JP2021153146A - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
JP2021153146A
JP2021153146A JP2020053406A JP2020053406A JP2021153146A JP 2021153146 A JP2021153146 A JP 2021153146A JP 2020053406 A JP2020053406 A JP 2020053406A JP 2020053406 A JP2020053406 A JP 2020053406A JP 2021153146 A JP2021153146 A JP 2021153146A
Authority
JP
Japan
Prior art keywords
sintered magnet
based sintered
mass
alloy
rtb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020053406A
Other languages
Japanese (ja)
Other versions
JP7452159B2 (en
Inventor
徹 江口
Toru Eguchi
徹 江口
宣介 野澤
Sensuke Nozawa
宣介 野澤
太 國吉
Futoshi Kuniyoshi
太 國吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020053406A priority Critical patent/JP7452159B2/en
Priority to CN202110306791.0A priority patent/CN113451029A/en
Publication of JP2021153146A publication Critical patent/JP2021153146A/en
Application granted granted Critical
Publication of JP7452159B2 publication Critical patent/JP7452159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a method for manufacturing an R-T-B based sintered magnet which has high HcJ while reducing an amount of using heavy rare earth RH.SOLUTION: A method for manufacturing an R-T-B based sintered magnet comprises: a step of making a sintered compact of fine powder having particle size D50 of 2.0-3.5 μm to prepare an R-T-B based sintered magnet material; a step of preparing an RL-RH-M based alloy; and a diffusion step of depositing at least part of the RL-RH-M based alloy to at least part of the surface of the R-T-B based sintered magnet material, and heating them at a temperature of 700°C up to 1100°C in a vacuum or inert gas atmosphere. In the diffusion step, an amount of the RL-RH-M based alloy depositing to the R-T-B based sintered magnet material is 1 mass% or more and 2.5 mass% or less.SELECTED DRAWING: Figure 2

Description

本発明はR−T−B系焼結磁石の製造方法に関する。 The present invention relates to a method for manufacturing an RTB-based sintered magnet.

R−T−B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Tは主にFeであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 RT-B-based sintered magnets (R is at least one of the rare earth elements, T is mainly Fe, and B is boron) are known as the highest performance magnets among permanent magnets. It is used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.

R−T−B系焼結磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R−T−B系焼結磁石の特性の根幹をなしている。 R-T-B based sintered magnet is mainly composed of a main phase consisting of R 2 T 14 B compound, and the grain boundary phase located in the grain boundary of the main phase. The main phase, R 2 T 14 B compound, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and forms the basis of the characteristics of R-TB based sintered magnets.

R−T−B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR−T−B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 The RTB -based sintered magnet has a problem that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter, simply referred to as “H cJ”) decreases at a high temperature. Therefore, in a particularly R-T-B based sintered magnet used in an electric vehicle motor, having a high H cJ even at high temperatures, that is, required to have a higher H cJ at room temperature.

14B型化合物相中の軽希土類元素(主にNd、Pr)を重希土類元素(主にDy、Tb)で置換すると、HcJが向上することが知られている。しかし、HcJが向上する一方、R14B型化合物相の飽和磁化が低下するために残留磁束密度B(以下、単に「B」という)が低下してしまうという問題がある。 It is known that H cJ is improved by substituting light rare earth elements (mainly Nd, Pr) in the R 2 T 14 B type compound phase with heavy rare earth elements (mainly Dy, Tb). However, while the H cJ is improved, the residual magnetic flux density B r (hereinafter, simply referred to as "B r") in the saturation magnetization of the R 2 T 14 B compound phase is lowered is lowered.

特許文献1には、R−T−B系合金の焼結磁石の表面にDy等の重希土類元素を供給しつつ、重希土類元素RHを焼結磁石の内部に拡散させることが記載されている。特許文献1に記載の方法は、R−T−B系焼結磁石の表面から内部にDyを拡散させてHcJ向上に効果的な主相結晶粒の外殻部にのみDyを濃化させることにより、RHの使用量を低減し、さらにBの低下を抑制しつつ、高いHcJを得ることができる。 Patent Document 1 describes that while supplying a heavy rare earth element such as Dy to the surface of a sintered magnet of an RTB alloy, the heavy rare earth element RH is diffused inside the sintered magnet. .. The method described in Patent Document 1 diffuses Dy from the surface of the RTB-based sintered magnet to the inside to concentrate Dy only in the outer shell portion of the main phase crystal grains which is effective for improving HcJ. it allows to reduce the amount of RH, while further suppressing a decrease in B r, it is possible to obtain a high H cJ.

特許文献2には、R−T−B系焼結体の表面に特定組成のR−Ga−Cu合金を接触させて熱処理を行うことにより、R−T−B系焼結磁石中の粒界相の組成および厚さを制御してHcJを向上させることが記載されている。
According to Patent Document 2, grain boundaries in an RTB-based sintered magnet are obtained by contacting the surface of an R-TB-based sintered body with an R-Ga-Cu alloy having a specific composition and performing heat treatment. It has been described that the composition and thickness of the phase are controlled to improve HcJ.

国際公開第2007/102391号International Publication No. 2007/10231 国際公開第2016/133071号International Publication No. 2016/133071

しかし、近年特に電気自動車用モータなどにおいて高価な重希土類元素の使用量を低減しつつ、更に高いBと高いHcJを得ることが求められている。 However, while reducing the amount of expensive heavy rare earth elements such as in recent particular motor for an electric vehicle, it has been required to obtain a higher B r and a high H cJ.

本開示の様々な実施形態は、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure, while reducing the amount of heavy rare earth elements, to provide a method of manufacturing a R-T-B based sintered magnet having a high B r and high H cJ.

本開示のR−T−B系焼結磁石の製造方法は、例示的な実施形態において、粒径D50が2.0μm〜3.5μmの微粉末から焼結体を作製してR−T−B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含む。)を準備する工程と、RL−RH−M系合金(RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つである)を準備する工程と、前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、前記R−T−B系焼結磁石素材において、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、T全体に対するFeの含有量が80mass%以上であり、前記RL−RH−M系合金において、RLの含有量は、RL−RH−M系合金全体の57mass%以上82mass%以下であり、RHの含有量は、RL−RH−M系合金全体の13mass%以上23mass%以下であり、Mの含有量は、RL−RH−M系合金全体の5mass%以上20mass%以下であり、前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は1mass%以上2.5mass%以下である。 In the method for producing an RTB-based sintered magnet of the present disclosure, in an exemplary embodiment, a sintered body is produced from a fine powder having a particle size D 50 of 2.0 μm to 3.5 μm to prepare an RT. -B-based sintered magnet material (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and T is from the group consisting of Fe, Co, Al, Mn, and Si. The step of preparing at least one selected, where T always contains Fe) and the RL-RH-M based alloy (RL is at least one of the light rare earth elements, Nd, Pr and Ce. It always comprises at least one selected from the group consisting of, RH is at least one selected from the group consisting of Tb, Dy and Ho, and M is Cu, Ga, Fe, Co, Ni, and Al. At least a part of the RL-RH-M alloy on at least a part of the surface of the RTB-based sintered magnet material. In the RTB-based sintered magnet material, the content of R is R. -The total content of the TB-based sintered magnet material is 27 mass% or more and 35 mass% or less, the Fe content with respect to the entire T is 80 mass% or more, and the RL content in the RL-RH-M system alloy is The total RL-RH-M based alloy is 57 mass% or more and 82 mass% or less, the RH content is 13 mass% or more and 23 mass% or less of the entire RL-RH-M based alloy, and the M content is RL-. The total amount of the RH-M alloy is 5 mass% or more and 20 mass% or less, and the amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material in the diffusion step is 1 mass% or more and 2. It is 5 mass% or less.

ある実施形態において、前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は1.5mass%以上2.5mass%以下である。 In a certain embodiment, the amount of the RL-RH-M-based alloy adhered to the R-TB-based sintered magnet material in the diffusion step is 1.5 mass% or more and 2.5 mass% or less.

本開示の実施形態によれば、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石の製造方法を提供することができる。 According to embodiments of the present disclosure, while reducing the amount of heavy rare earth elements, it is possible to provide a manufacturing method of the R-T-B based sintered magnet having a high B r and high H cJ.

R−T−B系焼結磁石の一部を拡大して模式的に示す断面図である。It is sectional drawing which shows the part of the RTB-based sintered magnet enlarged and schematically. 図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。It is sectional drawing which shows the inside of the broken line rectangular region of FIG. 1A by further enlarging. 本開示によるR−T−B系焼結磁石の製造方法における工程の例を示すフローチャートである。It is a flowchart which shows the example of the process in the manufacturing method of the RTB-based sintered magnet according to this disclosure.

まず、本開示によるR−T−B系焼結磁石の基本構造について説明をする。R−T−B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB-based sintered magnet according to the present disclosure will be described. The RT-B-based sintered magnet has a structure in which powder particles of a raw material alloy are bonded by sintering, and has a main phase mainly composed of R 2 T 14 B compound particles and a grain boundary portion of the main phase. It is composed of grain boundary phases located in.

図1Aは、R−T−B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R−T−B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R−T−B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。
また、主相であるR14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。
一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。
FIG. 1A is a cross-sectional view schematically showing an enlarged part of an RTB-based sintered magnet, and FIG. 1B is a cross-sectional view schematically showing the inside of the broken line rectangular region of FIG. 1A in an enlarged manner. Is. In FIG. 1A, as an example, an arrow having a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 1A and 1B, R-T-B based sintered magnet includes a main phase 12 mainly composed of R 2 T 14 B compound, the grain boundary phase located grain boundary of the main phase 12 14 It is composed of and. Further, in the grain boundary phase 14, as shown in FIG. 1B, two R 2 T 14 B compound particles (grains) are adjacent to each other, and three R 2 T 14 B compound particles are adjacent to each other. Includes grain boundary triple points 14b. The typical main phase crystal grain size is 3 μm or more and 10 μm or less on average of the equivalent circle diameter of the magnet cross section. The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic material having a high saturation magnetization and an anisotropic magnetic field. Therefore, in the R-T-B based sintered magnet, it is possible to improve the B r by increasing the existence ratio of R 2 T 14 B compound is the main phase 12. In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are changed to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = It should be close to 2:14: 1).
Further, by substituting a part of R of the R 2 T 14 B compound which is the main phase with a heavy rare earth element such as Dy, Tb, Ho, the anisotropic magnetic field of the main phase can be increased while lowering the saturation magnetization. It has been known. In particular, the main phase outer shell in contact with the two-grain boundary phase tends to be the starting point of magnetization reversal, so heavy rare earth diffusion technology that can preferentially replace heavy rare earth elements with the main phase outer shell is efficient while suppressing the decrease in saturation magnetization. High H cJ can be obtained.
On the other hand, it is known that high HcJ can also be obtained by controlling the magnetism of the two-particle boundary phase 14a. Specifically, by lowering the concentration of magnetic elements (Fe, Co, Ni, etc.) in the two-grain boundary phase, the two-particle boundary phase is brought closer to non-magnetic, thereby forming a magnetic bond between the main phases. It can be weakened to suppress magnetization reversal.

本開示によるR−T−B系焼結磁石の製造方法では、R−T−B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、RL−RH−M系合金に含有されるRHと共に、RLおよびMを拡散させている。本発明者らによる検討の結果、粒径D50が2.0μm〜3.5μmの範囲にある微粉末の焼結体を作製して準備したR−T−B系焼結磁石素材に対して、RL−RH−M系合金の付着量及びRH濃度を狭い特定の範囲にして拡散処理を行うことで高価なRHを削減しつつ、高いBと高いHcJを得ることができることを見出した。 In the method for producing an RTB-based sintered magnet according to the present disclosure, from the surface of the R-TB-based sintered magnet material to the inside of the magnet material through the grain boundary, together with the RH contained in the RL-RH-M-based alloy. , RL and M are diffused. As a result of the study by the present inventors, with respect to the RTB-based sintered magnet material prepared by preparing a fine powder sintered body having a particle size D 50 in the range of 2.0 μm to 3.5 μm. , found that it is possible to while reducing expensive RH by performing spreading processing and the adhesion amount and the RH concentrations of RL-RH-M alloy in a narrow specific range, give a high B r and high H cJ ..

本開示によるR−T−B系焼結磁石の製造方法は、図2に示すように、R−T−B系焼結磁石素材を準備する工程S10とRL−RH−M系合金を準備する工程S20とを含む。R−T−B系焼結磁石素材を準備する工程S10とRL−RH−M合金を準備する工程S20との順序は任意である。
本開示によるR−T−B系焼結磁石の製造方法は、図2に示すように、更に、R−T−B系焼結磁石素材表面の少なくとも一部にRL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程S30を含む。前記拡散工程S30における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は1mass%以上2.5mass%以下である。
In the method for manufacturing an RTB-based sintered magnet according to the present disclosure, as shown in FIG. 2, the steps S10 for preparing the RTB-based sintered magnet material and the RL-RH-M-based alloy are prepared. Includes step S20. The order of the step S10 for preparing the RTB-based sintered magnet material and the step S20 for preparing the RL-RH-M alloy is arbitrary.
As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure further comprises RL-RH-M-based alloy on at least a part of the surface of the RTB-based sintered magnet material. Includes a diffusion step S30 in which at least a portion is adhered and heated at a temperature of 700 ° C. or higher and 1100 ° C. or lower in a vacuum or inert gas atmosphere. The amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material in the diffusion step S30 is 1 mass% or more and 2.5 mass% or less.

なお、本開示において、拡散工程前および拡散工程中のR−T−B系焼結磁石を「R−T−B系焼結磁石素材」と称し、拡散工程後のR−T−B系焼結磁石を単に「R−T−B系焼結磁石」と称する。 In the present disclosure, the RTB-based sintered magnet before and during the diffusing step is referred to as "RTB-based sintered magnet material", and the RTB-based firing after the diffusing step is used. The connecting magnet is simply referred to as "RTB-based sintered magnet".

(R−T−B系焼結磁石素材を準備する工程)
R−T−B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下である。TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上である。
Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35mass%を超えると焼結時に粒成長が起こり、HcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。
(Step of preparing RTB-based sintered magnet material)
In the RTB-based sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of R is RTB-based. It is 27 mass% or more and 35 mass% or less of the whole sintered magnet material. T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T always contains Fe, and the content of Fe with respect to the whole T is 80 mass% or more.
If R is less than 27 mass%, a liquid phase is not sufficiently formed in the sintering process, and it may be difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and H cJ may decrease. R is preferably 28 mass% or more and 33 mass% or less.

R−T−B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27〜35mass%、
B:0.80〜1.20mass%、
Ga:0〜1.0mass%、
X:0〜2mass%(XはCu、Nb、Zrの少なくとも一種)、
T:60mass%以上を含有する。
The RTB-based sintered magnet material has, for example, the following composition range.
R: 27-35 mass%,
B: 0.80-1.20 mass%,
Ga: 0-1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb, and Zr),
T: Contains 60 mass% or more.

好ましくは、R−T−B系焼結磁石素材において、Bに対するTのmol比[T]/[B]が14.0超15.0以下である。より高いHcJを得ることができる。本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの[T]と、Bの分析値(mass%)をBの原子量で除したもの[B]との比である。mol比[T]/[B]が14.0を超えるという条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。mol比[T]/[B]は14.3以上15.0以下であることがさらに好ましい。さらに高いHcJを得ることができる。Bの含有量はR−T−B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 Preferably, in the RTB-based sintered magnet material, the mol ratio [T] / [B] of T to B is more than 14.0 and 15.0 or less. Higher H cJ can be obtained. [T] / [B] in the present disclosure is at least one selected from the group consisting of each element (Fe, Co, Al, Mn and Si) constituting T, and T always contains Fe and T. The analytical value (mass%) of the Fe content (80 mass% or more) with respect to the whole was divided by the atomic weight of each element, and the sum of these values [T] and the analytical value of B (mass%) were obtained. ) Divided by the atomic weight of B [B]. provided that mol ratio [T] / [B] is more than 14.0 shows that relatively B amount is small relative to the T amount used for the main phase (R 2 T 14 B compound) formed .. The mol ratio [T] / [B] is more preferably 14.3 or more and 15.0 or less. A higher H cJ can be obtained. The B content is preferably 0.9 mass% or more and less than 1.0 mass% of the entire RTB-based sintered body.

R−T−B系焼結磁石素材は、Nd−Fe−B系焼結磁石に代表される一般的なR−T−B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて粒径D50が2.0μm以上3.5μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより焼結体を作製して準備することができる。粒径D50が2.0μm未満であると、生産性が大幅に悪化する可能性があり、3.5μmを超えると、本開示の拡散工程を行っても所望の効果を得ることができない可能性がある。これは、粉末の粒径が焼結体の結晶粒径に反映され、それが拡散にも影響するからだと考えられる。好ましくは、粒径D50は、2.5μm以上3.3μm以下である。生産性の悪化を抑制した上で貴重なRHを削減しつつ、より高いBと高いHcJを得ることができる。なお、前記D50は、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径である。また、D50は、例えば、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定することができる。 The RTB-based sintered magnet material can be prepared by using a general method for manufacturing an RTB-based sintered magnet represented by an Nd-Fe-B-based sintered magnet. As an example, a raw material alloy produced by a strip casting method or the like is pulverized using a jet mill or the like to have a particle size D 50 of 2.0 μm or more and 3.5 μm or less, and then molded in a magnetic field at 900 ° C. or higher. A sintered body can be prepared by sintering at a temperature of 1100 ° C. or lower. If the particle size D 50 is less than 2.0 μm, the productivity may be significantly deteriorated, and if it exceeds 3.5 μm, the desired effect may not be obtained even if the diffusion step of the present disclosure is performed. There is sex. It is considered that this is because the particle size of the powder is reflected in the crystal particle size of the sintered body, which also affects the diffusion. Preferably, the particle size D 50 is 2.5 μm or more and 3.3 μm or less. While reducing the precious RH on that suppresses deterioration in productivity, it is possible to obtain a higher B r and a high H cJ. The D 50 is a particle size in which the integrated particle size distribution (volume basis) from the small diameter side is 50% in the particle size distribution obtained by the laser diffraction method by the air flow dispersion method. Further, the D 50 can be measured by using, for example, a particle size distribution measuring device “HELOS & RODOS” manufactured by Symbolec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.

(RL−RH−M系合金を準備する工程)
前記RL−RH−M系合金において、RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RLの含有量は、RL−RH−M系合金全体の57mass%以上82mass%以下である。軽希土類元素は、La、Ce、Pr、Nd、Pm、Sm、Euなどが挙げられる。RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、RHの含有量は、RL−RH−M系合金全体の13mass%以上23mass%以下である。Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、Mの含有量は、RL−RH−M系合金全体の5mass%以上20mass%以下である。RL−RH−M系合金の典型例は、TbNdPrCu合金、TbNdCePrCu合金、TbNdGa合金、TbNdPrGaCu合金などである。
(Step of preparing RL-RH-M alloy)
In the RL-RH-M alloy, RL is at least one of light rare earth elements and always contains at least one selected from the group consisting of Nd, Pr and Ce, and the content of RL is RL. It is 57 mass% or more and 82 mass% or less of the whole −RH−M alloy. Examples of light rare earth elements include La, Ce, Pr, Nd, Pm, Sm, and Eu. RH is at least one selected from the group consisting of Tb, Dy and Ho, and the content of RH is 13 mass% or more and 23 mass% or less of the entire RL-RH-M alloy. M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al, and the content of M is 5 mass% or more and 20 mass% or less of the entire RL-RH-M alloy. be. Typical examples of RL-RH-M alloys are TbNdPrCu alloy, TbNdCePrCu alloy, TbNdGa alloy, TbNdPrGaCu alloy and the like.

RLが57mass%未満であると、RHおよびMがR−T−B系焼結磁石素材内部に導入されにくくなり、HcJが低下する可能性があり、82mass%を超えるとRL−RH−M系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、RLの含有量はRL−RH−M系合金全体の70mass%以上80mass%以下である。より高いHcJを得ることができる。 If the RL is less than 57 mass%, it becomes difficult for RH and M to be introduced into the R-TB-based sintered magnet material, and H cJ may decrease. If the RL exceeds 82 mass%, the RL-RH-M may decrease. The alloy powder becomes very active during the manufacturing process of the system alloy. As a result, the alloy powder may be significantly oxidized or ignited. Preferably, the RL content is 70 mass% or more and 80 mass% or less of the entire RL-RH-M alloy. Higher H cJ can be obtained.

RHが13mass%未満であると、RHによる高いHcJ向上効果が得られない可能性があり、23mass%を超えるとRLおよびMによるHcJ向上効果が低下する可能性があるため、重希土類元素の使用量を低減しつつ、高いBと高いHcJを有するR−T−B系焼結磁石を得ることができない可能性がある。好ましくは、RHの含有量は、RL−RH−M系合金全体の13mass%以上20mass%以下である。より高いBと高いHcJを得ることができる。 If RH is less than 13 mass%, a high H cJ improving effect by RH may not be obtained, and if it exceeds 23 mass%, the H cJ improving effect by RL and M may decrease. Therefore, heavy rare earth elements while reducing the usage, it may be impossible to obtain a R-T-B based sintered magnet having a high B r and high H cJ. Preferably, the RH content is 13 mass% or more and 20 mass% or less of the entire RL-RH-M alloy. It is possible to obtain a higher B r and a high H cJ.

Mが5mass%未満であるとRLおよびRHが二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、20mass%を超えるとRLおよびRHの含有量が低下しHcJが十分に向上しない可能性がある。好ましくは、Mの含有量は、RL−RH−M系合金全体の7mass%以上15mass%以下である。より高いHcJを得ることができる。また、MはGaを含有した方が好ましく、さらにCuを含有した方が好ましく、より高いHcJを得ることができる。 If M is less than 5 mass%, RL and RH are less likely to be introduced into the two-grain boundary phase, and H cJ may not be sufficiently improved. If M is more than 20 mass%, the contents of RL and RH decrease and H There is a possibility that cJ will not improve sufficiently. Preferably, the M content is 7 mass% or more and 15 mass% or less of the entire RL-RH-M alloy. Higher H cJ can be obtained. Further, M preferably contains Ga, more preferably Cu, and a higher H cJ can be obtained.

RL−RH−M系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL-RH-M alloy is not particularly limited. It may be produced by a roll quenching method or a casting method. Further, these alloys may be crushed into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method.

(拡散工程)
前記によって準備したR−T−B系焼結磁石素材の表面の少なくとも一部に、準備したRL−RH−M系合金の少なくとも一部を付着させ、真空(非酸化性雰囲気)又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程を行う。これにより、RL−RH−M合金からRL、RHおよびMを含む液相が生成し、その液相がR−T−B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。拡散工程におけるR−T−B系焼結磁石素材へのRL−RH−M系合金の付着量を1mass%以上2.5mass%以下にする。これにより、高いHcJ向上効果を得ることができる。R−T−B系焼結磁石素材へのRL−RH−M系合金の付着量が1mass%未満であると、磁石素材内部へのRHおよびRLおよびMの導入量が少なすぎて高いHcJを得ることができない可能性があり、2.5mass%を超えると、Bが低下する可能性がある。好ましくは、R−T−B系焼結磁石素材へのRL−RH−M系合金の付着量は1.5mass%以上2.2mass%以下である。より高いHcJを得ることができる。また、RL−RH−M系合金によるR−T−B系焼結磁石素材へのRHの付着量を0.1mass%以上0.4mass%以下が好ましい。この範囲にすることにより、より確実に重希土類元素の使用量を低減しつつ、高いHcJを有するR−T−B系焼結磁石を得ることができる。なお、RHの付着量は、R−T−B系焼結磁石素材に付着しているRHの量であり、RL−RH−M系合金におけるRH濃度とRL−RH−M系合金のR−T−B系焼結磁石素材の付着量から算出することができる。RH付着量は、R−T−B系焼結磁石素材の質量を100mass%としたときの質量比率によって規定される。
(Diffusion process)
At least a part of the prepared RL-RH-M alloy is attached to at least a part of the surface of the R-TB-based sintered magnet material prepared as described above, and a vacuum (non-oxidizing atmosphere) or an inert gas is attached. A diffusion step of heating at a temperature of 700 ° C. or higher and 1100 ° C. or lower is performed in an atmosphere. As a result, a liquid phase containing RL, RH and M is generated from the RL-RH-M alloy, and the liquid phase passes from the surface of the sintered material via the grain boundaries in the RTB-based sintered magnet material. It is diffused and introduced inside. The amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material in the diffusion step is set to 1 mass% or more and 2.5 mass% or less. Thereby, a high H cJ improvement effect can be obtained. When the amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material is less than 1 mass%, the amount of RH, RL, and M introduced into the magnet material is too small and high H cJ. may not be obtained, it exceeds 2.5 mass%, B r may be reduced. Preferably, the amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material is 1.5 mass% or more and 2.2 mass% or less. Higher H cJ can be obtained. Further, the amount of RH adhered to the RTB-based sintered magnet material by the RL-RH-M-based alloy is preferably 0.1 mass% or more and 0.4 mass% or less. Within this range, it is possible to obtain an RTB-based sintered magnet having a high HcJ while more reliably reducing the amount of heavy rare earth elements used. The amount of RH attached is the amount of RH attached to the R-TB-based sintered magnet material, and is the RH concentration in the RL-RH-M-based alloy and the R- of the RL-RH-M-based alloy. It can be calculated from the amount of adhesion of the TB-based sintered magnet material. The amount of RH adhered is defined by the mass ratio when the mass of the RTB-based sintered magnet material is 100 mass%.

拡散工程における加熱する温度が700℃未満であると、RH、RLおよびMを含む液相量が少なすぎて高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、拡散工程(700℃以上1100℃以下)が実施されたR−T−B系焼結磁石に対し、拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 If the heating temperature in the diffusion step is less than 700 ° C., the amount of the liquid phase containing RH, RL and M may be too small to obtain a high H cJ. On the other hand, if the temperature exceeds 1100 ° C., H cJ may decrease significantly. Preferably, the heating temperature in the diffusion step is 800 ° C. or higher and 1000 ° C. or lower. Higher H cJ can be obtained. Further, preferably, the RTB-based sintered magnet subjected to the diffusion step (700 ° C. or higher and 1100 ° C. or lower) is cooled to 300 ° C. at a cooling rate of 15 ° C./min or higher from the temperature at which the diffusion step was carried out. It is preferable to cool it. Higher H cJ can be obtained.

拡散工程は、R−T−B系焼結磁石素材表面に、任意形状のRL−RH−M合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R−T−B系焼結磁石素材表面をRL−RH−M合金の粉末層で覆い、拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にRL−RH−M合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR−T−B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60〜200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また、例えばRL−RH−M合金を分散媒中に分散させたスラリーをR−T−B系焼結磁石素材表面に塗布した後、分散媒を蒸発させRL−RH−M合金とR−T−B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。ま
また、RL−RH―M合金の少なくとも一部がR−T−B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL−RH−M合金は、少なくともR−T−B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL、RHおよびMを含む液相を磁石表面から内部に拡散導入させることができる。この場合、R−T−B系焼結磁石素材の配向方向のみにRL−RH−M合金を付着させても、R−T−B系焼結磁石素材の全面にRL−RH−M合金を付着させてもよい。
The diffusion step can be carried out by arranging an RL-RH-M alloy having an arbitrary shape on the surface of the RTB-based sintered magnet material and using a known heat treatment apparatus. For example, the surface of the R-TB-based sintered magnet material can be covered with a powder layer of an RL-RH-M alloy to perform a diffusion step. For example, a coating step of applying the pressure-sensitive adhesive to the surface to be coated and a step of adhering the RL-RH-M alloy to the region to which the pressure-sensitive adhesive is applied may be performed. Examples of the pressure-sensitive adhesive include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PVP (polyvinylpyrrolidone) and the like. When the pressure-sensitive adhesive is a water-based pressure-sensitive adhesive, the RTB-based sintered magnet material may be preheated before coating. The purpose of preheating is to remove excess solvent to control the adhesive strength and to evenly adhere the adhesive. The heating temperature is preferably 60 to 200 ° C. This step may be omitted in the case of a highly volatile organic solvent-based pressure-sensitive adhesive. Further, for example, a slurry in which an RL-RH-M alloy is dispersed in a dispersion medium is applied to the surface of an RTB-based sintered magnet material, and then the dispersion medium is evaporated to form an RL-RH-M alloy and an RT. -A B-based sintered magnet material may be attached. Examples of the dispersion medium include alcohol (ethanol and the like), aldehydes and ketones. Further, as long as at least a part of the RL-RH-M alloy is attached to at least a part of the R-TB-based sintered magnet material, the arrangement position is not particularly limited, but RL-RH is preferable. The −M alloy is arranged so as to adhere to a surface at least perpendicular to the orientation direction of the RTB-based sintered magnet material. The liquid phase containing RL, RH and M can be more efficiently diffused and introduced from the magnet surface to the inside. In this case, even if the RL-RH-M alloy is adhered only in the orientation direction of the RTB-based sintered magnet material, the RL-RH-M alloy is applied to the entire surface of the R-TB-based sintered magnet material. It may be attached.

(熱処理を実施する工程)
好ましくは、拡散工程が実施されたR−T−B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上750℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理を行う。熱処理を行うことにより、より高いHcJを得ることができる。
(Step of performing heat treatment)
Preferably, the temperature is 400 ° C. or higher and 750 ° C. or lower and lower than the temperature carried out in the diffusion step in a vacuum or an inert gas atmosphere with respect to the RTB-based sintered magnet in which the diffusion step is carried out. Heat treatment at temperature. By performing the heat treatment, a higher H cJ can be obtained.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

実験例1
[R−T−B系焼結磁石素材を準備する工程]
表1のNo1に示すR−T−B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉100mass%に対して0.035mass%添加し混合した。潤滑剤を含有した粗粉砕粉を以下に説明するA及びBの条件で、それぞれジェットミルにより微粉砕を行った。
条件Aは、粉砕により粒径D50:4.2μm、粒径D99:12.5μmの微粉末を得た。尚、前記D50およびD99は、それぞれ、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径および小粒径側からの積算粒度分布(体積基準)が99%となる粒径である。また、D50およびD99は、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定した。
条件Bは、粒径D50:3.3μm、粒径D99:8.5μmになるように微粉砕を行った。
Experimental Example 1
[Step of preparing R-T-B-based sintered magnet material]
Each element was weighed so as to have the composition of the RTB-based sintered magnet material shown in No. 1 of Table 1, and a raw material alloy was prepared by a strip casting method. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. Next, zinc stearate as a lubricant was added to the crude pulverized powder in an amount of 0.035 mass% based on 100 mass% of the crude powder and mixed. The coarsely pulverized powder containing the lubricant was finely pulverized by a jet mill under the conditions A and B described below.
Under condition A, fine powder having a particle size D 50 : 4.2 μm and a particle size D 99 : 12.5 μm was obtained by pulverization. In addition, in the particle size distribution obtained by the laser diffraction method by the air flow dispersion method, the D 50 and D 99 are from the particle size and the small particle size side in which the integrated particle size distribution (volume basis) from the small diameter side becomes 50%, respectively. The particle size is such that the integrated particle size distribution (volume basis) of is 99%. Further, D 50 and D 99 were measured by using a particle size distribution measuring device “HELOS & RODOS” manufactured by Symbolec under the conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.
Condition B was finely pulverized so that the particle size D 50 : 3.3 μm and the particle size D 99: 8.5 μm.

得られた条件AおよびBそれぞれの微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後に磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷しR−T−B系焼結磁石素材を得た。得られたR−T−B系焼結磁石素材の密度は7.5Mg/m以上であった。
条件AおよびBから得られたR−T−B系焼結磁石素材の成分を求めるために、Nd、Pr、Fe、Co、Al、Si、Ga、Cu、Zr、Bの含有量を高周波誘導結合プラズマ発光分光分析法(ICP−OES)により測定した。なお、R−T−B系焼結磁石素材の酸素量はガス融解―赤外線吸収法、窒素量はガス融解―熱伝導法、炭素量は焼結―赤外線吸収法、によるガス分析装置を使用して測定した。条件Aおよび条件Bともに同じ組成であった。分析した結果を表1に示す。なお、R−T−B系焼結磁石素材の成分は合計で100mass%にならない場合がある。これは、上述したように測定方法が異なるためと、不可避的不純物で他の元素を含有する場合があるからである。
Zinc stearate as a lubricant was added to each of the obtained finely pulverized powders A and B in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powder, mixed, and then molded in a magnetic field to obtain a molded product. As the molding apparatus, a so-called right-angled magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are orthogonal to each other was used. The obtained molded product was sintered in vacuum for 4 hours (selecting a temperature at which densification by sintering occurs sufficiently), and then rapidly cooled to obtain an RTB-based sintered magnet material. The density of the obtained RTB-based sintered magnet material was 7.5 Mg / m 3 or more.
High frequency induction of the content of Nd, Pr, Fe, Co, Al, Si, Ga, Cu, Zr, B in order to determine the components of the RTB-based sintered magnet material obtained from conditions A and B. It was measured by inductively coupled plasma emission spectroscopy (ICP-OES). A gas analyzer is used for the amount of oxygen in the RTB-based sintered magnet material by the gas melting-infrared absorption method, the amount of nitrogen by the gas melting-heat conduction method, and the amount of carbon by the sintering-infrared absorption method. Was measured. Both condition A and condition B had the same composition. The results of the analysis are shown in Table 1. The total components of the RTB-based sintered magnet material may not be 100 mass%. This is because the measurement method is different as described above, and because other elements may be contained as unavoidable impurities.

Figure 2021153146
Figure 2021153146

[RL−RH−M系合金を準備する工程]
表2のNo1−A、1−Bに示すRL−RH−M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたRL−RH−M系合金の組成を表2に示す。なお、表2における各成分は、高周波誘導結合プラズマ発光分光分析法を使用して測定した。
[Step of preparing RL-RH-M alloy]
Each element is weighed so as to have the composition of the RL-RH-M alloy shown in No. 1-A and 1-B of Table 2, the raw materials thereof are dissolved, and a ribbon or flakes are formed by a single roll ultra-quenching method. Obtained the alloy of. The composition of the obtained RL-RH-M alloy is shown in Table 2. Each component in Table 2 was measured using high frequency inductively coupled plasma emission spectroscopy.

Figure 2021153146
Figure 2021153146

[拡散工程]
表1の符号1のR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体にした。加工後のR−T−B系磁石素材にディッピング法により粘着剤としてPVAをR−T−B系磁石素材の全面に塗布した。次に表3に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材の全面にRL−RH−M系合金を付着させた。なお、RL−RH−M系合金付着量は、乳鉢を用いてRL−RH−M系合金をアルゴン雰囲気中で粉砕した後、目開き45〜1000μmの数種類の篩を通過させ、粒度の異なるRL−RH−M系合金を用いることにより調整した。そして、真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表3の拡散工程に示す条件でRL−RH−M系合金およびR−T−B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB-based sintered magnet material of reference numeral 1 in Table 1 was cut and cut into a cube of 7.2 mm × 7.2 mm × 7.2 mm. PVA was applied to the entire surface of the processed RTB magnet material as an adhesive by a dipping method. Next, the RL-RH-M alloy was adhered to the entire surface of the RTB-based sintered magnet material coated with the adhesive under the production conditions shown in Table 3. The amount of RL-RH-M alloy adhered is determined by crushing the RL-RH-M alloy in an argon atmosphere using a mortar and then passing it through several types of sieves with a mesh size of 45 to 1000 μm to obtain RL having different particle sizes. It was adjusted by using a −RH—M based alloy. Then, using a vacuum heat treatment furnace, the RL-RH-M alloy and the RTB sintered magnet material are heated under the conditions shown in the diffusion step of Table 3 in a reduced pressure argon atmosphere controlled to 100 Pa. , Cooled.

[熱処理を実施する工程]
前記拡散工程で加熱したR−T−B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて500℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R−T−B系焼結磁石)を得た。なお、拡散工程におけるRL−RH−M系合金およびR−T−B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR−T−B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。
[Step of performing heat treatment]
The RTB-based sintered magnet material heated in the diffusion step was heat-treated by heating at 500 ° C. in reduced pressure argon controlled to 100 Pa using a vacuum heat treatment furnace. The entire surface of each heat-treated sample was machined using a surface grinding machine to obtain a cube-shaped sample (RTB-based sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. .. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the diffusion step, and the heating of the R-TB-based sintered magnet in the step of performing the heat treatment after the diffusion step. The temperature was measured using a thermocouple.

[サンプル評価]
得られたサンプルを、B−Hトレーサによって残留磁束密度Bおよび保磁力HcJを測定した。また、R−T−B系焼結磁石素材のHcJと拡散工程および熱処理工程後のR-T-B系焼結磁石のHcJとの差(△HcJ)を求めた。結果を表3に示す。なお、実験例において、R−T−B系焼結磁石素材へのRL−RH−M系合金の付着量が2.5mass%以下で、かつ、得られたR−T−B系焼結磁石の磁気特性がB:1.35T以上、HcJ:1925kA/m以上を本発明例として評価した。表3の通り、前記条件Bで微粉砕した微粉砕粉から得たR−T−B系焼結磁石素材を使用し、表2の符号1−A、1−Bに示す組成のRL−RH−M系合金を用いた本発明例のサンプルNo.1−4〜1−6は、高いBと高いHcJを得ることができ、さらに△HcJも高いことがわかる。これに対し、前記条件Aで粉砕した微粉砕粉から得たR−T−B系焼結磁石素材を使用し、表2の符号1−A、1−Bに示す組成のRL−RH−M系合金を用いたサンプルNo.1−1〜1−3では、本発明例と比べHcJが低く、拡散工程および熱処理工程による効果を示す△HcJも低い。
[Sample evaluation]
The obtained sample was measured remanence B r and coercivity H cJ by B-H tracer. Further , the difference ( ΔH cJ ) between H cJ of the RTB-based sintered magnet material and H cJ of the RTB-based sintered magnet after the diffusion step and the heat treatment step was determined. The results are shown in Table 3. In the experimental example, the amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material was 2.5 mass% or less, and the obtained R-TB-based sintered magnet was obtained. magnetic properties B r: 1.35 T or more, H cJ: 1925kA / m or more was evaluated as the present invention example. As shown in Table 3, the RL-RH having the composition shown by reference numerals 1-A and 1-B in Table 2 is used using the RTB-based sintered magnet material obtained from the finely pulverized powder obtained under the above condition B. Sample No. of the example of the present invention using the −M alloy. 1-4~1-6 can obtain a high B r and high H cJ, further △ H cJ seen that even higher. On the other hand, an R-TB-based sintered magnet material obtained from the finely pulverized powder pulverized under the above condition A was used, and RL-RH-M having the compositions shown by reference numerals 1-A and 1-B in Table 2 was used. Sample No. using a system alloy. In 1-1 through 1-3, H cJ compared to invention sample is low, indicating the effect of the diffusion step and the heat treatment step △ H cJ is low.

Figure 2021153146
Figure 2021153146

実験例2
[R−T−B系焼結磁石素材を準備する工程]
表4の符号2に示すR−T−B系焼結磁石素材の組成になるように各元素を秤量し、ストリップキャスト法により原料合金を作製した。得られた各合金を水素粉砕法により粗粉砕し粗粉砕粉を得た。次に、前記粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉100mass%に対して0.035mass%添加、混合して潤滑剤含有微粉砕粉を得た。得られた潤滑剤含有粗粉砕粉をジェットミル装置を用いて粉砕し、粒径D50が3.3μm、D99:8.5μmの微粉砕粉を得た。
得られた微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後に磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交する、いわゆる直角磁界成形装置(横磁界成形装置)を用いた。
得られた成形体を、真空中で4時間焼結(焼結による緻密化が十分起こる温度を選定)した後、急冷し焼結磁石素材を得た。得られたR−T−B系焼結磁石素材の密度は7.5Mg/m以上であった。
得られたR−T−B系焼結磁石素材の結果を表4に示す。なお表4における各成分は、実験例1と同様の方法で測定した。
Experimental Example 2
[Step of preparing R-T-B-based sintered magnet material]
Each element was weighed so as to have the composition of the RTB-based sintered magnet material shown by reference numeral 2 in Table 4, and a raw material alloy was prepared by a strip casting method. Each of the obtained alloys was coarsely pulverized by a hydrogen pulverization method to obtain a coarsely pulverized powder. Next, zinc stearate as a lubricant was added to the coarsely pulverized powder in an amount of 0.035 mass% based on 100 mass% of the crude powder and mixed to obtain a lubricant-containing finely pulverized powder. The obtained coarsely pulverized lubricant-containing powder was pulverized using a jet mill device to obtain a finely pulverized powder having a particle size D 50 of 3.3 μm and D 99: 8.5 μm.
Zinc stearate as a lubricant was added to the obtained finely ground powder in an amount of 0.05 mass% based on 100 mass% of the finely ground powder, mixed, and then molded in a magnetic field to obtain a molded product. As the molding apparatus, a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are orthogonal to each other was used.
The obtained molded product was sintered in vacuum for 4 hours (selecting a temperature at which densification by sintering occurs sufficiently), and then quenching was performed to obtain a sintered magnet material. The density of the obtained RTB-based sintered magnet material was 7.5 Mg / m 3 or more.
The results of the obtained RTB-based sintered magnet material are shown in Table 4. Each component in Table 4 was measured by the same method as in Experimental Example 1.

Figure 2021153146
Figure 2021153146

[RL−RH−M系合金を準備する工程]
表5の符号2−A、2−B、2−Cに示すRL−RH−M系合金の組成になるように、各元素を秤量し、それらの原料を溶解して、単ロール超急冷法によりリボンまたはフレーク状の合金を得た。得られたRL−RH−M系合金の組成を表5に示す。なお、表5における各成分は、高周波誘導結合プラズマ発光分光分析法を用いて測定した。
[Step of preparing RL-RH-M alloy]
Each element is weighed so as to have the composition of the RL-RH-M alloy shown by reference numerals 2-A, 2-B, 2-C in Table 5, the raw materials thereof are dissolved, and a single roll ultra-quenching method is performed. Obtained a ribbon or flaky alloy. The composition of the obtained RL-RH-M alloy is shown in Table 5. Each component in Table 5 was measured by high frequency inductively coupled plasma emission spectroscopy.

Figure 2021153146
Figure 2021153146

[拡散工程]
表4の符号2のR−T−B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体にした。加工後のR−T−B系磁石素材にディッピング法により粘着剤としてPVAをR−T−B系磁石素材の全面に塗布した。次に表6に示す作製条件で粘着剤を塗布したR−T−B系焼結磁石素材の全面に前記RL−RH−M系合金を付着させた。なお、前記RL−RH−M系合金付着量は、乳鉢を用いて前記RL−RH−M系合金をアルゴン雰囲気中で粉砕した後、目開き45〜1000μmの数種類の篩を通過させ、粒度の異なるRL−RH−M系合金を用いることにより調整した。そして。真空熱処理炉を用いて、100Paに制御した減圧アルゴン雰囲気中で、表6の拡散工程に示す条件で前記RL−RH−M系合金およびR−T−B系焼結磁石素材を加熱した後、冷却した。
[Diffusion process]
The RTB-based sintered magnet material of reference numeral 2 in Table 4 was cut and cut into a cube of 7.2 mm × 7.2 mm × 7.2 mm. PVA was applied to the entire surface of the processed RTB magnet material as an adhesive by a dipping method. Next, the RL-RH-M alloy was adhered to the entire surface of the RTB-based sintered magnet material coated with the adhesive under the production conditions shown in Table 6. The amount of the RL-RH-M alloy adhered is determined by crushing the RL-RH-M alloy in an argon atmosphere using a mortar and then passing it through several types of sieves having a mesh size of 45 to 1000 μm to obtain a particle size. It was adjusted by using different RL-RH-M alloys. and. After heating the RL-RH-M alloy and the RTB sintered magnet material under the conditions shown in the diffusion step in Table 6 in a reduced pressure argon atmosphere controlled to 100 Pa using a vacuum heat treatment furnace, Cooled.

[熱処理を実施する工程]
拡散工程の後のR−T−B系焼結磁石素材に対し、真空熱処理炉を用いて100Paに制御した減圧アルゴン中にて490℃の加熱する熱処理を行った。熱処理後の各サンプルに対し表面研削盤を用いて、全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体形状のサンプル(R−T−B系焼結磁石)を得た。なお、拡散工程を実施する工程にけるRL−RH−M系合金およびR−T−B系焼結磁石素材の加熱温度、ならびに、拡散工程後の熱処理を実施する工程におけるR−T−B系焼結磁石の加熱温度は、それぞれ熱電対を用いて測定した。なお、拡散工程におけるRL−RH−M系合金およびR−T−B系焼結磁石素材の加熱温度は、実験例1と同様に900℃×10Hで全て行った。
[Step of performing heat treatment]
The RTB-based sintered magnet material after the diffusion step was heat-treated by heating at 490 ° C. in reduced pressure argon controlled to 100 Pa using a vacuum heat treatment furnace. The entire surface of each heat-treated sample was machined using a surface grinding machine to obtain a cube-shaped sample (RTB-based sintered magnet) of 7.0 mm × 7.0 mm × 7.0 mm. .. The heating temperature of the RL-RH-M alloy and the RTB-based sintered magnet material in the step of performing the diffusion step, and the R-TB system in the step of performing the heat treatment after the diffusion step. The heating temperature of the sintered magnet was measured using a thermocouple. The heating temperatures of the RL-RH-M alloy and the RTB sintered magnet material in the diffusion step were all 900 ° C. × 10H as in Experimental Example 1.

[サンプル評価]
表6に示す通り、サンプルNo.2−1〜2−4では、RL−RH−M系合金付着量が1.6mass%未満の範囲でBとHcJの比較をした。RL−RH−M系合金のRH量が13mass%未満のサンプルNo.2−1では高いBrが得られているが、高いHcJは得られていない。一方、本発明例であるサンプルNo.2−2〜2−4では高いBと高いHcJがともに得られている。

Figure 2021153146
[Sample evaluation]
As shown in Table 6, sample No. In 2-1~2-4, RL-RH-M alloy coating weight was a comparison of B r and H cJ in the range of less than 1.6mass%. Sample No. in which the RH amount of the RL-RH-M alloy is less than 13 mass%. Although 2-1 In high B r is obtained, a high H cJ can not be obtained. On the other hand, the sample No. which is an example of the present invention. 2-2 to 2-4 in the high B r and a high H cJ is obtained together.
Figure 2021153146

Claims (2)

粒径D50が2.0μm〜3.5μmの微粉末から焼結体を作製してR−T−B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含む。)を準備する工程と、
RL−RH−M系合金(RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Mは、Cu、Ga、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つである)を準備する工程と、
前記R−T−B系焼結磁石素材の表面の少なくとも一部に、前記RL−RH−M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、
を含み、
前記R−T−B系焼結磁石素材において、Rの含有量は、R−T−B系焼結磁石素材全体の27mass%以上35mass%以下であり、T全体に対するFeの含有量が80mass%以上であり、
前記RL−RH−M系合金において、RLの含有量は、RL−RH−M系合金全体の57mass%以上82mass%以下であり、RHの含有量は、RL−RH−M系合金全体の13mass%以上23mass%以下であり、Mの含有量は、RL−RH−M系合金全体の5mass%以上20mass%以下であり、
前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は1mass%以上2.5mass%以下である、
R−T−B系焼結磁石の製造方法。
A sintered body is prepared from fine powder having a particle size D 50 of 2.0 μm to 3.5 μm, and an RTB-based sintered magnet material (R is a rare earth element, and is composed of a group consisting of Nd, Pr and Ce. A step of preparing at least one selected, T being at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and T always containing Fe).
RL-RH-M alloys (RL is at least one of the light rare earth elements and always contains at least one selected from the group consisting of Nd, Pr and Ce, where RH is from Tb, Dy and Ho. At least one selected from the group consisting of, and M is at least one selected from the group consisting of Cu, Ga, Fe, Co, Ni, and Al).
At least a part of the RL-RH-M alloy is adhered to at least a part of the surface of the RTB-based sintered magnet material, and the temperature is 700 ° C. or higher and 1100 ° C. or lower in a vacuum or an inert gas atmosphere. Diffusion process that heats at temperature and
Including
In the RTB-based sintered magnet material, the R content is 27 mass% or more and 35 mass% or less of the entire RTB-based sintered magnet material, and the Fe content with respect to the entire T is 80 mass%. That's it,
In the RL-RH-M alloy, the RL content is 57 mass% or more and 82 mass% or less of the entire RL-RH-M alloy, and the RH content is 13 mass of the entire RL-RH-M alloy. % Or more and 23 mass% or less, and the M content is 5 mass% or more and 20 mass% or less of the entire RL-RH-M alloy.
The amount of the RL-RH-M alloy adhered to the RTB-based sintered magnet material in the diffusion step is 1 mass% or more and 2.5 mass% or less.
A method for manufacturing an RTB-based sintered magnet.
前記拡散工程における前記R−T−B系焼結磁石素材への前記RL−RH−M系合金の付着量は1.5mass%以上2.5mass%以下である、請求項1に記載のR−T−B系焼結磁石の製造方法。 The R-. A method for manufacturing a TB-based sintered magnet.
JP2020053406A 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet Active JP7452159B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020053406A JP7452159B2 (en) 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet
CN202110306791.0A CN113451029A (en) 2020-03-24 2021-03-23 Method for producing R-T-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053406A JP7452159B2 (en) 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet

Publications (2)

Publication Number Publication Date
JP2021153146A true JP2021153146A (en) 2021-09-30
JP7452159B2 JP7452159B2 (en) 2024-03-19

Family

ID=77809163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053406A Active JP7452159B2 (en) 2020-03-24 2020-03-24 Manufacturing method of RTB based sintered magnet

Country Status (2)

Country Link
JP (1) JP7452159B2 (en)
CN (1) CN113451029A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146552B2 (en) 2011-01-20 2013-02-20 日立金属株式会社 R-Fe-B rare earth sintered magnet and method for producing the same
DE112012004288T5 (en) 2011-10-13 2014-07-31 Tdk Corporation R-T-B based alloy ribbon, R-T-B based sintered magnet and method of making same
WO2018034264A1 (en) 2016-08-17 2018-02-22 日立金属株式会社 R-t-b sintered magnet
JP6717230B2 (en) 2017-02-28 2020-07-01 日立金属株式会社 Method for manufacturing sintered RTB magnet

Also Published As

Publication number Publication date
CN113451029A (en) 2021-09-28
JP7452159B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6051892B2 (en) Method for producing RTB-based sintered magnet
WO2016133071A1 (en) Method for producing r-t-b system sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
JP6733398B2 (en) Method for manufacturing RTB-based sintered magnet
JP6860808B2 (en) Manufacturing method of RTB-based sintered magnet
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP6380724B1 (en) R-T-B system sintered magnet and manufacturing method thereof
JP6624455B2 (en) Method for producing RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP7310499B2 (en) Method for producing RTB based sintered magnet
US11424056B2 (en) Method for producing sintered R-T-B based magnet
JP7059995B2 (en) RTB-based sintered magnet
JP7228096B2 (en) Method for producing RTB based sintered magnet
JP7452159B2 (en) Manufacturing method of RTB based sintered magnet
JP2020107888A (en) Method for manufacturing r-t-b based sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
CN111489888B (en) Method for producing R-T-B sintered magnet
JP7447606B2 (en) RTB system sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
JP2020120102A (en) Method for manufacturing r-t-b based sintered magnet
JP2022147793A (en) Production method of r-t-b based sintered magnet
JP6939338B2 (en) Manufacturing method of RTB-based sintered magnet
JP2022147794A (en) Production method of r-t-b based sintered magnet
JP2023046258A (en) Method for manufacturing r-t-b based sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7452159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150