JP2022147793A - Production method of r-t-b based sintered magnet - Google Patents

Production method of r-t-b based sintered magnet Download PDF

Info

Publication number
JP2022147793A
JP2022147793A JP2021049197A JP2021049197A JP2022147793A JP 2022147793 A JP2022147793 A JP 2022147793A JP 2021049197 A JP2021049197 A JP 2021049197A JP 2021049197 A JP2021049197 A JP 2021049197A JP 2022147793 A JP2022147793 A JP 2022147793A
Authority
JP
Japan
Prior art keywords
mass
sintered magnet
rtb
alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021049197A
Other languages
Japanese (ja)
Inventor
宣介 野澤
Sensuke Nozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2021049197A priority Critical patent/JP2022147793A/en
Priority to CN202210157081.0A priority patent/CN115116726A/en
Publication of JP2022147793A publication Critical patent/JP2022147793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

To provide a production method of an R-T-B based sintered magnet superior in the balance of Br and HcJ while reducing an amount of heavy rare earth RH to be used.SOLUTION: A production method of an R-T-B based sintered magnet comprises: a step of preparing an R-T-B based sintered magnet material (R is a rare earth element, and T represents at least one element selected from a group consisting of Fe, Co, Al, Mn and Si, inevitably including Fe); a step of preparing RL-RH-C-M based alloy; and a diffusion step of depositing at least part of the RL-RH-C-M based alloy to at least part of the surface of the R-T-B based sintered magnet material, followed by heating. In the RL-RH-C-M based alloy, the content of RL is 50 mass% or more and 95 mass% or less; the content of RH is 45 mass% or less (including 0 mass%); the content of C is 0.1 mass% or more and 0.5 mass% or less; and the content of M is 4 mass% or more and 49.9 mass% or less.SELECTED DRAWING: Figure 2

Description

本発明はR-T-B系焼結磁石の製造方法に関する。 The present invention relates to a method for producing an RTB based sintered magnet.

R-T-B系焼結磁石(Rは希土類元素であり、Tは主にFeであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。R-T-B系焼結磁石は、各種モータ等の小型、軽量化を通じて、省エネルギー、環境負荷低減に貢献している。 RTB-based sintered magnets (R is a rare earth element, T is mainly Fe, and B is boron) are known to have the highest performance among permanent magnets, and are used in hard disk drives. voice coil motors (VCM), motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances. RTB based sintered magnets contribute to energy saving and environmental load reduction through the miniaturization and weight reduction of various motors.

R-T-B系焼結磁石は、主としてR14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 RTB based sintered magnets are composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundary portion of the main phase. The R 2 T 14 B compound, which is the main phase, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and forms the basis of the properties of the RTB system sintered magnet.

R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 RTB based sintered magnets have a problem of irreversible thermal demagnetization due to a decrease in coercive force H cJ (hereinafter simply referred to as “H cJ ”) at high temperatures. Therefore, RTB sintered magnets used in motors for electric vehicles in particular are required to have a high H cJ even at high temperatures, that is, to have a higher H cJ at room temperature.

14B型化合物相中の軽希土類元素(主にNd、Pr)を重希土類元素(主にDy、Tb)で置換すると、HcJが向上することが知られている。しかし、HcJが向上する一方、R14B型化合物相の飽和磁化が低下するために残留磁束密度B(以下、単に「B」という)が低下してしまうという問題がある。 It is known that replacing light rare earth elements (mainly Nd, Pr) in the R 2 T 14 B-type compound phase with heavy rare earth elements (mainly Dy, Tb) improves H cJ . However, while the H cJ is improved, the saturation magnetization of the R 2 T 14 B type compound phase is reduced, which causes a problem that the residual magnetic flux density B r (hereinafter simply referred to as “B r ”) is reduced.

特許文献1には、R-T-B系合金の焼結磁石の表面にDy等の重希土類元素を供給しつつ、重希土類元素RHを焼結磁石の内部に拡散させることが記載されている。特許文献1に記載の方法は、R-T-B系焼結磁石の表面から内部にDyを拡散させてHcJ向上に効果的な主相結晶粒の外殻部にのみDyを濃化させることにより、Bの低下を抑制しつつ、高いHcJを得ることができる。 Patent Document 1 describes supplying a heavy rare earth element such as Dy to the surface of a sintered magnet made of an RTB alloy and diffusing the heavy rare earth element RH inside the sintered magnet. . The method described in Patent Document 1 diffuses Dy from the surface of the RTB system sintered magnet to the inside, and concentrates Dy only in the outer shell portion of the main phase crystal grains, which is effective for improving HcJ . As a result, a high HcJ can be obtained while suppressing a decrease in Br .

特許文献2には、R-T-B系焼結体の表面に特定組成のR-Ga-Cu合金を接触させて熱処理を行うことにより、R-T-B系焼結磁石中の粒界相の組成および厚さを制御してHcJを向上させることが記載されている。 Patent Document 2 discloses that the surface of a sintered RTB magnet is heat-treated by bringing an R-Ga-Cu alloy of a specific composition into contact with the surface of the sintered RTB magnet, thereby reducing the grain boundaries in the sintered RTB magnet. Controlling the composition and thickness of the phases is described to improve the HcJ .

国際公開第2007/102391号WO2007/102391 国際公開第2016/133071号WO2016/133071

しかし、近年特に電気自動車用モータなどにおいて高価な重希土類元素の使用量を低減しつつ、更にBとHcJのバランスに優れた(Bの低下を抑制しつつ、高いHcJの)R-T-B系焼結磁石を得ることが求められている。 However, in recent years, especially in motors for electric vehicles, etc., the amount of expensive heavy rare earth elements used has been reduced, and furthermore, R that has an excellent balance between Br and HcJ (high HcJ while suppressing the decrease in Br) has been used . It is desired to obtain a -TB system sintered magnet.

本開示の様々な実施形態は、重希土類元素の使用量を低減しつつ、BとHcJのバランスに優れたR-T-B系焼結磁石の製造方法を提供する。 Various embodiments of the present disclosure provide methods for producing RTB-based sintered magnets with an excellent balance between B r and H cJ while reducing the amount of heavy rare earth elements used.

本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R-T-B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む。)を準備する工程と、前記R-T-B系焼結磁石素材の表面の少なくとも一部に、RL-RH-C-M系合金(RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Cはカーボンであり、Mは、Cu、Ga、Fe、Co、Ni、Al、Ag、Zn、Si、Snからなる群から選択された少なくとも1つである。)の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、前記R-T-B系焼結磁石素材は、Bに対するTのmol比[T]/[B]が14.0超15.0以下であり、前記RL-RH-C-M系合金における、RLの含有量は50mass%以上95mass%以下であり、RHの含有量は45mass%以下(0mass%を含む)であり、Cの含有量は0.10mass%以上0.50mass%以下であり、Mの含有量は4mass%以上49.9mass%以下である。 In an exemplary embodiment of the method for producing an RTB based sintered magnet of the present disclosure, an RTB based sintered magnet material (R is a rare earth element, the group consisting of Nd, Pr and Ce and T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and necessarily includes Fe.); - An RL-RH-C-M alloy (RL is at least one of the light rare earth elements and selected from the group consisting of Nd, Pr and Ce) on at least part of the surface of the TB based sintered magnet material necessarily including at least one selected, RH is at least one selected from the group consisting of Tb, Dy and Ho; C is carbon; M is Cu, Ga, Fe, Co, Ni, At least one selected from the group consisting of Al, Ag, Zn, Si, and Sn.) is deposited and heated at a temperature of 700° C. or higher and 1100° C. or lower in a vacuum or inert gas atmosphere. and a diffusion step, wherein the RTB based sintered magnet material has a molar ratio [T]/[B] of T to B of more than 14.0 and 15.0 or less, and the RL-RH- In the CM alloy, the RL content is 50 mass% or more and 95 mass% or less, the RH content is 45 mass% or less (including 0 mass%), and the C content is 0.10 mass% or more and 0.1 mass% or less. 50 mass% or less, and the content of M is 4 mass% or more and 49.9 mass% or less.

ある実施形態において、前記R-T-B系焼結磁石素材における、Bに対するTのmol比[T]/[B]が14.0超15.0以下である。 In one embodiment, the molar ratio [T]/[B] of T to B in the RTB based sintered magnet material is more than 14.0 and 15.0 or less.

本開示の実施形態によれば、重希土類元素の使用量を低減しつつ、BとHcJのバランスに優れたR-T-B系焼結磁石の製造方法を提供することができる。 According to the embodiments of the present disclosure, it is possible to provide a method for manufacturing an RTB based sintered magnet having an excellent balance between B r and H cJ while reducing the amount of heavy rare earth elements used.

R-T-B系焼結磁石の一部を拡大して模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an enlarged part of an RTB based sintered magnet. 図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。FIG. 1B is a schematic cross-sectional view further enlarging the inside of the dashed-line rectangular area of FIG. 1A; 本開示によるR-T-B系焼結磁石の製造方法における工程の例を示すフローチャートである。4 is a flow chart showing an example of steps in a method for manufacturing a sintered RTB magnet according to the present disclosure;

まず、本開示によるR-T-B系焼結磁石の基本構造について説明をする。R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB based sintered magnet according to the present disclosure will be described. RTB sintered magnets have a structure in which raw material alloy powder particles are bonded by sintering. It consists of a grain boundary phase located at

図1Aは、R-T-B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R-T-B系焼結磁石は、主としてR14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R-T-B系焼結磁石では、主相12であるR14B化合物の存在比率を高めることによってBを向上させることができる。R14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。なお、R14B化合物のBの一部はCで置換することが可能である。
また、主相であるR14B化合物のRの一部をDy、Tb、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。
一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。
FIG. 1A is a schematic cross-sectional view enlarging a part of the RTB based sintered magnet, and FIG. 1B is a cross-sectional view schematically showing a further enlarged broken-line rectangular area in FIG. 1A. is. In FIG. 1A, as an example, an arrow with a length of 5 μm is shown for reference as a reference length indicating the size. As shown in FIGS. 1A and 1B, the RTB system sintered magnet has a main phase 12 mainly composed of an R 2 T 14 B compound and a grain boundary phase 14 located at the grain boundary portion of the main phase 12. It consists of In addition, as shown in FIG. 1B, the grain boundary phase 14 includes a two-particle grain boundary phase 14a in which two R 2 T 14 B compound particles (grains) are adjacent, and a two-particle grain boundary phase 14a in which three R 2 T 14 B compound particles are adjacent. and the grain boundary triple point 14b. A typical main phase crystal grain size is 3 μm or more and 10 μm or less as the average value of the circle equivalent diameter of the cross section of the magnet. The R 2 T 14 B compound, which is the main phase 12, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field. Therefore, in an RTB based sintered magnet, B r can be improved by increasing the abundance ratio of the R 2 T 14 B compound that is the main phase 12 . In order to increase the abundance ratio of the R 2 T 14 B compound, the R amount, T amount, and B amount in the raw material alloy are adjusted to the stoichiometric ratio of the R 2 T 14 B compound (R amount: T amount: B amount = 2:14:1). Incidentally, part of B in the R 2 T 14 B compound can be substituted with C.
In addition, by substituting a portion of R in the main phase R 2 T 14 B compound with a heavy rare earth element such as Dy, Tb, or Ho, the anisotropic magnetic field of the main phase can be increased while reducing the saturation magnetization. It has been known. In particular, the outer shell of the main phase, which is in contact with the grain boundary phase, is likely to become the starting point of magnetization reversal. A relatively high HcJ is obtained.
On the other hand, it is known that a high HcJ can be obtained also by controlling the magnetism of the two-grain grain boundary phase 14a. Specifically, by lowering the concentration of magnetic elements (Fe, Co, Ni, etc.) in the two-grain boundary phase, the two-grain boundary phase becomes closer to non-magnetic, thereby reducing the magnetic coupling between the main phases. It can be weakened to suppress magnetization reversal.

本発明者は検討の結果、特許文献2に記載の方法は、重希土類元素の使用量を低減しつつ、高いHcJを有するR-T-B系焼結磁石が得られるものの、拡散によるBの低下が起こる場合があることがわかった。このBの低下は、拡散により磁石表面付近のR量(特にRL)が多くなることで、磁石表面付近における主相の体積比率が低下するためだと考えられる。こられの知見をもとに本発明者はさらに検討の結果、R-T-B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、狭い特定範囲のCを特定範囲のRLおよびMとともに拡散させることで、磁石表面付近の主相の体積比率の低下を抑制することが可能になることを見出した。これにより拡散によるBの低下を抑制させることができるため、重希土類元素の使用量を低減しつつ、BとHcJのバランスに優れたR-T-B系焼結磁石を得ることができる。これは、磁石表面付近の粒界に存在するFeと拡散によって導入されたRLが、同じく拡散によって導入されたC(Bと置換可能なC)により主相を形成するからだと考えられる。 As a result of investigations by the present inventors, the method described in Patent Document 2 can obtain an RTB system sintered magnet having a high HcJ while reducing the amount of heavy rare earth elements used. It has been found that a decrease in r may occur. This decrease in Br is thought to be due to the increase in the amount of R (especially RL) near the magnet surface due to diffusion, which reduces the volume ratio of the main phase near the magnet surface. Based on these findings, the inventor of the present invention conducted further investigations and found that a narrow specific range of C was introduced into the magnet material from the surface of the RTB sintered magnet material through the grain boundary, together with specific ranges of RL and M. It was found that by diffusing it, it becomes possible to suppress a decrease in the volume ratio of the main phase near the surface of the magnet. As a result, it is possible to suppress the decrease in Br due to diffusion, so that it is possible to obtain an RTB -based sintered magnet having an excellent balance between Br and HcJ while reducing the amount of heavy rare earth elements used. can. It is believed that this is because Fe present at the grain boundaries near the surface of the magnet and RL introduced by diffusion form the main phase with C (C that can replace B) also introduced by diffusion.

本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、R-T-B系焼結磁石素材を準備する工程S10とRL-RH-C-M系合金を準備する工程S20とを含む。R-T-B系焼結磁石素材を準備する工程S10とRL-RH-C-M系合金を準備する工程S20との順序は任意である。
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、更に、R-T-B系焼結磁石素材表面の少なくとも一部にRL-RH-C-M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程S30を含む。
As shown in FIG. 2, the method for producing an RTB based sintered magnet according to the present disclosure comprises a step S10 of preparing an RTB based sintered magnet material and an RL-RH-CM based alloy. and a step S20 of preparing. The order of the step S10 of preparing the RTB based sintered magnet material and the step S20 of preparing the RL-RH-CM based alloy is arbitrary.
As shown in FIG. 2, in the method for producing an RTB based sintered magnet according to the present disclosure, an RL-RH-CM based material is further added to at least a part of the surface of the RTB based sintered magnet material. A diffusion step S30 is included in which at least part of the alloy is deposited and heated at a temperature of 700° C. or higher and 1100° C. or lower in a vacuum or inert gas atmosphere.

なお、本開示において、拡散工程前および拡散工程中のR-T-B系焼結磁石を「R-T-B系焼結磁石素材」と称し、拡散工程後のR-T-B系焼結磁石を単に「R-T-B系焼結磁石」と称する。 In the present disclosure, the RTB system sintered magnet before and during the diffusion process is referred to as "RTB system sintered magnet material", and the RTB system sintered magnet after the diffusion process. A magnet is simply called an "RTB system sintered magnet".

(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材において、Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む。Rの含有量は、例えば、R-T-B系焼結磁石素材全体の27mass%以上35mass%以下である。T全体に対するFeの含有量が80mass%以上であることが好ましい。
Rが27mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35mass%を超えると焼結時に粒成長が起こり、HcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。
(Step of preparing RTB based sintered magnet material)
In the RTB based sintered magnet material, R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, and T is Fe, Co, Al, Mn and Si. is at least one selected from the group consisting of and necessarily contains Fe. The content of R is, for example, 27 mass % or more and 35 mass % or less of the entire RTB based sintered magnet material. It is preferable that the content of Fe with respect to the entire T is 80 mass% or more.
If R is less than 27% by mass, the liquid phase is not sufficiently formed in the sintering process, and it may become difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and HcJ may decrease. R is preferably 28 mass% or more and 33 mass% or less.

R-T-B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27~35mass%、
B:0.80~1.20mass%、
Ga:0~1.0mass%、
X:0~2mass%(XはCu、Nb、Zrの少なくとも一種)、
T:60mass%以上を含有する。
The RTB based sintered magnet material has, for example, the following composition range.
R: 27 to 35 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 1.0 mass%,
X: 0 to 2 mass% (X is at least one of Cu, Nb and Zr),
T: 60 mass% or more.

好ましくは、R-T-B系焼結磁石素材において、Bに対するTのmol比[T]/[B]が14.0超15.0以下である。より高いHcJを得ることができる。本開示における[T]/[B]とは、Tを構成する各元素(Fe、Co、Al、MnおよびSiからなる群から選択された少なくとも1つであり、Tは必ずFeを含み、T全体に対するFeの含有量が80mass%以上)の分析値(mass%)をそれぞれの元素の原子量で除したものを求め、それらの値を合計したもの[T]と、Bの分析値(mass%)をBの原子量で除したもの[B]との比である。mol比[T]/[B]が14.0を超えるという条件は、主相(R14B化合物)形成に使われるT量に対して相対的にB量が少ないことを示している。mol比[T]/[B]は14.3以上15.0以下であることがさらに好ましい。さらに高いHcJを得ることができる。Bの含有量はR-T-B系焼結体全体の0.9mass%以上1.0mass%未満が好ましい。 Preferably, in the RTB based sintered magnet material, the molar ratio [T]/[B] of T to B is more than 14.0 and 15.0 or less. A higher HcJ can be obtained. [T] / [B] in the present disclosure is each element constituting T (at least one selected from the group consisting of Fe, Co, Al, Mn and Si, T always contains Fe, T Fe content in the whole is 80 mass% or more) analysis value (mass%) was divided by the atomic weight of each element, and the sum of those values [T] and the analysis value of B (mass% ) divided by the atomic weight of B to [B]. The condition that the mol ratio [T]/[B] exceeds 14.0 indicates that the amount of B is relatively small with respect to the amount of T used to form the main phase (R 2 T 14 B compound). . More preferably, the molar ratio [T]/[B] is 14.3 or more and 15.0 or less. Even higher HcJ can be obtained. The content of B is preferably 0.9 mass% or more and less than 1.0 mass% of the entire RTB-based sintered body.

R-T-B系焼結磁石素材は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて粒径D50が2.0μm以上5.0μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより焼結体を作製して準備することができる。粒径D50が2.0μm以上5μm以下に粉砕することにより、高い磁気特性を得ることができる。好ましくは、粒径D50は、2.5μm以上4.0μm以下である。生産性の悪化を抑制した上で貴重なRHを削減しつつ、よりBとHcJのバランスに優れたR-T-B系焼結磁石を得ることができる。なお、前記D50は、気流分散法によるレーザー回折法で得られる粒度分布において、小径側からの積算粒度分布(体積基準)が50%になる粒径である。また、D50は、例えば、Sympatec社製の粒度分布計測装置「HELOS&RODOS」を用いて、分散圧:4bar、測定レンジ:R2、計測モード:HRLDの条件にて測定することができる。 The RTB based sintered magnet material can be prepared using a general method for manufacturing RTB based sintered magnets typified by Nd—Fe—B based sintered magnets. As an example, a raw material alloy produced by a strip casting method or the like is pulverized using a jet mill or the like to a particle size D50 of 2.0 μm or more and 5.0 μm or less, and then molded in a magnetic field and heated to 900 ° C. or more. A sintered body can be prepared by sintering at a temperature of 1100° C. or less. High magnetic properties can be obtained by pulverizing to a particle size D50 of 2.0 μm or more and 5 μm or less. Preferably, the particle size D50 is between 2.5 μm and 4.0 μm. It is possible to obtain an RTB based sintered magnet having a better balance between B r and H cJ while suppressing deterioration of productivity and reducing valuable RH. The D50 is the particle size at which the cumulative particle size distribution (volume basis) from the small diameter side is 50% in the particle size distribution obtained by the laser diffraction method based on the air dispersion method. In addition, D50 can be measured, for example, using a particle size distribution analyzer "HELOS &RODOS" manufactured by Sympatec under conditions of dispersion pressure: 4 bar, measurement range: R2, and measurement mode: HRLD.

(RL-RH-C-M系合金を準備する工程)
前記RL-RH-C-M系合金において、RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Cはカーボンであり、Mは、Cu、Ga、Fe、Co、Ni、Al、Ag、Zn、Si、Snからなる群から選択された少なくとも1つである。RLの含有量は、RL-RH-C-M系合金全体の50mass%以上95mass%以下である。軽希土類元素は、La、Ce、Pr、Nd、Pm、Sm、Euなどが挙げられる。RHの含有量は、RL-RH-C-M系合金全体の45mass%以下(0mass%を含む)である。すわなち、RHは含有しなくてもよい。Cの含有量は、RL-RH-C-M系合金全体の0.10mass%以上0.50mass%以下である。Mの含有量は、RL-RH-C-M系合金全体の4mass%以上49.9mass%以下である。RL-RH-C-M系合金の典型例は、TbNdPrCCu合金、TbNdCePCCu合金、TbNdPrCCuFe合金、TbNdCGa合金、TbNdPrCGaCu合金、TbNdCGaCuFe合金、NdPrTbCCuGaAl合金などである。上記元素の他にMn、O、N等の不可避不純物等の元素を少量含有してもよい。
(Step of preparing RL-RH-C-M alloy)
In the RL-RH-C-M alloy, RL is at least one light rare earth element and must contain at least one selected from the group consisting of Nd, Pr and Ce, and RH is Tb, at least one selected from the group consisting of Dy and Ho, C is carbon, and M is selected from the group consisting of Cu, Ga, Fe, Co, Ni, Al, Ag, Zn, Si, Sn at least one. The content of RL is 50 mass% or more and 95 mass% or less of the entire RL-RH-CM alloy. Light rare earth elements include La, Ce, Pr, Nd, Pm, Sm, and Eu. The content of RH is 45 mass% or less (including 0 mass%) of the entire RL-RH-CM alloy. That is, RH may not be contained. The content of C is 0.10 mass% or more and 0.50 mass% or less of the entire RL-RH-CM alloy. The content of M is 4 mass% or more and 49.9 mass% or less of the entire RL-RH-CM alloy. Typical examples of RL-RH-CM system alloys are TbNdPrCCu alloy, TbNdCePCCu alloy, TbNdPrCCuFe alloy, TbNdCGa alloy, TbNdPrCGaCu alloy, TbNdCGaCuFe alloy, NdPrTbCCuGaAl alloy and the like. In addition to the above elements, a small amount of elements such as unavoidable impurities such as Mn, O, and N may be contained.

RL+RHが50mass%未満であると、RH、CおよびMがR-T-B系焼結磁石素材内部に導入されにくくなり、HcJが低下する可能性があり、95mass%を超えるとRL-RH-C-M系合金の製造工程中における合金粉末が非常に活性になる。その結果、合金粉末の著しい酸化や発火などを生じる可能性がある。好ましくは、RL+RHの含有量はRL-RH-C-M系合金全体の70mass%以上80mass%以下である。より高いHcJを得ることができる。 If RL+RH is less than 50 mass%, RH, C, and M are less likely to be introduced into the RTB sintered magnet material, and H cJ may decrease. If it exceeds 95 mass%, RL-RH - The alloy powder becomes very active during the manufacturing process of the CM system alloy. As a result, the alloy powder may be significantly oxidized or ignited. Preferably, the content of RL+RH is 70 mass% or more and 80 mass% or less of the entire RL-RH-CM alloy. A higher HcJ can be obtained.

RHが45mass%を超えると希少元素である重希土類元素の使用量を低減しつつ、BとHcJのバランスに優れたR-T-B系焼結磁石を得ることができない。好ましくは、RHの含有量は、RL-RH-C-M系合金全体の20mass%以下である。また、RL-RH-C-M系合金における前記RLおよび前記RHの合計含有量は、RL-RH-C-M系合金全体の55mass%以上であることが好ましい。これにより、高いHcJを得ることができる。また、RL-RH-C-M系合金におけるRLの含有量(mass%)を[RL]、RHの含有量を[RH]とするとき、[RL]>1.5×[RH]の関係を満足することが好ましい。これにより、より重希土類元素の使用量を低減しつつ、BとHcJのバランスに優れたR-T-B系焼結磁石を得ることができる。 If the RH exceeds 45 mass %, it is not possible to obtain an RTB based sintered magnet having an excellent balance between B r and H cJ while reducing the amount of heavy rare earth elements, which are rare elements. Preferably, the content of RH is 20 mass% or less of the entire RL-RH-CM alloy. Further, the total content of RL and RH in the RL-RH-CM alloy is preferably 55 mass% or more of the entire RL-RH-CM alloy. Thereby, a high HcJ can be obtained. Further, when the RL content (mass%) in the RL-RH-CM alloy is [RL] and the RH content is [RH], the relationship [RL] > 1.5 × [RH] is preferably satisfied. As a result, it is possible to obtain an RTB-based sintered magnet having an excellent balance between B r and H cJ while reducing the amount of heavy rare earth elements used.

Cが0.10mass%未満であると、磁石表面付近の磁石表面付近の主相の体積比率の低下を抑制できない可能性があり、0.50mass%を超えると、RLおよびBによるHcJ向上効果が低下する可能性がある。好ましくは、Cの含有量は、RL-RH-C-M系合金全体の0.20mass%以上0.50mass%以下である。よりBとHcJのバランスに優れたR-T-B系焼結磁石を得ることができる。 If C is less than 0.10 mass%, it may not be possible to suppress the decrease in the volume ratio of the main phase near the magnet surface near the magnet surface, and if it exceeds 0.50 mass%, the effect of improving H cJ by RL and B. may decline. Preferably, the content of C is 0.20 mass% or more and 0.50 mass% or less of the entire RL-RH-CM alloy. An RTB based sintered magnet having a better balance between B r and H cJ can be obtained.

Mが4mass%未満であるとRL、BおよびRHが二粒子粒界相に導入されにくくなり、HcJが十分に向上しない可能性があり、49.9mass%を超えるとRLおよびBの含有量が低下しHcJが十分に向上しない可能性がある。好ましくは、Mの含有量は、RL-RH-C-M系合金全体の7mass%以上15mass%以下である。より高いHcJを得ることができる。好ましくは、前記RL-RH-C-M系合金のMは、Cu、Ga、Feの少なくとも1つを必ず含み、M中のCu、Ga、Feの含有割合は80%以上であると、より高いHcJを得ることができる。 When M is less than 4 mass%, RL, B, and RH are difficult to introduce into the two-grain grain boundary phase, and H cJ may not be sufficiently improved. may decrease and H cJ may not improve sufficiently. Preferably, the content of M is 7 mass% or more and 15 mass% or less of the entire RL-RH-CM alloy. A higher HcJ can be obtained. Preferably, M in the RL-RH-CM alloy always contains at least one of Cu, Ga, and Fe, and the content of Cu, Ga, and Fe in M is 80% or more. A high HcJ can be obtained.

RL-RH-C-M系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL-RH-CM alloy is not particularly limited. It may be produced by a roll quenching method or may be produced by a casting method. Alternatively, these alloys may be pulverized into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method.

(拡散工程)
前述のように準備したR-T-B系焼結磁石素材の表面の少なくとも一部に、準備したRL-RH-C-M系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程を行う。これにより、RL-RH-C-M系合金からRL、C、(RH)およびMを含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。また、RL-RH-C-M系合金によるR-T-B系焼結磁石素材への付着量は1mass%以上8mass%以下が好ましく、1mass%以上5mass%以下がさらに好ましい。この範囲にすることにより、より確実に重希土類元素の使用量を低減しつつ、高いHcJを有するR-T-B系焼結磁石を得ることができる。
(Diffusion process)
At least part of the prepared RL-RH-C-M alloy is attached to at least part of the surface of the RTB-based sintered magnet material prepared as described above, and is placed in a vacuum or inert gas atmosphere. , a diffusion step of heating at a temperature of 700° C. or more and 1100° C. or less. As a result, a liquid phase containing RL, C, (RH) and M is generated from the RL-RH-CM alloy, and the liquid phase passes through the grain boundaries in the RTB sintered magnet material. As a result, it diffuses into the interior from the surface of the sintered material. The amount of the RL-RH-CM alloy attached to the RTB sintered magnet material is preferably 1 mass % or more and 8 mass % or less, more preferably 1 mass % or more and 5 mass % or less. By setting the content within this range, it is possible to obtain an RTB based sintered magnet having a high HcJ while reducing the amount of the heavy rare earth element to be used more reliably.

拡散工程における加熱する温度が700℃未満であると、高いHcJを得ることができない可能性がある。一方、1100℃を超えるとHcJが大幅に低下する可能性がある。好ましくは、拡散工程における加熱する温度は800℃以上1000℃以下である。より高いHcJを得ることができる。また、好ましくは、拡散工程(700℃以上1100℃以下)が実施されたR-T-B系焼結磁石に対し、拡散工程を実施した温度から15℃/分以上の冷却速度で300℃まで冷却した方が好ましい。より高いHcJを得ることができる。 If the heating temperature in the diffusion step is less than 700° C., it may not be possible to obtain a high HcJ . On the other hand, if the temperature exceeds 1100°C, the HcJ may drop significantly. Preferably, the heating temperature in the diffusion step is 800° C. or higher and 1000° C. or lower. A higher HcJ can be obtained. Further, preferably, the RTB sintered magnet subjected to the diffusion step (700° C. or higher and 1100° C. or lower) is cooled from the temperature at which the diffusion step is performed to 300° C. at a cooling rate of 15° C./min or higher. Cooling is preferred. A higher HcJ can be obtained.

拡散工程は、R-T-B系焼結磁石素材表面に、任意形状のRL-RH-C-M系合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R-T-B系焼結磁石素材表面をRL-RH-C-M系合金の粉末層で覆い、拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にRL-RH-C-M系合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR-T-B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60~200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また、例えばRL-RH-C-M系合金を分散媒中に分散させたスラリーをR-T-B系焼結磁石素材表面に塗布した後、分散媒を蒸発させRL-RH-C-M系合金とR-T-B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。
また、RL-RH-C-M系合金の少なくとも一部がR-T-B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わない。
The diffusion process can be performed by placing an RL-RH-CM alloy in an arbitrary shape on the surface of the RTB sintered magnet material and using a known heat treatment apparatus. For example, the surface of an RTB based sintered magnet material can be covered with a powder layer of an RL-RH-CM based alloy to carry out the diffusion process. For example, an application step of applying an adhesive to the surface of the object to be applied and a step of adhering the RL-RH-CM alloy to the area to which the adhesive is applied may be performed. Examples of adhesives include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), PVP (polyvinylpyrrolidone), and the like. When the adhesive is a water-based adhesive, the RTB-based sintered magnet material may be preliminarily heated before application. The purpose of preheating is to remove the excess solvent, control the adhesive force, and evenly adhere the adhesive. The heating temperature is preferably 60 to 200°C. This step may be omitted in the case of highly volatile organic solvent-based pressure-sensitive adhesives. Alternatively, for example, a slurry in which an RL-RH-CM alloy is dispersed in a dispersion medium is applied to the surface of the RTB-based sintered magnet material, and then the dispersion medium is evaporated to obtain an RL-RH-CM A system alloy and an RTB system sintered magnet material may be adhered. Examples of dispersion media include alcohols (ethanol, etc.), aldehydes, and ketones.
Further, as long as at least part of the RL-RH-CM alloy adheres to at least part of the RTB-based sintered magnet material, the arrangement position is not particularly limited.

(熱処理工程)
好ましくは、図2に示すように、拡散工程が実施されたR-T-B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上900℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理を行う。熱処理は複数回行ってもよい。熱処理を行うことにより、より高いHcJを得ることができる。
(Heat treatment process)
Preferably, as shown in FIG. 2, the RTB sintered magnet subjected to the diffusion step is subjected to the diffusion step at 400° C. or higher and 900° C. or lower in a vacuum or inert gas atmosphere. The heat treatment is performed at a temperature lower than the temperature performed in . Heat treatment may be performed multiple times. Higher HcJ can be obtained by heat treatment.

(R-T-B系焼結磁石)
本開示の製造方法により得られたR-T-B系焼結磁石は、R(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含む。)、T(TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む)、BおよびCを含有し、さらに、Cu、Ga、Ni、Ag、Zn、Snからなる群から選択された少なくとも1つを含有する。
(RTB system sintered magnet)
The RTB based sintered magnet obtained by the manufacturing method of the present disclosure contains R (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce), containing T (T is at least one selected from the group consisting of Fe, Co, Al, Mn, and Si, and necessarily includes Fe), B and C, and Cu, Ga, Ni, Ag, It contains at least one selected from the group consisting of Zn and Sn.

本開示のR-T-B系焼結磁石は、例えば、下記の組成を有し得る。 The RTB based sintered magnet of the present disclosure may have, for example, the following composition.

R:26.8mass%以上31.5mass%以下、
B:0.90mass%以上0.97mass%以下、
C:0.08mass%以上0.30mass%以下、
M:0.05mass%以上1.0mass%以下(Mは、Ga、Cu、ZnおよびSiからなる群から選択された少なくとも1種である)、
M1:0mass%以上2.0mass%以下(M1は、Al、Ti、V、Cr、Mn、Ni,Zr、Nb、Mo、Ag、In、Sn、Hf、Ta、W、Pb、およびBiからなる群から選択された少なくとも1種)
残部T(TはFe又はFeとCo)、および不可避的不純物からなる。
本開示は、重希土類元素の使用量を低減しつつ、BとHcJのバランスに優れたR-T-B系焼結磁石を有することができる。そのため、特にTbは、R-T-B系焼結磁石全体の5mass%以下(0mass%を含む)が好ましく、さらに1mass%以下が好ましく、さらに0.5mass%以下が好ましい。
R: 26.8 mass% or more and 31.5 mass% or less,
B: 0.90 mass% or more and 0.97 mass% or less,
C: 0.08 mass% or more and 0.30 mass% or less,
M: 0.05 mass% or more and 1.0 mass% or less (M is at least one selected from the group consisting of Ga, Cu, Zn and Si),
M1: 0 mass% or more and 2.0 mass% or less (M1 consists of Al, Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, Ag, In, Sn, Hf, Ta, W, Pb, and Bi at least one species selected from the group)
The remainder consists of T (T is Fe or Fe and Co) and unavoidable impurities.
The present disclosure can provide RTB based sintered magnets with excellent balance between B r and H cJ while reducing the amount of heavy rare earth elements used. Therefore, in particular, Tb is preferably 5 mass% or less (including 0 mass%), more preferably 1 mass% or less, further preferably 0.5 mass% or less of the entire RTB based sintered magnet.

また、本開示のR-T-B系焼結磁石は磁石表面から磁石内部に向かってRH(例えばTb)濃度が漸減する部分を含んでもよい。磁石表面から磁石内部に向かってRH濃度が漸減する部分をR-T-B系焼結磁石は含むということは、RHの少なくとも一方が磁石表面から磁石内部に拡散された状態にあることを意味している。 Further, the RTB based sintered magnet of the present disclosure may include a portion in which the RH (eg, Tb) concentration gradually decreases from the surface of the magnet toward the inside of the magnet. The RTB system sintered magnet includes a portion where the RH concentration gradually decreases from the surface of the magnet toward the inside of the magnet, which means that at least one of the RH is in a state of being diffused from the surface of the magnet into the inside of the magnet. is doing.

本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail by examples, but the present invention is not limited to them.

実験例1
[R-T-B系焼結磁石素材(磁石素材)を準備する工程]
表1の符号1-Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉を気流式粉砕機(ジェットミル装置)を用いて粉砕し、粒径D50が3μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 1
[Step of preparing RTB-based sintered magnet material (magnet material)]
Each element was weighed so as to obtain the composition of the magnet material indicated by reference numeral 1-A in Table 1, and the material was cast by a strip casting method to obtain a raw material alloy in the form of flakes with a thickness of 0.2 to 0.4 mm. After hydrogen pulverization of the resulting flaky raw material alloy, a dehydrogenation treatment was performed by heating to 550° C. in vacuum and then cooling to obtain a coarsely pulverized powder. Next, the obtained coarsely pulverized powder was pulverized using an air flow type pulverizer (jet mill apparatus) to obtain a finely pulverized powder (alloy powder) having a particle size D50 of 3 μm. The particle diameter D50 is the volume center value (volume-based median diameter) obtained by the laser diffraction method based on the air dispersion method.

前記微粉砕粉を磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 The finely pulverized powder was compacted in a magnetic field to obtain a compact. As the forming apparatus, a so-called orthogonal magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are perpendicular to each other was used.

得られた成形体を、真空中で4時間焼結(サンプル毎に焼結による緻密化が十分起こる温度を選定)した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m 以上であった。得られた磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、磁石素材の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T]/[B]」は、Tを構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、表に記載された元素以外の不純物元素を含むためである。その他表についても同様である。 The resulting molded body was sintered in vacuum for 4 hours (a temperature was selected for each sample at which sufficient densification by sintering occurred) and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained magnet material. Each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As a result of measuring the oxygen content of the magnet material by the gas fusion-infrared absorption method, it was confirmed that all of them were around 0.2 mass %. Further, C (carbon content) was confirmed to be around 0.1 mass% as a result of measurement using a gas analyzer based on combustion-infrared absorption method. "[T]/[B]" in Table 1 is obtained by dividing the analysis value (mass%) of each element (here, Fe, Al, Si, Mn) constituting T by the atomic weight of the element. It is the ratio (a/b) of (a) obtained by summing these values and (b) obtained by dividing the analytical value of B (mass%) by the atomic weight of B. The same is true for all tables below. The sum of each composition, oxygen content, and carbon content in Table 1 does not equal 100 mass%. This is because impurity elements other than the elements listed in the table are included. The same applies to other tables.

Figure 2022147793000002
Figure 2022147793000002

[RL-RH-C-M系合金を準備する工程]
表2の符号1-a~1-eに示すRL-RH-C-M系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕しRL-RH-C-M系合金を準備した。得られたRL-RH-C-M系合金の組成を表2に示す。
[Step of preparing RL-RH-C-M alloy]
Each element is weighed and the raw materials are melted so that the composition of the RL-RH-C-M alloy shown in symbols 1-a to 1-e in Table 2 is obtained, and a single roll super quenching method (melt spinning A ribbon- or flake-shaped alloy was obtained by the method). The obtained alloy was pulverized in an argon atmosphere using a mortar to prepare an RL-RH-CM alloy. Table 2 shows the composition of the obtained RL-RH-CM alloy.

Figure 2022147793000003
Figure 2022147793000003

[拡散工程]
表1の符号1-AのR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R-T-B系焼結磁石素材にディッピング法により糖アルコール類を含有する粘着剤をR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材にRL-RH-C-M系合金粉末をR-T-B系焼結磁石素材の質量に対し3mass%付着させた。次に、真空熱処理炉を用いて900℃で10時間の条件で前記RL-RH-C-M系合金及び前記R-T-B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。その後、真空熱処理炉を用いて470℃以上530℃以下で3時間の条件で熱処理を実施した後、冷却した。
[Diffusion process]
An RTB based sintered magnet material indicated by reference numeral 1-A in Table 1 was cut and processed into a cube of 7.2 mm×7.2 mm×7.2 mm. Next, an adhesive containing a sugar alcohol was applied to the entire surface of the RTB sintered magnet material by a dipping method. 3 mass % of RL-RH-CM system alloy powder was attached to the RTB system sintered magnet material coated with the adhesive with respect to the mass of the RTB system sintered magnet material. Next, using a vacuum heat treatment furnace, the RL-RH-C-M system alloy and the RTB system sintered magnet material are heated under conditions of 900° C. for 10 hours to carry out a diffusion process, cooled. Thereafter, heat treatment was performed using a vacuum heat treatment furnace at 470° C. or higher and 530° C. or lower for 3 hours, and then cooled.

[サンプル評価]
R-T-B系焼結磁石素材および得られたサンプル(熱処理後のR-T-B系焼結磁石)を、B-Hトレーサによって各試料のB及びHcJを測定した。R-T-B系焼結磁石のBおよびHcJの測定結果、及び、R-T-B系焼結磁石のB値(拡散後のB)からR-T-B系焼結磁石素材のB値(拡散前のB)を差し引いた値を△Bとして表3に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した結果を表4に示す。表3の通りR-T-B系焼結磁石素材であるサンプルNo.1-1を用いてRL-RH-C-M系合金を拡散させたサンプルNo.1-3~1-4の実施例は、いずれも拡散工程で高いHcJが得られているだけでなく、Bの低下が少ないことが分かる。よって、BとHcJのバランスに優れた(Bの低下を抑制しつつ、高いHcJの)R-T-B系焼結磁石が得られている。一方、C量が適正範囲以下のRL-RH-C-M系合金を拡散させたサンプルNo.1-2の比較例は拡散工程で高いHcJが得られているもののBが大きく低下していることが分かる。また、C量が適正範囲以上のRL-RH-C-M系合金を拡散させたサンプルNo.1-5および1-6の比較例はBの低下は少ないが、十分なHcJが得られていないことが分かる。
[sample test]
B r and H cJ of each sample were measured with a BH tracer for the RTB system sintered magnet materials and the obtained samples (RTB system sintered magnets after heat treatment). From the measurement results of B r and H cJ of the RTB system sintered magnet and the B r value (B r after diffusion) of the RTB system sintered magnet, the RTB system sintered magnet Table 3 shows the value obtained by subtracting the B r value of the magnet material (B r before diffusion) as ΔB r . In addition, Table 4 shows the results of measuring the components of the samples using high frequency inductively coupled plasma optical emission spectrometry (ICP-OES). As shown in Table 3, sample No. 3, which is an RTB based sintered magnet material, was used. Sample No. 1-1 was used to diffuse the RL-RH-CM alloy. In Examples 1-3 to 1-4, it can be seen that not only a high H cJ was obtained in the diffusion process, but also a decrease in Br was small. Therefore, an RTB based sintered magnet with an excellent balance between B r and H cJ (high H cJ while suppressing a decrease in B r ) is obtained. On the other hand, sample no. It can be seen that Comparative Example 1-2 has a high H cJ in the diffusion process, but a large decrease in Br . Also, sample No. in which an RL-RH-CM alloy with a C content above the appropriate range was diffused. It can be seen that Comparative Examples 1-5 and 1-6 show little decrease in Br, but do not provide sufficient HcJ .

Figure 2022147793000004
Figure 2022147793000004

Figure 2022147793000005
Figure 2022147793000005

実験例2
[R-T-B系焼結磁石素材(磁石素材)を準備する工程]
表5の符号2-A~2-Bに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉を気流式粉砕機(ジェットミル装置)を用いて粉砕し、粒径D50が3μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
Experimental example 2
[Step of preparing RTB-based sintered magnet material (magnet material)]
Each element was weighed and cast by a strip casting method so as to have the composition of the magnet material indicated by symbols 2-A and 2-B in Table 5, to obtain a flake-shaped raw material alloy with a thickness of 0.2 to 0.4 mm. rice field. After hydrogen pulverization of the resulting flaky raw material alloy, a dehydrogenation treatment was performed by heating to 550° C. in vacuum and then cooling to obtain a coarsely pulverized powder. Next, the obtained coarsely pulverized powder was pulverized using an air flow type pulverizer (jet mill apparatus) to obtain a finely pulverized powder (alloy powder) having a particle size D50 of 3 μm. The particle diameter D50 is the volume center value (volume-based median diameter) obtained by the laser diffraction method based on the air dispersion method.

前記微粉砕粉を磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 The finely pulverized powder was compacted in a magnetic field to obtain a compact. As the forming apparatus, a so-called orthogonal magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressurizing direction are perpendicular to each other was used.

得られた成形体を、真空中、1000℃以上1050℃以下(サンプル毎に焼結による緻密化が十分起こる温度を選定)で10時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m 以上であった。得られた磁石素材の成分の結果を表5に示す。なお、表5における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、磁石素材の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.2mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The resulting compact was sintered in vacuum at 1000° C. or higher and 1050° C. or lower (a temperature at which sintering causes sufficient densification was selected for each sample) for 10 hours and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 5 shows the results of the components of the obtained magnet material. Each component in Table 5 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). As a result of measuring the oxygen content of the magnet materials by the gas fusion-infrared absorption method, it was confirmed that all of them were around 0.2 mass %. Further, C (carbon content) was confirmed to be around 0.1 mass% as a result of measurement using a gas analyzer based on combustion-infrared absorption method.

Figure 2022147793000006
Figure 2022147793000006

[RL-RH-C-M系合金を準備する工程]
表6の符号2-a~2-eに示すRL-RH-C-M系合金の組成およびBを含まない合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕しRL-RH-C-M系合金を準備した。得られたRL-RH-C-M系合金の組成を表6に示す。
[Step of preparing RL-RH-C-M alloy]
Each element was weighed and the raw materials were melted so that the composition of the RL-RH-C-M alloy and the composition of the alloy not containing B shown in 2-a to 2-e in Table 6 were obtained. A ribbon- or flake-like alloy was obtained by a single-roll ultra-quenching method (melt spinning method). The obtained alloy was pulverized in an argon atmosphere using a mortar to prepare an RL-RH-CM alloy. Table 6 shows the composition of the obtained RL-RH-CM alloy.

Figure 2022147793000007
Figure 2022147793000007

[拡散工程]
表5の符号2-A~2-BのR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R-T-B系焼結磁石素材にディッピング法により糖アルコール類を含有する粘着剤をR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材にRL-RH-C-M系合金粉末をR-T-B系焼結磁石素材の質量に対し3mass%付着させた。次に、真空熱処理炉を用いて900℃で10時間の条件で前記RL-RH-C-M系合金及び前記R-T-B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。その後、真空熱処理炉を用いて470℃以上530℃以下で1時間の条件で熱処理を実施した後、冷却した。
[Diffusion process]
The RTB based sintered magnet materials 2-A to 2-B in Table 5 were cut and cut into cubes of 7.2 mm×7.2 mm×7.2 mm. Next, an adhesive containing a sugar alcohol was applied to the entire surface of the RTB sintered magnet material by a dipping method. 3 mass % of RL-RH-CM system alloy powder was attached to the RTB system sintered magnet material coated with the adhesive with respect to the mass of the RTB system sintered magnet material. Next, using a vacuum heat treatment furnace, the RL-RH-C-M system alloy and the RTB system sintered magnet material are heated under conditions of 900° C. for 10 hours to carry out a diffusion process, cooled. Thereafter, heat treatment was performed using a vacuum heat treatment furnace at 470° C. or higher and 530° C. or lower for 1 hour, and then cooled.

[サンプル評価]
R-T-B系焼結磁石素材および得られたサンプル(熱処理後のR-T-B系焼結磁石)を、B-Hトレーサによって各試料のB及びHcJを測定した。R-T-B系焼結磁石のBおよびHcJの測定結果、及び、R-T-B系焼結磁石のB値(拡散後のB)からR-T-B系焼結磁石素材のB値(拡散前のB)を差し引いた値を△Bとして表7に示す。表7の通りR-T-B系焼結磁石素材であるサンプルNo.2-1、サンプルNo.2-7を用いてRL-RH-C-M系合金を拡散させたサンプルNo.2-3~2-5、サンプルNo.2-9~2-10の実施例は、いずれも拡散工程で高いHcJが得られているだけでなく、Bの低下が少ないことが分かる。よって、BとHcJのバランスに優れたR-T-B系焼結磁石が得られている。一方、C量が適正範囲以下のRL-RH-C-M系合金を拡散させたサンプルNo.2-2、No.2-8の比較例は拡散工程で高いHcJが得られているもののBが大きく低下しており、また、サンプルNo.2-6、サンプルNo.2-11の比較例は、Bの低下は少ないが、十分なHcJが得られていないことが分かる。
[sample test]
B r and H cJ of each sample were measured with a BH tracer for the RTB system sintered magnet materials and the obtained samples (RTB system sintered magnets after heat treatment). From the measurement results of B r and H cJ of the RTB system sintered magnet and the B r value (B r after diffusion) of the RTB system sintered magnet, the RTB system sintered magnet Table 7 shows the value obtained by subtracting the B r value of the magnet material (B r before diffusion) as ΔB r . As shown in Table 7, sample No. 1, which is an RTB based sintered magnet material, was used. 2-1, sample No. Sample No. 2-7 was used to diffuse the RL-RH-CM alloy. 2-3 to 2-5, sample No. In Examples 2-9 to 2-10, it can be seen that not only a high H cJ was obtained in the diffusion process, but also a decrease in B r was small. Therefore, an RTB based sintered magnet with an excellent balance of B r and H cJ is obtained. On the other hand, sample no. 2-2, No. In Comparative Example 2-8, a high H cJ was obtained in the diffusion process, but the Br was greatly decreased . 2-6, sample no. It can be seen that Comparative Example 2-11 does not provide a sufficient HcJ , although the decrease in Br is small.

Figure 2022147793000008
Figure 2022147793000008

12 R14B化合物からなる主相
14 粒界相
14a 二粒子粒界相
14b 粒界三重点
Main phase 14 composed of 12 R 2 T 14 B compound Grain boundary phase 14a Two-grain grain boundary phase 14b Grain boundary triple point

Claims (2)

R-T-B系焼結磁石素材(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、TはFe、Co、Al、Mn、およびSiからなる群から選択された少なくとも1つであり、必ずFeを含む。)を準備する工程と、
前記R-T-B系焼結磁石素材の表面の少なくとも一部に、RL-RH-C-M系合金(RLは軽希土類元素のうちの少なくとも1つであり、Nd、PrおよびCeからなる群から選択された少なくとも1つを必ず含み、RHは、Tb、DyおよびHoからなる群から選択された少なくとも1つであり、Cはカーボンであり、Mは、Cu、Ga、Fe、Co、Ni、Al、Ag、Zn、Si、Snからなる群から選択された少なくとも1つである。)の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程と、を含み、
前記R-T-B系焼結磁石素材は、Bに対するTのmol比[T]/[B]が14.0超15.0以下であり、
前記RL-RH-C-M系合金における、RLの含有量は50mass%以上95mass%以下であり、RHの含有量は45mass%以下(0mass%を含む)であり、Cの含有量は0.10mass%以上0.50mass%以下であり、Mの含有量は4mass%以上49.9mass%以下である、R-T-B系焼結磁石の製造方法。
RTB based sintered magnet material (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, T is Fe, Co, Al, Mn and Si at least one selected from the group consisting of and necessarily containing Fe);
An RL-RH-C-M alloy (RL is at least one of light rare earth elements and consists of Nd, Pr and Ce) is applied to at least part of the surface of the RTB sintered magnet material. RH is at least one selected from the group consisting of Tb, Dy and Ho, C is carbon, M is Cu, Ga, Fe, Co, At least one selected from the group consisting of Ni, Al, Ag, Zn, Si, and Sn.) is deposited, and at a temperature of 700 ° C. or higher and 1100 ° C. or lower in a vacuum or inert gas atmosphere. a diffusion step of heating,
The RTB based sintered magnet material has a molar ratio [T]/[B] of T to B of more than 14.0 and 15.0 or less,
In the RL-RH-CM alloy, the RL content is 50 mass% or more and 95 mass% or less, the RH content is 45 mass% or less (including 0 mass%), and the C content is 0.5 mass% or less. A method for producing an RTB based sintered magnet, wherein the content of M is 10 mass% or more and 0.50 mass% or less, and the M content is 4 mass% or more and 49.9 mass% or less.
前記R-T-B系焼結磁石素材における、Bに対するTのmol比[T]/[B]が14.0超15.0以下である、請求項1に記載のR-T-B系焼結磁石の製造方法。 The RTB system according to claim 1, wherein the molar ratio of T to B in the RTB system sintered magnet material [T]/[B] is more than 14.0 and 15.0 or less. A method for producing a sintered magnet.
JP2021049197A 2021-03-23 2021-03-23 Production method of r-t-b based sintered magnet Pending JP2022147793A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021049197A JP2022147793A (en) 2021-03-23 2021-03-23 Production method of r-t-b based sintered magnet
CN202210157081.0A CN115116726A (en) 2021-03-23 2022-02-21 Method for producing R-T-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021049197A JP2022147793A (en) 2021-03-23 2021-03-23 Production method of r-t-b based sintered magnet

Publications (1)

Publication Number Publication Date
JP2022147793A true JP2022147793A (en) 2022-10-06

Family

ID=83325023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021049197A Pending JP2022147793A (en) 2021-03-23 2021-03-23 Production method of r-t-b based sintered magnet

Country Status (2)

Country Link
JP (1) JP2022147793A (en)
CN (1) CN115116726A (en)

Also Published As

Publication number Publication date
CN115116726A (en) 2022-09-27

Similar Documents

Publication Publication Date Title
JP6414653B1 (en) Method for producing RTB-based sintered magnet
JP6414654B1 (en) Method for producing RTB-based sintered magnet
WO2017018291A1 (en) Method for producing r-t-b system sintered magnet
WO2018034264A1 (en) R-t-b sintered magnet
WO2016133071A1 (en) Method for producing r-t-b system sintered magnet
JP2018504769A (en) Manufacturing method of RTB permanent magnet
US10672545B2 (en) R-T-B based permanent magnet
WO2018101239A1 (en) R-fe-b sintered magnet and production method therefor
JP6939337B2 (en) Manufacturing method of RTB-based sintered magnet
JP7310499B2 (en) Method for producing RTB based sintered magnet
JP2018029108A (en) Method of manufacturing r-t-b based sintered magnet
JP7537536B2 (en) RTB based sintered magnet
JP6508447B1 (en) Method of manufacturing RTB based sintered magnet
JP2020161789A (en) R-t-b based sintered magnet
JP2022151483A (en) Manufacturing method of r-t-b system sintered magnet and r-t-b system sintered magnet
JP6610957B2 (en) Method for producing RTB-based sintered magnet
JP2023045934A (en) Method for manufacturing r-t-b based sintered magnet
US11424056B2 (en) Method for producing sintered R-T-B based magnet
JP2022147793A (en) Production method of r-t-b based sintered magnet
JP7452159B2 (en) Manufacturing method of RTB based sintered magnet
JP7447606B2 (en) RTB system sintered magnet
JP2022147794A (en) Production method of r-t-b based sintered magnet
JP7380369B2 (en) Manufacturing method of RTB sintered magnet and alloy for diffusion
JP7567558B2 (en) Manufacturing method of RTB based sintered magnet
CN111489888B (en) Method for producing R-T-B sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20241001