to achieve this, a thick passage formed by the melted Nd-rich phase is formed at the grain boundary, and Dy and Tb are diffused quickly in the deep part of the substrate. As a result, the present invention makes it possible to increase the coercive force while maintaining high squareness for a thick substrate, which is impossible with the conventional grain boundary diffusion method using Dy fluoride powder. The inventor of the present application has shown by experiment that when the thickness of the base material exceeds 3 mm, the magnet base material has a metal state rare earth of 12.9 atomic% or more, which is 1.14 atomic% in excess of the above stoichiometric amount of 11.76 atomic%. I found it necessary to have it.

磁石基材を製造する際に生成される不純物相としての希土類化合物は、通常は酸化物、炭化物及び窒化物の3種類である。そのため、磁石基材中の金属状態の希土類の量は、磁石基材に含まれる全希土類量から、希土類の酸化物、炭化物及び窒化物を形成している希土類の量を減じた量で定義することができる。ここで、例えば、(1)まず既知の分析方法により磁石基材中の元素の組成比を求め、(2)分析で得られた酸素、炭素、窒素の量に基づいて酸素、炭素、窒素が化合物R2O3、RC及びRN(Rは希土類元素)を形成するとしてこれらR2O3、RC及びRNを構成するRの量を求め、(3)分析で得られた希土類元素の量から(2)で求めたR2O3、RC及びRNを構成するRの量を差し引くことにより、磁石基材中の金属状態の希土類の量を求めることができる。なお、Rの種類によってはR2O3、RC及びRN以外の組成比になることが知られているものもある。しかし、本願発明者は、工業的に生産されているほとんどのNdFeB焼結磁石において、上述の組成比の化合物が生成するとして、金属状態の希土類量を算出することにより、本発明の範囲を規定することができることを確認した。 There are usually three types of rare earth compounds as impurity phases produced when producing a magnet base material: oxides, carbides and nitrides. Therefore, the amount of the rare earth element in the metallic state in the magnet base material is defined as an amount obtained by subtracting the amount of the rare earth forming the rare earth oxide, carbide and nitride from the total rare earth amount contained in the magnetic base material. be able to. Here, for example, (1) first, the composition ratio of the elements in the magnet base material is obtained by a known analysis method, and (2) oxygen, carbon, nitrogen is determined based on the amounts of oxygen, carbon, nitrogen obtained by the analysis. R 2 O 3 , RC and RN (where R is a rare earth element) are formed, and the amount of R constituting these R 2 O 3 , RC and RN is obtained. (3) From the amount of the rare earth element obtained in the analysis By subtracting the amounts of R constituting R 2 O 3 , RC and RN determined in (2), the amount of the rare earth in the metallic state in the magnet substrate can be determined. Some types of R are known to have a composition ratio other than R 2 O 3 , RC and RN. However, the inventor of the present application defines the scope of the present invention by calculating the amount of rare earth in the metal state, assuming that the compound having the above composition ratio is generated in most industrially produced NdFeB sintered magnets. Confirmed that you can.

NdFeB焼結磁石の低酸素化あるいは金属状態の希土類量の増大により、磁石基材自体の保磁力が増大することはよく知られているが、本発明はこの磁石基材自体の高保磁力化と粒界拡散による高保磁力化を合わせたものではない。低酸素あるいは金属状態の希土類量で高保磁力化された磁石基材に粒界拡散法を適用しても、粒界拡散の効果が磁石基材の内部深くまで浸透しなければ、保磁力は磁石基材の表面付近のみで大きく、内部ではもとのままの保磁力を持つことになる。このような磁石は結果として階段状の減磁曲線を持つという、角型性の低いものになってしまう。それに対して、本発明の特徴は、金属状態の希土類量を増加させたことにより、基材表面に塗布したDyのフッ化物やTbのフッ化物からDyやTbが基材深部に達することが可能になったことで、厚い磁石でも高保磁力でかつ高角型性を持つ磁石の作製ができるようになったことにある。   It is well known that the coercive force of the magnet base material itself is increased by reducing the oxygen content of the NdFeB sintered magnet or increasing the amount of rare earth in the metallic state. It is not a combination of high coercivity due to grain boundary diffusion. Even if the grain boundary diffusion method is applied to a magnet base material that has a high coercivity with a low oxygen or metallic rare earth content, if the effect of grain boundary diffusion does not penetrate deep inside the magnet base material, the coercive force is It is large only in the vicinity of the surface of the base material, and has an original coercive force inside. As a result, such a magnet has a stepwise demagnetization curve and has a low squareness. On the other hand, the feature of the present invention is that Dy and Tb can reach the deep part of the substrate from the Dy fluoride and Tb fluoride applied to the substrate surface by increasing the amount of rare earth metal. As a result, a magnet having a high coercive force and a high squareness can be produced even with a thick magnet.

b)の条件は、DyやTbを基材に供給するための供給源となる付着物に関するものである。特許文献3や非特許文献4などで提案されているように、Dyのフッ化物やTbのフッ化物は(1)DyやTbを高濃度に含み、(2)粒界拡散の効果が酸化物などに比べて高く、(3)化学的にあまり活性ではないため取扱いが容易であり、(4)入手しやすい、という利点がある。これらの利点は従来から知られていたが、厚さ3mmを越えるNdFeB焼結磁石基材について、基材の最深部までDyやTbを拡散させるためには、上記a)の条件が必要である。粒界拡散の効果を十分に発揮させるためには、塗布する粉体層中にこれらのフッ化物が少なくとも50質量%以上含まれていることが必要である。   The condition of b) relates to the deposit that is a supply source for supplying Dy and Tb to the substrate. As proposed in Patent Document 3 and Non-Patent Document 4, Dy fluoride and Tb fluoride contain (1) high concentrations of Dy and Tb, and (2) the effect of grain boundary diffusion is an oxide. Compared to the above, there is an advantage that (3) it is not chemically active and easy to handle, and (4) it is easily available. These advantages have been known for some time, but for the NdFeB sintered magnet base material with a thickness of more than 3 mm, the condition of a) above is necessary to diffuse Dy and Tb to the deepest part of the base material. . In order to fully exhibit the effect of grain boundary diffusion, it is necessary that at least 50% by mass or more of these fluorides are contained in the powder layer to be applied.

本発明において、前記層は30質量%以下のAlを含むことができる。これにより、NdFeB焼結磁石の一層の高保磁力化が図られる。この場合にも、上記a)の条件により高角型性が維持される。   In the present invention, the layer may contain 30% by mass or less of Al. Thereby, the coercive force of the NdFeB sintered magnet can be further increased. Also in this case, high squareness is maintained under the condition a).

NdFeB焼結磁石の粒界拡散法を工業的に実施するためには、上記層は粉体により構成される層(粉体層)であることが望ましい。従来から知られているスパッタリング法は生産性が低く、処理費用が高価になりすぎて工業的価値がない。粉体層を基材表面に形成する方法はバレルペインティング法(特開2004-359873号公報参照)が最適である。その他にスプレー法など溶媒を使って塗布することも可能である。あるいは、DyやTbのフッ化物溶液を基材表面に塗布し、加熱により水分を蒸発させてDyやTbの粉体層を形成してもよい。   In order to industrially implement the grain boundary diffusion method for NdFeB sintered magnets, the above layer is preferably a layer composed of powder (powder layer). Conventionally known sputtering methods have low productivity and are too expensive to process, resulting in no industrial value. The barrel painting method (see Japanese Patent Application Laid-Open No. 2004-359873) is optimal as a method for forming the powder layer on the substrate surface. In addition, it is also possible to apply using a solvent such as a spray method. Alternatively, a Dy or Tb fluoride solution may be applied to the surface of the substrate, and moisture may be evaporated by heating to form a Dy or Tb powder layer.

本発明に係るNdFeB焼結磁石の製造方法により、厚さが3mmを越えるNdFeB焼結磁石に対しても、Dyのフッ化物及び/又はTbのフッ化物による粒界拡散法が有効に働くようになる。その結果、高保磁力でかつ高角型性を持つ、厚さ3mm以上の高性能NdFeB焼結磁石が生産できるようになる。   By the method for producing a sintered NdFeB magnet according to the present invention, the grain boundary diffusion method using Dy fluoride and / or Tb fluoride can work effectively even for a NdFeB sintered magnet having a thickness exceeding 3 mm. Become. As a result, a high-performance NdFeB sintered magnet with a thickness of 3 mm or more having high coercive force and high squareness can be produced.

本発明に係るNdFeB焼結磁石の製造方法の実施例1で用いた磁石基材の組成を示す表。The table | surface which shows the composition of the magnet base material used in Example 1 of the manufacturing method of the NdFeB sintered magnet which concerns on this invention. 実施例1で用いた付着物である粉体の組成を示す表。The table | surface which shows the composition of the powder which is the deposit used in Example 1. FIG. 実施例1で作製されたNdFeB焼結磁石の保磁力HcJ及び磁化曲線の角型性の指標SQ値の測定結果を示す表。The table | surface which shows the measurement result of the parameter | index SQ value of the coercive force HcJ of the NdFeB sintered magnet produced in Example 1, and the squareness of a magnetization curve. 比較例で作製されたNdFeB焼結磁石の保磁力HcJ及び磁化曲線の角型性の指標SQ値の測定結果を示す表。The table | surface which shows the measurement result of the parameter | index SQ value of the coercive force HcJ of the NdFeB sintered magnet produced by the comparative example, and the squareness of a magnetization curve. 実施例2で用いた磁石基材の組成を示す表。The table | surface which shows the composition of the magnet base material used in Example 2. FIG. 実施例2で作製されたNdFeB焼結磁石の保磁力HcJ及びSQ値の測定結果を示す表。The table | surface which shows the measurement result of the coercive force HcJ and SQ value of the NdFeB sintered magnet produced in Example 2. FIG.

図1〜図6を用いて、本発明に係るNdFeB焼結磁石の製造方法の実施例を説明する。
本実施例で使用する磁石基材は、従来のNdFeB焼結磁石の製造方法と同様の方法、即ち、NdFeB合金の溶解、粗粉砕、微粉砕、磁界中配向、成形、焼結の工程により作製した。
An embodiment of a method for producing a NdFeB sintered magnet according to the present invention will be described with reference to FIGS.
The magnet base material used in this example is produced by the same method as the conventional method for producing a NdFeB sintered magnet, that is, the steps of melting, coarsely pulverizing, finely pulverizing, orientation in a magnetic field, molding, and sintering. did.

但し、この作製の際には、焼結後の焼結体中において金属状態の希土類量が12.9原子%以上になるように、合金組成の調整、及び工程中に生じる希土類の優先的減少の防止や不純物混入の防止などの配慮を行った。ここで「希土類の優先的減少」は、希土類以外の元素よりも希土類の方が減少の度合いが大きくなることを意味し、それにより組成比が変化する原因になるものである。希土類の優先的減少の原因には、合金を溶解するときに生じる金属状態の希土類成分の蒸発、酸化若しくは坩堝との反応による減少、又は粉砕中にNdリッチ相があまり微細に粉砕され過ぎることで捕集容器に捕集されないことによる減少などが挙げられる。また、金属状態の希土類量は合金を粉砕後、粉末中の希土類が不純物と化学反応することによっても減少する。ここで不純物とは主に、酸素、炭素、窒素を指す。酸素は主に合金粉砕中及び粉砕後における合金粉末の酸化により、炭素は合金粉末に潤滑性を与えるための潤滑剤が合金粉末中に残留することにより、窒素は合金粉末が空気中の窒素と反応することにより、製品中に取り込まれる。本発明に使用する焼結磁石基材を作製するためには、工程中の金属状態の希土類量の減少を極力抑え、また不純物元素による汚染を極力抑制する必要がある。それができない場合は、合金中の希土類量をあらかじめ増量しておかなくてはならない。後述の実施例1における番号4の基材は希土類量が低いため酸素や炭素による汚染を極力抑えて作製した例であり、番号5の基材は工程中の炭素による汚染が低くできないため合金中の希土類量を増量することで金属状態の希土類量を本発明の範囲内に調整した例である。   However, in this preparation, adjustment of the alloy composition and prevention of preferential reduction of rare earths generated during the process so that the amount of rare earths in the metallic state in the sintered body after sintering is 12.9 atomic% or more. And measures to prevent contamination by impurities. Here, “preferential reduction of rare earth” means that the degree of reduction of rare earth is larger than that of elements other than rare earth, thereby causing the composition ratio to change. The preferential reduction of the rare earth is due to evaporation of the rare earth component in the metallic state that occurs when melting the alloy, reduction due to oxidation or reaction with the crucible, or the Nd-rich phase being crushed too finely during grinding. For example, a decrease caused by not being collected in the collection container. Further, the amount of rare earth in the metallic state is also reduced by the rare earth in the powder chemically reacting with impurities after the alloy is pulverized. Here, impurities mainly refer to oxygen, carbon, and nitrogen. Oxygen is mainly due to the oxidation of the alloy powder during and after the alloy grinding, carbon remains in the alloy powder to provide lubricity to the alloy powder, and nitrogen is the same as the nitrogen in the alloy powder. By reacting, it is incorporated into the product. In order to produce the sintered magnet base material used in the present invention, it is necessary to suppress the reduction of the rare earth amount in the metallic state during the process as much as possible and to suppress the contamination by the impurity element as much as possible. If this is not possible, the amount of rare earth in the alloy must be increased in advance. The base material of No. 4 in Example 1 described later is an example prepared by suppressing contamination by oxygen and carbon as much as possible because the rare earth amount is low, and the base material of No. 5 cannot be lowered by carbon during the process, so it is in the alloy. This is an example in which the amount of rare earth in the metallic state is adjusted within the scope of the present invention by increasing the amount of rare earth.

磁石基材を製造する際の出発物質であるNdFeB合金における希土類量の下限は、本発明において粒界拡散処理を行う際に必須となる12.9原子%に、粉砕中に減少すると見込まれる希土類量と、粉砕中あるいは粉砕後に酸素、炭素、窒素により消費されると見込まれる希土類量を加えた値とした。合金中の希土類量が多ければ、酸素、炭素、窒素による汚染がある程度多くても本発明を実施できるが、希土類量が多すぎると磁化や最大エネルギー積が低下するため、NdFeB焼結磁石としての価値が低下してしまう。実用的には、合金中の希土類量の最上限は16原子%である。また合金中の希土類の種類としては、Ndが主成分であるが、原料の事情によりNdがPrによって置換されてもよい。要求される最終製品の保磁力に従って、Ndの一部をDyやTbによって置換することができる。   The lower limit of the amount of rare earth in the NdFeB alloy that is the starting material for producing the magnetic base material is 12.9 atomic%, which is essential when performing grain boundary diffusion treatment in the present invention, and the amount of rare earth expected to decrease during grinding. The value was obtained by adding the rare earth amount expected to be consumed by oxygen, carbon, and nitrogen during or after pulverization. If the amount of rare earth in the alloy is large, the present invention can be carried out even if there is a certain amount of contamination by oxygen, carbon, and nitrogen, but if the amount of rare earth is too large, the magnetization and maximum energy product will decrease, so that the NdFeB sintered magnet The value will decline. Practically, the upper limit of the amount of rare earth in the alloy is 16 atomic%. Further, as a kind of rare earth in the alloy, Nd is a main component, but Nd may be substituted with Pr depending on the circumstances of the raw material. Depending on the required coercivity of the final product, part of Nd can be replaced by Dy or Tb.

このように作製されたNdFeB焼結体は機械加工により最終製品として要求される形状と寸法に加工される。その後、粒界拡散処理前に、化学的にあるいは機械的に、表面の清浄化が行われる。このようにして作製されたNdFeB焼結磁石が、最終的に本発明に使用される磁石基材である。   The NdFeB sintered body produced in this way is processed into the shape and dimensions required for the final product by machining. Thereafter, the surface is chemically or mechanically cleaned before the grain boundary diffusion treatment. The NdFeB sintered magnet thus produced is the magnet base material that is finally used in the present invention.

次に、粒界拡散のために基材表面に塗布する(付着させる)粉体について説明する。本実施例で使用する粉体はDyやTbのフッ化物を50質量%以上含む粉体である。粉体の平均粒径は100μm以下、好ましくは10μm以下が望ましい。その下限は特に制限されないが10nm以上が望ましい。DyやTbのフッ化物と共にAl粉末を含む粉体も用いる。使用されるAl粉末は20μm以下、望ましくは10μm以下である。Al粉末以外に許容される塗布粉体の構成要素として、DyやTbのフッ化物以外の化合物の粉末、NdやPrなどのフッ化物粉末、DyやTbを含む合金粉末、ZnやCuなどの金属粉末がある。塗布量は基材表面1cm2あたり約5mg以上とした。 Next, the powder applied (attached) to the substrate surface for grain boundary diffusion will be described. The powder used in this example is a powder containing 50% by mass or more of fluoride of Dy or Tb. The average particle diameter of the powder is 100 μm or less, preferably 10 μm or less. The lower limit is not particularly limited, but is preferably 10 nm or more. A powder containing Al powder together with fluoride of Dy or Tb is also used. The Al powder used is 20 μm or less, preferably 10 μm or less. As constituents of coating powders other than Al powder, powders of compounds other than fluorides of Dy and Tb, fluoride powders such as Nd and Pr, alloy powders containing Dy and Tb, metals such as Zn and Cu There is powder. The coating amount was about 5 mg or more per 1 cm 2 of the substrate surface.

基材表面への粉体の塗布方法は、特許文献3に示されているようにDyやTbのフッ化物粉末を有機溶剤に分散させたスラリーに磁石基材を浸した後で熱風を吹きつけるか真空装置に入れることで乾燥させる方法、あるいは、本願発明者等が開発したバレルペインティング法(特開2004-359873号公報参照)が適している。
バレルペインティング法では次のようにして粉体塗布を行う。まず、清浄な表面を持つNdFeB焼結磁石基材に粘着層を形成する。粘着層の厚さは1〜5μmが最適である。粘着層形成物質は粘着性を持つ物質であって基材表面を腐食するようなものでなければよい。最も一般的にはエポキシやパラフィンなどの液状の有機物が用いられる。エポキシなどを使用するときには硬化剤は不要である。この粘着層塗布方法では、直径0.5〜1mmのセラミックあるいは金属性の球(インパクトメディアと呼ぶ)を満たした容器に少量の液状有機物質を添加して撹拌した後、上述した基材を投入して、容器全体を振動させることにより、基材表面に粘着層が形成される。次に、同様のインパクトメディアを満たした容器に塗布したい粉体を添加して撹拌した後、粘着層を形成した基材を容器に投入して、容器全体を振動させることにより、基材表面に粉体層を形成する。このようにして塗布される粉体の量は、基材表面1cm2あたり2mg程度から30mg程度までである。本発明では粘着層形成時にインパクトメディアに添加される液状物質の量、及び粉体塗布時にインパクトメディアに添加される粉体の量の好ましい範囲は基材表面1cm2あたり3mg以上25mg以下である。
As shown in Patent Document 3, the method of applying powder to the surface of the substrate is to blow hot air after immersing the magnet substrate in a slurry in which fluoride powder of Dy or Tb is dispersed in an organic solvent. A method of drying by putting in a vacuum apparatus or a barrel painting method developed by the inventors of the present application (see Japanese Patent Application Laid-Open No. 2004-359873) is suitable.
In the barrel painting method, powder coating is performed as follows. First, an adhesive layer is formed on a NdFeB sintered magnet substrate having a clean surface. The optimum thickness of the adhesive layer is 1 to 5 μm. The adhesive layer forming material may be an adhesive material that does not corrode the substrate surface. Most commonly, liquid organic substances such as epoxy and paraffin are used. When using epoxy or the like, no curing agent is required. In this adhesive layer coating method, a small amount of a liquid organic substance is added and stirred in a container filled with ceramic or metallic spheres (called impact media) having a diameter of 0.5 to 1 mm, and then the above-described base material is added. The adhesive layer is formed on the substrate surface by vibrating the entire container. Next, after adding and stirring the powder to be applied to a container filled with similar impact media, the base material on which the adhesive layer is formed is put into the container, and the whole container is vibrated, so that the surface of the base material is A powder layer is formed. The amount of powder applied in this way is about 2 mg to about 30 mg per 1 cm 2 of the substrate surface. In the present invention, the preferred range of the amount of the liquid substance added to the impact media when forming the adhesive layer and the amount of the powder added to the impact media when applying the powder is 3 mg to 25 mg per 1 cm 2 of the substrate surface.

次にDyやTbのフッ化物粉体を塗布した磁石基材を加熱炉に入れて加熱する。加熱炉の雰囲気は、真空あるいは高純度の不活性ガス雰囲気とする。粒界拡散による高保磁力化が効果的に起こる温度は700℃以上1000℃以下である。典型的な加熱条件は800℃で10hあるいは900℃で3hというものである。このような条件で加熱した後、通常の焼結後熱処理が施される。   Next, the magnetic base material coated with Dy or Tb fluoride powder is placed in a heating furnace and heated. The atmosphere of the heating furnace is a vacuum or a high purity inert gas atmosphere. The temperature at which high coercivity is effectively achieved by grain boundary diffusion is 700 ° C to 1000 ° C. Typical heating conditions are 800 ° C for 10 hours or 900 ° C for 3 hours. After heating under such conditions, a normal post-sintering heat treatment is performed.

上述した工程により作製されたNdFeB焼結磁石は、厚さが3mmを越えるときでも、従来の粒界拡散法により作製されたNdFeB焼結磁石の限界を越えて、高保磁力、高残留磁化を持ち、かつ磁化曲線の角型性が高い高品質磁石としての特性を持つ。従来の方法では厚い磁石に対しては、基材の表面付近だけが高保磁力化され、内部は粒界拡散の効果が及ばなかったので、磁化曲線の角型性が悪かった。これは高保磁力部分と低保磁力部分が混ざった磁石の典型的な例であり、品質が低い製品といえる。それに対して、本発明により、NdFeB焼結磁石は比較的厚い製品でも磁化曲線の角型性が高く、高品質の製品を作製することができる。   The NdFeB sintered magnet produced by the above-mentioned process has high coercive force and high remanent magnetization, exceeding the limits of the conventional NdFeB sintered magnet produced by the grain boundary diffusion method, even when the thickness exceeds 3 mm. In addition, it has characteristics as a high-quality magnet with high squareness of the magnetization curve. In the conventional method, for a thick magnet, only the vicinity of the surface of the base material has a high coercive force, and the inside does not have the effect of grain boundary diffusion, so the squareness of the magnetization curve is poor. This is a typical example of a magnet in which a high coercive force portion and a low coercive force portion are mixed, and can be said to be a product with low quality. On the other hand, according to the present invention, even if the NdFeB sintered magnet is a relatively thick product, the squareness of the magnetization curve is high, and a high-quality product can be produced.

ストリップキャスティング法を用いた合金作製、水素解砕、潤滑剤混合及び窒素ガスを使用したジェットミルを用いた微粉砕によりNdFeB焼結磁石の粉末を作製し、この粉末に潤滑剤を混合したうえで磁界中配向、成形及び焼結の各工程を行い、組成が異なる10種類のNdFeB焼結磁石ブロック(基材)を作製した(図1)。図1の基材番号1〜5は本実施例で使用する基材であり、「基材番号」の欄に「(比)」と付したものは比較例の基材である。図1に示す組成は、焼結後の焼結体の化学分析値である。この実験では、ストリップキャスト合金の組成、ジェットミル粉砕時に使用する窒素ガスの純度あるいは添加する酸素の量、ジェットミル粉砕前後に添加する潤滑剤の種類と量および磁界中配向成形の時の雰囲気を変えることにより、焼結体の組成を変化させた。ジェットミル粉砕後の微粉末の粒径は、いずれの場合も、レーザ回折法で測定した粒度分布の中央値(D50)が5μmになるように調整した。これら10種類の焼結磁石は、いずれも希土類はNdのみからなり、最大磁気エネルギー積がもっとも大きい材質として各磁石メーカで大量に生産されているNdFeB焼結磁石に近い組成である。但し、これらの磁石のうち基材番号1〜5のものは磁界中配向成形時の雰囲気を99.9999%の高純度Ar雰囲気としたり、潤滑剤添加量を最小限にしたりして、不純物による汚染を最小限にする工夫をして作製したものである。一方、基材番号「(比)1〜(比)5」のものは市販されている製品に近い組成を持っている。これらの中には高純度アルゴンや窒素雰囲気で粉末を取り扱い、高い磁気特性を有する低酸素焼結品として製作され、販売されているレベルのものも含まれる。図1において、MR値は金属状態の希土類量を示し、焼結磁石の化学分析値から算出される。すなわちMR値は分析値の全希土類量から、酸素、炭素、窒素によって消費される(非金属化される)希土類量を差し引いた値である。ここで、これらの不純物元素は、希土類と、それぞれR2O3、RC、及びRNの化合物を作るものとして算出した。 An NdFeB sintered magnet powder is prepared by alloy preparation using the strip casting method, hydrogen cracking, lubricant mixing, and fine pulverization using a jet mill using nitrogen gas, and the powder is mixed with the lubricant. Ten steps of NdFeB sintered magnet blocks (base materials) with different compositions were prepared by performing each step of orientation in the magnetic field, molding and sintering (FIG. 1). The base material numbers 1 to 5 in FIG. 1 are base materials used in this example, and those with “(ratio)” in the “base number” column are base materials of comparative examples. The composition shown in FIG. 1 is a chemical analysis value of the sintered body after sintering. In this experiment, the composition of the strip cast alloy, the purity of the nitrogen gas used during jet mill grinding or the amount of oxygen to be added, the type and amount of lubricant added before and after jet mill grinding, and the atmosphere during orientation molding in a magnetic field. By changing, the composition of the sintered body was changed. The particle size of the fine powder after jet milling was adjusted so that the median value (D 50 ) of the particle size distribution measured by the laser diffraction method was 5 μm. All of these 10 types of sintered magnets have a composition close to that of NdFeB sintered magnets that are produced in large quantities by each magnet manufacturer as a material having the largest maximum magnetic energy product because the rare earth is composed only of Nd. However, among these magnets, those with substrate numbers 1 to 5 are contaminated with impurities by setting the atmosphere during orientation molding in a magnetic field to a 99.9999% high purity Ar atmosphere or minimizing the amount of lubricant added. It was made with a contrivance to minimize. On the other hand, the substrate numbers “(ratio) 1 to (ratio) 5” have compositions close to those of commercially available products. These include powders that are manufactured and sold as low-oxygen sintered products having high magnetic properties by handling powders in a high-purity argon or nitrogen atmosphere. In FIG. 1, the MR value indicates the amount of rare earth in the metallic state, and is calculated from the chemical analysis value of the sintered magnet. That is, the MR value is a value obtained by subtracting the amount of rare earth consumed (non-metalized) by oxygen, carbon, and nitrogen from the total amount of rare earth in the analysis value. Here, these impurity elements were calculated as those for forming rare earth and R 2 O 3 , RC, and RN compounds, respectively.

粒界拡散法を実施するためにNdFeB焼結磁石基材の表面に塗布する粉体(付着物)には、図2に示す表に記載の粉体番号1〜9及び「比1」のものを用いた。粉体番号1の粉体は平均粒径3μmのDyF3粉末100%のものである。また、粉体番号2、4〜9の粉体は平均粒径2μmのNdF3粉末、直径が約3μmのAl粉末、平均粒径4μmのCu粉末のいずれか1種又は複数種と平均粒径1μmのDyF3を表に記載の比率で混合したものである。粉体番号3の粉体は平均粒径3μmのTbF3と上記Al粉末を表に記載の比率で混合したものである。 The powders (adhesives) applied to the surface of the NdFeB sintered magnet base material in order to carry out the grain boundary diffusion method have the powder numbers 1 to 9 and “ratio 1” shown in the table shown in FIG. Was used. Powder No. 1 is 100% DyF 3 powder with an average particle size of 3 μm. In addition, powder Nos. 2, 4 to 9 have an average particle diameter of one or more of NdF 3 powder having an average particle diameter of 2 μm, Al powder having a diameter of about 3 μm, and Cu powder having an average particle diameter of 4 μm. 1 μm DyF 3 was mixed at the ratio shown in the table. The powder of powder number 3 is a mixture of TbF 3 having an average particle diameter of 3 μm and the above Al powder at a ratio shown in the table.

図1に示した10種類の焼結体ブロックから、縦7mm×横7mm×厚さ5mmで、厚さ方向が磁化方向となるように直方体基材を切り出し、以下に述べる方法により、直方体基材の表面に図2に示した粉体を塗布した。
容量200cm3のプラスティック製ビーカに直径1mmのジルコニア製小球を100cm3入れ、その中に流動パラフィンを0.1〜0.5g加えて撹拌した。この中に直方体基材を投入し、ビーカを振動機に接触させた。これにより、流動パラフィンが直方体基材の表面に塗布される。次に、磁石側面に粉体が付着しないように(理由は後述)、直方体基材の側面(磁極面以外の面)にプラスティック板によるマスキングを施した。その後、10cm3のガラスびんに、直径1mmのステンレス製小球を8cm3入れ、図2に示した粉末を1〜5g加えて、粘着層が塗布された直方体基材を投入した。この直方体基材を入れたガラスびんを前記振動機に接触させた。これにより、Dyを含む粉体が磁極面のみに塗布された。
A rectangular parallelepiped base material is cut out from the 10 types of sintered body blocks shown in FIG. 1 so that the length direction is 7 mm × width 7 mm × thickness 5 mm, and the thickness direction is the magnetization direction. The powder shown in FIG. 2 was applied to the surface.
A plastic beaker having a capacity of 200 cm 3 was charged with 100 cm 3 of zirconia small balls having a diameter of 1 mm, and 0.1 to 0.5 g of liquid paraffin was added and stirred. A rectangular parallelepiped substrate was put into this, and the beaker was brought into contact with the vibrator. Thereby, liquid paraffin is apply | coated to the surface of a rectangular parallelepiped base material. Next, masking with a plastic plate was performed on the side surface (surface other than the magnetic pole surface) of the rectangular parallelepiped base material so that the powder did not adhere to the magnet side surface (the reason will be described later). Thereafter, 8 cm 3 of stainless steel spheres having a diameter of 1 mm were put into a 10 cm 3 glass bottle, 1 to 5 g of the powder shown in FIG. 2 was added, and a rectangular parallelepiped substrate coated with an adhesive layer was added. The glass bottle containing the rectangular parallelepiped substrate was brought into contact with the vibrator. Thereby, the powder containing Dy was applied only to the magnetic pole surface.

このように基材に粉体を塗布した物を、側面のうちの1面を下側にしてモリブデンの板の上に乗せ、10-4Paの真空中で加熱した。加熱温度は800℃で3時間とした。その後、室温付近まで急冷し、500〜550℃で2時間加熱して、再度室温まで急冷した。これにより、目的とする試料が得られた。 The material coated with the powder in this way was placed on a molybdenum plate with one of its side faces down and heated in a vacuum of 10 −4 Pa. The heating temperature was 800 ° C. for 3 hours. Then, it rapidly cooled to near room temperature, heated at 500-550 degreeC for 2 hours, and rapidly cooled to room temperature again. Thereby, the target sample was obtained.

粉体塗布を磁極面のみに限定した理由は次の通りである。本発明は比較的大型のモータへの応用を目指しているため、ある程度大きい磁極面積を持つ磁石に対して有効でなくてはならない。ところが磁化曲線測定器の都合により磁極面積に制限がある。そこで、7mm角という比較的小さい磁極面積の試料を使用したうえで、側面に粉体を塗布しないことにより、側面に比べて磁極面の面積が十分に大きいというモータ用磁石の使用状態に近づけた。   The reason why the powder coating is limited to the magnetic pole surface is as follows. Since the present invention aims at application to a relatively large motor, it must be effective for a magnet having a somewhat large magnetic pole area. However, the magnetic pole area is limited due to the convenience of the magnetization curve measuring instrument. Therefore, after using a sample with a relatively small magnetic pole area of 7 mm square, by not applying powder on the side surface, it approached the usage state of the motor magnet that the area of the magnetic pole surface is sufficiently larger than the side surface. .

このように作製した本実施例の試料について、保磁力HcJ及び磁化曲線の角型性の指標SQ値を測定した。ここで、磁気特性の測定方法について述べる。上述したように試料は一辺7mmの正方形の磁極面を持ち、厚さが2mm〜6mmの直方体である。磁化方向は厚さ方向に平行である。磁気特性の測定はパルス磁化特性測定装置(日本電磁測器株式会社製、商品名:パルスB-HカーブトレーサBHP-1000)を使用した。この測定装置により、試料の厚さ方向に、パルス幅17.7mssecでピーク値10Tのパルス磁界を印加して磁気測定を行った。この測定法では、適切な較正を行うことにより、残留磁束密度Br、最大エネルギー積(BH)max、保磁力HcJは通常の直流磁界印加装置によって測定される直流B-Hカーブトレーサとほぼ同じ測定値が得られるが、磁化曲線の角型性SQ値については直流B-Hカーブトレーサで得られる値よりも低くなる傾向がある。高保磁力磁石の磁気特性の評価にはパルス磁化特性測定装置が使用されることが多いので、本実施例ではパルス磁化特性測定装置を使用して磁気特性の評価を行った。いくつかの試料について直流B-Hカーブトレーサを使用してSQ値を測定した結果、パルス磁化測定装置によって測定して得たSQ値は、直流B-Hカーブトレーサによって得たSQ値より、5〜7%低いことが分かった。SQ値に関して、厳密性の観点からは、直流B-Hカーブトレーサによって評価したほうが良いが、パルス磁化測定装置によっても十分高い再現性のあるデータが得られ、磁石の品質評価手段として問題はない。なお以下の実施例では磁気特性結果のうち保磁力HcJとSQ値だけを示す。残留磁束密度及び最大磁気エネルギー積は粒界拡散処理の前後であまり変わらないことが知られており、本実施例でもすべての試料についてこのことを確認した。 For the sample of this example produced in this way, the coercive force H cJ and the squareness index SQ value of the magnetization curve were measured. Here, a method for measuring magnetic properties will be described. As described above, the sample is a rectangular parallelepiped having a square magnetic pole surface with a side of 7 mm and a thickness of 2 mm to 6 mm. The magnetization direction is parallel to the thickness direction. The magnetic characteristics were measured using a pulse magnetization characteristic measuring device (manufactured by Nippon Electromagnetic Sokki Co., Ltd., trade name: pulse BH curve tracer BHP-1000). With this measuring apparatus, a magnetic field measurement was performed by applying a pulse magnetic field with a pulse width of 17.7 mssec and a peak value of 10 T in the thickness direction of the sample. In this measurement method, with appropriate calibration, the residual magnetic flux density B r , maximum energy product (BH) max , and coercive force H cJ are measured almost the same as a DC BH curve tracer measured by a normal DC magnetic field application device. Although the value is obtained, the squareness SQ value of the magnetization curve tends to be lower than the value obtained with the direct current BH curve tracer. Since the pulse magnetization characteristic measuring device is often used for evaluating the magnetic characteristics of the high coercive force magnet, in this embodiment, the magnetic characteristics were evaluated using the pulse magnetization characteristic measuring device. As a result of measuring the SQ value using a DC BH curve tracer for some samples, the SQ value obtained by measuring with a pulse magnetometer is 5-7% lower than the SQ value obtained by the DC BH curve tracer. I understood that. Although it is better to evaluate the SQ value with a direct current BH curve tracer from the viewpoint of strictness, data with sufficiently high reproducibility can be obtained even with a pulse magnetization measuring device, and there is no problem as a quality evaluation means of the magnet. In the following examples, only the coercive force H cJ and the SQ value are shown in the magnetic characteristic results. It is known that the residual magnetic flux density and the maximum magnetic energy product do not change much before and after the grain boundary diffusion treatment, and this was confirmed for all samples in this example.

本実施例の試料(試料番号1〜21)について、保磁力HcJ及びSQ値の測定結果を図3に示す。併せて、比較例の試料について保磁力HcJ及びSQ値を測定した結果を図4に示す。ここで、比較例の試料は「比1」〜「比5」のいずれかの基材を用いたもの(試料番号「比1」〜「比10」)、「比1」の粉体を用いたもの(試料番号「比11」、「比12」)、又は粒界拡散処理を行わなかったもの(試料番号「比13」〜「比22」)のいずれかである。 FIG. 3 shows the measurement results of the coercive force H cJ and the SQ value for the samples of this example (sample numbers 1 to 21). In addition, FIG. 4 shows the results of measuring the coercive force H cJ and SQ value for the sample of the comparative example. Here, the sample of the comparative example uses one of the base materials of “ratio 1” to “ratio 5” (sample numbers “ratio 1” to “ratio 10”), and powder of “ratio 1” is used. (Sample numbers “ratio 11”, “ratio 12”) or those not subjected to grain boundary diffusion treatment (sample numbers “ratio 13” to “ratio 22”).

図3及び図4の結果から、以下のことが分かる。
(1) 本実施例の試料はいずれも1.4MA/m以上という高い保磁力、及びSQ値85%以上という高い角型性を有する。本実施例のようにDy、Tbのいずれも含まず5mmという厚い厚さを持つ基材を用いて、これほど高い保磁力及び角型性を併せ持つNdFeB焼結磁石を作製することは、従来できなかった。これら各試料のうち試料1〜11、13〜18、20及び21は、きわめて希少な資源であるTbを使用することなく、このような高い保磁力及び角型性が得られるという点で工業的に大変価値がある。また、試料12及び19は、TbF3粉末を使用することにより、他の試料と比較して更に高い保磁力が得られるという特長を有する。
(2) 基材に含まれる金属状態の希土類量が12.9原子%未満になる(試料「比1」〜「比10」)と、保磁力は急に小さくなり、SQ値は85%以下になる(SQ値については、粒界拡散の効果がきわめて小さい試料「比5」を除く)。
(3) 本実施例の試料14及び15(DyF3量が60及び50質量%)と比較例の試料「比11」(DyF3量が40質量%)は、いずれも基材番号1の基材を用いているが、本実施例の試料のみが1.4MA/m以上の保磁力を有する。
(4) 粉体1(DyF3:100%)を用いた試料1〜5と、基材が試料1〜5のいずれかと同じであって粉体4(DyF3:90%、Al:10%)を用いた試料6〜10を比較すると、試料6〜10の方が高い保磁力が得られることがわかる。従って、粉体にAlを添加することにより保磁力が向上するといえる。Alによる保磁力向上効果は粉体中のAl濃度が30質量%である場合にまでみられる(試料16)が、40質量%を越えるとその効果がみられなくなる(試料番号17)。
(5) 本実施例及び比較例で用いた10種の基材のうち金属状態の希土類量が最大である基材番号1のものと最小である基材番号「比5」のものを比較すると、粉体1を用いて粒界拡散処理を施した場合の両者(試料番号1と「比5」)の保磁力の差は0.56MA/mであり、粒界拡散処理を施さない場合の両者(試料番号「比13」と「比22」)の保磁力の差(0.41MA/m)よりも大きくなる。これは、粒界拡散処理を施した場合に、基材中の金属状態の希土類量が増加するのに伴って、粒界拡散処理のための加熱中に粒界に液相がより形成されやすくなり、DyやTbの拡散が促進されるため、保磁力増大効果がより顕著になることによると考えられる。
The following can be understood from the results of FIGS.
(1) All the samples of this example have a high coercive force of 1.4 MA / m or more and a high squareness of SQ value of 85% or more. Conventionally, it is possible to produce an NdFeB sintered magnet having such a high coercive force and squareness by using a base material having a thickness of 5 mm that does not contain either Dy or Tb as in this example. There wasn't. Among these samples, samples 1 to 11, 13 to 18, 20 and 21 are industrial in that such high coercive force and squareness can be obtained without using Tb which is a very rare resource. Is very valuable. Samples 12 and 19 have a feature that by using TbF 3 powder, a higher coercive force can be obtained as compared with other samples.
(2) When the amount of rare earth metal contained in the substrate is less than 12.9 atomic% (sample “ratio 1” to “ratio 10”), the coercive force suddenly decreases and the SQ value becomes 85% or less. (For SQ values, except for “Ratio 5”, which has a very small grain boundary diffusion effect).
(3) Samples 14 and 15 of this example (DyF 3 amounts of 60 and 50% by mass) and comparative sample “Ratio 11” (DyF 3 amount of 40% by mass) are both based on the base material number 1 Although the material is used, only the sample of this example has a coercive force of 1.4 MA / m or more.
(4) Samples 1 to 5 using powder 1 (DyF 3 : 100%) and the base material is the same as any of samples 1 to 5 and powder 4 (DyF 3 : 90%, Al: 10%) When samples 6 to 10 using the above are compared, it can be seen that samples 6 to 10 have higher coercivity. Therefore, it can be said that the coercive force is improved by adding Al to the powder. The effect of improving the coercive force due to Al is observed even when the Al concentration in the powder is 30% by mass (Sample 16), but when it exceeds 40% by mass, the effect is not observed (Sample No. 17).
(5) Of the ten types of base materials used in this example and the comparative example, the base material number 1 with the largest amount of rare earth in the metal state is compared with the base material number “ratio 5” with the minimum base material number. The difference in coercive force between the two when the grain boundary diffusion treatment is performed using the powder 1 (Sample No. 1 and “ratio 5”) is 0.56 MA / m, both when the grain boundary diffusion treatment is not performed. It becomes larger than the difference (0.41 MA / m) of the coercive force of (sample number “ratio 13” and “ratio 22”). This is because when the grain boundary diffusion treatment is performed, a liquid phase is more easily formed at the grain boundary during heating for the grain boundary diffusion treatment as the amount of the rare earth in the metal state in the base material increases. Thus, the diffusion of Dy and Tb is promoted, so that the coercive force increasing effect becomes more prominent.

実施例1と同じ方法により、図5に示す組成のNdFeB焼結磁石基材を作製した。これらの基材はDyを約1原子%含む。基材番号6の基材は金属状態の希土類量が13.29原子%であって本発明の範囲内にあり、基材番号「比6」は希土類量が12.81原子%であって本発明の範囲外にある。これらの焼結体から、磁極面が一辺7mmの正方形であり、厚さが2mm〜6mmの5種類の直方体基材を機械加工により切り出した。これらの直方体基材を実施例1と同じ方法で、粉体番号4の粉体を磁極面にのみ塗布したうえで、800℃で10時間加熱することにより、粒界拡散処理を施した。粒界拡散処理後、急冷して、さらに520℃で2時間熱処理したうえで急冷した。   An NdFeB sintered magnet base material having the composition shown in FIG. 5 was produced by the same method as in Example 1. These substrates contain about 1 atomic percent of Dy. The base material No. 6 has a metal state rare earth content of 13.29 atomic% and is within the scope of the present invention, and the base material number “Ratio 6” has a rare earth content of 12.81 atomic% and is outside the scope of the present invention. It is in. From these sintered bodies, five types of rectangular parallelepiped substrates having a magnetic pole surface of a square having a side of 7 mm and a thickness of 2 mm to 6 mm were cut out by machining. These rectangular parallelepiped substrates were subjected to the grain boundary diffusion treatment by applying the powder of powder No. 4 only on the magnetic pole face in the same manner as in Example 1 and heating at 800 ° C. for 10 hours. After the grain boundary diffusion treatment, it was quenched and further heat treated at 520 ° C. for 2 hours and then quenched.

図6にこれらの試料の磁気測定結果を示す。この結果から次のことがいえる。
(1) 金属状態の希土類量が高い基材(基材番号6)を使用すると、粒界拡散後の保磁力は基材の厚さが6mmの場合(試料番号26)にも、厚さが2mmの場合(試料番号22)と比べてあまり変わらない高い値を示す。
(2) 本実施例のようにDyが添加されている基材に粒界拡散処理を施すと、基材中にもとから入っているDyの効果に、粒界拡散により表面から拡散してくるDyの効果が加わり、粒界拡散後に得られる保磁力は2MA/m前後という大きい値となる。
(3) 基材中の金属状態の希土類量が本発明の範囲外にある(試料番号「比23」〜「比27」)と、粒界拡散後の保磁力の増加は厚さが2mmでもあまり大きくなく、厚さが3mm以上になると更に小さくなる。
FIG. 6 shows the magnetic measurement results of these samples. From this result, the following can be said.
(1) When a base material (base number 6) with a high amount of rare earth in the metal state is used, the coercive force after diffusion of the grain boundary is the same even when the base thickness is 6 mm (sample number 26). It shows a high value that does not change much compared to the case of 2 mm (Sample No. 22).
(2) When a grain boundary diffusion treatment is applied to a substrate to which Dy is added as in this example, the effect of Dy originally contained in the substrate is diffused from the surface by grain boundary diffusion. With the added Dy effect, the coercive force obtained after grain boundary diffusion is a large value of around 2 MA / m.
(3) If the amount of rare earth metal in the substrate is outside the scope of the present invention (Sample No. “Ratio 23” to “Ratio 27”), the increase in coercive force after grain boundary diffusion is 2 mm. It is not so large, and it becomes even smaller when the thickness is 3 mm or more.

Claims (1)

NdFeB焼結磁石基材の表面にDy及び/又はTbを含む層を形成した後に前記磁石基材の焼結温度以下の温度に加熱することにより、前記層中のDy及び/又はTbを前記磁石基材の結晶粒界を通じて前記磁石基材内部に拡散させる粒界拡散処理を行うNdFeB焼結磁石の製造方法において、
a) 前記磁石基材中に含まれる金属状態の希土類の量が12.9原子%以上であり、
b) 前記層が50質量%以上のDyのフッ化物及び/又はTbのフッ化物を含有する、
ことを特徴とするNdFeB焼結磁石の製造方法。
After forming a layer containing Dy and / or Tb on the surface of the NdFeB sintered magnet base, heating to a temperature below the sintering temperature of the magnet base allows the Dy and / or Tb in the layer to be converted into the magnet In the manufacturing method of the NdFeB sintered magnet that performs the grain boundary diffusion treatment for diffusing into the magnet base material through the crystal grain boundary of the base material,
a) The amount of the rare earth element contained in the magnet base material is 12.9 atomic% or more,
b) the layer contains 50% by weight or more of Dy fluoride and / or Tb fluoride;
A method for producing a sintered NdFeB magnet.
JP2013031636A 2013-02-21 2013-02-21 Manufacturing method of NdFeB sintered magnet Active JP5643355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013031636A JP5643355B2 (en) 2013-02-21 2013-02-21 Manufacturing method of NdFeB sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013031636A JP5643355B2 (en) 2013-02-21 2013-02-21 Manufacturing method of NdFeB sintered magnet

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008064923A Division JP5209349B2 (en) 2008-03-13 2008-03-13 Manufacturing method of NdFeB sintered magnet

Publications (3)

Publication Number Publication Date
JP2013153172A true JP2013153172A (en) 2013-08-08
JP2013153172A5 JP2013153172A5 (en) 2013-10-24
JP5643355B2 JP5643355B2 (en) 2014-12-17

Family

ID=49049258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013031636A Active JP5643355B2 (en) 2013-02-21 2013-02-21 Manufacturing method of NdFeB sintered magnet

Country Status (1)

Country Link
JP (1) JP5643355B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015163397A1 (en) * 2014-04-25 2015-10-29 日立金属株式会社 Method for producing r-t-b sintered magnet
KR101624245B1 (en) * 2015-01-09 2016-05-26 현대자동차주식회사 Rare Earth Permanent Magnet and Method Thereof
JP2016122863A (en) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Method for increasing coercive force of magnets
WO2016175065A1 (en) * 2015-04-28 2016-11-03 信越化学工業株式会社 Method for producing rare-earth magnets, and slurry application device
CN107077964A (en) * 2014-09-11 2017-08-18 日立金属株式会社 The manufacture method of R-T-B based sintered magnets
CN117012538A (en) * 2023-10-07 2023-11-07 江西荧光磁业有限公司 Preparation process of neodymium-iron-boron magnet based on waste recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303436A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303436A (en) * 2005-03-23 2006-11-02 Shin Etsu Chem Co Ltd Rare earth permanent magnet
JP2007287874A (en) * 2006-04-14 2007-11-01 Shin Etsu Chem Co Ltd Process for producing rare earth permanent magnet material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884957B1 (en) * 2014-04-25 2016-03-15 日立金属株式会社 Method for producing RTB-based sintered magnet
WO2015163397A1 (en) * 2014-04-25 2015-10-29 日立金属株式会社 Method for producing r-t-b sintered magnet
EP3136407A4 (en) * 2014-04-25 2018-02-07 Hitachi Metals, Ltd. Method for producing r-t-b sintered magnet
CN106415752A (en) * 2014-04-25 2017-02-15 日立金属株式会社 Method for producing r-t-b sintered magnet
CN107077964A (en) * 2014-09-11 2017-08-18 日立金属株式会社 The manufacture method of R-T-B based sintered magnets
KR101624245B1 (en) * 2015-01-09 2016-05-26 현대자동차주식회사 Rare Earth Permanent Magnet and Method Thereof
US10714246B2 (en) 2015-01-09 2020-07-14 Hyundai Motor Company Rare earth permanent magnet and method for manufacturing thereof
JP2016129217A (en) * 2015-01-09 2016-07-14 現代自動車株式会社Hyundai Motor Company Rare earth permanent magnet and method for manufacturing the same
CN105788839A (en) * 2015-01-09 2016-07-20 现代自动车株式会社 Rare Earth Permanent Magnet And Method For Manufacturing Thereof
WO2016175065A1 (en) * 2015-04-28 2016-11-03 信越化学工業株式会社 Method for producing rare-earth magnets, and slurry application device
JP2016207983A (en) * 2015-04-28 2016-12-08 信越化学工業株式会社 Method for producing rare-earth magnet and slurry application device
US10861645B2 (en) 2015-04-28 2020-12-08 Shin-Etsu Chemical Co., Ltd. Method for producing rare-earth magnets, and slurry application device
JP2016122863A (en) * 2015-08-28 2016-07-07 ティアンヘ (パオトウ) アドヴァンスト テック マグネット カンパニー リミテッド Method for increasing coercive force of magnets
CN117012538A (en) * 2023-10-07 2023-11-07 江西荧光磁业有限公司 Preparation process of neodymium-iron-boron magnet based on waste recovery
CN117012538B (en) * 2023-10-07 2024-02-02 江西荧光磁业有限公司 Preparation process of neodymium-iron-boron magnet based on waste recovery

Also Published As

Publication number Publication date
JP5643355B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5328161B2 (en) Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
JP6005768B2 (en) NdFeB sintered magnet and manufacturing method thereof
JP5363314B2 (en) NdFeB-based sintered magnet manufacturing method
KR101534717B1 (en) Process for preparing rare earth magnets
JP6488976B2 (en) R-T-B sintered magnet
KR101624245B1 (en) Rare Earth Permanent Magnet and Method Thereof
EP2302646B1 (en) R-t-cu-mn-b type sintered magnet
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
JP7251917B2 (en) RTB system permanent magnet
US10672545B2 (en) R-T-B based permanent magnet
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
JP5348124B2 (en) Method for producing R-Fe-B rare earth sintered magnet and rare earth sintered magnet produced by the method
WO2008032426A1 (en) PROCESS FOR PRODUCING SINTERED NdFeB MAGNET
TW201308368A (en) Rare earth permanent magnet and manufacturing method thereof
JPWO2008139556A1 (en) R-T-B sintered magnet
CN107492429A (en) A kind of high temperature resistant neodymium iron boron magnetic body and preparation method thereof
KR20150002638A (en) NdFeB-BASED SINTERED MAGNET
JP2005325450A (en) Method for producing magnetic material, and magnetic material powder with rust preventive layer thereon and bonded magnet using it
JP2020155634A (en) R-t-b based permanent magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6249275B2 (en) Method for producing RTB-based sintered magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP2018093201A (en) R-t-b based permanent magnet
JP2021153146A (en) Method for manufacturing r-t-b based sintered magnet
JP2021057565A (en) R-t-b based sintered magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141030

R150 Certificate of patent or registration of utility model

Ref document number: 5643355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350