JP7447606B2 - RTB system sintered magnet - Google Patents
RTB system sintered magnet Download PDFInfo
- Publication number
- JP7447606B2 JP7447606B2 JP2020056172A JP2020056172A JP7447606B2 JP 7447606 B2 JP7447606 B2 JP 7447606B2 JP 2020056172 A JP2020056172 A JP 2020056172A JP 2020056172 A JP2020056172 A JP 2020056172A JP 7447606 B2 JP7447606 B2 JP 7447606B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- rtb
- sintered magnet
- alloy
- based sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000007423 decrease Effects 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 26
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 26
- 229910052779 Neodymium Inorganic materials 0.000 claims description 11
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 11
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 7
- 229910052771 Terbium Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 description 149
- 229910045601 alloy Inorganic materials 0.000 description 149
- 239000000463 material Substances 0.000 description 108
- 238000000034 method Methods 0.000 description 66
- 239000012071 phase Substances 0.000 description 62
- 238000009792 diffusion process Methods 0.000 description 55
- 239000000843 powder Substances 0.000 description 33
- 238000010438 heat treatment Methods 0.000 description 26
- 230000005291 magnetic effect Effects 0.000 description 25
- 239000000203 mixture Substances 0.000 description 21
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 20
- 239000002245 particle Substances 0.000 description 20
- 239000000853 adhesive Substances 0.000 description 19
- 230000001070 adhesive effect Effects 0.000 description 19
- 150000001875 compounds Chemical class 0.000 description 18
- 229910052733 gallium Inorganic materials 0.000 description 18
- 230000008569 process Effects 0.000 description 17
- 239000002994 raw material Substances 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000007791 liquid phase Substances 0.000 description 9
- 238000005266 casting Methods 0.000 description 8
- 230000005415 magnetization Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 238000000889 atomisation Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000000314 lubricant Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 238000010791 quenching Methods 0.000 description 6
- 238000005245 sintering Methods 0.000 description 6
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 6
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 238000007598 dipping method Methods 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000009690 centrifugal atomisation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000006356 dehydrogenation reaction Methods 0.000 description 3
- 238000000280 densification Methods 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 239000002612 dispersion medium Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000009689 gas atomisation Methods 0.000 description 3
- 238000007561 laser diffraction method Methods 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 239000000700 radioactive tracer Substances 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical group [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Images
Landscapes
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
Description
本発明はR-T-B系焼結磁石に関する。 The present invention relates to an RTB-based sintered magnet.
R-T-B系焼結磁石(Rは希土類元素のうち少なくとも一種であり、Tは主にFeであり、Bは硼素である)は永久磁石の中で最も高性能な磁石として知られており、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車用(EV、HV、PHVなど)モータ、産業機器用モータなどの各種モータや家電製品などに使用されている。 RTB system sintered magnets (R is at least one rare earth element, T is mainly Fe, and B is boron) are known as the highest performance permanent magnets. They are used in various motors such as voice coil motors (VCM) for hard disk drives, motors for electric vehicles (EV, HV, PHV, etc.), motors for industrial equipment, and home appliances.
R-T-B系焼結磁石は、主としてR2T14B化合物からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。主相であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料であり、R-T-B系焼結磁石の特性の根幹をなしている。 The RTB-based sintered magnet is composed of a main phase mainly composed of an R 2 T 14 B compound and a grain boundary phase located at the grain boundaries of this main phase. The R 2 T 14 B compound, which is the main phase, is a ferromagnetic material with high saturation magnetization and anisotropic magnetic field, and is the basis of the characteristics of RTB-based sintered magnets.
R-T-B系焼結磁石は、高温で保磁力HcJ(以下、単に「HcJ」という)が低下するため不可逆熱減磁が起こるという問題がある。そのため、特に電気自動車用モータに使用されるR-T-B系焼結磁石では、高温下でも高いHcJを有する、すなわち室温においてより高いHcJを有することが要求されている。 RTB-based sintered magnets have a problem in that irreversible thermal demagnetization occurs because the coercive force H cJ (hereinafter simply referred to as "H cJ ") decreases at high temperatures. Therefore, RTB-based sintered magnets used particularly in electric vehicle motors are required to have high H cJ even at high temperatures, that is, to have higher H cJ at room temperature.
R2T14B型化合物相中の軽希土類元素(主にNd、Pr)を重希土類元素(主にDy、Tb)で置換すると、HcJが向上することが知られている。しかし、HcJが向上する一方、R2T14B型化合物相の飽和磁化が低下するために残留磁束密度Br(以下、単に「Br」という)が低下してしまうという問題がある。 It is known that H cJ is improved when light rare earth elements (mainly Nd and Pr) in the R 2 T 14 B-type compound phase are replaced with heavy rare earth elements (mainly Dy and Tb). However, while H cJ is improved, there is a problem in that the saturation magnetization of the R 2 T 14 B-type compound phase is reduced, so that the residual magnetic flux density B r (hereinafter simply referred to as "B r ") is reduced.
特許文献1には、R-T-B系合金の焼結磁石の表面にDy等の重希土類元素を供給しつつ、重希土類元素を焼結磁石の内部に拡散させることが記載されている。特許文献1に記載の方法は、R-T-B系焼結磁石の表面から内部にDyを拡散させてHcJ向上に効果的な主相結晶粒の外殻部にのみDyを濃化させることにより、Brの低下を抑制しつつ、高いHcJを得ることができる。 Patent Document 1 describes that a heavy rare earth element such as Dy is supplied to the surface of a sintered magnet made of an RTB alloy, and the heavy rare earth element is diffused into the inside of the sintered magnet. The method described in Patent Document 1 diffuses Dy from the surface of the RTB-based sintered magnet into the interior, and concentrates Dy only in the outer shell of the main phase crystal grains, which is effective for improving H cJ . By doing so, high H cJ can be obtained while suppressing a decrease in B r .
特許文献2には、R-T-B系焼結体の表面に特定組成のR-Ga-Cu合金を接触させて熱処理を行うことにより、R-T-B系焼結磁石中の粒界相の組成および厚さを制御してHcJを向上させることが記載されている。 Patent Document 2 discloses that the grain boundaries in the RTB sintered magnet are Controlling phase composition and thickness to improve H cJ has been described.
しかし、近年特に電気自動車用モータなどにおいて重希土類元素の使用量を低減しつつ、更に高いBrと高いHcJを得ることが求められている。 However, in recent years, there has been a demand for obtaining even higher B r and higher H cJ while reducing the amount of heavy rare earth elements used, particularly in electric vehicle motors and the like.
本開示の様々な実施形態は、重希土類元素の使用量を低減しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石を提供する。 Various embodiments of the present disclosure provide RTB-based sintered magnets with high B r and high H cJ while reducing the usage of heavy rare earth elements.
本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、主相結晶粒及び粒界相を含むR-T-B系焼結磁石であって、R:27.0mass%以上35.0mass%以下(Rは、RL及びRHからなり、RLは軽希土類元素の少なくとも2種でありNd及びPrを必ず含み、RHは重希土類元素の少なくとも1種でありTb及びDyの少なくとも一方を必ず含む)、B:0.80mass%以上1.20mass%以下、Ga:0.20mass%以上0.80mass%以下、T:61.5mass%以上(TはFeとCoであり、Tの90mass%以上がFeである)を含有し、磁石表面から300μmの深さに位置する前記主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は0以上0.45以下であり([Pr]はmass%で示すPrの含有量であり、[Nd]はmass%で示すNdの含有量である)、磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.0以上5.0以下であり、磁石表面から磁石内部にむかってRH濃度が漸減する部分を含み、磁石表面から磁石内部にむかってGa濃度が漸減する部分を含む。 In an exemplary embodiment, the method for manufacturing an RTB-based sintered magnet of the present disclosure includes an RTB-based sintered magnet containing main phase crystal grains and a grain boundary phase, wherein R: 27 .0 mass% or more and 35.0 mass% or less (R consists of RL and RH, RL is at least two types of light rare earth elements and always includes Nd and Pr, RH is at least one type of heavy rare earth elements, and Tb and (Always contains at least one of Dy), B: 0.80 mass% or more and 1.20 mass% or less, Ga: 0.20 mass% or more and 0.80 mass% or less, T: 61.5 mass% or more (T is Fe and Co, , 90 mass% or more of T is Fe), and the molar ratio of Pr to Nd (([Pr]/atomic weight of Pr) in the central part of the main phase crystal grain located at a depth of 300 μm from the magnet surface. /([Nd]/atomic weight of Nd)) is 0 or more and 0.45 or less ([Pr] is the content of Pr expressed in mass%, and [Nd] is the content of Nd expressed in mass%) ), the molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) within the two-grain grain boundary located at a depth of 300 μm from the magnet surface is 2.0 or more. 5.0 or less, including a portion where the RH concentration gradually decreases from the magnet surface toward the inside of the magnet, and includes a portion where the Ga concentration gradually decreases from the magnet surface toward the inside of the magnet.
ある実施形態において、[T]はmass%で示すTの含有量であり、[B]はmass%で示すBの含有量とするとき、[T]/55.85>14×[B]/10.8が成立する。 In an embodiment, [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%, [T]/55.85>14×[B]/ 10.8 holds true.
ある実施形態において、前記磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.0以上4.0以下である。 In one embodiment, the molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) within the two-grain grain boundary located at a depth of 300 μm from the magnet surface is It is 2.0 or more and 4.0 or less.
ある実施形態において、前記R-T-B系焼結磁石はCuを含有し、Cuの含有量は、0.05mass%以上0.80mass%以下である。 In one embodiment, the RTB-based sintered magnet contains Cu, and the content of Cu is 0.05 mass% or more and 0.80 mass% or less.
ある実施形態において、Gaの含有量はCuの含有量よりも多い。 In some embodiments, the Ga content is greater than the Cu content.
本開示の実施形態によれば、重希土類元素の使用量を低減しつつ、高いBrと高いHcJを有するR-T-B系焼結磁石を提供することができる。 According to the embodiments of the present disclosure, it is possible to provide an RTB-based sintered magnet having high Br and high H cJ while reducing the amount of heavy rare earth elements used.
まず、本開示によるR-T-B系焼結磁石の基本構造について説明をする。R-T-B系焼結磁石は、原料合金の粉末粒子が焼結によって結合した構造を有しており、主としてR2T14B化合物粒子からなる主相と、この主相の粒界部分に位置する粒界相とから構成されている。 First, the basic structure of the RTB-based sintered magnet according to the present disclosure will be explained. RTB-based sintered magnets have a structure in which powder particles of a raw material alloy are bonded together by sintering, and consist of a main phase consisting mainly of R 2 T 14 B compound particles and a grain boundary portion of this main phase. It consists of a grain boundary phase located at
図1Aは、R-T-B系焼結磁石の一部を拡大して模式的に示す断面図であり、図1Bは図1Aの破線矩形領域内を更に拡大して模式的に示す断面図である。図1Aには、一例として長さ5μmの矢印が大きさを示す基準の長さとして参考のために記載されている。図1Aおよび図1Bに示されるように、R-T-B系焼結磁石は、主としてR2T14B化合物からなる主相12と、主相12の粒界部分に位置する粒界相14とから構成されている。また、粒界相14は、図1Bに示されるように、2つのR2T14B化合物粒子(グレイン)が隣接する二粒子粒界相14aと、3つのR2T14B化合物粒子が隣接する粒界三重点14bとを含む。典型的な主相結晶粒径は磁石断面の円相当径の平均値で3μm以上10μm以下である。主相12であるR2T14B化合物は高い飽和磁化と異方性磁界を持つ強磁性材料である。したがって、R-T-B系焼結磁石では、主相12であるR2T14B化合物の存在比率を高めることによってBrを向上させることができる。R2T14B化合物の存在比率を高めるためには、原料合金中のR量、T量、B量を、R2T14B化合物の化学量論比(R量:T量:B量=2:14:1)に近づければよい。
FIG. 1A is an enlarged schematic cross-sectional view of a part of the RTB-based sintered magnet, and FIG. 1B is a further enlarged schematic cross-sectional view of the rectangular area indicated by the broken line in FIG. 1A. It is. In FIG. 1A, as an example, an arrow having a length of 5 μm is shown as a standard length indicating the size for reference. As shown in FIGS. 1A and 1B, the RTB-based sintered magnet has a
また、主相であるR2T14B化合物の軽希土類元素(主にNd)の一部をTb、Dy、Hoなどの重希土類元素で置換することによって飽和磁化を下げつつ、主相の異方性磁界を高められることが知られている。特に二粒子粒界相と接する主相外殻は磁化反転の起点となりやすいため、主相外殻に優先的に重希土類元素を置換できる重希土類拡散技術は、飽和磁化の低下を抑制しつつ効率的に高いHcJが得られる。 In addition, by substituting a part of the light rare earth elements (mainly Nd) of the R 2 T 14 B compound, which is the main phase, with heavy rare earth elements such as Tb, Dy, and Ho, we can lower the saturation magnetization while increasing the difference in the main phase. It is known that the directional magnetic field can be increased. In particular, the main phase outer shell in contact with the two-grain grain boundary phase is likely to become the starting point of magnetization reversal, so heavy rare earth diffusion technology that can preferentially replace heavy rare earth elements in the main phase outer shell is efficient while suppressing the drop in saturation magnetization. A relatively high H cJ can be obtained.
一方、二粒子粒界相14aの磁性を制御することによっても、高いHcJが得られることが知られている。具体的には二粒子粒界相中の磁性元素(Fe、Co、Ni等)の濃度を下げることによって、二粒子粒界相を非磁性に近づけることで、主相同士の磁気的な結合を弱めて磁化反転を抑制することができる。
On the other hand, it is known that high H cJ can also be obtained by controlling the magnetism of the two-
本発明者は検討の結果、例えば特許文献2に記載のように、R(主にPrやNd)やGaを磁石表面から磁石内部(深さ方向)に拡散させる場合、特にHcJに影響すると考えられる二粒子粒界におけるPr濃度を高い特定範囲にすることで、HcJを大幅に向上させることができることを見出した。これは二粒子粒界におけるPr濃度を高くすることにより二粒子粒界相の幅がより広がり易くなり、主相同士の磁気的な相互作用をより低減できるからだと考えられる。さらに、PrとGaと共にRH(RHは重希土類元素の少なくとも1種でありTb及びDyの少なくとも一方を必ず含む)を拡散させると、少ないRHでも拡散による主相外殻の異方性磁界の向上が顕著に起こり、Brの低下を抑制しつつ、HcJを大幅に向上させることができることがわかった。これにより得られた本開示のR-T-B系焼結磁石は、高いBrと高いHcJを有することができる。二粒子粒界におけるPr濃度を高い特定範囲とし、少ないRHでも拡散による主相外殻の異方性磁界の向上を顕著にするためには、例えば、後述する拡散合金のRHの含有量を低くした上でR-T-B系焼結磁石素材表面への付着量を比較的多い特定範囲に管理してPr、RH、Gaの全てを拡散させる方法や後述する第一拡散工程及び第二拡散工程を行う方法により達成することができる。 As a result of study, the present inventor found that, for example, as described in Patent Document 2, when R (mainly Pr and Nd) or Ga is diffused from the magnet surface to the inside of the magnet (in the depth direction), H cJ is particularly affected. It has been found that H cJ can be significantly improved by setting the Pr concentration at a possible two-grain boundary to a high specific range. This is considered to be because by increasing the Pr concentration at the two-grain boundary, the width of the two-grain boundary phase becomes easier to spread, and the magnetic interaction between the main phases can be further reduced. Furthermore, if RH (RH is at least one type of heavy rare earth element and always includes at least one of Tb and Dy) is diffused together with Pr and Ga, the anisotropic magnetic field of the main phase outer shell can be improved by diffusion even with a small amount of RH. It was found that H cJ can be significantly improved while suppressing a decrease in B r . The thus obtained RTB-based sintered magnet of the present disclosure can have high B r and high H cJ . In order to set the Pr concentration at the two-grain grain boundary in a high specific range and to noticeably improve the anisotropic magnetic field of the main phase outer shell due to diffusion even with a small RH, for example, the RH content of the diffusion alloy described below should be reduced. After that, the amount of adhesion to the surface of the RTB sintered magnet material is controlled within a relatively large specific range to diffuse all of Pr, RH, and Ga, as well as the first diffusion process and second diffusion described later. This can be achieved by the method of carrying out the process.
(R-T-B系焼結磁石)
本開示のR-T-B系焼結磁石は、主相結晶粒及び粒界相を含み、
R:27.0mass%以上35.0mass%以下(Rは、RL及びRHからなり、RLは軽希土類元素の少なくとも2種でありNd及びPrを必ず含み、RHは重希土類元素の少なくとも1種でありTb及びDyの少なくとも一方を必ず含む)、
B:0.80mass%以上1.20mass%以下、
Ga:0.20mass%以上0.80mass%以下、
T:61.5mass%以上(TはFeとCoであり、Tの90mass%以上がFeである)を含有する。
(RTB system sintered magnet)
The RTB-based sintered magnet of the present disclosure includes a main phase crystal grain and a grain boundary phase,
R: 27.0 mass% or more and 35.0 mass% or less (R consists of RL and RH, RL is at least two types of light rare earth elements and always includes Nd and Pr, and RH is at least one type of heavy rare earth elements) (Always includes at least one of Tb and Dy),
B: 0.80 mass% or more and 1.20 mass% or less,
Ga: 0.20 mass% or more and 0.80 mass% or less,
T: Contains 61.5 mass% or more (T is Fe and Co, and 90 mass% or more of T is Fe).
Rが27.0mass%未満では焼結過程で液相が十分に生成せず、焼結体を充分に緻密化することが困難になる可能性がある。一方、Rが35mass%を超えると焼結時に粒成長が起こり、HcJが低下する可能性がある。Rは28mass%以上33mass%以下であることが好ましい。より高いBrを得ることが出来る。本開示のR-T-B系焼結磁石は、RHの使用量を低減しつつ、高いBrと高いHcJを得ることができるため、より高いHcJを求められる場合でもRHの添加量を削減できる。典型的にはRHの含有量を5mass%以下とすることができ、好ましくはRHの含有量は3mass%以下であり、もっとも好ましくは、RHの含有量は0.1mass%以上1.0mass%以下である。 If R is less than 27.0 mass%, a sufficient liquid phase will not be generated during the sintering process, and it may be difficult to sufficiently densify the sintered body. On the other hand, if R exceeds 35 mass%, grain growth may occur during sintering and H cJ may decrease. It is preferable that R is 28 mass% or more and 33 mass% or less. Higher Br can be obtained. The RTB-based sintered magnet of the present disclosure can obtain high B r and high H cJ while reducing the amount of RH used, so even when higher H cJ is required, the amount of RH added can be reduced. Typically, the RH content can be 5 mass% or less, preferably the RH content is 3 mass% or less, and most preferably the RH content is 0.1 mass% or more and 1.0 mass% or less. It is.
Bが0.80mass%未満ではBrが低下する可能性がある。一方、Bが1.20mass%を超えると高いHcJが得られない可能性がある。Bは0.87mass%以上0.92mass%以下が好ましく、0.88mass%以上0.90mass%以下がさらに好ましい。より高いBrと高いHcJを得ることができる。 If B is less than 0.80 mass%, Br may decrease. On the other hand, if B exceeds 1.20 mass%, high H cJ may not be obtained. B is preferably 0.87 mass% or more and 0.92 mass% or less, and more preferably 0.88 mass% or more and 0.90 mass% or less. Higher B r and higher H cJ can be obtained.
Gaが0.20mass%未満では高いHcJが得られない可能性がある。一方、Gaが0.80mass%を超えるとBrが低下する可能性がある。Gaは0.30mass%以上0.70mass%未満が好ましく、0.40mass%以上0.60mass%以下がさらに好ましい。より高いBrと高いHcJを得ることができる。 If Ga is less than 0.20 mass%, high H cJ may not be obtained. On the other hand, if Ga exceeds 0.80 mass%, Br may decrease. Ga is preferably 0.30 mass% or more and less than 0.70 mass%, more preferably 0.40 mass% or more and 0.60 mass% or less. Higher B r and higher H cJ can be obtained.
Tが61.5mass%未満ではBrが大幅に低下するおそれがある。そのためTの含有量は61.5mass%以上である。TにおけるFeの割合がmass比で90%未満の場合、Brが低下するおそれがある。そのため、T含有量におけるCo含有量の割合は、T含有量全体の10%以下が好ましく、2.5%以下がより好ましい。 If T is less than 61.5 mass%, Br may be significantly reduced. Therefore, the T content is 61.5 mass% or more. If the proportion of Fe in T is less than 90% in mass ratio, there is a risk that Br may decrease. Therefore, the ratio of Co content to T content is preferably 10% or less of the total T content, and more preferably 2.5% or less.
好ましくは、より高いHcJを得るために本開示のR-T-B系焼結磁石は、[T]はmass%で示すTの含有量であり、[B]はmass%で示すBの含有量とするとき、[T]/55.85>14×[B]/10.8が成立する。この不等式を満足するということは、Bの含有量がR2T14B化合物の化学量論組成比よりも少ない、すなわち、主相(R2T14B化合物)形成に使われるT量に対して相対的にB量が少ないことを意味している。また、同様に、より高いHcJを得るために本開示のR-T-B系焼結磁石はCuを含有し、Cuの含有量は、0.05mass%以上0.80mass%以下であることが好ましく、Gaの含有量はCuの含有量よりも多いことが好ましい。 Preferably, in order to obtain higher H cJ , in the RTB-based sintered magnet of the present disclosure, [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%. When considering the content, [T]/55.85>14×[B]/10.8 holds true. Satisfying this inequality means that the content of B is less than the stoichiometric composition ratio of the R 2 T 14 B compound, that is, the amount of B used to form the main phase (R 2 T 14 B compound) is This means that the amount of B is relatively small. Similarly, in order to obtain higher H cJ , the RTB-based sintered magnet of the present disclosure contains Cu, and the content of Cu is 0.05 mass% or more and 0.80 mass% or less. is preferable, and the content of Ga is preferably greater than the content of Cu.
さらに本開示のR-T-B系焼結磁石は、
磁石表面から300μmの深さに位置する前記主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は0以上0.45以下であり、
磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.0以上5.0以下であり、
磁石表面から磁石内部にむかってRH濃度が漸減する部分を含み、
磁石表面から磁石内部にむかってGa濃度が漸減する部分を含む。
Furthermore, the RTB-based sintered magnet of the present disclosure is
The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) in the central part of the main phase crystal grain located at a depth of 300 μm from the magnet surface is 0 or more. .45 or less;
The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) within the two-grain grain boundary located at a depth of 300 μm from the magnet surface is 2.0 or more5. is less than or equal to 0,
Including a part where the RH concentration gradually decreases from the magnet surface toward the inside of the magnet,
It includes a portion where the Ga concentration gradually decreases from the magnet surface toward the inside of the magnet.
磁石表面から300μmの深さに位置する前記主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は0以上0.45以下であるということは、主相結晶粒におけるRはNdが主成分であることを示している。[Pr]はmass%で示すPrの含有量であり、[Nd]はmass%で示すNdの含有量である。主相結晶粒の中央部における前記(([Pr]/Prの原子量)/([Nd]/Ndの原子量))が0以上0.45以下の範囲外であると、主相結晶粒のPrの濃度が高くなり、HcJの温度係数が低下する可能性がある。 The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) in the central part of the main phase crystal grain located at a depth of 300 μm from the magnet surface is 0 or more. The fact that it is .45 or less indicates that Nd is the main component of R in the main phase crystal grains. [Pr] is the Pr content expressed in mass%, and [Nd] is the Nd content expressed in mass%. If the above (([Pr]/atomic weight of Pr)/(atomic weight of [Nd]/Nd)) at the center of the main phase crystal grain is outside the range of 0 or more and 0.45 or less, the Pr of the main phase crystal grain The temperature coefficient of H cJ may decrease.
磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.0以上5.0以下であるということは、二粒子粒界におけるRはPr濃度がNdよりも高い特定範囲にあることを示している。二粒子粒界内における前記(([Pr]/Prの原子量)/([Nd]/Ndの原子量))が2.0未満であるとPrの濃度が低いため高いHcJが得られない。また、5.0を超えるとPrの濃度が高すぎるため、結果として多量のPrを拡散させることとなりBrが大きく低下する。また、二粒子粒界に隣接する主相結晶粒のPr濃度が高くなりHcJの温度係数が低下する。好ましくはより高いHcJを得るために、本開示のR-T-B系焼結磁石は、磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.0以上4.0以下であり、さらに好ましくは、2.3以上3.5以下である。最も好ましくは、2.3以上3.0以下である。 The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) within the two-grain grain boundary located at a depth of 300 μm from the magnet surface is 2.0 or more5. The fact that it is 0 or less indicates that R at the two-grain grain boundary is in a specific range where the Pr concentration is higher than Nd. If the above-mentioned (([Pr]/atomic weight of Pr)/(atomic weight of [Nd]/Nd) within the two-grain grain boundary is less than 2.0, a high H cJ cannot be obtained because the concentration of Pr is low. Moreover, if it exceeds 5.0, the concentration of Pr is too high, resulting in a large amount of Pr being diffused, resulting in a large decrease in Br . Furthermore, the Pr concentration of the main phase crystal grains adjacent to the two-grain boundary increases, and the temperature coefficient of H cJ decreases. Preferably, in order to obtain higher H cJ , the RTB-based sintered magnet of the present disclosure has a mol ratio of Pr to Nd (([ Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) is 2.0 or more and 4.0 or less, more preferably 2.3 or more and 3.5 or less. Most preferably, it is 2.3 or more and 3.0 or less.
なお、Pr及びNdの濃度は例えば以下の様にして求める。まず、R-T-B系焼結磁石の磁石断面における結晶粒(主相結晶粒)及び二粒子粒界を透過電子顕微鏡(TEM)にて観察する。主相結晶粒及び二粒子粒界を観察する箇所はいずれもR-T-B系焼結磁石の表面から300μmにおける任意の磁石断面である。次に、主相結晶粒の中央部及び二粒子粒界(二粒子粒界内の任意の場所)が含有するPrの濃度(mass%)及びNdの濃度(mass%)をエネルギー分散型X線分光法(EDX)にて組成分析する。そして、Ndに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は、Prの濃度(mass%)にPrの原子量を除したもの(a)と、Ndの濃度(mass%)にNdの原子量で除したもの(b)との比(a/b)である。 Note that the concentrations of Pr and Nd are determined as follows, for example. First, crystal grains (main phase crystal grains) and two-grain grain boundaries in a magnet cross section of an RTB-based sintered magnet are observed using a transmission electron microscope (TEM). The main phase crystal grains and the two-grain grain boundaries are observed at arbitrary magnet cross sections at 300 μm from the surface of the RTB sintered magnet. Next, the concentration of Pr (mass%) and the concentration of Nd (mass%) contained in the central part of the main phase grain and the two-grain boundary (any place within the two-grain boundary) are measured using energy dispersive X-rays. The composition is analyzed by spectroscopy (EDX). The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) is calculated by dividing the Pr concentration (mass%) by the Pr atomic weight (a). , is the ratio (a/b) of the Nd concentration (mass%) divided by the atomic weight of Nd (b).
また、「磁石表面から300μmの深さに位置する前記主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は0以上0.45以下であり、磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.0以上5.0以下であり」という条件は、必ずしも磁石全面の磁石表面から300μmの深さ全ての主相結晶粒及び二粒界粒界内において満たされる必要はなく、磁石の一部が前記条件を満たしているだけでもよい。これは、高いBr及び高いHcJを得る必要がある場所が必ずしも磁石全体ではなく、磁石の一部分でもよい場合(例えば、磁石がモータに使用される場合、磁石端部において高いBr及び高いHcJが必要となる場合がある)があるからである。 In addition, "The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)" in the central part of the main phase crystal grain located at a depth of 300 μm from the magnet surface is 0 or more and 0.45 or less, and the molar ratio of Pr to Nd within the two-grain boundary located at a depth of 300 μm from the magnet surface (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd) )) is 2.0 or more and 5.0 or less" does not necessarily have to be satisfied in all the main phase crystal grains and within the two-grain boundary at a depth of 300 μm from the magnet surface over the entire magnet surface. It is sufficient that only a part of the above conditions are satisfied. This is useful if the location where high B r and high H cJ need to be obtained is not necessarily the entire magnet, but may be a portion of the magnet (for example, if the magnet is used in a motor, high B r and high This is because there are cases where HcJ is required).
「磁石表面から磁石内部にむかってRH濃度が漸減する部分を含み」、「磁石表面から磁石内部にむかってGa濃度が漸減する部分を含む」ということは、RHおよびGaが磁石表面から磁石内部に拡散された状態にあることを意味している。「磁石表面から磁石内部にむかってRH濃度が漸減する部分を含み」、「磁石表面から磁石内部にむかってGa濃度が漸減する部分を含む」は、例えば、R-T-B系焼結磁石の任意の断面における磁石表面から磁石中央付近までをエネルギー分散型X線分光方法(EDX)により線分析(ライン分析)することにより確認することができる。RHおよびGa濃度は、測定部位が主相結晶粒(R2T14B化合物粒子)や粒界であったり、拡散前のR1-T-B系焼結磁石素材や拡散時に生じるRHおよびGaを含む化合物の種類や有無により局所的にはRHおよびGaの濃度はそれぞれ下がったり、上がったりする場合がある。しかしながら、全体的なRHおよびGaの濃度はそれぞれ磁石内部に行くに従い漸減して(徐々に濃度が低くなって)いく。よって局所的に濃度が下がったり、上がったりしていたとしても、磁石表面から磁石内部へ少なくとも200μmの深さにおいて全体的にRHおよびGa量がそれぞれ漸減していれば、本開示の磁石表面から磁石内部にRHおよびGa濃度が漸減する部分を含むとする。なお、RHの磁石表面から磁石内部への拡散は、RHがTbであることが好ましい。すなわち、磁石表面から磁石内部にむかってTb濃度が漸減する部分を含むことが好ましい。より高いHcJを得ることができる。 ``Includes a portion where the RH concentration gradually decreases from the magnet surface toward the inside of the magnet'' and ``includes a portion where the Ga concentration gradually decreases from the magnet surface toward the inside of the magnet'' means that RH and Ga are distributed from the magnet surface to the inside of the magnet. This means that it is in a state of being diffused. "Includes a portion where the RH concentration gradually decreases from the magnet surface toward the inside of the magnet" and "includes a portion where the Ga concentration gradually decreases from the magnet surface toward the inside of the magnet" refers to, for example, an RTB based sintered magnet. This can be confirmed by performing line analysis from the magnet surface to the vicinity of the magnet center in any cross section using energy dispersive X-ray spectroscopy (EDX). The RH and Ga concentrations can be determined by measuring the main phase crystal grains (R 2 T 14 B compound particles) or grain boundaries, the R1-T-B sintered magnet material before diffusion, or the RH and Ga produced during diffusion. The concentrations of RH and Ga may locally decrease or increase depending on the type and presence or absence of compounds contained. However, the overall RH and Ga concentrations gradually decrease (gradually become lower) as they go inside the magnet. Therefore, even if the concentration locally decreases or increases, as long as the RH and Ga amounts gradually decrease overall at a depth of at least 200 μm from the magnet surface to the inside of the magnet, the magnet can be removed from the magnet surface of the present disclosure. It is assumed that the inside includes a portion where the RH and Ga concentrations gradually decrease. Note that for diffusion of RH from the magnet surface to the inside of the magnet, it is preferable that RH be Tb. That is, it is preferable to include a portion where the Tb concentration gradually decreases from the magnet surface toward the inside of the magnet. Higher H cJ can be obtained.
本開示のR-T-B系焼結磁石は、例えば、R-T-B系焼結磁石素材表面から粒界を通じて磁石素材内部へ、RL1-RH-M1系合金に含有されるRL1、RHおよびM1を拡散させることにより得ることができる。本発明者による検討の結果、特に、磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))が2.0以上5.0以下である本開示のR-T-B系焼結磁石を得るためには、後述するように、例えば、前記RL1-RH-M1系合金中のRHの含有量を低くした上でR-T-B系焼結磁石素材表面への付着量を比較的多い特定範囲に管理してRL1、RH、M1の全てを拡散させる方法が有効であることがわかった。また、例えば、R-T-B系焼結磁石素材とRL1-RH-M1系合金とを付着させて拡散させた後に(第一拡散工程)、さらに、前記第一拡散工程が実施されたR-T-B系焼結磁石素材とRL2-M2系合金とを付着させて熱処理を実施することでRL2およびM2を更に磁石表面から磁石素材内部へ拡散させる(第二拡散工程)ことで、より確実に本開示のR-T-B系焼結磁石を得ることができることがわかった。但し、本開示のR-T-B系焼結磁石は、これらの方法に限定されない。本開示のR-T-B系焼結磁石になるように、RL1やRL2、RH、M1やM2を磁石表面から内部に拡散することができれば、その方法は特に問わない。 In the RTB sintered magnet of the present disclosure, for example, RL1, RH contained in the RL1-RH-M1 alloy is and can be obtained by diffusing M1. As a result of studies by the present inventors, the molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/Nd of In order to obtain the RTB based sintered magnet of the present disclosure having an atomic weight)) of 2.0 or more and 5.0 or less, for example, the RH in the RL1-RH-M1 based alloy must be It has been found that an effective method is to reduce the content of RL1, RH, and M1 and to control the amount of adhesion to the surface of the RTB sintered magnet material within a relatively large specific range, thereby diffusing all of RL1, RH, and M1. Understood. Further, for example, after adhering and diffusing the RTB-based sintered magnet material and the RL1-RH-M1-based alloy (first diffusion step), the R -By attaching the TB-based sintered magnet material and the RL2-M2-based alloy and performing heat treatment, RL2 and M2 are further diffused from the magnet surface into the inside of the magnet material (second diffusion step). It has been found that the RTB based sintered magnet of the present disclosure can be reliably obtained. However, the RTB-based sintered magnet of the present disclosure is not limited to these methods. Any method may be used as long as RL1, RL2, RH, M1, and M2 can be diffused from the surface of the magnet into the interior so as to obtain the RTB-based sintered magnet of the present disclosure.
(R-T-B系焼結磁石の製造方法)
本開示によるR-T-B系焼結磁石の製造方法は、ある実施形態において、図2に示すように、R-T-B系焼結磁石素材を準備する工程S10とRL1-RH-M1系合金を準備する工程S20とを含む。R-T-B系焼結磁石素材を準備する工程S10とRL1-RH-M1合金を準備する工程S20との順序は任意であり、それぞれ、異なる場所で製造されたR-T-B系焼結磁石素材およびRL1-RH-M1合金を用いてもよい。
本開示によるR-T-B系焼結磁石の製造方法は、図2に示すように、更に、R-T-B系焼結磁石素材表面の少なくとも一部にRL1-RH-M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程S30を含む。前記拡散工程S30における前記R-T-B系焼結磁石素材への前記RL1-RH-M1系合金の付着量は4mass%以上15mass%以下が好ましい。
(Method for manufacturing RTB-based sintered magnet)
In an embodiment, the method for manufacturing an RTB-based sintered magnet according to the present disclosure includes a step S10 of preparing an RTB-based sintered magnet material, and RL1-RH-M1, as shown in FIG. and step S20 of preparing a system alloy. The order of step S10 of preparing an RTB-based sintered magnet material and step S20 of preparing an RL1-RH-M1 alloy is arbitrary, and each A magnet material and RL1-RH-M1 alloy may also be used.
As shown in FIG. 2, the method for manufacturing an RTB-based sintered magnet according to the present disclosure further includes an RL1-RH-M1-based alloy on at least a portion of the surface of the RTB-based sintered magnet material. It includes a diffusion step S30 in which at least a portion is attached and heated at a temperature of 700° C. or more and 1100° C. or less in a vacuum or an inert gas atmosphere. The amount of the RL1-RH-M1 alloy attached to the RTB sintered magnet material in the diffusion step S30 is preferably 4 mass% or more and 15 mass% or less.
なお、本開示において、拡散工程前および拡散工程中(後述する別のある実施形態においては第二拡散工程前および第二拡散工程中)のR-T-B系焼結磁石を「R-T-B系焼結磁石素材」と称し、拡散工程後(後述する別のある実施形態においては第二拡散工程後)のR-T-B系焼結磁石を単に「R-T-B系焼結磁石」と称する。 In the present disclosure, the RTB-based sintered magnet before the diffusion process and during the diffusion process (in another embodiment described below, before the second diffusion process and during the second diffusion process) is referred to as "RTB". -B series sintered magnet material", and the RTB series sintered magnet after the diffusion process (in another embodiment described later, after the second diffusion process) is simply called "RTB series sintered magnet material. It is called "condensation magnet".
(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27.0~35.0mass%、
B:0.80~1.20mass%、
Ga:0~0.80mass%、
T:61.5mass%以上を含有する。
(Process of preparing RTB-based sintered magnet material)
For example, the RTB-based sintered magnet material has the following composition range.
R: 27.0 to 35.0 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 0.80 mass%,
T: Contains 61.5 mass% or more.
R-T-B系焼結磁石素材は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。 The RTB-based sintered magnet material can be prepared using a common manufacturing method for RTB-based sintered magnets, typified by Nd-Fe-B-based sintered magnets. For example, a raw material alloy produced by a strip casting method or the like is pulverized to 3 μm or more and 10 μm or less using a jet mill, etc., then molded in a magnetic field, and sintered at a temperature of 900° C. or more and 1100° C. or less. You can prepare by doing this.
(RL1-RH-M1系合金を準備する工程)
前記RL1-RH-M1系合金において、例えば、RL1は、軽希土類元素の少なくとも1種でありPrを必ず含み、RL1全体に対するPrの含有量は55mass%以上である。RL1全体に対するPrの含有量は70mass%以上がさらに好ましい。RL1の含有量は、RL1-RH-M1系合金全体の60mass%以上97mass%以下である。RH(RHは重希土類元素の少なくとも1種でありTb及びDyの少なくとも一方を必ず含む)の含有量は、RL1-RH-M1系合金全体の1mass%以上8mass%以下である。M1は、Ga、Cu、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M1は、Gaを必ず含み、M1全体に対するGaの含有量は50mass%以上である。M1の含有量は、RL1-RH-M1系合金全体の2mass%以上39mass%以下である。RL1-RH-M1系合金の典型例は、TbNdPrCu合金、DyNdCePrCu合金、TbNdPrGaCu合金などである。また、RL1―M1合金と共にRHのフッ化物、酸化物、酸フッ化物等を準備してもよい。RHのフッ化物、酸化物、酸フッ化物としては、例えば、TbF3、DyF3、Tb2O3、Dy2O3、Tb4OF、Dy4OFが挙げられる。RL1-RH-M1系合金は、RL1、RHおよびM1それぞれの含有量を調整することにより、上述した元素以外の元素(例えばSi、Mn等)を少量(例えば合計で2mass%程度)含有してもよい。
(Process of preparing RL1-RH-M1 alloy)
In the RL1-RH-M1 alloy, for example, RL1 is at least one light rare earth element and always contains Pr, and the content of Pr with respect to the entire RL1 is 55 mass% or more. The content of Pr with respect to the entire RL1 is more preferably 70 mass% or more. The content of RL1 is 60 mass% or more and 97 mass% or less of the entire RL1-RH-M1 alloy. The content of RH (RH is at least one heavy rare earth element and always includes at least one of Tb and Dy) is 1 mass% or more and 8 mass% or less of the entire RL1-RH-M1 alloy. M1 is at least one selected from the group consisting of Ga, Cu, Fe, Co, Ni, and Al, M1 always contains Ga, and the content of Ga with respect to the entire M1 is 50 mass% or more. The content of M1 is 2 mass% or more and 39 mass% or less of the entire RL1-RH-M1 alloy. Typical examples of RL1-RH-M1 alloys include TbNdPrCu alloy, DyNdCePrCu alloy, and TbNdPrGaCu alloy. Further, RH fluoride, oxide, oxyfluoride, etc. may be prepared together with the RL1-M1 alloy. Examples of the RH fluoride, oxide, and acid fluoride include TbF 3 , DyF 3 , Tb 2 O 3 , Dy 2 O 3 , Tb 4 OF, and Dy 4 OF. The RL1-RH-M1 alloy contains a small amount (for example, about 2 mass% in total) of elements other than the above-mentioned elements (for example, Si, Mn, etc.) by adjusting the contents of RL1, RH, and M1. Good too.
RL1-RH-M1系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL1-RH-M1 alloy is not particularly limited. It may be produced by a roll quenching method or by a casting method. Alternatively, these alloys may be ground into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method.
(拡散工程)
前記によって準備したR-T-B系焼結磁石素材の表面の少なくとも一部に、前記によって準備したRL1-RH-M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する拡散工程を行う。これにより、RL1-RH-M1合金からRL1、RHおよびM1を含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。拡散工程における前記R-T-B系焼結磁石素材への前記RL1-RH-M1系合金の付着量を4mass%以上15mass%以下で、かつ、前記RL1-RH-M1系合金による前記R-T-B系焼結磁石素材へのRHの付着量を0.1mass%以上0.6mass%以下とすることが好ましい。これにより、本開示のR-T-B系焼結磁石を得ることができ、高いBrと高いHcJが得られる。R-T-B系焼結磁石素材へのRL1-RH-M1系合金の付着量が4mass%未満であると、磁石素材内部へのRHおよびRL1(特にPr)およびM1(特にGa)の導入量が少なすぎて高いHcJを得ることができない可能性があり、15mass%を超えると、RHおよびRL1およびM1の導入量が多すぎてBrが大幅に低下したり、重希土類元素の使用量が増加し過ぎてしまうだけでなく、磁石内部まで拡散しきれないRL-RH-M系合金が磁石表面に残存し、耐食性や加工性など別の問題が発生する可能性がある。好ましくは、前記R-T-B系焼結磁石素材への前記RL1-RH-M1系合金の付着量は5mass%以上10mass%以下である。より高いHcJを得ることができる。また、前記RL1-RH-M1系合金による前記R-T-B系焼結磁石素材へのRHの付着量が0.1mass%未満であると、RHによるHcJ向上効果が得られない可能性があり、0.6mass%を超えると重希土類元素の使用量を低減しつつ、高いHcJを有するR-T-B系焼結磁石を得ることができない。好ましくは、前記RL1-RH-M1系合金による前記R-T-B系焼結磁石素材へのRHの付着量が0.1mass%以上0.5mass%以下である。ここで、RHの付着量は、R-T-B系焼結磁石素材に付着しているRL1-RH-M1系合金が含有するRHの量であり、R-T-B系焼結磁石素材のmassを100mass%としたときのmass比率によって規定される。
(diffusion process)
At least a portion of the RL1-RH-M1 alloy prepared above was attached to at least a portion of the surface of the RTB sintered magnet material prepared above, and then heated for 700 minutes in a vacuum or inert gas atmosphere. A diffusion step of heating at a temperature of 1100° C. or higher is performed. As a result, a liquid phase containing RL1, RH, and M1 is generated from the RL1-RH-M1 alloy, and the liquid phase passes from the surface of the sintered material via the grain boundaries in the RTB-based sintered magnet material. It is diffused and introduced into the interior. The adhesion amount of the RL1-RH-M1 alloy to the RTB sintered magnet material in the diffusion step is 4 mass% or more and 15 mass% or less, and the R- It is preferable that the amount of RH attached to the TB-based sintered magnet material is 0.1 mass% or more and 0.6 mass% or less. As a result, the RTB-based sintered magnet of the present disclosure can be obtained, and high Br and high H cJ can be obtained. If the amount of RL1-RH-M1 alloy attached to the RTB sintered magnet material is less than 4 mass%, RH, RL1 (especially Pr) and M1 (especially Ga) will be introduced into the magnet material. If the amount is too small, it may be impossible to obtain high H cJ , and if it exceeds 15 mass%, the amount of RH, RL1, and M1 introduced may be too large, resulting in a significant decrease in Br , or the use of heavy rare earth elements. Not only will the amount increase too much, but the RL-RH-M alloy that has not fully diffused into the magnet may remain on the magnet surface, causing other problems such as corrosion resistance and workability. Preferably, the amount of the RL1-RH-M1 alloy attached to the RTB sintered magnet material is 5 mass% or more and 10 mass% or less. Higher H cJ can be obtained. Furthermore, if the amount of RH attached to the RTB sintered magnet material by the RL1-RH-M1 alloy is less than 0.1 mass%, there is a possibility that the H cJ improvement effect due to RH cannot be obtained. If it exceeds 0.6 mass%, it is impossible to obtain an RTB based sintered magnet having a high H cJ while reducing the amount of heavy rare earth elements used. Preferably, the amount of RH adhered to the RTB sintered magnet material by the RL1-RH-M1 alloy is 0.1 mass% or more and 0.5 mass% or less. Here, the adhesion amount of RH is the amount of RH contained in the RL1-RH-M1 alloy adhering to the RTB sintered magnet material. It is defined by the mass ratio when the mass of is set to 100 mass%.
拡散工程は、R-T-B系焼結磁石素材表面に、任意形状のRL1-RH-M1合金を配置し、公知の熱処理装置を用いて行うことができる。例えば、R-T-B系焼結磁石素材表面をRL1-RH-M1合金の粉末層で覆い、拡散工程を行うことができる。例えば、塗布対象の表面に粘着剤を塗布する塗布工程と、粘着剤を塗布した領域にRL1-RH-M1合金を付着させる工程を行ってもよい。粘着剤としては、PVA(ポリビニルアルコール)、PVB(ポリビニルブチラール)、PVP(ポリビニルピロリドン)などが挙げられる。粘着剤が水系の粘着剤の場合、塗布の前にR-T-B系焼結磁石素材を予備的に加熱してもよい。予備加熱の目的は余分な溶媒を除去し粘着力をコントロールすること、及び、均一に粘着剤を付着させることである。加熱温度は60~200℃が好ましい。揮発性の高い有機溶媒系の粘着剤の場合はこの工程は省略してもよい。また、例えばRL1-RH-M1合金を分散媒中に分散させたスラリーをR-T-B系焼結磁石素材表面に塗布した後、分散媒を蒸発させRL1-RH-M1合金とR-T-B系焼結磁石素材とを付着させてもよい。なお、分散媒として、アルコール(エタノール等)、アルデヒドおよびケトンを例示できる。またRHは、RL1―M1合金と共にRHのフッ化物、酸化物、酸フッ化物等をR-T-B系焼結磁石素材表面に配置することにより導入してもよい。すなわち、RHと共にRL1およびM1を同時に拡散させることができればその方法は特に問わない。 The diffusion step can be performed by placing an arbitrary shaped RL1-RH-M1 alloy on the surface of the RTB-based sintered magnet material and using a known heat treatment device. For example, the surface of the RTB-based sintered magnet material can be covered with a powder layer of RL1-RH-M1 alloy, and then the diffusion process can be performed. For example, a coating step of applying an adhesive to the surface to be coated and a step of adhering the RL1-RH-M1 alloy to the area coated with the adhesive may be performed. Examples of the adhesive include PVA (polyvinyl alcohol), PVB (polyvinyl butyral), and PVP (polyvinylpyrrolidone). If the adhesive is a water-based adhesive, the RTB sintered magnet material may be preliminarily heated before application. The purpose of preheating is to remove excess solvent, control adhesive strength, and uniformly adhere the adhesive. The heating temperature is preferably 60 to 200°C. In the case of a highly volatile organic solvent-based adhesive, this step may be omitted. Further, for example, after applying a slurry in which the RL1-RH-M1 alloy is dispersed in a dispersion medium to the surface of the RTB-based sintered magnet material, the dispersion medium is evaporated, and the RL1-RH-M1 alloy and the RTB -B-based sintered magnet material may be attached. In addition, alcohol (ethanol etc.), an aldehyde, and a ketone can be illustrated as a dispersion medium. Further, RH may be introduced by placing RH fluoride, oxide, oxyfluoride, etc. on the surface of the RTB-based sintered magnet material together with the RL1-M1 alloy. That is, as long as RL1 and M1 can be diffused simultaneously with RH, the method is not particularly limited.
また、RL1-RH―M1合金の少なくとも一部がR-T-B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL1-RH-M1合金は、少なくともR-T-B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL1、RHおよびM1を含む液相を磁石表面から内部に拡散導入させることができる。この場合、R-T-B系焼結磁石素材の配向方向のみにRL1-RH-M1合金を付着させても、R-T-B系焼結磁石素材の全面にRL1-RH-M1合金を付着させてもよい。 Further, as long as at least a part of the RL1-RH-M1 alloy is attached to at least a part of the RTB-based sintered magnet material, its position is not particularly limited, but it is preferable that the RL1-RH- The M1 alloy is arranged so as to be attached to at least the surface perpendicular to the orientation direction of the RTB based sintered magnet material. The liquid phase containing RL1, RH, and M1 can be more efficiently diffused into the magnet from the surface thereof. In this case, even if the RL1-RH-M1 alloy is attached only in the orientation direction of the RTB-based sintered magnet material, the RL1-RH-M1 alloy can be applied to the entire surface of the RTB-based sintered magnet material. It may also be attached.
(熱処理を実施する工程)
好ましくは、拡散工程が実施されたR-T-B系焼結磁石に対して、真空又は不活性ガス雰囲気中、400℃以上750℃以下で、かつ、前記拡散工程で実施した温度よりも低い温度で熱処理を行う。熱処理を行うことにより、より高いHcJを得ることができる。
(Step of performing heat treatment)
Preferably, the RTB-based sintered magnet subjected to the diffusion step is heated at a temperature of 400° C. or more and 750° C. or less and lower than the temperature at which the diffusion step was performed in a vacuum or an inert gas atmosphere. Perform heat treatment at temperature. By performing heat treatment, higher H cJ can be obtained.
本開示によるR-T-B系焼結磁石の製造方法は、別の実施形態において、図3に示すように、R-T-B系焼結磁石素材を準備する工程S50とRL1-RH-M1系合金を準備する工程S60およびRL2-M2系合金を準備する工程S61を含む。R-T-B系焼結磁石素材を準備する工程S50とRL1-RH-M1合金を準備する工程S60およびRL1-M2系合金を準備する工程S61の順序は任意であり、それぞれ、異なる場所で製造されたR-T-B系焼結磁石素材、RL1-RH-M1系合金およびRL2-M2合金を用いてもよい。本開示によるR-T-B系焼結磁石の製造方法は、図3に示すように、更に、R-T-B系焼結磁石素材表面の少なくとも一部にRL1-RH-M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する第一拡散工程S70と第一拡散工程が実施されたR-T-B系焼結磁石素材の表面の少なくとも一部に、前記RL2-M2系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、400℃以上600℃以下の温度で加熱する第二拡散工程S71を含む。 In another embodiment, the method for manufacturing an RTB-based sintered magnet according to the present disclosure includes step S50 of preparing an RTB-based sintered magnet material, and RL1-RH- It includes a step S60 of preparing an M1 alloy and a step S61 of preparing an RL2-M2 alloy. The order of the step S50 of preparing the RTB-based sintered magnet material, the step S60 of preparing the RL1-RH-M1 alloy, and the step S61 of preparing the RL1-M2 alloy is arbitrary, and they are performed at different locations. The manufactured RTB-based sintered magnet materials, RL1-RH-M1-based alloys, and RL2-M2-based alloys may be used. As shown in FIG. 3, the method for manufacturing an RTB-based sintered magnet according to the present disclosure further includes an RL1-RH-M1-based alloy on at least a portion of the surface of the RTB-based sintered magnet material. R-T-B based sintered magnet material subjected to the first diffusion step S70 of attaching at least a portion and heating at a temperature of 700°C or higher and 1100°C or lower in a vacuum or inert gas atmosphere and the first diffusion step. includes a second diffusion step S71 in which at least a portion of the RL2-M2 alloy is attached to at least a portion of the surface of the RL2-M2 alloy and heated at a temperature of 400° C. or more and 600° C. or less in a vacuum or an inert gas atmosphere.
(R-T-B系焼結磁石素材を準備する工程)
R-T-B系焼結磁石素材は例えば、以下の組成範囲を有する。
R:27.0~35.0mass%、
B:0.80~1.20mass%、
Ga:0~0.80mass%、
T:61.5mass%以上
(Process of preparing RTB-based sintered magnet material)
For example, the RTB-based sintered magnet material has the following composition range.
R: 27.0 to 35.0 mass%,
B: 0.80 to 1.20 mass%,
Ga: 0 to 0.80 mass%,
T:61.5mass% or more
R-T-B系焼結磁石素材は、Nd-Fe-B系焼結磁石に代表される一般的なR-T-B系焼結磁石の製造方法を用いて準備することができる。一例を挙げると、ストリップキャスト法等で作製された原料合金を、ジェットミルなどを用いて3μm以上10μm以下に粉砕した後、磁界中で成形し、900℃以上1100℃以下の温度で焼結することにより準備することができる。 The RTB-based sintered magnet material can be prepared using a common manufacturing method for RTB-based sintered magnets, typified by Nd-Fe-B-based sintered magnets. For example, a raw material alloy produced by a strip casting method or the like is pulverized to 3 μm or more and 10 μm or less using a jet mill, etc., then molded in a magnetic field, and sintered at a temperature of 900° C. or more and 1100° C. or less. You can prepare by doing this.
(RL1-RH-M1系合金を準備する工程)
RL1-RH-M1系合金において、例えば、RL1は、軽希土類元素の少なくとも1種でありPrを必ず含み、RL1全体に対するPrの含有量は55mass%以上である。RL1全体に対するPrの含有量は70mass%以上がさらに好ましい。RL1の含有量は、RL1-RH-M1系合金全体の60mass%以上97mass%以下である。RH(RHは重希土類元素の少なくとも1種でありTb及びDyの少なくとも一方を必ず含む)の含有量は、RL1-RH-M1系合金全体の1mass%以上8mass%以下である。M1は、Ga、Cu、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M1は、Gaを必ず含み、M1全体に対するGaの含有量は50mass%以上である。M1の含有量は、RL1-RH-M1合金全体の2mass%以上39mass%以下である。RL1-RH-M1系合金の典型例は、TbNdPrCu合金、TbNdCePrCu合金、TbNdPrGaCu合金などである。また、RL1―M1合金と共にRHのフッ化物、酸化物、酸フッ化物等を準備してもよい。RHのフッ化物、酸化物、酸フッ化物としては、例えば、TbF3、DyF3、Tb2O3、Dy2O3、Tb4OF、Dy4OFが挙げられる。
(Process of preparing RL1-RH-M1 alloy)
In the RL1-RH-M1 alloy, for example, RL1 is at least one light rare earth element and always contains Pr, and the content of Pr with respect to the entire RL1 is 55 mass% or more. The content of Pr with respect to the entire RL1 is more preferably 70 mass% or more. The content of RL1 is 60 mass% or more and 97 mass% or less of the entire RL1-RH-M1 alloy. The content of RH (RH is at least one heavy rare earth element and always includes at least one of Tb and Dy) is 1 mass% or more and 8 mass% or less of the entire RL1-RH-M1 alloy. M1 is at least one selected from the group consisting of Ga, Cu, Fe, Co, Ni, and Al, M1 always contains Ga, and the content of Ga with respect to the entire M1 is 50 mass% or more. The content of M1 is 2 mass% or more and 39 mass% or less of the entire RL1-RH-M1 alloy. Typical examples of RL1-RH-M1 alloys include TbNdPrCu alloy, TbNdCePrCu alloy, and TbNdPrGaCu alloy. Furthermore, RH fluoride, oxide, oxyfluoride, etc. may be prepared together with the RL1-M1 alloy. Examples of the RH fluoride, oxide, and acid fluoride include TbF 3 , DyF 3 , Tb 2 O 3 , Dy 2 O 3 , Tb 4 OF, and Dy 4 OF.
RL1-RH-M1系合金は、RL1、RHおよびM1それぞれの含有量を調整することにより、上述した元素以外の元素(例えばSi、Mn等)を少量(例えば合計で2mass%程度)含有してもよい。 The RL1-RH-M1 alloy contains a small amount (for example, about 2 mass% in total) of elements other than the above-mentioned elements (for example, Si, Mn, etc.) by adjusting the contents of RL1, RH, and M1. Good too.
RL1-RH-M1系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL1-RH-M1 alloy is not particularly limited. It may be produced by a roll quenching method or by a casting method. Alternatively, these alloys may be ground into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method.
(RL2-M2系合金を準備する工程)
RL2-M2系合金において、例えば、RL2は、軽希土類元素の少なくとも1種でありPrを必ず含み、RL2全体に対するPrの含有量は55mass%以上である。RL2全体に対するPrの含有量は70mass%以上がさらに好ましい。RL2の含有量は、RL2-M2系合金全体の60mass%以上97mass%以下であり、M2は、Ga、Cu、Fe、Co、Ni、およびAlからなる群から選択された少なくとも1つであり、M2は、Gaを必ず含み、M2全体に対するGaの含有量は50mass%以上である。M2の含有量は、RL2-M2系合金全体の3mass%以上40mass%以下である。RL2-M2系合金の典型例は、NdPrCu合金、NdCePrCu合金、NdPrGaCu合金などである。
(Process of preparing RL2-M2 alloy)
In the RL2-M2 alloy, for example, RL2 is at least one light rare earth element and always contains Pr, and the content of Pr with respect to the entire RL2 is 55 mass% or more. The content of Pr with respect to the entire RL2 is more preferably 70 mass% or more. The content of RL2 is 60 mass% or more and 97 mass% or less of the entire RL2-M2 alloy, and M2 is at least one selected from the group consisting of Ga, Cu, Fe, Co, Ni, and Al, M2 always contains Ga, and the content of Ga with respect to the entire M2 is 50 mass% or more. The content of M2 is 3 mass% or more and 40 mass% or less of the entire RL2-M2 alloy. Typical examples of RL2-M2 alloys include NdPrCu alloy, NdCePrCu alloy, and NdPrGaCu alloy.
RL2-M2系合金は、RL2およびM2それぞれの含有量を調整することにより、上述した元素以外の元素(例えばSi、Mn等)を少量(例えば合計で2mass%程度)含有してもよい。 The RL2-M2 alloy may contain a small amount (for example, about 2 mass% in total) of elements other than the above-mentioned elements (for example, Si, Mn, etc.) by adjusting the respective contents of RL2 and M2.
RL2-M2系合金の作製方法は、特に限定されない。ロール急冷法によって作製してもよいし、鋳造法で作製してもよい。また、これらの合金を粉砕して合金粉末にしてもよい。遠心アトマイズ法、回転電極法、ガスアトマイズ法、プラズマアトマイズ法などの公知のアトマイズ法で作製してもよい。 The method for producing the RL2-M2 alloy is not particularly limited. It may be produced by a roll quenching method or by a casting method. Alternatively, these alloys may be ground into alloy powder. It may be produced by a known atomization method such as a centrifugal atomization method, a rotating electrode method, a gas atomization method, or a plasma atomization method.
(第一拡散工程)
前記によって準備したR-T-B系焼結磁石素材の表面の少なくとも一部に、前記によって準備したRL1-RH-M1系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、700℃以上1100℃以下の温度で加熱する第一拡散工程を行う。これにより、RL1-RH-M1合金からRL1、RHおよびM1を含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。第一拡散工程における前記R-T-B系焼結磁石素材への前記RL1-RH-M1系合金の付着量を4mass%以上15mass%以下で、かつ、前記RL1-RH-M1系合金による前記R-T-B系焼結磁石素材へのRHの付着量を0.1mass%以上0.6mass%以下とする。好ましくは、前記R-T-B系焼結磁石素材への前記RL1-RH-M1系合金の付着量は5mass%以上10mass%以下であり、前記RL1-RH-M1系合金による前記R-T-B系焼結磁石素材へのRHの付着量は0.1mass%以上0.5mass%以下である。より高いHcJを得ることができる。
(First diffusion step)
At least a portion of the RL1-RH-M1 alloy prepared above was attached to at least a portion of the surface of the RTB sintered magnet material prepared above, and then heated for 700 minutes in a vacuum or inert gas atmosphere. A first diffusion step of heating at a temperature of 1100°C or higher is performed. As a result, a liquid phase containing RL1, RH, and M1 is generated from the RL1-RH-M1 alloy, and the liquid phase passes from the surface of the sintered material via the grain boundaries in the RTB-based sintered magnet material. It is diffused and introduced into the interior. The adhesion amount of the RL1-RH-M1 alloy to the RTB sintered magnet material in the first diffusion step is 4 mass% or more and 15 mass% or less, and the RL1-RH-M1 alloy is The amount of RH attached to the RTB-based sintered magnet material is set to 0.1 mass% or more and 0.6 mass% or less. Preferably, the amount of the RL1-RH-M1 alloy attached to the RTB sintered magnet material is 5 mass% or more and 10 mass% or less, and the RTB based on the RL1-RH-M1 alloy -The amount of RH attached to the B-based sintered magnet material is 0.1 mass% or more and 0.5 mass% or less. Higher H cJ can be obtained.
第一拡散工程は、R-T-B系焼結磁石素材表面に、任意形状のRL1-RH-M1合金を配置し、公知の熱処理装置を用いて行うことができる。 The first diffusion step can be performed by placing the RL1-RH-M1 alloy in an arbitrary shape on the surface of the RTB-based sintered magnet material and using a known heat treatment device.
(第二拡散工程)
前記第一拡散工程が実施されたR-T-B系焼結磁石素材の表面の少なくとも一部に、前記RL2-M2系合金の少なくとも一部を付着させ、真空又は不活性ガス雰囲気中、400℃以上600℃以下の温度で加熱する第二拡散工程を行う。これにより、RL2-M2合金からRL2およびM2を含む液相が生成し、その液相がR-T-B系焼結磁石素材中の粒界を経由して焼結素材表面から内部に拡散導入される。第二拡散工程における前記R-T-B系焼結磁石素材への前記RL2-M2系合金の付着量を1mass%以上15mass%以下とする。これにより、より確実に本開示のR-T-B系焼結磁石を得ることができ、高いBrと高いHcJが得られる。付着量が1mass%未満であると、磁石素材内部へのRL2およびM2の導入量が少なすぎて高いHcJを得ることができない可能性がある。一方、付着量が15mass%を超えるとRL2およびM2の導入量が多すぎてBrが大幅に低下したり、磁石内部まで拡散しきれないRL2-M2系合金が磁石表面に残存し、耐食性や加工性など別の問題が発生する可能性がある。好ましくは、前記R-T-B系焼結磁石素材への前記RL2-M2系合金の付着量は2mass%以上10mass%以下である。より高いHcJを得ることができる。
(Second diffusion step)
At least a portion of the RL2-M2 alloy is attached to at least a portion of the surface of the RTB sintered magnet material on which the first diffusion step has been performed, and the RL2-M2 alloy is heated for 400 minutes in a vacuum or inert gas atmosphere. A second diffusion step of heating at a temperature of .degree. C. or more and 600.degree. C. or less is performed. As a result, a liquid phase containing RL2 and M2 is generated from the RL2-M2 alloy, and the liquid phase is diffused into the inside from the surface of the sintered material via the grain boundaries in the RTB sintered magnet material. be done. The amount of the RL2-M2 alloy attached to the RTB sintered magnet material in the second diffusion step is 1 mass% or more and 15 mass% or less. Thereby, the RTB-based sintered magnet of the present disclosure can be obtained more reliably, and high B r and high H cJ can be obtained. If the amount of adhesion is less than 1 mass%, the amount of RL2 and M2 introduced into the inside of the magnet material may be too small to obtain a high H cJ . On the other hand, if the amount of adhesion exceeds 15 mass%, the amount of RL2 and M2 introduced will be too large, resulting in a significant drop in Br , and the RL2-M2 alloy that cannot be diffused into the magnet will remain on the magnet surface, resulting in poor corrosion resistance. Other problems such as workability may occur. Preferably, the amount of the RL2-M2 alloy attached to the RTB sintered magnet material is 2 mass% or more and 10 mass% or less. Higher H cJ can be obtained.
第二拡散工程は、第一拡散工程と同様に、前記第一拡散工程が実施されたR-T-B系焼結磁石素材表面に、任意形状のRL2-M2合金を配置し、公知の熱処理装置を用いて行うことができる。また第一拡散工程と同様に、RL2―M2合金の少なくとも一部がR-T-B系焼結磁石素材の少なくとも一部に付着していれば、その配置位置は特に問わないが、好ましくは、RL2-M2合金は、少なくともR-T-B系焼結磁石素材の配向方向に対して垂直な表面に付着させるように配置する。より効率よくRL2およびM2を含む液相を磁石表面から内部に拡散導入させることができる。この場合、R-T-B系焼結磁石素材の配向方向のみにRL2-M2合金を付着させても、R-T-B系焼結磁石素材の全面にRL2-M2合金を付着させてもよい。 Similar to the first diffusion step, in the second diffusion step, an RL2-M2 alloy of an arbitrary shape is placed on the surface of the RTB-based sintered magnet material on which the first diffusion step has been carried out, and the well-known heat treatment is performed. This can be done using a device. Further, as in the first diffusion step, as long as at least a portion of the RL2-M2 alloy is attached to at least a portion of the RTB sintered magnet material, the placement position is not particularly limited, but preferably , RL2-M2 alloy is arranged so as to be attached to at least a surface perpendicular to the orientation direction of the RTB based sintered magnet material. The liquid phase containing RL2 and M2 can be more efficiently diffused into the magnet from the surface thereof. In this case, the RL2-M2 alloy may be attached only to the orientation direction of the RTB-based sintered magnet material, or the RL2-M2 alloy may be attached to the entire surface of the RTB-based sintered magnet material. good.
本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。 The present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.
(実施例1)
[R-T-B系焼結磁石素材(磁石素材)を準備する工程]
各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
(Example 1)
[Process of preparing RTB-based sintered magnet material (magnet material)]
Each element was weighed and cast using a strip casting method to obtain a flaky raw material alloy with a thickness of 0.2 to 0.4 mm. The obtained flake-like raw material alloy was hydrogen-pulverized and then subjected to dehydrogenation treatment in which it was heated to 550° C. in vacuum and then cooled to obtain coarsely pulverized powder. Next, 0.04 mass% of zinc stearate was added as a lubricant to the obtained coarsely pulverized powder based on 100 mass% of the coarsely pulverized powder, and the mixture was mixed. Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) with a particle size D50 of 4 μm. Note that the particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.
前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate was added as a lubricant to the finely pulverized powder in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powder, and the mixture was mixed and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction were perpendicular to each other.
得られた成形体を、真空中、1040℃(焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m3以上であった。得られた磁石素材の成分の結果を表1に示す。なお、表1における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、磁石素材の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。表1における「[T]/[B]」は、Tを構成する各元素(ここではFe、Al、Si、Mn)に対し、分析値(mass%)をその元素の原子量で除したものを求め、それらの値を合計したもの(a)と、Bの分析値(mass%)をBの原子量で除したもの(b)との比(a/b)である。以下の全ての表も同様である。なお、表1の各組成および酸素量、炭素量を合計しても100mass%にはならない。これは、前記の通り、各成分によって分析方法が異なるためである。その他表についても同様である。 The obtained molded body was sintered in vacuum at 1040° C. (a temperature at which sufficient densification by sintering would occur) was sintered for 4 hours, and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 1 shows the results of the components of the obtained magnet material. Note that each component in Table 1 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by gas melting-infrared absorption method, it was confirmed that all of the oxygen content was around 0.1 mass%. Further, as a result of measuring C (carbon content) using a gas analyzer using combustion-infrared absorption method, it was confirmed that C (carbon content) was around 0.1 mass%. "[T]/[B]" in Table 1 is the analytical value (mass%) divided by the atomic weight of each element that constitutes T (here, Fe, Al, Si, Mn). It is the ratio (a/b) between the sum of these values (a) and the analytical value (mass%) of B divided by the atomic weight of B (b). The same applies to all tables below. In addition, even if the respective compositions, oxygen amounts, and carbon amounts in Table 1 are totaled, they do not add up to 100 mass%. This is because, as mentioned above, the analysis method differs depending on each component. The same applies to other tables.
[RL1-RH-M1系合金を準備する工程]
表2の符号1-a1に示すRL1-RH-M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38~1000μmの数種類の篩を通過させ、R-T-B系焼結磁石素材への付着量を変化させるため、5種類の粒径のRL1-RH-M1系合金を準備した。得られたRL1-RH-M1系合金の組成を表2に示す。尚、表2における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。
[Process of preparing RL1-RH-M1 alloy]
Each element is weighed and the raw materials are melted so as to have the composition of the RL1-RH-M1 alloy shown in code 1-a1 in Table 2, and then formed into ribbons or flakes by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. After crushing the obtained alloy in an argon atmosphere using a mortar, it was passed through several types of sieves with openings of 38 to 1000 μm to change the amount of adhesion to the RTB sintered magnet material. RL1-RH-M1 alloys with different particle sizes were prepared. Table 2 shows the composition of the obtained RL1-RH-M1 alloy. Note that each component in Table 2 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).
[第一拡散工程]
表1の符号1-AのR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R-T-B系焼結磁石素材にディッピング法により粘着剤としてPVAをR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材に5種類の粒径のRL1-RH-M1系合金粉末をそれぞれ付着させた。処理容器にRL1-RH-M1系合金粉末を広げ、粘着剤を塗布したR-T-B系焼結磁石素材の全面に付着させた。次に、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、900℃で10時間の条件で前記RL1-RH-M1系合金及び前記R-T-B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。
[First diffusion step]
The RTB-based sintered magnet material labeled 1-A in Table 1 was cut and machined to form a cube of 7.2 mm x 7.2 mm x 7.2 mm. Next, PVA was applied as an adhesive over the entire surface of the RTB-based sintered magnet material by a dipping method. RL1-RH-M1 alloy powders of five different particle sizes were adhered to RTB sintered magnet materials coated with adhesive. RL1-RH-M1 alloy powder was spread in a processing container and adhered to the entire surface of an RTB sintered magnet material coated with an adhesive. Next, using a vacuum heat treatment furnace, the RL1-RH-M1 based alloy and the RTB based sintered magnet material were heated at 900°C for 10 hours in reduced pressure argon controlled at 200 Pa. After carrying out the diffusion step, it was cooled.
[RL2-M2系合金を準備する工程]
表3の符号1-a2に示すRL2-M2系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38~1000μmの数種類の篩を通過させ、RL2-M2系合金を準備した。得られたRL2-M2系合金の組成を表3に示す。尚、表3における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。
[Process of preparing RL2-M2 alloy]
Each element is weighed and the raw materials are melted so that the composition of the RL2-M2 alloy shown in code 1-a2 in Table 3 is obtained, and then ribbon or flake-like Obtained alloy. The obtained alloy was ground in an argon atmosphere using a mortar and then passed through several types of sieves with openings of 38 to 1000 μm to prepare RL2-M2 alloys. Table 3 shows the composition of the obtained RL2-M2 alloy. Note that each component in Table 3 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).
[第二拡散工程]
第一拡散工程をおこなった後のサンプルに再度、ディッピング法により粘着剤としてPVAを全面に塗布した。その後、処理容器にRL2-M2系合金粉末を広げ、粘着剤を塗布したサンプルの全面に付着させた。次に、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて、500℃で3時間の条件で前記RL2-M2系合金及び前記R-T-B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。熱処理後の各サンプルに対し表面研削盤を用いて各サンプルの全面を切削加工し、7.0mm×7.0mm×7.0mmの立方体状のサンプル(R-T-B系焼結磁石)を得た。尚、第一拡散工程を実施する工程におけるRL1-RH-M1系合金及びR-T-B系焼結磁石素材の加熱温度、並びに第二拡散工程を実施する工程におけるRL2-M2系合金及びR-T-B系焼結磁石素材の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Second diffusion step]
After the first diffusion step, PVA was again applied to the entire surface of the sample as an adhesive by dipping. Thereafter, the RL2-M2 alloy powder was spread in a processing container and adhered to the entire surface of the sample coated with the adhesive. Next, the RL2-M2 alloy and the RTB sintered magnet material are heated and diffused at 500°C for 3 hours in reduced pressure argon controlled at 200 Pa using a vacuum heat treatment furnace. After carrying out the process, it was cooled. After heat treatment, the entire surface of each sample was cut using a surface grinder to obtain a cubic sample (RTB-based sintered magnet) of 7.0 mm x 7.0 mm x 7.0 mm. Obtained. In addition, the heating temperature of the RL1-RH-M1 series alloy and the RTB series sintered magnet material in the process of implementing the first diffusion process, and the heating temperature of the RL2-RH-M2 series alloy and R in the process of implementing the second diffusion process. -The heating temperature of the TB-based sintered magnet material was measured by attaching a thermocouple to each.
[サンプル評価]
得られたサンプルを、B-Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表4に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した結果を表5に示す。なお、いずれのR-T-B系焼結磁石も[T]はmass%で示すTの含有量であり、[B]はmass%で示すBの含有量とするとき、[T]/55.85>14×[B]/10.8が成立していることを確認した。また、「磁石表面から300μmの深さに位置する前記主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))」及び「磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))」を求めた。さらに、磁石表面から磁石内部に向かってRH及びGa濃度が漸減する部分を含むかどうかについても確認した。具体的には次の様にして行った。No.1-1~1-5の磁石表面(ここでは磁化方向に対して垂直な面)から300μmにおける結晶粒(主相結晶粒)及び二粒子粒界を透過電子顕微鏡(TEM)を用いて観察し、分散型X線分光法(EDX)を用いて主相結晶粒の中央部及び二粒子粒界(二粒子粒界の任意の場所)が含有するNd及びPrの濃度(mass%)を測定した。測定したPrの濃度(mass%)にPrの原子量を除したもの(a)と、測定したNdの濃度(mass%)にNdの原子量で除したもの(b)との比(a/b)をそれぞれ求めた。測定結果及び計算結果を表4に示す。なお、表4は、主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))の結果を「主相結晶粒中央部[Pr]/[Nd]」と、二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))の結果を「二粒子粒界内[Pr]/[Nd]」とそれぞれ記載している。以後の表も同様である。さらに、No.1-1~1-5の磁石断面における磁石表面から磁石中央付近までを前記EDXにより線分析(ライン分析)を行い、RH及びGa濃度が磁石表面から磁石中央部にかけて漸減しているか(徐々に濃度が低くなっているか)確認した。RH及びGa濃度が漸減している場合は○とし漸減していない場合は×として表4に示す。
[Sample evaluation]
B r and H cJ of each sample were measured using a BH tracer. The measurement results are shown in Table 4. Further, Table 5 shows the results of measuring the components of the sample using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, for any RTB-based sintered magnet, [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%, [T]/55 It was confirmed that .85>14×[B]/10.8 holds true. Also, "molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) in the central part of the main phase crystal grain located at a depth of 300 μm from the magnet surface" And "molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) in the two-grain grain boundary located at a depth of 300 μm from the magnet surface" was determined. Furthermore, it was also confirmed whether there was a part where the RH and Ga concentrations gradually decreased from the magnet surface toward the inside of the magnet. Specifically, it was performed as follows. No. Crystal grains (main phase crystal grains) and two-grain boundaries at 300 μm from the magnet surface (here, the plane perpendicular to the magnetization direction) of 1-1 to 1-5 were observed using a transmission electron microscope (TEM). The concentration (mass%) of Nd and Pr contained in the central part of the main phase grain and the two-grain boundary (any location on the two-grain boundary) was measured using dispersive X-ray spectroscopy (EDX). . Ratio (a/b) of the measured concentration of Pr (mass%) divided by the atomic weight of Pr (a) and the measured concentration of Nd (mass%) divided by the atomic weight of Nd (b) were calculated respectively. The measurement results and calculation results are shown in Table 4. Table 4 shows the results of the molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/(atomic weight of Nd)/(atomic weight of Nd)) at the center of the main phase grain. [Pr]/[Nd]'' and the molar ratio of Pr to Nd within the two-particle grain boundary (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)). "Inside grain boundaries [Pr]/[Nd]". The same applies to subsequent tables. Furthermore, No. Line analysis (line analysis) is performed using the EDX from the magnet surface to the vicinity of the magnet center in the magnet cross sections 1-1 to 1-5, and whether the RH and Ga concentrations are gradually decreasing from the magnet surface to the magnet center (gradually Check whether the concentration is low. In Table 4, if the RH and Ga concentrations are gradually decreasing, they are marked as ○, and when they are not gradually decreasing, they are marked as ×.
表4に示す通り、サンプルNo.1-2~1-4の本発明例はいずれも1.34T以上の高いBr及び1800kA/m以上の高いHcJが得られていることがわかる。これに対し、二粒子粒界内における([Pr]/[Nd])が2.0未満で、磁石表面から磁石内部にむかってGa濃度が漸減する部分を含まないサンプルNo.1-1は高いHcJがえられなかった。さらに、二粒子粒界内における([Pr]/[Nd])が5.0超であるサンプルNo.1-5は高いBrがえられなかった。 As shown in Table 4, sample No. It can be seen that in all of the invention examples 1-2 to 1-4, a high B r of 1.34 T or more and a high H cJ of 1800 kA/m or more were obtained. On the other hand, sample No. 2 has ([Pr]/[Nd]) less than 2.0 in the two-grain grain boundary and does not include a portion where the Ga concentration gradually decreases from the magnet surface toward the inside of the magnet. 1-1 did not provide high H cJ . Furthermore, sample No. 2 in which ([Pr]/[Nd]) within the two-grain grain boundary was more than 5.0. 1-5 could not obtain high Br .
(実施例2)
[R-T-B系焼結磁石素材(磁石素材)を準備する工程]
表6の符号2-Aに示す磁石素材の組成となるように、各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
(Example 2)
[Process of preparing RTB-based sintered magnet material (magnet material)]
Each element was weighed and cast by the strip casting method to obtain a raw material alloy in the form of flakes with a thickness of 0.2 to 0.4 mm so as to have the composition of the magnet material shown in 2-A in Table 6. The obtained flake-like raw material alloy was hydrogen-pulverized and then subjected to dehydrogenation treatment in which it was heated to 550° C. in vacuum and then cooled to obtain coarsely pulverized powder. Next, 0.04 mass% of zinc stearate was added as a lubricant to the obtained coarsely pulverized powder based on 100 mass% of the coarsely pulverized powder, and the mixture was mixed. Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) with a particle size D50 of 4 μm. Note that the particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.
前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate was added as a lubricant to the finely pulverized powder in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powder, and the mixture was mixed and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction were perpendicular to each other.
得られた成形体を、真空中、1030℃(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m3以上であった。得られた磁石素材の成分の結果を表6に示す。なお、表6における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、磁石素材の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained compact was sintered in vacuum at 1030° C. (a temperature at which sufficient densification by sintering occurred for each sample was selected) for 4 hours, and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 6 shows the results of the components of the obtained magnet material. Note that each component in Table 6 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by gas melting-infrared absorption method, it was confirmed that all of the oxygen content was around 0.1 mass%. Further, as a result of measuring C (carbon content) using a gas analyzer using combustion-infrared absorption method, it was confirmed that C (carbon content) was around 0.1 mass%.
[RL1-RH-M1系合金を準備する工程]
表7の符号2-a1に示すRL1-RH-M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38~1000μmの数種類の篩を通過させ、R-T-B系焼結磁石素材への付着量を変化させるため、3種類の粒径のRL1-RH-M1系合金を準備した。得られたRL1-RH-M1系合金の組成を表7に示す。尚、表7における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。
[Process of preparing RL1-RH-M1 alloy]
Each element is weighed and the raw materials are melted so as to have the composition of the RL1-RH-M1 alloy shown in code 2-a1 in Table 7, and then formed into ribbons or flakes by a single roll ultra-quenching method (melt spinning method). A shaped alloy was obtained. The obtained alloy was crushed in an argon atmosphere using a mortar, and then passed through several types of sieves with openings of 38 to 1000 μm to change the amount of adhesion to the RTB sintered magnet material. RL1-RH-M1 alloys with different particle sizes were prepared. Table 7 shows the composition of the obtained RL1-RH-M1 alloy. Note that each component in Table 7 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).
[拡散工程]
表6の符号2-AのR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R-T-B系焼結磁石素材にディッピング法により粘着剤としてPVAをR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材に3種類の粒径のRL1-RH-M1系合金粉末をそれぞれ付着させた。処理容器にRL1-RH-M1系合金粉末を広げ、粘着剤を塗布したR-T-B系焼結磁石素材の全面に付着させた。次に、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、900℃で10時間の条件で前記RL1-RH-M1系合金及び前記R-T-B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。次に、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて、500℃で3時間の条件で拡散工程後のR-T-B系焼結磁石素材を加熱した後、冷却した。尚、拡散工程およびその後の熱処理を実施する工程におけるRL1-RH-M1系合金及びR-T-B系焼結磁石素材の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Diffusion process]
The RTB-based sintered magnet material labeled 2-A in Table 6 was cut and machined to form a cube of 7.2 mm x 7.2 mm x 7.2 mm. Next, PVA was applied as an adhesive over the entire surface of the RTB-based sintered magnet material by a dipping method. RL1-RH-M1 alloy powders of three different particle sizes were adhered to RTB sintered magnet material coated with an adhesive. RL1-RH-M1 alloy powder was spread in a processing container and adhered to the entire surface of an RTB sintered magnet material coated with an adhesive. Next, using a vacuum heat treatment furnace, the RL1-RH-M1 based alloy and the RTB based sintered magnet material were heated at 900°C for 10 hours in reduced pressure argon controlled at 200 Pa. After carrying out the diffusion step, it was cooled. Next, the RTB-based sintered magnet material after the diffusion process was heated in a reduced pressure argon controlled at 200 Pa at 500° C. for 3 hours using a vacuum heat treatment furnace, and then cooled. The heating temperatures of the RL1-RH-M1 alloy and the RTB sintered magnet material in the diffusion step and the subsequent heat treatment step were each measured by attaching thermocouples.
[サンプル評価]
得られたサンプルを、B-Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表8に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した結果を表9に示す。なお、いずれのR-T-B系焼結磁石も[T]はmass%で示すTの含有量であり、[B]はmass%で示すBの含有量とするとき、[T]/55.85>14×[B]/10.8が成立していることを確認した。さらに実施例1と同様にして主相結晶粒の中央部及び二粒子粒界(二粒子粒界の任意の場所)が含有するNd及びPrの濃度を測定し、主相結晶粒の中央部及び二粒子粒界における[Pr]/[Nd]を求めた。さらに、磁石表面から磁石内部に向かってRH及びGa濃度が漸減する部分を含むかどうかについても実施例1と同様にして確認した。測定結果及び計算結果を表8に示す。表8に示す通り、サンプルNo.2-1~2-3の本発明例はいずれも1.35T以上の高いBr及び1900kA/m以上の高いHcJが得られていることがわかる。
[Sample evaluation]
B r and H cJ of each sample were measured using a BH tracer. The measurement results are shown in Table 8. Further, Table 9 shows the results of measuring the components of the sample using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, for any RTB-based sintered magnet, [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%, [T]/55 It was confirmed that .85>14×[B]/10.8 holds true. Furthermore, in the same manner as in Example 1, the concentrations of Nd and Pr contained in the central part of the main phase crystal grain and the two-grain boundary (any location on the two-grain boundary) were measured, and the concentrations of Nd and Pr contained in the central part of the main phase crystal grain and [Pr]/[Nd] at the two-particle grain boundary was determined. Furthermore, it was confirmed in the same manner as in Example 1 whether or not there was a portion where the RH and Ga concentrations gradually decreased from the magnet surface toward the inside of the magnet. Table 8 shows the measurement results and calculation results. As shown in Table 8, sample No. It can be seen that in all of the invention examples 2-1 to 2-3, high B r of 1.35 T or more and high H cJ of 1900 kA/m or more were obtained.
(実施例3)
[R-T-B系焼結磁石素材(磁石素材)を準備する工程]
各元素を秤量しストリップキャスト法により鋳造し、厚み0.2~0.4mmのフレーク状の原料合金を得た。得られたフレーク状の原料合金を水素粉砕した後、550℃まで真空中で加熱後冷却する脱水素処理を施し粗粉砕粉を得た。次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100mass%に対して0.04mass%添加、混合した後、気流式粉砕機(ジェットミル装置)を用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。なお、粒径D50は、気流分散法によるレーザー回折法で得られた体積中心値(体積基準メジアン径)である。
(Example 3)
[Process of preparing RTB-based sintered magnet material (magnet material)]
Each element was weighed and cast using a strip casting method to obtain a flaky raw material alloy with a thickness of 0.2 to 0.4 mm. The obtained flake-like raw material alloy was hydrogen-pulverized and then subjected to dehydrogenation treatment in which it was heated to 550° C. in vacuum and then cooled to obtain coarsely pulverized powder. Next, 0.04 mass% of zinc stearate was added as a lubricant to the obtained coarsely pulverized powder based on 100 mass% of the coarsely pulverized powder, and the mixture was mixed. Dry pulverization was performed in an air stream to obtain finely pulverized powder (alloy powder) with a particle size D50 of 4 μm. Note that the particle size D 50 is a volume center value (volume-based median diameter) obtained by a laser diffraction method using an air flow dispersion method.
前記微粉砕粉に、潤滑剤としてステアリン酸亜鉛を微粉砕粉100mass%に対して0.05mass%添加、混合した後磁界中で成形し成形体を得た。なお、成形装置には、磁界印加方向と加圧方向とが直交するいわゆる直角磁界成形装置(横磁界成形装置)を用いた。 Zinc stearate was added as a lubricant to the finely pulverized powder in an amount of 0.05 mass% based on 100 mass% of the finely pulverized powder, and the mixture was mixed and then molded in a magnetic field to obtain a molded body. The forming apparatus used was a so-called right-angle magnetic field forming apparatus (transverse magnetic field forming apparatus) in which the magnetic field application direction and the pressing direction were perpendicular to each other.
得られた成形体を、真空中、1000℃~1030℃(サンプル毎に焼結による緻密化が十分起こる温度を選定)で4時間焼結した後急冷し、磁石素材を得た。得られた磁石素材の密度は7.5Mg/m3以上であった。得られた磁石素材の成分の結果を表10に示す。なお、表10における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。なお、磁石素材の酸素量をガス融解-赤外線吸収法で測定した結果、すべて0.1mass%前後であることを確認した。また、C(炭素量)は、燃焼-赤外線吸収法によるガス分析装置を使用して測定した結果、0.1mass%前後であることを確認した。 The obtained molded body was sintered in vacuum at 1000° C. to 1030° C. (a temperature at which sufficient densification by sintering occurred was selected for each sample) for 4 hours, and then rapidly cooled to obtain a magnet material. The density of the obtained magnet material was 7.5 Mg/m 3 or more. Table 10 shows the results of the components of the obtained magnet material. Note that each component in Table 10 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, as a result of measuring the oxygen content of the magnet material by gas melting-infrared absorption method, it was confirmed that all of the oxygen content was around 0.1 mass%. Further, as a result of measuring C (carbon content) using a gas analyzer using combustion-infrared absorption method, it was confirmed that C (carbon content) was around 0.1 mass%.
[RL1-RH-M1系合金を準備する工程]
表11の符号3-a1~3-c1に示すRL1-RH-M1系合金の組成となるように、各元素を秤量しそれらの原料を溶解して、単ロール超急冷法(メルトスピニング法)によりリボンまたはフレーク状の合金を得た。得られた合金を乳鉢を用いてアルゴン雰囲気中で粉砕した後、目開き38~1000μmの数種類の篩を通過させ、R-T-B系焼結磁石素材への付着量を変化させるため、3種類の粒径のRL1-RH-M1系合金を準備した。得られたRL1-RH-M1系合金の組成を表7に示す。尚、表7における各成分は、高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した。
[Process of preparing RL1-RH-M1 alloy]
Each element is weighed and the raw materials are melted so that the composition of the RL1-RH-M1 alloy shown in 3-a1 to 3-c1 in Table 11 is obtained, and the single-roll ultra-quenching method (melt spinning method) is used. A ribbon or flake-like alloy was obtained. The obtained alloy was crushed in an argon atmosphere using a mortar, and then passed through several types of sieves with openings of 38 to 1000 μm to change the amount of adhesion to the RTB sintered magnet material. RL1-RH-M1 alloys with different particle sizes were prepared. Table 7 shows the composition of the obtained RL1-RH-M1 alloy. Note that each component in Table 7 was measured using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES).
[拡散工程]
表10の符号3-A~3-MのR-T-B系焼結磁石素材を切断、切削加工し、7.2mm×7.2mm×7.2mmの立方体とした。次に、R-T-B系焼結磁石素材にディッピング法により粘着剤としてPVAをR-T-B系焼結磁石素材の全面に塗布した。粘着剤を塗布したR-T-B系焼結磁石素材に3種類の粒径のRL1-RH-M1系合金粉末をそれぞれ付着させた。処理容器にRL1-RH-M1系合金粉末を広げ、粘着剤を塗布したR-T-B系焼結磁石素材の全面に付着させた。次に、真空熱処理炉を用いて、200Paに制御した減圧アルゴン中で、900℃で10時間の条件で前記RL1-RH-M1系合金及び前記R-T-B系焼結磁石素材を加熱して拡散工程を実施した後、冷却した。次に、真空熱処理炉を用いて200Paに制御した減圧アルゴン中にて、500℃で3時間の条件で拡散工程後のR-T-B系焼結磁石素材を加熱した後、冷却した。尚、拡散工程およびその後の熱処理を実施する工程におけるRL1-RH-M1系合金及びR-T-B系焼結磁石素材の加熱温度は、それぞれ熱電対を取り付けることにより測定した。
[Diffusion process]
The RTB-based sintered magnet materials numbered 3-A to 3-M in Table 10 were cut and machined into cubes of 7.2 mm x 7.2 mm x 7.2 mm. Next, PVA was applied as an adhesive over the entire surface of the RTB-based sintered magnet material by a dipping method. RL1-RH-M1 alloy powders of three different particle sizes were adhered to RTB sintered magnet material coated with an adhesive. RL1-RH-M1 alloy powder was spread in a processing container and adhered to the entire surface of an RTB sintered magnet material coated with an adhesive. Next, using a vacuum heat treatment furnace, the RL1-RH-M1 based alloy and the RTB based sintered magnet material were heated at 900°C for 10 hours in reduced pressure argon controlled at 200 Pa. After carrying out the diffusion step, it was cooled. Next, the RTB-based sintered magnet material after the diffusion process was heated in a reduced pressure argon controlled at 200 Pa at 500° C. for 3 hours using a vacuum heat treatment furnace, and then cooled. The heating temperatures of the RL1-RH-M1 alloy and the RTB sintered magnet material in the diffusion step and the subsequent heat treatment step were each measured by attaching thermocouples.
[サンプル評価]
得られたサンプルを、B-Hトレーサによって各試料のBr及びHcJを測定した。測定結果を表12に示す。また、サンプルの成分を高周波誘導結合プラズマ発光分光分析法(ICP-OES)を使用して測定した結果を表13に示す。なお、いずれのR-T-B系焼結磁石も[T]はmass%で示すTの含有量であり、[B]はmass%で示すBの含有量とするとき、[T]/55.85>14×[B]/10.8が成立していることを確認した。さらに実施例1と同様にして主相結晶粒の中央部及び二粒子粒界(二粒子粒界の任意の場所)が含有するNd及びPrの濃度を測定し、主相結晶粒の中央部及び二粒子粒界における[Pr]/[Nd]を求めた。さらに、磁石表面から磁石内部に向かってRH及びGa濃度が漸減する部分を含むかどうかについても実施例1と同様にして確認した。測定結果及び計算結果を表12に示す。表12に示す通り、サンプルNo.3-1~3-14の本発明例はいずれも1.36T以上の高いBr及び1900kA/m以上の高いHcJが得られていることがわかる。
[Sample evaluation]
B r and H cJ of each sample were measured using a BH tracer. The measurement results are shown in Table 12. Further, Table 13 shows the results of measuring the components of the sample using high frequency inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition, for any RTB-based sintered magnet, [T] is the content of T expressed in mass%, and [B] is the content of B expressed in mass%, [T]/55 It was confirmed that .85>14×[B]/10.8 holds true. Furthermore, in the same manner as in Example 1, the concentrations of Nd and Pr contained in the central part of the main phase crystal grain and the two-grain boundary (any location on the two-grain boundary) were measured, and the concentrations of Nd and Pr contained in the central part of the main phase crystal grain and [Pr]/[Nd] at the two-particle grain boundary was determined. Furthermore, it was confirmed in the same manner as in Example 1 whether or not there was a portion where the RH and Ga concentrations gradually decreased from the magnet surface toward the inside of the magnet. Table 12 shows the measurement results and calculation results. As shown in Table 12, sample No. It can be seen that in all of the invention examples 3-1 to 3-14, a high B r of 1.36 T or more and a high H cJ of 1900 kA/m or more were obtained.
本開示によれば、高残留磁束密度、高保磁力のR-T-B系焼結磁石を作製することができる。本開示の焼結磁石は、高温下に晒されるハイブリッド車搭載用モータ等の各種モータや家電製品等に好適である。 According to the present disclosure, an RTB-based sintered magnet with high residual magnetic flux density and high coercive force can be manufactured. The sintered magnet of the present disclosure is suitable for various motors such as hybrid vehicle motors and home appliances that are exposed to high temperatures.
12・・・R2T14B化合物からなる主相、14・・・粒界相、14a・・・二粒子粒界相、14b・・・粒界三重点 12...Main phase consisting of R2T14B compound, 14...Grain boundary phase, 14a...Two-grain grain boundary phase, 14b...Grain boundary triple point
Claims (5)
R:27.0mass%以上35.0mass%以下(Rは、RL及びRHからなり、RLは軽希土類元素の少なくとも2種でありNd及びPrを必ず含み、RHは重希土類元素の少なくとも1種でありTb及びDyの少なくとも一方を必ず含む)、
B:0.80mass%以上1.20mass%以下、
Ga:0.20mass%以上0.80mass%以下、
T:61.5mass%以上(TはFeとCoであり、Tの90mass%以上がFeである)を含有し、
磁石表面から300μmの深さに位置する前記主相結晶粒の中央部におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は0以上0.45以下であり([Pr]はmasss%で示すPrの含有量であり、[Nd]はmass%で示すNdの含有量である)、
磁石表面から300μmの深さに位置する二粒子粒界内におけるNdに対するPrのmol比(([Pr]/Prの原子量)/([Nd]/Ndの原子量))は2.3以上5.0以下であり、
磁石表面から磁石内部にむかってRH濃度が漸減する部分を含み、
磁石表面から磁石内部にむかってGa濃度が漸減する部分を含む、
R-T-B系焼結磁石。 An RTB-based sintered magnet containing main phase crystal grains and a grain boundary phase,
R: 27.0 mass% or more and 35.0 mass% or less (R consists of RL and RH, RL is at least two types of light rare earth elements and always includes Nd and Pr, and RH is at least one type of heavy rare earth elements) (Always includes at least one of Tb and Dy),
B: 0.80 mass% or more and 1.20 mass% or less,
Ga: 0.20 mass% or more and 0.80 mass% or less,
T: Contains 61.5 mass% or more (T is Fe and Co, and 90 mass% or more of T is Fe),
The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) in the central part of the main phase crystal grain located at a depth of 300 μm from the magnet surface is 0 or more. .45 or less ([Pr] is the content of Pr expressed in mass%, [Nd] is the content of Nd expressed in mass%),
The molar ratio of Pr to Nd (([Pr]/atomic weight of Pr)/([Nd]/atomic weight of Nd)) within the two-grain grain boundary located at a depth of 300 μm from the magnet surface is 2.3 or more5. is less than or equal to 0,
Including a part where the RH concentration gradually decreases from the magnet surface toward the inside of the magnet,
Including a part where the Ga concentration gradually decreases from the magnet surface toward the inside of the magnet,
RTB series sintered magnet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019176509 | 2019-09-27 | ||
JP2019176509 | 2019-09-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021057565A JP2021057565A (en) | 2021-04-08 |
JP7447606B2 true JP7447606B2 (en) | 2024-03-12 |
Family
ID=75271135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020056172A Active JP7447606B2 (en) | 2019-09-27 | 2020-03-26 | RTB system sintered magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7447606B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011223007A (en) | 2006-01-31 | 2011-11-04 | Hitachi Metals Ltd | R-Fe-B-BASED RARE-EARTH SINTERED MAGNET AND METHOD FOR PRODUCING THE SAME |
JP2012043968A (en) | 2010-08-19 | 2012-03-01 | Toyota Central R&D Labs Inc | Rare earth sintered magnet and method for manufacturing the same |
WO2015020182A1 (en) | 2013-08-09 | 2015-02-12 | Tdk株式会社 | R-t-b type sintered magnet, and motor |
WO2016133071A1 (en) | 2015-02-18 | 2016-08-25 | 日立金属株式会社 | Method for producing r-t-b system sintered magnet |
WO2018034264A1 (en) | 2016-08-17 | 2018-02-22 | 日立金属株式会社 | R-t-b sintered magnet |
-
2020
- 2020-03-26 JP JP2020056172A patent/JP7447606B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011223007A (en) | 2006-01-31 | 2011-11-04 | Hitachi Metals Ltd | R-Fe-B-BASED RARE-EARTH SINTERED MAGNET AND METHOD FOR PRODUCING THE SAME |
JP2012043968A (en) | 2010-08-19 | 2012-03-01 | Toyota Central R&D Labs Inc | Rare earth sintered magnet and method for manufacturing the same |
WO2015020182A1 (en) | 2013-08-09 | 2015-02-12 | Tdk株式会社 | R-t-b type sintered magnet, and motor |
WO2016133071A1 (en) | 2015-02-18 | 2016-08-25 | 日立金属株式会社 | Method for producing r-t-b system sintered magnet |
WO2018034264A1 (en) | 2016-08-17 | 2018-02-22 | 日立金属株式会社 | R-t-b sintered magnet |
Also Published As
Publication number | Publication date |
---|---|
JP2021057565A (en) | 2021-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109478452B (en) | R-T-B sintered magnet | |
JP6414654B1 (en) | Method for producing RTB-based sintered magnet | |
JP6414653B1 (en) | Method for producing RTB-based sintered magnet | |
JP6051892B2 (en) | Method for producing RTB-based sintered magnet | |
WO2017018291A1 (en) | Method for producing r-t-b system sintered magnet | |
JP6624455B2 (en) | Method for producing RTB based sintered magnet | |
JP7310499B2 (en) | Method for producing RTB based sintered magnet | |
JP6380724B1 (en) | R-T-B system sintered magnet and manufacturing method thereof | |
JP7059995B2 (en) | RTB-based sintered magnet | |
JP7537536B2 (en) | RTB based sintered magnet | |
JP6508447B1 (en) | Method of manufacturing RTB based sintered magnet | |
JP2019075426A (en) | R-t-b based sintered magnet and manufacturing method thereof | |
JP7447606B2 (en) | RTB system sintered magnet | |
US11424056B2 (en) | Method for producing sintered R-T-B based magnet | |
JP2023045934A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP7452159B2 (en) | Manufacturing method of RTB based sintered magnet | |
CN111489888B (en) | Method for producing R-T-B sintered magnet | |
JP7567558B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP7380369B2 (en) | Manufacturing method of RTB sintered magnet and alloy for diffusion | |
JP2020120102A (en) | Method for manufacturing r-t-b based sintered magnet | |
JP7476601B2 (en) | Manufacturing method of RTB based sintered magnet | |
JP2022147793A (en) | Production method of r-t-b based sintered magnet | |
JP2022147794A (en) | Production method of r-t-b based sintered magnet | |
JP2023138369A (en) | Manufacturing method of r-t-b-based sintered magnet | |
JP2023046258A (en) | Method for manufacturing r-t-b based sintered magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231003 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7447606 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |